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Abstract

In this bachelor thesis we use data on traffic accidents in Sweden

during the period 2003-2016, gathered from police reports. We specifi-

cally look at accidents involving heavier vehicles; the five types chosen

are heavy motorcycle, car, light truck, heavy truck and bus. The goal

is to predict the vehicle type of traffic accidents, using several categor-

ical predictors. We fit a multinomial logistic regression model for this

purpose, with outcome variable Vehicle type. The predictors used are

mainly those with external effect on accident risk for different vehicle

types, such as weather, road surface, traffic situation and road type.

Predictors such as year and weekday are also used to account for driv-

ing patterns in different time intervals. After fitting the model, we

use it to predict vehicle type of accidents on test data, and compare

the model prediction to the observed vehicle types of accidents. The

model performs to some degree; in future research it could be used

to further investigate differences in accident causes between primarily

cars and heavy motorcycles.
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E-mail: dabl2733@student.su.se. Supervisor: Kristoffer Lindensjö, Felix Wahl.



Sammanfattning

I denna kandidatuppsats används data från trafikolyckor i Sverige under perioden 2003-
2016, hämtade från polisreporter. Vi tittar specifikt på olyckor som involverar tyngre
fordon; de fem valda fordonstyperna är tung motorcykel, personbil, lätt lastbil, tung
lastbil och buss. Målet är att prediktera fordonstyp för trafikolyckor, när vi använder flera
kategoriska förklarande variabler. Vi anpassar en multinomial logistisk regressionsmodell
för det här syftet, med utfallsvariabel Fordonstyp. De förklarande variablerna som används
är huvudsakligen de med extern effekt på olycksrisk för olika fordonstyper, t.ex. väder,
väglag, trafiksituation och vägtyp. Förklarande variabler som år och veckodag används
också för att räkna med körmönster i olika tidsintervall. Efter att vi har anpassat modellen,
använder vi den för att prediktera fordonstyp i olyckor på test data, och jämför modellens
prediktion med de observerade fordonstyperna i olyckorna. Modellen presterar till viss grad;
i framtida forskning skulle den kunna användas för att ytterligare undersöka skillnader i
olycksorsaker mellan huvudsakligen personbilar och tyngre motorcyklar.
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1 Introduction

The swedish Riksdag decided 1997 that Nollvisionen, a vision of a minimum amount of
fatalities and injuries in traffic accidents, would be the main guideline for traffic safety
development i Sweden. During the period 2003 - 2016 which this study encompasses, the
number of fatalities on swedish roads has steadily decreased. In 2017, 253 people were
killed and 2347 severely injured. This is the lowest count since data on this subject began
to be recorded, and the lowest per million people in the EU. Measured from 2000 to 2017,
the number of fatalities have dropped by 57%. The change is big enough that it cannot
be explained by natural variation of deaths over time alone.

In september 2016 the swedish government decided to further intensify the work on traffic
safety (Regerinskansliet, 2016), with Transportstyrelsen and Trafikverket as the two main
governing bodies. The decision was taken to make further strides against reaching the
specific goal set in 2009, to reduce traffic fatalities by 50% by 2020 (Lindberg et al.,
2016), to a level of 220 fatalities per year. At the time of writing, this goal is set to fail
(Trafikverket, 2017). Annual studies have shown possible discrepancies in certain aspects
of traffic accident data, which perhaps can be highlighted even more. One of these aspects
are differences between vehicle types; for example, fatalities involving the vehicle type
Car have decreased by 67% during 2000-2017, while fatality count involving vehicle type
Heavy motorcycle remain unchanged. Motorcycle drivers are much more exposed than
drivers of a car, and cars are also increasingly built with focus on safety. The relative
decrease in total accident count (fatal or non fatal) is also bigger for cars however, which
could mean that other factors unrelated to the seriousness of the accident also have an
effect (Trafikverket, 2017). Improvement of traffic safety is complex, since the goal is to
modify interactions of technical, environmental and behavioural factors. Environmental
factors as Haddon (1970) would call it, are the primary focus in this study. We use data
from police reports during period 2003-2016, which focuses on external factors of a traffic
accident, such as weather, road surface and road type. We then try to find a model for
prediction of different vehicle types in traffic accidents. In doing so, we can possibly
highlight connections between certain vehicle types and external factors of accident, which
would give direction to further studies.

1.1 Study aim

The aim of this thesis is to find multinomial logit models for the prediction of heavy vehicle
types in traffic accidents. By the category heavy vehicle types, we mean in this study five
specific types of motor vehicles; Car, Heavy motorcycle, Heavy truck, Light truck and
Bus. These are the values that create our nominal outcome variable with multinomial
distribution. Heavy vehicle types are chosen because they represent the biggest proportion
of vehicles in traffic, and also causes most deaths (Trafikverket, 2017). When interpreting
results of the model, the most common vehicle type Car will be used as reference against
which the other vehicle types are compared against. The best model will hopefully be able
to predict correct vehicle type in traffic accident at high accuracy compared to observed
data, given a set of predictor variables. To reiterate: the predictor variables used is
primarily those with external relation to the accident, such as weather, road surface and
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road type. Other variables represent regional differences as well as differences over time.
The majority of these predictor variables used are recorded in close connection to accident
site and time of accident. Ideally these predictors help point to differences between vehicle
types at similar traffic circumstances, and otherwise the results can be a reference for
further study on the subject. The study does not encompass severity of accident, which
means that a less serious collision is identical to one with fatal outcome. Data on fatality
is available in our dataset, but will not be included.

1.2 Method of using data

The entire dataset will initially be divided into a training set, which contains 70% of data
selected at random, and a test set, using the remaining 30% of data. The model selection
in Chapter 4, using statistics presented in section 2.5, will be made using only the training
set. In Chapter 5, the training set will then be divided into k subsets, as presented in
section 2.5.7. A k - fold Cross validation is used to test prediction performance on each of
the k subsets of the training set. In this way, we can see if the model is equally suitable
over the entire training data. In the same chapter, we finally use the selected model for
prediction on the test data.

1.3 Disposition

Chapter 2 of this thesis focuses on the theory behind the study, primarily regarding the
logistic and the multinomial logistic regression models that will be used. It is divided into
five parts; the first part will focus on generalized linear models and what types of results
we can expect from our models. The second and third part will focus on building the
binary and multinomial logistic regression models and explain their properties. The fourth
part will cover assumptions that is made to validate the multinomial logistic regression
model. The fifth part goes through theory on how we measure model fit, compare models
and use them for prediction.

In Chapter 3 discusses and looks closer at the data used in the study. We examine our
outcome variable, our predictor variables and look shortly at how software handles nominal
predictors with multiple values. We also address the possible problem of missing data, as
well as possible correlation between our predictor variables. Chapter 4 includes our model
selection process, and Chapter 5 is where we use the best model and test it on new data.
We interpret the results of our model in Chapter 6, and Chapter 7 is for a discussion and
conclusion. Appendix and references are found in two separate chapters at the end.

2 Theory

In this chapter, the theory of use in this study is presented shortly. The multinomial
logistic regression that we plan to use is a type of generalized linear model (GLM). We
will generalize the use of such models from the binary to the multinomial case, focusing
on modeling data.

4



2.1 Generalized linear model

GLM:s have three components (Agresti, 2002, p. 116); First a random component, which
is the distribution of the outcome variable of the model. The outcome variable can be of
different forms, such as numerical, binary or categorical (nominal or ordinal), with suited
distribution. In this study, the outcome variable is categorical with five values, and has a
multinomial distribution.

Secondly, a systematic component. For a vector of predictor variables x = x1, ..., xn, and
a vector of coefficients βT = β1, ..., βn we can write the systematic component as β0 +
x1β1 + . . . + xnβn. Here β0 (or α), is referred to as the intercept, i.e the value of the
model when x = 0. β, also a constant, describes the relationship of the predictor variable
to the model. The coefficients of this component have to be estimated, and for logistic
regression models this is typically done with maximum likelihood estimation.

Thirdly, a link function between the systematic component and the the expected value of
the random component. The generalized model can therefore be written as h(µ) = β0 +
x1β1 + . . . + xnβn with link function h and expected value of the random component as
µ. In our model for logistic regression, h is the logit transform, that is the log odds of
some event occurring.

2.2 Logistic regression

We begin with describing a predictive model where the stochastic outcome variable Z can
take two values, often referred to success or failure, or simply 1 and 0. The probability of
success given a set of values for the predictor variables x = x1, ..., xn can be expressed as
π(x) = P (Y = 1|X = x) = 1 - P (Y = 0|X = x). This type of regression model is called
binary and variable Z has a binomial distribution.

2.2.1 Properties

Given a set of values for the predictor variables x = x1, ..., xn, we can together with the
link function log odds, write the logistic regression model as

log π(x)
1−π(x) = β0 + x1β1 + ... + xnβn = β0 + βTx (1)

as formulated in Agresti (2002, p. 182). If we wish to look at the odds for a specific event,
we must first pick a reference value of the outcome variable Z. For the values 0 and 1, the
reference is often picked as 0. This means that we judge the probability of 1 relative to
this reference value. As presented by Agresti (2002, p.44), the odds is obtained by taking
the exponential of (1). It can be written as

P (Z=1|x)
P (Z=0|x) = π(x)

1−π(x) = eβ0+βT x (2)

where Z is our outcome variable and x is a set of predictor values. The odds are always
non-negative, and in this case a value bigger than 1.0 signifies that Z is more probable to
take value 1 than 0, given a set of predictor values x. We can also compare odds using (2).
Suppose that we have two different specific sets of predictor values, x and x̃. For the set x̃
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the previous odds in (2) will change. The rate of change is called the odds ratio, and is
defined as

P (Z=1|x̃)/P (Z=0|x̃)
P (Z=1|x)/P (Z=0|x) = eβ

T (x̃−x).

To obtain the new odds we can then multiply the old odds with the change as
π(x)

1−π(x)e
βT (x̃−x).

This result is very useful for tracking and quantifying results for different sets of predictor
values. The model can also be expressed as success probability. If we use (2) and solve for
π(x) we obtain

π(x) = eβ0+βT x

1+eβ0+βT x .

For our purpose though, we will use odds as indicator of relative change. We will now
look at the case where the response variable is of more than two levels.

2.3 Multinomial logistic regression

So far, the outcome variable Z has had the values of either 1 (success) or 0 (not success).
For a multinomial logistic regression model, we instead have J number of discrete values
which the outcome variable can take, where J ≥ 2. This means that the default reference
value for a binary outcome variable, 0, is to be set to a chosen value. Often it is picked as
the most frequent outcome value in data.

2.3.1 Properties

We again have a set of predictor variables x = x1, ..., xn, together with j = 1, ..., J possible
values of the outcome variable Z. If the J :th and last value of the outcome variable is
picked as the reference value, the multinomial logit model can be written as

log πj(x)
πJ (x) = β0j + βTj x, for j = 1, ..., J − 1, (3)

as presented in Agresti (2002, p. 268). As in the previous section, the odds for a specific
event is obtained by taking the exponential of (3) and can be written as

πj(x)
πJ (x) = eβ0j+βTj x , for j = 1, ..., J − 1. (4)

The odds ratio of two different sets of predictor values x and x̃ is then defined as
P (Z=j|x̃)/P (Z=J|x̃)
P (Z=j|x)/P (Z=J|x) = eβ

T
j (x̃−x).

If we want to express the multinomial logit in terms of the probability of an event, we can
begin with the probability that the outcome variable Z takes the reference value J . Using
(4), we can see that∑J

j=1 πj(x) =
∑J−1
j=1 e

β0j+βTj xπJ(x) + πJ(x). (5)

Since the sum of all possible outcomes of Z defines the whole sample space, we have that
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∑J
j=1 πj(x) = 1,

and therefore we can rewrite (5) as

πJ(x)
(∑J−1

j=1 e
β0j+βTj x + 1

)
⇔

πJ(x) = 1

1+
∑J−1

j=1
e
β0j+βT

j
x
.

Using (4) again we then also see that

πj(x) = e
β0j+βT

j
x

1+
∑J−1

j=1
e
β0j+βT

j
x
.

This is the probability of Z taking value j given a set of predictor values x.

It is also possible to split a multinomial model into several (in our case two) separate
binary models. This have been examined in several studies, among those Hosmer and
Lemeshow (2013, p. 282). Begg and Gray (1984) argues that the biggest issue with this is
that it can lead to larger standard errors, but also that this problem is minimized if the
chosen reference value is very dominant. As we shall see in chapter 3, this is the case for
our dataset. Therefore we will use two separate binary logits in certain parts of our later
analysis.

2.3.2 Parameter estimation

Fitting a model is done by performing a maximum likelihood estimation, that is finding
the parameter values for which the probability of observed data is the greatest. The
maximum likelihood equation comes from the probability distribution of Z, our outcome
variable.

Following the presentation by Agresti (2002, p. 192), we can record the number of
observations ni in our data that has a specific set of predictor values xi = x1, ..., xn, where
i = 1, ..., N and

∑N
i=1 ni = T is the total sample size. If yi is the success count for all

observations with specific predictor values xi, the joint probability function can be written
as

f(y|β) = ΠN
i=1

ni!
yi!(ni−yi)!π(xi)yi(1− π(xi))ni−yi .

If we instead look at the case when our outcome variable has a multinomial distribution,
each element yij is then the observed counts of the j:th outcome value of Z, for a specific
set of predictor values xi = x1, ..., xn. The joint probability function, as shown in Dobson
(2002, p. 141), can in this case be written as

f(y|β) = ΠN
i=1

ni!
ΠJ
j=1yij !

ΠJ
j=1πj(xi)yij . (6)

These joint probability functions are identical for J = 2. In order to find the coefficients
(the β:s) of a multinomial logistic regression model we need to maximize the log-likelihood
function. The likelihood function has the same appearance as (6), except now y is known
to estimate β. Before we take the logarithm of (6) though, we can remove the terms which
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do not include πj(xi). The second derivative needed to find the maxima of (6) will remove
these terms anyway, which means we can focus on the kernel

ΠN
i=1ΠJ

j=1πj(xi)yij . (7)

Taking logarithm of (7) we obtain

l(β|y) =
∑N
i=1

(∑J−1
j=1 yij(β0j + βTj xi)− log(1 +

∑J−1
j=1 e

β0j+βTj xi)
)
,

as shown in Agresti (2002, p. 273). If we now wish to find the values for β which maximize
the function we calculate the partial derivatives ∂β;y

∂β and set to zero. We obtain a set of
equations, that can be solved with the Newton- Raphson method presented in Agresti
(2002, p. 144).

2.4 Assumptions

We have now seen the important relationships between the distribution of our outcome
variable, our systematic component and the link function in order to find odds and
probabilities from specific sets of predictor values. We have also looked closer at how the
parameters are estimated. Before we start looking at creating a suitable model, we have
to look at some assumptions that is done when working with multinomial logits. Although
these models do not require normality, linearity or homoscedacity, there are a few other
important criteria which have to be checked.

2.4.1 IIA

Independence of Irrelevant Alternatives is an assumption regarding proportion of probabil-
ities when different values of our outcome variable are considered. If we have two values j
and J which our outcome variable Z can take, we can for example look at the odds for
this pair of values, as shown in Cheng and Long (2007):

πj(x)
πJ (x) = eβ0j+βTj x , for j = 1, ..., J − 1.

This odds is independent of any other value for our outcome variable, and only determined
by the vectors of βj and βJ .

The most common examples of violating this independence comes from discrete choice
theory, with the classic being “Red bus, blue bus” exemplified by Tutz (2011, p.228). The
tests designed to check the multinomial logit model for this type of violation compares
coefficient estimates of a full model β̂f to coefficient estimates of a restricted model β̂r
(Cheng & Long, 2007). The difference in β̂r is simply that one value of the outcome variable
has been removed. If the coefficient estimates are similar, independence is concluded.

One of these tests is called the McFadden, Train and Tye Test, which is a likelihood ratio
test. Setting lr as the log-likelihood function for estimates β̂r of the restricted model, the
test is formulated as

MTT = −2(lr(β̂f )− lr(β̂r))
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Comparing results from the log-likelihood equation for β̂r and the log likelihood for
estimates β̂f , we can test for independence as MTT is χ2- distributed with degrees of
freedom as the rows of β̂r. This is equivalent to likelihood ratio test, which we present in
section 2.5.2.

2.4.2 Multicolinearity

If two variables (in our case both nominal) are highly associated, this could have an effect
when fitting our model. Cramér’s V is a statistic of measure of such association (Liebetrau,
p. 14-15), with values ranging from 0 to 1. Its based on the χ2-statistic as presented in
Agresti (2002, p. 22). For two nominal variables with s and t possible values respectively,
we set k = min (s, t). With n being the total number of observations in our dataset,
Cramér’s V is calculated as

VCramér=
√

χ2/n
k .

The measure of association is considered high/very high for a value bigger than 0.5, while
0.2-0.5 is moderate and below 0.2 signifies low association to none at all. We will use this
to measure all associations between our variables in section 3.4.

2.4.3 Outliers

Observations that differs greatly from the rest of data can also have a big effect when
fitting our model. Visualizing residuals can be a great way to find outliers for possible
removal. For generalized linear models, there are a couple of different residuals one can
look at. We will focus on deviance residuals, which are the signed squared roots of an
observation i to the overall deviance, as discussed in Agresti (2002, p. 142) and also
Dobson (2002, p. 132).

Following notations from previous chapter, we have first that yi is the observed counts of
successes for the random variable Z, where Z here has a binomial distribution. Secondly,
we have that π(xi) = P (Z = 1|xi), the probability of success for an observation with
the specific set of predictor values xi. Thirdly, we have that ni signifies the number of
observations for every specific set of predictor values xi, such that

∑N
i=1 ni = T , that is

the total sample size.

The deviance residuals can then be formulated as

di = sgn(yi − niπ(xi))
√

2yilog( yi
niπ(xi) ) + 2(ni − yi)log( ni−yi

ni−niπi ).

We will plot at these residuals for every observation to find outliers when analyzing our
selected model in chapter 5.

2.4.4 Perfect separation

A phenomena which is quite common when dealing with exclusively categorical data
with many possible predictor variables is the so called Hauck-Donner effect. Hauck and
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Donner (1977) discussed this in a much cited article where they pointed out a problem
of convergence in the maximum likelihood estimation of logit coefficients. The issue is
regarding low cell counts in frequency tables, which means that the probability of an event
happening is extremely close to 0 or 1. This is also known as perfect separation, where
for example a value of our response variable is not represented in all values of a predictor
variable. For our data, this problem occurs for example when predicting motorcycle
accidents against car/light truck accidents in different regions. Since all regions in Sweden
do not have motorcycle accidents, this can lead to the variance of the coefficient becoming
very large.

In our case, this issue would become apparent when looking at standard errors for
coefficients in our model fit. Most analytical software also has automatic warnings when
perfect separation is apparent.

2.5 Model diagnostics

We will now focus on the procedure to find the best model for our chosen response variable.
The methods and statistics discussed are standard ways of measuring model fit, both
relatively and absolutely.

2.5.1 Purposeful selection

There are several methods available to compare logit models. From a software standpoint,
usually some form of stepwise procedure is implemented. This means going from a full
saturated model including all predictors and interaction terms, to a smaller model (or
vice versa) without losing the most important information. An alternative to a stepwise
procedure is to use Purposeful selection as discussed in Hosmer and Lemeshow (2013,
p. 89). The selection process has seven steps and is performed as follows:

1. We first do analysis using the chosen outcome variable together with one predictor
variable at a time. Since our data is purely categorical, the recommended method is
to create a contingency table of frequency counts. This means that we aggregate the
number of observations for every value of our outcome variable and every value of our
predictor variable. An important initial notice is when a table cell has zero counts.
This can lead to perfect separation (as discussed in section 2.4.4), which causes
the maximum likelihood estimate of coefficients to diverge. After checking every
contingency table, we use the Pearson chi-squared test for independence (Agresti,
2002, p. 22), checking if the variable has a p-value less than 0.25. If this is the case,
we can include it in the next step.

2. We use all the remaining variables in a multivariate model, now checking for p-values
of the Wald statistic (Agresti, 2002, p. 11). For further inclusion of a variable in the
model the Wald p-value should be les than 0.05. With categorical data, this means
that for each predictor variable a reference value is chosen, and then compared to the
remaining values of the variable. The Wald-statistic is used to check for significance
between these values. This means that one value of the predictor variable can be very
significant, while the others are not. Removing the entire variable is probably not a
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good idea in this case. A better way is to recode the values if possible, i.e. merging
insignificant values. Take for example a predictor Month, with has twelve values,
one for each month. If several values (months) are insignificant, a way to merge
these values would be to combine them into four new values, one for each season.
We could then rename the predictor Month to predictor Season.

After merging, we then compare the smaller model with the old model with a likelihood
ratio test (as presented in section 2.5.2).

3. The likelihood ratio test is also used when removing an entire variable. It is important
to compare the estimated coefficients of the smaller model with the old model. Even
if a variable is non-significant according to the Wald-test, it may have a stabilizing
effect on other variables. A big increase in size of a coefficient (say 20%) could mean
that variables need to be added back to the model.

4. After possible merging of different predictor values, and complete removal of insignif-
icant variables, the best model is chosen. The remaining set of predictor variables
are now set. This model is called the main effects model.

5. We now check for possible interaction terms to improve the model. This perhaps
requires more practical consideration than previous steps, and the purpose of the
study must also be taken into account; some interactions may be especially interesting
to present in our results. Interaction between variables with several possible values
will create several interactions between the dummy variables (as discussed in section
3.2). For two variables with five possible values each (four dummy variables), sixteen
interaction variables will be created. Needless to say, the model can grow fast. The
statistical significance of the interaction terms is again measured by p-value of the
Wald statistic. Holding the variables in the main effects model set, we can observe
the changes of the models by adding and subtracting different interaction terms
using step 2.

6. Finally, the model with chosen variables as well as the interaction terms is finally
fitted before it can be used for analysis.

2.5.2 Likelihood-ratio test

In evaluating different logit models against each other, using a likelihood ratio test is a
common method, presented in Agresti (2002, p. 24). It is basically a comparison between
a model M0 to a larger model M1. An example of a hypothesis test is

H0 : M0 is valid

H1 : M1 is valid instead of M0

where the corresponding likelihood ratio test divides the maximum likelihood functions
for the two models L0 and L1 as

−2log(L0
L1

) = −2(l0 − l1).

The resulting statistic asymptotically follows the χ2-distribution under the null hypothesis,
where degrees of freedom is the difference in number of parameters of the two models.
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2.5.3 AIC

Another way of estimating model fit is using the Akaike information criterion (AIC)
(Agresti, 2002, p. 216). The statistic is relative, meaning that one cannot derive meaning
from its value alone, but rather in comparisons with other models. It uses the maximum
value of the log likelihood function and the number of parameters of the model, and can
be expressed as

AIC = 2k- 2l̂.

Here k = number of parameters in model, and l̂ is the maximized log likelihood. Ideally,
the model chosen has the lowest AIC- value. However in choosing between a more complex
model and a simpler model, as Agresti writes (2002, p. 216), a simple model “may be
preferred because it tends to provide better estimates of certain characteristics of the true
model”. As we will see in Chapter 4, the model with lowest AIC is not always suitable.

2.5.4 McFadden R2

A more absolute value of fit is the R2 - statistic and it comes in several different modifi-
cations. For categorical data, McFadden’s R2 is commonly used. It uses the maximized
log-likelihood for a chosen model we wish to evaluate, and divides by the maximized
log-likelihood for the null model, i.e. the model with all predictor variables excluded. The
statistic is defined as

R2
McFadden = 1− lc

l0
,

where lc and l0 is the maximized log-likelihood for the chosen model and null model
respectively. This statistic has minimum value 0 and never reaches 1. In theory, the
higher value of R2

McFadden signifies a better model fit for the chosen model, where 0.2 -
0.4 signifies a very good fit (Hensher & Stopher, 1979, p. 306).

2.5.5 Hosmer- Lemeshow statistic

Another common statistic to measure absolute goodness of fit is the Hosmer - Lemeshow
statistic (Hosmer & Lemeshow, 2013, p. 158), which assesses observed event rates and
then match them with the expected event rates for the model population.

Following the presentation from Fagerland and Hosmer (2012), since our outcome variable
can take more than two values, we need to introduce some new notation. If Z is our
outcome variable with multinomial distribution that can take J levels, we set the reference
value to J as done in section 2.3. For a set of predictor variables xi = x1, ..., xn and
the corresponding outcome variable zi, we have t independent observations (xi, zi) for
i = 1, ..., t.

We now want to code two new variables, setting ẑij = 1 when zi = j and ẑij = 0 otherwise,
where i = 1, ..., t and j = 0, ..., J − 1. Then when the model has been fitted, we set π̂ij as
the estimated probability for observation i for each outcome j. Sorting all observations by
size for 1− π̂i0, we then split them into h groups, usually 10. The base for the test statistic
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then is a table consisting of the sums of observed (O) and estimated (E) frequencies for
each value j of our outcome variable,

Ogj =
∑
i∈Ωg ẑij

Egj =
∑
i∈Ωg π̂ij .

where g = 1, ..., h. With these sums we can calculate the Hosmer - Lemeshow statistic as∑h
g=1

∑J−1
j=0

(Ogj−Egj)2

Egj
.

For the null hypothesis that the fitted model is correct, this statistic has a χ2- distribution,
with (h− 2) x (J − 1) degrees of freedom.

2.5.6 Classification table & ROC- curve

Perhaps the most straightforward way to measure model performance is to create a
classification table (Hosmer & Lemeshow, 2013, p. 169). This can be integrated in the
process of cross validation, and basically compares the prediction of created model with
the actual dataset. If we set cjk as the expected count of observations in our dataset
where the outcome value zi = j, and simultaneously the observed count of observations in
our dataset where the outcome value zi = k, for j = 1, .., J and k = 1, ..,K where J = K.
When zi = j = k, we have the correct expected value from our model. When j 6= k we
have a miss-classification. For a classification table, we want the diagonal cells to have as
high frequency as possible:

j�k 1 ... K
1 c11 ...
... ... cjk ...
J ... cJK

Table 1: Classification table.

The miss-classification error is obtained by summarizing cells where j 6= k and dividing by
total number of observations. This value can then be compared to other models. Another
example of a classification table can be seen in Hosmer and Lemeshow (2013, p. 171).
The classification threshold is usually set to 0.5. This means that for observation i, if
P (zi = j|i) is bigger than 0.5 then the count for i = 1 and otherwise 0. This threshold
can then be changed to further investigate model performance.

A continuation of this classification method is visualizing the model performance in a
plot. Receiver Operating Characteristic Curves (ROC Curves), does this by distinguishing
between Sensitivity and Specificity (Tutz, 2011, p. 448). If k = 1 and k = 0 are two
observed values of our outcome variable Z, and j is the expected value of Z from our
chosen model, these concepts are defines as:

Sensitivity: P (j = 1|k = 1) and Specificity: P (j = 0|k = 0).

13



These values plotted against each other creates a curve. The area under this curve (AUC)
is then used as a measure of model performance on a continuous scale of 0 to 1. An
AUC below 0.7 is seen as a bad fit and a measure closer to 1 is seen as better. Concrete
examples of this can be seen in chapter 5.

2.5.7 k-fold Cross validation

A division of a large dataset into test and training set is often recommended (Hastie et. al,
2009, p. 241). Since the dataset in this study is large and permits this, an initial division
of 70% to a training set and 30% to a test set is performed. We use the test data as an
independent sample of the full data set, and use it to test our final model. The reason for
this division is to detect possible deviations, and also to avoid overfitting.

The division of our training set can then be implemented in the process of cross validation
(Hastie et. al, 2009, p. 241-245). One version of this process is called k-fold cross validation,
which means that we separate our training set into k subsets. We leave one of the subset as
a new test set, and use the other k− 1 parts together as a new training set. We now train
our data k times, using each of the k parts as test set once. This means several separate
processes, but can be a thorough method to validate our results, and simultaneously
avoiding overfitting. We effectively use our entire original training set as k training subsets
and k test subsets.

We will use k-fold cross validation in Chapter 5 to validate our selected model, by comparing
prediction performance results over k parts of the training set. This process will not be
used in Chapter 4 to select the best model.

3 Data

In this chapter, we look closely at our data, and how it is structured. It is collected
from police reports during the period 2003-2016, whose example structure can be seen in
Appendix 8.1. The report includes record of the drivers details, along with the details of
vehicle type and collision type. There are also a record of different traffic circumstances,
e.g. at which type of location (at a crossing, roundabout) the accident happened as
well as geographical location. Circumstances such as weather and road surface are also
recorded. The entire collection of data has 179968 observations. The training set has
107981 observations and the test set has 71987 observations.

The outcome variable in this study is chosen as vehicle type, which means we focus only
on the traffic accidents in the data involving heavier vehicles. Heavier vehicles here is
defined as each of Heavy motorcycle, Car, Light truck, Heavy truck and Bus. Accidents
involving only pedestrians, bicycles, light motorcycles etc. are excluded from this study.

The predictor variables are primarily selected with focus on possible external effect on an
accident, such as weather and season. Other predictors of interest, such as collision type
and road type, are also included in the full model.

14



3.1 Outcome variable

The proportion of accidents in the dataset involving cars is a clear majority. After
careful examination, the conclusion is also made that cars and light trucks have very
similar accident data. They seem to have similar driving pattern, and also have the same
requirements for driving license. Merging these two values to a new value cars/light trucks
seems both logical and practical.

We also merge the values heavy trucks and buses; this is partly due to their small proportion
in data. Both of these vehicle types are involved in relatively few accidents, because they
are more rare in traffic compare to cars. Another reason why we choose to merge these
values is because they have similar problems in traffic, their size effecting driving patterns
and also maneuverability.

The dominant value cars/light trucks is then chosen as the reference value (marked with r
in our table) for the outcome variable in our model:

Variable Values Proportion of data
Vehicle type Car/Light truck (r) 0.91

Heavy truck/Bus 0.02
Heavy MC 0.06

Table 2: Values of outcome variable.

3.2 Predictor variables

The predictor variables are exclusively categorical. Their meaning should be straightfor-
ward to deduce, however the difference between variables Environment (Env) and Region
(Reg) might need a short clarification. Env has local meaning; an accident can happen in
a small town in the countryside. In this case the value of Env is for a dense populated
area.

Conversely, an accident can happen in a sparse populated area in the middle of a big city
region. In this case the value Reg is for a big city. The value of Reg for a big city stands
for a large urban area, in Sweden represented by Stockholm, Gothenburg and Malmö. The
value for a normal region is all other regions.

After recoding (as discussed in 4.1) the predictors can be listed as follows (with reference
value marked with r in our table):
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Variable Values Proportion of data
Year (Year) 2003 (r) 0.08

...
2016 0.06

Season (Ses) Spring (r) 0.26
Summer 0.22

Fall 0.26
Winter 0.26

Weekday (Week) Week (r) 0.75
Weekend 0.25

Region (Reg) Big city (r) 0.51
Normal 0.49

Speed plate (Speed) 50 km/h (r) 0.29
70 km/h 0.26
90 km/h 0.16

Other 0.29
Environment (Env) Sparse pop. (r) 0.55

Dense pop. 0.41
Unknown 0.04

Road type (Road) Public road (r) 0.59
Street 0.18

Express/Motorway 0.18
Other 0.06

Location type (Loc) Road section (r) 0.66
Roundabout 0.03

Crossing 0.28
Pavement/Other 0.03

Weather (Wear) Fair (r) 0.78
Other 0.07
Rain 0.11
Snow 0.05

Road surface (Surf) Dry (r) 0.52
Ice/Snow 0.05

Wet 0.33
Unknown 0.1

Lighting ratio (Light) Daylight (r) 0.63
Darkness 0.26

Sunset/Sundown 0.11
Accident type (Acc) Single (r) 0.34

Crossing/turn 0.23
Meeting 0.08

Overtaking 0.24
Other 0.11

Table 3: Values of predictor variables.
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3.3 Dummy variables

When doing analysis with categorical predictors, a common way to account for the different
values for each predictor xk is to introduce dummy variables (Agresti, 2002, p. 178). Most
software does this automatically, but using theory from section 2.3, it means that for every
predictor xk with J possible values, a new set of dummy predictors xd = xd1, ..., x

d
J−1 is

created. Notice that the reference value J is omitted from this set. This is because every
dummy predictor xdj now is binary, with possible values j = 1 or J = 0. The systematic
component of an observation can then be written as

β0 + β1x
d
1 + ... + βJ−1x

d
J−1.

The reference value J for the predictor variables is usually chosen as the most frequent
value for each predictor. For example, the predictor Loc have the reference value Road
section because of its proportion 0.66 of data.

3.4 Missing data

When we first think about missing data points, the ideal situation is if they follow criterion
MCAR (Missing completely at random) (Allison, 2002, p. 3). This is a totally unbiased
situation, since it assumes that missing data points are independent of both observable
and non observable parameters for data.

A more common situation is that missing data points follow a criterion called MAR
(Missing at random) (Allison, 2002, p. 3). Formally, MAR holds for two variables X and
Y if

P (Y is missing|Y,X) = P (Y is missing|X).

The most obvious example of missing data points in our dataset, is where speed plates for
our predictor variable Speed are not recorded. Many roads do not have frequent speed
plates, which may be a reason. However, it might also be an effect of sloppy paperwork.
In our dataset there are no clear relation between these missing datapoints and other
variables. The missing data points for Speed does not seem to have much importance in
our estimation of parameters neither, since they are a small proportion of observed data.
Allison (2002, p. 5) argues in this case that the missing data mechanism is ignorable.

3.5 Correlation

One way to visualize strength of correlation between categorical variables is by mapping
all measures of Cramers’s V (discussed in 2.4.2). A heat map with all measures for variable
pairs is shown in Figure 1 below:
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We can see that all correlations are below 0.5, which means that correlation is present but
not extremely high (Liebetrau, 1983, p. 3). Some correlations are moderately high, like
between variables Env and Speed which reach 0.442. This does not necessarily pose a
problem, but can add to the understanding of the model. The variables are therefore kept
intact as we proceed.

4 Model selection

In this chapter, we go through the procedure to obtain the best model for our data. This
will be done using the observations in the training set. Using Purposeful selection as
outlined in section 2.5.1, we first determine which predictor variables that should be
included in the main effects model. After that we try to add interaction terms, until the
best model can be determined using theory from section 2.5.2 - 2.5.5.
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4.1 Finding the main effects model

Before we begin fitting our models, we set reference values for outcome variable Z and each
of our predictor variables x = x1, ..., xn as shown in section 3.1 - 3.2. Having done this, the
first step of the Purposeful selection is fitting a separate model for each predictor variable
xk. We do this to investigate which predictor variables can be considered significant when
predicting the value of our outcome variable.

We determine significance by measuring the p-value for the Wald statistic. For Wald
p-value ≤ 0.05 showing significance, we first notice several non-significant values in multiple
predictor variables. This can be seen in Appendix 8.2. For example, the predictor variable
Speed has originally thirteen values, one for each speed plate and also a value for unknown
plate. Three of these values are insignificant with reference value 50 km/h. Since the
majority of observations are spread over three speed plates (50 km/h , 70 km/h and 90
km/h as seen in section 3.2) we try to merge (recode) the remaining values in a new value
called Other. At this step, we are also aware of possible perfect separation (as discussed
in section 2.4.4) which can be seen by looking at the standard errors of the estimated
coefficients.

After merging values we use the likelihood ratio test (as presented in 2.5.2) for the model
with merged values (MNew) and the one without (MOld). We have the hypothesis test

H0 : MNew is valid

H1 : MOld is valid instead of MNew. (6)

We reject the null hypothesis if the likelihood ratio test (LTR) p-value is bigger than 0.05.
This means we do not merge the values. If we cannot reject the null hypothesis, that
is reject validity of the model with merged values, we can keep this recoding. The full
table of important merging processes during recoding of the predictor variables is shown
in Appendix 8.3. After recoding, we find that all our predictor variables are significant
with p-value from the Pearson χ2 test less than 0.25 as discussed in 2.5.1. The full list of
results can be seen in Appendix section 8.4.

The next step is to look closer at a model including all our recoded predictor variables,
called the main effects model. After fitting we conclude that the main effects model
shall contain all our predictor variables, since all of them are significant. There are still
insignificant values of several predictor variables, but fewer than before. This can be seen
in Appendix 8.5.

We can now compare the main effects model to the Null model, i.e. the model without
predictor variables. We use statistics presented in 2.5, where HL signifies the Hosmer-
Lemeshow p-value:

Model df χ2 p-value AIC R2
McFadden χ2 HL

Null 0 . 64255 . . 0
Main effects 88 <2e-16 53625 0.139 10807 5.384e-06

Table 4: Goodness of fit statistics for Null and Main effects models.
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R2
McFadden of 0.139 is decent, since a value from 0.2-0.4 is considered a great fit (Hensher

& Stopher, 1979, p. 306). The HL- value is minimal though, and the model could probably
be extended for better fit. We do this by adding interaction terms.

4.2 Adding interactions

In extending the main effects model, we will focus on adding two-way interaction terms.
This is because three-way interaction terms, and interaction terms with even higher
complexity, are more difficult to interpret. Holding the predictor variables in the main
effects model set, we can start with checking interaction terms for each predictor variable
separately. We first look at the Wald p-value of each separate interaction term. If an
interaction term is insignificant, we use the likelihood ratio test for the models with and
without the insignificant term as in (6). The main purpose is to find a model that has a
good fit, and ideally interactions with significance. However it is also important that our
model is readable, i.e. not too complex. Examples of interactions which can be removed
are shown in table 5 below. We remove all interaction terms which gives LTR p-values
above 0.05 between models:

Model Dropped interactions terms AIC LTR p-value
1 −Road ∗ W eek 66395 0.93
2 −W ear ∗ Surf 66408 0.17
3 −W eek ∗ Speed 66426 0.98
4 −Road ∗ Ses 66422 0.63
5 −W ear ∗ W eek 66406 0.18
6 −Surf ∗ W eek 66400 0.22
7 −Reg ∗ Surf 66396 0.224
8 −Loc ∗ W eek 66390 0.26
9 −W ear ∗ Light 66385 0.12
10 −Loc ∗ Surf 66388 0.08
11 −Loc ∗ Road 66396 0.21
12 −Env ∗ Light 66390 0.44

Table 5: Removed interactions with LTR p-values > 0.05.

After removal, we obtain a large model, which we call Model A. This model has 26
interaction terms. Fitting this model to our data gives us improved goodness of fit
compared to the main effects model:

Model χ2 p-value AIC R2
McFadden χ2 HL

A <2e-16 66380 0.15793 12292 0.1798

Table 6: Goodness of fit statistics for model A.
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The R2
McFadden of 0.15793 indicates an decent fit and the HL of 0.1798 is a clear improve-

ment. The problem with model A is readability; it is very difficult to read, since it has so
many interactions. We therefore want to continue the selection process for interactions.
We again remove all interaction terms which gives LTR p-values above 0.05 between
models. Some examples are shown here:

Model Dropped interactions terms AIC LTR p-value
14 −Reg ∗ Acc 66389 0.13
15 −Road ∗ Acc 66391 0.21
16 −Road ∗ Env 66390 0.06
17 −Ses ∗ Env 66398 0.42
18 −Road ∗ Light 66412 0.2
19 −Ses ∗ W ear 66422 0.07
20 −Loc ∗ Reg 66432 0.05
21 −Loc ∗ Speed 66445 0.08
22 −Env ∗ Speed 66473 0.11
23 −Ses ∗ Light 66499 0.06
24 −Acc ∗ W eek 66520 0.39

Table 7: Removed interactions with LTR p-values > 0.05.

We now obtain a much smaller model, and call it model B. This model has 13 interaction
terms all two-way (as seen in Appendix 8.6). Fitting this model to our data gives us a
worsened goodness of fit compared to model A:

Model χ2 p-value AIC R2
McFadden χ2 HL

B <2e-16 68339 0.128 9966 0.15

Table 8: Goodness of fit statistics for model B.

A R2
McFadden of 0.128 is not terrible, and the HL of 0.15 is again decent. Model B seems

to have a worse fit than model A, but is much more readable. Simplifying interpretation
is important to us when presenting results. Since we will be looking at odds ratios, a
three-way interaction term would be intricate to discuss. We have a decision to make
though, since the AIC of this model is higher than the previous model. We perhaps need
additional measures of model performance. As presented in 2.3.2, we can express the
probability πj(xi) of an event given the outcome variable value j and a set of predictor
variables xi = x1, ..., xn. For every outcome j, we can then plot the probability of this
value for observation i given the set of predictor variables for a chosen model. Looking at
both model A and B, the probabilities for each outcome j can be seen in Figure 2 below:
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One point on the plot signifies the probability of a particular vehicle type being in an
accident for a specific observation in data. We see that the biggest difference between the
models is the probabilities for value Heavy truck/bus. The probabilities for this outcome
value are visibly reduced using model B, while the changes in probabilities for the other
values are less apparent. Since model B is much more readable, but still has a decent
fit, it seems to be the best choice. The only other option would be to shrink the model
B further. The problem with this is that the LTR p-values we obtain when comparing
models with additional interactions removed are all bigger than 0.05. If we for example
drop interactions Env ∗ Loc and Acc ∗ Light, we get a new model C. Model C has the
following values after fitting:

Model χ2 p-value AIC R2
McFadden χ2 HL

C <2e-16 68376 0.127 9872.8 0.05

Table 9: Goodness of fit statistics for model C.

The R2
McFadden drops marginally, however the drop in HL is considerable, down to 0.05.

Simplifying model B seems to worsen fit to a high degree. Since model B is readable,
removing more interactions seems pointless. Therefore, we have the following examples of
fitted models, with goodness of fit statistics for comparison:

Model χ2 p-value AIC R2
McFadden χ2 HL

Main <2e-16 53625 0.139 10807 5.384e-06
A <2e-16 66380 0.158 12292 0.1798
B <2e-16 68339 0.128 9966 0.15
C <2e-16 68376 0.127 9872.8 0.05
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Table 10: Goodness of fit statistics for fitted models.

Taking readability into account, we choose to continue our analysis with model B. Before
we look closer at the predictive performance, we first check the remaining assumptions for
the multinomial model made in section 2.4. We use software to test IIA (Independence
of irrelevant alternatives) by removing one value of the outcome variable at a time, and
performing the McFadden, Train and Tye Test as discussed in 2.4.1. We obtain likelihood
ratio p-values as shown in Table 11 below:

Removed outcome value LTR p-value
Car/light truck 0.21
Heavy truck/bus 0.38

Motorcycle 0.35

Table 11: LTR test of IIA, model B.

None of the LRT p-values are less than 0.05, which means that IIA is not violated, and
that the multinomial logit model can be used for the chosen predictor variables in model
B. We also check the assumption of outliers; calculating the deviance residuals of a model,
as presented in 2.4.3, is not informative for testing absolute model fit. Before splitting the
training data for our k- fold cross validation however, it can be useful for finding outliers
for removal.

As mentioned in theory section 2.3, it is possible to divide the multinomial logit model
into separate binary logit models. The trade off is marginally higher standard errors for
the estimated coefficients. Since our reference value Car/Light truck have proportion 0.91,
this problem is minimized (Hosmer & Lemeshow, 2013, p. 282). Our outcome variable Z
in this case has a binomial distribution with possible outcome values Car/Light truck and
j, where j can take value Motorcycle or Heavy truck/bus depending on which separate
binary logit model we fit. The deviance residuals when fitting model B for these separate
models on the entire training set can be seen in Figure 3 below:
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In general, deviance residuals are bigger for the binary model Car/Light truck vs. Heavy
truck/bus. There are no extreme outliers for any of the models however. If there had
been clear outliers, these would have been removed and model B could be fitted again. As
it is, this will not be necessary. In addition to this, the same is also true for the other
models examined in chapter 4; plots of deviance residuals for models A and C can be seen
in Appendix 8.9.

5 Prediction

In this chapter we make our prediction based on model B. We first use cross validation to
examine the model performance over k subsections of our training set (as discussed in
section 2.5.7). This will be done using only training data. Finally we examine the model
performance on our test data.

5.1 Prediction performance on training data

We first examine prediction performance of model B over the entire training set using
cross validation. Choosing number of partitions k = 10, we partition the set of 107981
observations, which means 10797 observations for each of the k subsets. We then fit
model B ten separate times, once for each of our new training sets i.e. on training data
after omitting subset k. For comparison, we then look at the goodness of fit statistics as
presented in section 2.5.2 - 2.5.5. Every model fit is then used to make prediction on the
omitted subset k. To evaluate the performance of our prediction, we use classification
tables to measure accuracy as well as ROC-curves to measure AUC. These concepts are
discussed in section 2.5.6. For ten separate training results of model B, as well as the
prediction result of these fitted models on the ten subsets, we obtain the following table:
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k AIC R2
McFadden Missclassification Accuracy

1 61336.96 0.12855 0.094 0.906
2 61515.28 0.12851 0.0905 0.9095
3 61342.85 0.12963 0.0926 0.9074
4 61457.44 0.12878 0.09168 0.908
5 61722 0.12927 0.086 0.914
6 61345.59 0.12877 0.093 0.907
7 61443.11 0.12904 0.091 0.909
8 61540.74 0.12721 0.0918 0.908
9 61657.38 0.12886 0.087 0.913
10 61448 0.12864 0.0913 0.9087

Mean 61480.935 0.12873 0.0909 0.909

Table 12: Results from 10-fold cross validation, Model B on training data.

The mean results shows an average accuracy level of 0.909 for prediction on our subsets.
The variance of the missclassification error on the subset is 6.430773e-06. These are good
values, but do not necessarily mean that the model has a particularly good prediction
performance. In our case, a model predicting that all accidents involve cars/light trucks
will have similar values. The small variance over the ten subsets is a good sign; the model
performs the same over the entire training set.

We can also look at the prediction performance on our subsets in a classification table (as
discussed in section 2.5.6) with threshold 0.5. The mean of each ten predictions is shown
below:

Car/Light truck MC Heavy truck/Bus
Car/Light truck 9808 664 318
MC 5 5 2
Heavy truck/Bus 0 0 0

Table 13: Mean classification table, Model B on training data.

We see that the model B completely fails to correctly classify the outcome Heavy truck/bus,
in fact ignores this outcome completely for threshold 0.5. The prediction results are
somewhat better for outcome Motorcycle, while the model correctly classifies the outcome
Car/Light truck at a high rate. The mean missclassification of 0.0909 is not bad, but since
our data is skewed with the outcome Car/Light truck having proportion 0.91 of our data
we can also evaluate prediction performance for different thresholds. We will do this for
the prediction on our test data in the next section.

One value missing from our table is the AUC (Area under the curve), determined from
plotting the ROC- curve. Since model B seems to have better predictive performance for
outcome Motorcycle than outcome Heavy truck/bus, want to visualize this curve for each
of these categories separate. Fitting model B on each of our new training sets, we obtain
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ten ROC-curves each for outcome values Motorcycle and Heavy truck/bus. Plotting the
mean of these curves we see the result in Figure 4 below:

We see that the AUC for cars/light trucks vs. motorcycles is considerably higher than for
cars/light trucks vs. heavy trucks/buss. In fact, the AUC for cars/light trucks vs. heavy
trucks/buss of 0.7178 is a sign of pretty bad predictive performance. Considering the
results shown in the mean classification table, this is not a surprise. Model B clearly fails
to distinguish between outcomes Car/Light truck and Heavy truck/bus for our training
set. This could be a result of underfitting, i.e. there are predictor variables missing from
our dataset which could give a better predictive performance for our chosen outcome
variable of vehicle types.

5.2 Prediction on test data

Finally, we also want to examine the performance of model B on a new dataset; the test
set. This set has 71987 observations with the same predictor variables x = x1, ..., xn as
the training set. After fitting the model B on our training set as in the previous section,
we predict on the test set. We obtain the following classification table:

Car/Light truck MC Heavy truck/Bus
Car/Light truck 65389 4593 1909
MC 51 41 1
Heavy truck/Bus 0 0 0

Table 14: Classification table, Model B on test data.

The overall predictive performance is slightly worse than the mean result from our 10
subsets of the training data in the previous section. We have a missclassification error
of 0.091 for threshold 0.5, an the model again fails to distinguish especially between
cars/light trucks and heavy trucks/buses. Before checking predictive performance for

26



different thresholds, we can look at the probabilities for each outcome j fitted on the
training set and predicted on the test set. The results are shown in Figure 5 below:

Similar to our previous probability plot for the entire training set (Figure 2), the evident
missclassification of the outcome value Heavy truck/bus for threshold 0.5 is hardly
surprising looking at these probabilities. If we instead examine predictive accuracy
for several thresholds we can compare the two outcome values Heavy truck/bus and
Motorcycle, again using separate binary logits. The accuracy of Model B on test data
over different thresholds is seen here in Figure 6:

First, we see that overall predictive accuracy increases sharply as our model starts to classify
the vast majority of observations as cars/light trucks. Since our data is skewed, increasing
the threshold to above 0.2 will mean that the model for cars/light trucks vs. heavy
trucks/buses will not even recognize Heavy trucks/buses as a value. All observations
with outcome other than cars/light trucks will be treated as a missclassification. The
binary logit for cars/light trucks vs. motorcycles has a similar accuracy development over
thresholds. The difference is that model B is better at distinguishing between values
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cars/light trucks and motorcycle, which means a higher proportion of missclassification
between the observed values and the expected values from the model. In general though,
we see that accuracy increases as the threshold rises i.e. the classification of cars/light
trucks starts to dominate. In the same way as in previous section, we also want to look at
the ROC- curves for the separate binary logits on test data. These are seen in Figure 7
below:

As discussed in section 2.5.6, the bigger area above the diagonal line, the better our
model classifies the different vehicle types from data (Tutz, 2011, p.448). In the case
of classification of cars/light trucks vs. motorcycles, the model shows a decent accuracy
with area 0.8045 under the curve. The classification for cars/light trucks vs. heavy
trucks/buses shows a significant drop in accuracy, with AUC = 0.7285. This value is, just
as the corresponding value for our training data in figure 4, just above the accepted level
considering that an AUC less than 0.7 signifies bad fit.

In summary looking at the results for our prediction on test data, we see very similar
results to our prediciton on the training set using cross validation in section 5.1. This is a
good sign, since it gives some indication that the model gives consistent results. Among the
key findings are that the model B fails to distinguish between outcome values Cars/light
trucks and Heavy trucks/buses. This fact is perhaps a result of underfitting, and possibly
a result of big difference in proportions between these values in our dataset. Looking
at the separate binary logit models, this becomes particularly evident. The multinomial
logit does not have a particularly bad fit overall however, and looking at the model B fit
statistics on our test data we again see decent goodness of fit:

χ2 p-value AIC R2
McFadden χ2 HL

<2e-16 45306 0.134 6922 0.328

Table 15: Goodness of fit statistics for Model B on test data.

The R2
McFadden statistic of 0.134 is slightly higher than 0.128 for fitting on our training
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data. The HL of 0.328 is also noticeably higher, compare to 0.15 on our training data.
This means that we have now fitted model B on all available data, an obtain similar
results. If we also plot the deviance residuals for model B on test data in Figure 8 below,
we see a similar result as on training data:

Just like for the deviance residuals for the model fit on training data in Figure 3, there
are no clear outliers to be removed. As our results seems stable, and our prediction
performance is decent to some degree, we can now proceed by interpreting the estimated
coefficients of the fitted model B.

6 Results

In this chapter, we examine the results obtained by the model B. The coefficients to be
interpreted when looking at the estimations from the multinomial logit model are the
odds ratios. For two different sets of predictor variable values x and x̃, these are defined
in section 2.3.2 as

P (Z=j|x̃)/P (Z=J|x̃)
P (Z=j|x)/P (Z=J|x) = eβ

T
j (x̃−x). (8)

where Z is a random variable with multinomial distribution and the possible outcome
values are j = 1, ..., J − 1, and J is set as the reference value. For an odds ratio bigger
than 1, this simply means that the odds P (Z = j | x̃)/P (Z = J | x̃) is greater than the
odds P (Z = j | x)/P (Z = J | x). The interaction terms are then ratios of the odds ratios
as discussed by for example Norton et al. (2004); for a specific predictor variable xk with
values r and s, we have the ratio

P (Z=j|x̃,xk=r)/P (Z=J|x̃,xk=r)
P (Z=j|x,xk=r)/P (Z=J|x,xk=r)/

P (Z=j|x̃,xk=s)/P (Z=J|x̃,xk=s)
P (Z=j|x,xk=s)/P (Z=J|x,xk=s) , (9)

, that is the ratio of the odds ratios evaluated at different values of xk, where the value s
is set as the reference value of xk.

Since we have many significant predictor variables and interactions, we present the results
for two separate binary models. We then have odds ratios for the outcome values Car/light
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truck vs. Motorcycle, and also odds ratios for values Car/light truck vs. Heavy truck/bus.
The estimations of the odds ratios are still calculated from the full multinomial logit model,
specifically model B. Car/light truck is the reference value for both these models. We choose
to present odds ratios in text as Variable(reference vs. non reference). Interaction terms
becomes Variable(reference vs. non reference), Variable 2(reference vs. non reference).

For example, say we have a significant coefficient as the odds ratio between the values
Fair and Rain for predictor Wear in the binary model Car/light truck vs. Motorcycle.
This odds ratio would be written as Wear(Fair vs. Rain). The interaction with another
variable Light for values Daylight and Darkness is then written as Wear(Fair vs. Rain),
Light(Daylight vs. Darkness). In effect, this means that the interaction coefficient signifies
the ratio between Wear(Fair vs. Rain) at Light(Darkness) and Wear(Fair vs. Rain) at
Light(Daylight).

The odds ratios and interactions picked below for further analysis is examples of results
after fitting Model B. The full list of significant odds ratios and their 95 % Wald type
confidence intervals (Agresti, 2002, p. 13) for model B can be seen in Appendix 8.7-8.8.

6.1 Car/light truck vs. Motorcycle

We begin with looking first at the binary model for cars/light trucks vs. motorcycles ,
focusing on the statistically significant coefficients. Looking first at the variable Env,
environment, we have several coefficients and interactions to consider

Label OR estimate Wald CI
Env(Sparse pop. vs Dense pop.) 1.34 1.19- 1.54
Env(Sparse pop. vs Unknown) 1.98 1.51- 2.66

Env(Sparse pop. vs Dense pop.), Acc(Single vs Meeting) 0.249 0.45-0.92
Env(Sparse pop. vs Dense pop.), Week(Week vs Weekend) 0.695 0.618- 0.78

Table 16: Examples of odds ratios, variable Env.

Firstly, we can see that the chance of a motorcycle being in an accident compared to a
car/light truck, is higher for value Dense pop. compared to Sparse pop., and the same
goes for value Unknown. This can be seen because these coefficients are above 1.0, namely
1.34 and 1.98 respectively. That motorcycles have relatively higher chance for accident in
dense populated areas is perhaps not so shocking. For the interaction term Env ∗ Acc,
the interpretation would be that the relative chance of motorcycles being in an accident
in dense populated area is much higher (about four times as high) for single accidents
compared to meetings. The interaction Env ∗Week then says that the relative chance
is also higher for weekdays compared to weekends. This could mean several things; that
motorcyclists travel more outside the dense populated areas at weekends, or that the
people in the sparse populated areas mostly drive at weekends. Further analysis would be
necessary to draw secure conclusions on these types of results. We continue with looking
at the predictor variable Acc:
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Label OR estimate Wald CI
Acc(Single vs Crossing/turn) 0.496 0.39- 0.63

Acc(Single vs Crossing/turn), Loc(Road section vs Roundabout) 0.629 0.44-0.85
Acc(Single vs Overtaking), Light(Daylight vs Darkness) 1.51 1.07-2.2

Acc(Single vs Meeting), Surf(Dry vs Wet) 0.43 0.26-0.72

Table 17: Examples of odds ratios, variable Acc.

We see that the chance of a motorcycle being in an accident compared to a car/light
truck, is higher for value Single compared to Crossing/turn. Single vehicle accidents are
especially common for motorcycles while accidents at crossings/turns have relatively less
chance of happening compared to for cars/light trucks. The interaction Acc ∗ Loc then
tells us that this relative chance is even less for motorcycles compared to for cars/light
trucks at a roundabout.

The interaction Acc ∗Light is measuring the odds ratio for accident on a motorcycle when
overtaking compared to a single vehicle accident, at different lighting. Evidently, the odds
ratio for overtaking accident vs. single vehicle accident is higher when its dark outside.
This doesn’t necessarily mean that you should avoid overtaking with motorcycle when its
dark, but may be an indicator of the risk of reduced vision.

Acc ∗ Surf indicates that the odds for a motorcycle accident in meeting is bigger when
the road is dry. This is maybe no surprise, since the vast majority of accidents happen on
dry roads. Add also that fewer motorcycles are in traffic when its raining.

If we instead look closer at variable Speed, we see that the odds for accident with a
motorcycle at 90 km/h, is considerably lower than with cars/light trucks, with odds ratio
at 0.244:

Label OR estimate Wald CI
Speed(50 km/h vs 90 km/h) 0.244 0.2- 0.297

Speed(50 km/h vs 90 km/h), Light(Daylight vs Darkness) 0.549 0.363-0.83
Speed(50 km/h vs 90 km/h), Light(Daylight vs Sunset/Sundown) 1.52 1.098- 2.14

Table 18: Examples of odds ratios, variable Speed.

The interaction term then Speed ∗Light shows that this odds ratio is higher for accidents
in daylight than in the dark, but also higher at dusk/dawn than daylight. In other worlds,
there is relatively higher odds for accident with motorcycles at 90 km/h at dusk/dawn,
than in both daylight or darkness compared cars/light trucks. Finally we also look at the
variables Week and Reg:
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Label OR estimate Wald CI
Weekday(Week vs Weekend) 1.85 1.67-2.02
Reg(Big city vs Normal) 0.81 0.68- 1.01

Table 19: Examples of odds ratios, variables Weekday, Reg.

We see that motorcycles have relatively higher chance of accident than cars/light trucks
on the weekend. This seems logical, since most people do not take motorcycles to work,
but rather drive for fun on the weekend. We also see that motorcycles have relatively
lower chance for accident outside the big city regions. In general, the motorcycle accidents
are focused around the big cites. Keeping in mind that the reference category cars/light
trucks makes up for 91% of total accidents, the odds ratio we get for cars/light trucks
vs. motorcycles gives a decent view of how motorcycle accidents compare in different
situations.

6.2 Cars/light truck vs. Heavy truck/bus

If we instead look at the binary model for cars/light trucks vs. heavy trucks/buses (value
Car/light truck is the reference value which value Heavy truck/bus is compared against),
we begin again with the odds ratios for predictor Env:

Label OR estimate Wald CI
Env(Sparse pop. vs Dense pop.) 0.724 0.576- 0.89

Acc(Single vs Meeting) 0.5 0.3- 0.79
Env(Sparse pop. vs Dense pop.), Acc(Single vs Meeting) 1.12 0.76- 1.7

Env(Sparse pop. vs Dense pop.), Loc(Road section vs Crossing) 1.42 0.4-1.88

Table 20: Examples of odds ratios, variables Env.

Conversely to our previous model results in table 15, heavy trucks/buses have a relatively
higher chance of accident in sparsely populated areas. This result is most likely a
consequence of driving patterns for bigger vehicles. The interaction term Env ∗Acc then
tells us that this odds ratio is relatively higher for meeting accidents than for single
accidents. Single vehicle accidents are twice common among Heavy trucks/ buses than
meeting accidents, but the results suggest that meeting accident at least are more common
in sparsely populated areas than in dense populated ones.

The interaction term Env ∗ Loc also shows that accidents at crossings are more common
than accidents at road sections in sparsely populated areas than in dense populated ones.
The coefficient is 1.42 which indicates a rather large difference; one reason could be more
dangerous crossing locations outside the dense populated areas, but this needs to be
investigated further. As seen for odds ratios with variable Acc, the relative chance for
heavy trucks/buses being in an accident at crossings/turns is much lower than for single
accidents:
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Label OR estimate Wald CI
Acc(Single vs Crossing/turn) 0.274 0.175-0.42

Acc(Single vs Overtaking), Light(Daylight vs Darkness) 1.36 1.0-1.84
Acc(Single vs Crossing/turn), Surf(Dry vs Ice/Snow) 1.72 1.14- 2.6

Acc(Single vs Crossing/turn), Week(Week vs Weekend) 1.73 1.19- 2.5

Table 21: Examples of odds ratios, variables Acc.

A contribution factor to this should be that certain roads often are designed for large
vehicle transportation, especially for trucks, to simplify access to industries etc. An
interesting interaction coefficient is Acc ∗ Light at 1.36. The odds ratio for accidents in
single vehicle accidents compared to accidents in overtaking is higher for dark lighting for
heavy trucks/buses. This can have many explanations, one of which can be that heavy
trucks/buses in general add more risk in traffic situations trying to overtake other vehicles,
and in dark lighting this risk is increased. Reading the interaction Acc ∗Surf wee also see
that odds ratio for accidents in single vehicle accident compared to crossing the road or
turning is higher for Icy/Snow road surface. A relatively higher risk for heavy vehicles to
have accident in crossing the road/ turning with icy surface seems logical. In regards to
variable Acc ∗Week, the fact that the chance for an accident crossing the road or turning
are relatively higher at weekends is somewhat of a surprise. This is also difficult to explain
without further studies.

In some final examples, we see that the interaction Speed ∗Light gives that the odds ratio
for accidents at 90 km/h roads compared to 50 km/h roads is bigger at dark lighting:

Label OR estimate Wald CI
Speed(50 km/h vs 90 km/h), Light(Daylight vs Darkness) 2.32 1.69-3.23

Weekday(Week vs Weekend) 0.24 0.194- 0.29
Weekday(Week vs Weekend), Light(Daylight vs Darkness) 1.32 1.0- 1.72

Reg(Big city vs Normal) 1.11 0.99- 1.23
Reg(Big city vs Normal), Light(Daylight vs Darkness) 1.3 1.08- 1.58

Table 22: Examples of odds ratios, variables Speed, Weekday, Reg.

A difference in 2.52 suggests that bigger roads are significantly more dangerous for Heavy
trucks/buses in dark lighting. Looking at the variable Weekday, we see that the relative
chance for accidents with heavy trucks/buses are much lower on weekends. This is
probably because these vehicle types are less in traffic during the weekend, the inverse to
the situation for motorcycles. This odds ratio is somewhat bigger in dark lighting, which
could reflect driving patterns at the start or end of the week.

Finally, the coefficients for variable Reg first show that the odds for accident in big city
regions lower than outside big city regions. This odds ratio is bigger for dark lighting,
perhaps following the same pattern as seen for other interactions. The odds for accident
seems to increase somewhat at dark lighting for heavy trucks/buses, compared to cars/light
trucks.
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7 Discussion & conclusion

Based on model B, we have reached some results of limited significance. In this chapter
we will have a quick discussion before concluding the results of this report.

7.1 The model

The multinomial logit model can be used to fit our data and obtain somewhat significant
results; the assumptions made in section 2.4 holds. Finding a well fitting readable model
was difficult for the predictors used. Even the less readable bigger models (model A and
bigger) have limited predicitve performance. Concerning our tests of goodness of fit, the
bigger model A showed better fit than the smaller models; the Hosmer Lemeshow p-value
and the R2

McFadden were both higher, while AIC was lower than for smaller models. The
actual predictive performance on our training set was also slightly more accurate. The
performance was not dramatically better though, and taking into account the readability
of the model, the smaller model B was the best choice. This model had decent values
for goodness of fit, while also being more readable. When starting to shrink this model
even further, we immediately saw a increase in AIC, as well as a decrease in Hosmer
Lemeshow p-value and the R2

McFadden-statistic. The predictive performance also became
less accurate.

All models failed in prediciton to distinguish between the dominant outcome value Car/light
truck and the two other outcome values. This was most apparent for the value Heavy
truck/Bus; presumably this is an effect of underfitting, i.e. the predictors used were not
able to capture vital differences between the outcome values. In other words, the model
may have been to simple. This is reflected in both the classification tables and the ROC-
curves. However, this seemed to be less evident when distinguishing between outcome
values Car/light truck and Motorcycle. Aspects of these two vehicle types, such as driving
pattern in regards to time and place as well as accident type, probably distinguished them
more clearly from each other. Focusing on the binary logit Car/light truck vs. Motorcycle
would be best for this particular dataset.

One alternative to using the multinomial logit model for our dataset and topic is using a
nested logit model; this model is particularly useful if the test for IIA fails, i.e. independence
of irrelevant alternatives is rejected. The theory for this model will not be presented here,
but is discussed at length by Agresti (2002, p. 361-366).

7.2 The data

Overall, traffic safety is a thankful topic for data analysis, since it is prioritized both in
the public and private sector. There is also a clear overriding goal in all studies on traffic
safety; preventing deaths. Currently, the used police reports are one of two main open
sources of data; the other one being hospital reports. The hospital reports records in
more detail severity of accident, time of arrival and other circumstances important to the
health of a patient. Together, these data sources are best suited to studies on whether an
accident is fatal or not, rather than what caused the accident. They also perhaps highlight
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the human aspect of the accident, i.e. important factors such as alochol level and age
of individual. For more in depth analysis of accident causality and technical aspects of
the accident, records of the kind available to insurance companies and car manufacturers
would be extremely helpful. The police reports from period 2003-2016 possibly gave us
an underfitted model with vehicle type as outcome variable. To create a more complex
model, access to data including more predictor variables would be necessary. Our data
provides some insight in differences between vehicle types in accidents, but an addition
of hypothetical predictors such as vehicle brand, year of manufacture and tire condition
would provide for an even more interesting analysis with greater insights. Other studies on
the same dataset could also be designed with accident type (i.e. if the accident happened
at meeting, while crossing the road or in overtaking another vehicle) as outcome variable.
This study would probably also give interesting results. Because the topic is popular,
possible findings could easily be compared both to previous studies and studies from other
countries.

7.3 The results

The model gives several interesting results, some expected and others less expected.
Since the cause of accident often is complex, the conclusions made from these results
are speculative, and further studies are necessary to infer definite statements from data.
Keeping in mind that all results are relative to the value Car/light truck, we can see
tendencies and connections however. If we begin with motorcycles, they are involved in
accidents at a greater rate in dense populated areas, while also having much lower risk of
accident in meetings and overtaking other vehicles than in single vehicle accidents. No
surprise there, perhaps. Motorcycle traffic is heavier in and around bigger urban areas;
the fact that chances of accident in meeting and overtaking is lower could be an effect of
not driving as frequently on specific roads with heavy traffic. Single vehicle accidents are
the most common accident type, but this is particularly true for motorcycles. The point
of driving a motorcycle is somewhat lost on a crowded highway perhaps. Motorcycles
are also involved in accidents on 50 km/h roads at much higher rate than on 90 km/h
roads, and are more accident prone on weekends compared to weekdays. This is also
expected, since motorcycles generally are more of a hobby vehicle, and something you
drive in your free time. This is also connected to the weather and road surface aspects,
the clear majority of motorcycle accidents happen on dry roads.

Motorcycle accidents happen predominantly in big city areas, and the driver crashes
by himself/herself. This is true also for cars/light trucks, but not as predominant. An
interesting result in relation to this though, is that motorcycle accidents that are not
single vehicle accidents have a much higher chance of happening at 90 km/h roads than 50
km/h roads; if a motorcyclist decides to overtake another vehicle, the chance for accident
is higher on a 90 km/h road than 50 km/h road. This is true also for meetings, crossing
the road and other types of accidents. Why is this? Roads with speed plate 90 km/h
certainly see heavier traffic in some cases. The big roads in Sweden, E4, E18 and E20
also have most accidents. Not only road type, but the specific road number could be
important information in this case. The human factor can not be underestimated neither;
motorcyclists could be driving more recklessly on 90 km/h roads.
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What about time of day? What relative effect does lighting have on accident odds? For
motorcycles, the chance of accident in meetings, crossing the road and other types of
accidents are higher when it is dark outside. The same is true when it is sunset/sundown.
The most reasonable explanation would be decreased visibility for other vehicles on the
road. At sunset/sundown, the relative chance is even bigger on a 90 km/h road compared
to a 50 km/h road. This is not true for dark lighting however; the relative chance of
accident at dark lighting is greatly reduced on 90 km/h roads compared to 50 km/h roads.
What can one learn from this? It is difficult to examine without looking closer into driving
patterns. Higher relative chance of accident on 90 km/h roads at sunset/sundown, may
have less to do with visibility and more to do with what type of road and what time of
day it is. For roads with heavy traffic during rush hour, chance of accident will probably
increase for all vehicle types. In this case, specific time of day would be interesting to
have recorded. Regarding the relative increase of motorcycle accident risk on weekends,
this is primarily true in daylight. Both accidents in darkness and sunset/sundown are half
the risk on weekends, again showing the importance of studying driving patterns both
geographically and in time.

If we switch focus to accidents involving heavy trucks/buses relative to cars/light trucks,
we have a couple of similarities with above discussed results for motorcycles. For example,
single vehicle accidents are the most common accident type by a large margin. Most
accidents involving heavy trucks/buses also happen in road sections. Lighting also seem
to have an effect in similar circumstances; as with motorcycles, accidents on 90 km/h
roads have higher relative risk in darkness than in daylight. There are however several
big differences as well. To begin with, accidents with heavy trucks/buses are relatively
more common in sparse populated areas. This is especially true with accidents at meeting,
and at crossings. Vehicle size is most probably a factor here, as is driving pattern. Heavy
trucks/buses are much more likely to be in a meeting accident, because of size. Accidents
at crossings are also more common among these vehicles, because of impaired speed
of maneuvers. The issue may not only be connected to vehicle size however; heavy
trucks/buses are often forced to drive on smaller roads in order to reach their destination.
Better planning of roads could probably prevent some of the accidents of these vehicles.
Heavy trucks/buses are also involved in accidents at higher rate outside the big city areas,
something that could be added to the same discussion.

Heavy trucks/buses drive less on weekends, since they are most commonly used in a
profession. Therefore this result is almost inverse to those for motorcycle accidents; heavy
trucks/buses have much less relative chance to be in an accident on the weekend. There
are some interesting results to add to this fact though. The relative risks of accident in
meetings, crossings and overtakings are higher at the weekend compared to in the week.
Single vehicle accidents are then relatively less common. Does this have to do with other
road-users, or truck drivers/bus drivers themselves? Additional hypothetical predictors
could prove very useful in this case, for example alcohol level of driver and time of accident.
The relative risks of accident in meetings, crossings and overtakings are also higher at
snowy/icy road surface, as well as on wet road surface. This is a big difference compared to
accident data for motorcycles; very few MC:s are driving when the road surface is not dry.
Heavy trucks/buses certainly seems to be effected by change in road surface, especially
when performing certain maneuvers. Heavy trucks/buses can be harder to control during
a slide for example, because of its weight. The weather may not be the only reason for
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the accident however. Although professional drivers should in theory be better drivers,
the human factor can not be dismissed. There are several cases of truck drivers getting
caught without driving license every year.

In summary, we have some expected results and some less expected. For the general case,
a motorcycle accident happens on a dry road, in a big city area, and often on the weekend.
The accident does not involve any other vehicles, and the speed plate is 50 km/h. On the
other hand accidents involving heavy trucks/buses happen outside big city areas, on a
dry road during the week. These results are confirmed by the model. Among the less
expected is the tendency that motorcycle accidents that are not single vehicle accidents
have a much higher chance of happening at 90 km/h roads than 50 km/h roads. This
could be investigated further. For heavy trucks/buses, the relative increase in accident risk
at meetings, crossings and overtakings on certain road surfaces could also be interesting
to study closer.

7.4 Conclusion

The results primarily confirm general assumptions made on circumstances of accident
for the different vehicle types. But the model also gives some results which are worth
closer examination. The multinomial logit can be used to model our data, although more
or perhaps more relevant predictors are necessary to create a very well fitting model.
Specifically predictors focused on technical data, such as Brand, Year of manufacture, Tire
condition etc. would be very interesting to have access to. The data from police reports is
not primarily intended to reflect differences in vehicle type for accidents; the purpose is
instead very general with focus on general information. That said it still provides useful
direction when studying vehicle type in traffic accidents, and can possibly serve as a test
sample when fitting models on more comprehensive data.
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8 Appendix

8.1 Police report template

Figure 9: Template of official police report for traffic accident.
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8.2 Insignificant values of predictor variables before merging

Vehicle type Variable Values (reference vs. non reference) p-value
Cars/light trucks vs. Mc:s Loc Road section vs. Pavement 0.96

Wear Fair vs. Snowy rain 0.52
Surf Dry vs. Thin ice/visible 0.26

Month January vs. February 0.3
Month January vs. November 0.09
Month January vs. December 0.46

Län Stockholm vs. Blekinge 0.05
Län Stockholm vs. Dalarna 0.23
Län Stockholm vs. Gotland 0.14
Year 2003 vs. 2004 0.36
Year 2003 vs. 2005 0.74
Year 2003 vs. 2006 0.17
Year 2003 vs. 2007 0.41
Year 2003 vs. 2009 0.37
Year 2003 vs. 2010 0.27
Year 2003 vs. 2015 0.53
Year 2003 vs. 2016 0.91

Cars/light trucks vs. Heavy trucks/buses Weekday Monday vs. Tuesday 0.1
Weekday Monday vs. Wednesday 0.24

Speed 50 km/h vs. 70 km/h 0.54
Speed 50 km/h vs. 40 km/h 0.14
Speed 50 km/h vs. 20 km/h 0.99
Loc Road section vs. crossing 0.7
Loc Road section vs. Bicycle road 0.83
Län Stockholm vs. Kalmar 0.55
Län Stockholm vs. Södermanland 0.07
Län Stockholm vs. Uppsala 0.8
Län Stockholm vs. Örebro 0.3
Year 2003 vs. 2005 0.37
Year 2003 vs. 2007 0.41
Year 2003 vs. 2008 0.97
Year 2003 vs. 2009 0.36
Year 2003 vs. 2010 0.18
Year 2003 vs. 2011 0.37
Year 2003 vs. 2012 0.18
Year 2003 vs. 2013 0.78
Year 2003 vs. 2014 0.54
Year 2003 vs. 2015 0.52
Year 2003 vs. 2016 0.67

Table 23: Insignificant values of predictor variables before merging.
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8.3 Merging of variables

Old variable Old values New variable Merged values
Weekday Monday Weekday Weekday

... Weekend
Sunday

Month January Season Spring
... Summer

December Fall
Winter

Län Blekinge Region Big city
... Normal

Östergötland
Speed plate 20 Speed plate 50 km/h

... 70 km/h
120 km/h 90 km/h

Other
Location Pavement Loc Other

Bicycle road
Road type Street Road Other

Other road
Weather Rain Weather Rain

Snowy rain
Road surface Wet/moist Road surface Wet

Thin ice/visible

Table 24: All mergers of predictor variable values from original dataset.

8.4 Univariate models for predictor variables

Variable χ2 p-value AIC R2
McFadden χ2

Y ear 5.6387e-13 77778.98 0.0014634 113.91
Ses < 2.22e-16 73045.42 0.061763 4807.5
Week < 2.22e-16 77159.87 0.0088006 685.01
Reg < 2.22e-16 77601.55 0.0031262 243.34
Speed < 2.22e-16 77044.41 0.010387 808.48
Env < 2.22e-16 77354.64 0.0063497 494.24
Road < 2.22e-16 77005.18 0.010839 843.7
Loc < 2.22e-16 77502.07 0.004507 350.81
Wear < 2.22e-16 76664.88 0.015263 1188
Surf < 2.22e-16 74272.15 0.046003 3580.7
Light < 2.22e-16 76245.67 0.020597 1603.2
Acc < 2.22e-16 76199.18 0.021297 1657.7

Table 25: Results for fitting univariate models.
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8.5 Insignificant values of predictor variables for main effects
model

Vehicle type Variable Values (reference vs. non reference) p-value
Cars/light trucks vs. Mc:s Loc Road section vs. crossing 0.26

Wear Fair vs. Rain 0.41
Year 2003 vs. 2004 0.88
Year 2003 vs. 2005 0.63
Year 2003 vs. 2010 0.33
Year 2003 vs. 2015 0.14
Year 2003 vs. 2016 0.14

Cars/light trucks vs. Heavy trucks/buses Acc Single vs. Meeting 0.95
Speed 50 km/h vs. 70 km/h 0.9
Loc Road section vs. crossing 0.7

Road Public road vs. street 0.13
Road Public road vs. express/motorway 0.11
Ses Spring vs. summer 0.13

Year 2003 vs. 2005 0.16
Year 2003 vs. 2006 0.36
Year 2003 vs. 2007 0.98
Year 2003 vs. 2008 0.39
Year 2003 vs. 2010 0.8
Year 2003 vs. 2013 0.28
Year 2003 vs. 2015 0.63

Table 26: Results for fitting main effects model, only insignificant levels with p-value from
Wald test.

8.6 Variables of Model B
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Main effects Interaction terms
Env Env ∗ Acc

Loc Acc ∗ Loc

Road Env ∗ Loc

Speed Env ∗ Reg

W ear Acc ∗ Surf

Y ear Acc ∗ Speed

W eek Acc ∗ Light

Acc Light ∗ W eek

Reg Acc ∗ W eek

Surf Speed ∗ Road

Ses Speed ∗ Light

Light Env ∗ W eek

Light ∗ Reg

Table 27: All main effects and interactions of Model B.

8.7 Significant coefficients Cars/light trucks vs. MC:s
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Label OR estimate Wald CI
Env(Sparse pop. vs Dense pop.) 1.34 1.19- 1.54
Env(Sparse pop. vs Unknown) 1.98 1.51- 2.66

Env(Sparse pop. vs Dense pop.), Acc(Single vs Meeting) 0.249 0.45-0.92
Env(Sparse pop. vs Dense pop.), Acc(Single vs Overtaking) 0.673 0.47- 0.71
Env(Sparse pop. vs Unknown), Acc(Single vs Overtaking) 0.414 0.26-0.65
Env(Sparse pop. vs Dense pop.), Acc(Single vs Other) 0.675 0.54-0.84
Env(Sparse pop. vs Unknown), Acc(Single vs Other) 0.42 0.26- 0.68

Env(Sparse pop. vs Dense pop.), Week(Week vs Weekend) 0.695 0.618- 0.78
Env(Sparse pop. vs Unknown), Week(Week vs Weekend) 1.36 1.02- 1.8

Env(Sparse pop. vs Dense pop.), Loc(Road section vs Roundabout) 1.49 1.1-1.94
Env(Sparse pop. vs Unknown), Loc(Road section vs Roundabout) 2.04 1.13-3.26

Env(Sparse pop. vs Dense pop.), Loc(Road section vs Pavement/Other) 0.62 0.45- 0.84
Env(Sparse pop. vs Dense pop.), Reg(Big city vs Normal) 0.87 0.78- 0.97

Acc(Single vs Crossing/turn) 0.496 0.39- 0.63
Acc(Single vs Meeting) 0.38 0.25- 0.55

Acc(Single vs Overtaking) 0.25 0.195- 0.31
Acc(Single vs Other) 0.673 0.52- 0.87

Acc(Single vs Crossing/turn), Loc(Road section vs Roundabout) 0.629 0.44-0.85
Acc(Single vs Overtaking), Loc(Road section vs Roundabout) 0.499 0.35- 0.68

Acc(Single vs Other), Loc(Road section vs Roundabout) 0.32 0.19- 0.52
Acc(Single vs Crossing/turn), Loc(Road section vs Crossing) 0.5 0.41-0.62
Acc(Single vs Overtaking), Loc(Road section vs Crossing) 0.64 0.51- 0.81

Acc(Single vs Other), Loc(Road section vs Crossing) 0.52 0.42- 0.65
Acc(Single vs Crossing/turn), Loc(Road section vs Pavement/Other) 0.497 0.32- 0.76
Acc(Single vs Overtaking), Loc(Road section vs Pavement/Other) 0.44 0.265- 0.715

Acc(Single vs Other), Loc(Road section vs Pavement/Other) 0.37 0.24- 0.57
Acc(Single vs Crossing/turn), Speed(50 km/h vs 90 km/h) 2.65 1.96- 3.59
Acc(Single vs Overtaking), Speed(50 km/h vs 90 km/h) 2.34 1.66- 3.3

Acc(Single vs Other), Speed(50 km/h vs 90 km/h) 2.04 1.46- 2.8
Acc(Single vs Crossing/turn), Speed(50 km/h vs Other) 1.297 1.1-1.57

Acc(Single vs Meeting), Speed(50 km/h vs Other) 1.49 1.0- 2.23
Acc(Single vs Overtaking), Speed(50 km/h vs Other) 1.36 1.1- 1.72

Acc(Single vs Overtaking), Light(Daylight vs Darkness) 1.51 1.07-2.2
Acc(Single vs Other), Light(Daylight vs Darkness) 2.32 1.8- 3.0

Acc(Single vs Overtaking), Light(Daylight vs Sunset/Sundown) 1.42 1.1- 1.94
Acc(Single vs Other), Light(Daylight vs Sunset/Sundown) 1.48 1.14- 1.97

Acc(Single vs Meeting), Surf(Dry vs Wet) 0.43 0.26-0.72
Acc(Single vs Meeting ), Surf(Dry vs Unknown) 0.497 0.28- 0.887
Acc(Single vs Meeting), Week(Week vs Weekend) 1.47 1.14- 1.94

Acc(Single vs Overtaking), Week(Week vs Weekend) 1.44 1.2- 1.74
Speed(50 km/h vs 90 km/h) 0.244 0.2- 0.297

Speed(50 km/h vs 90 km/h), Light(Daylight vs Darkness) 0.549 0.363-0.83
Speed(50 km/h vs 90 km/h), Light(Daylight vs Sunset/Sundown) 1.52 1.098- 2.14
Speed(50 km/h vs Other), Light(Daylight vs Sunset/Sundown) 1.51 1.2-1.9

Speed(50 km/h vs Other), Road(Public road vs Street) 1.67 1.4- 1.9
Speed(50 km/h vs 70 km/h), Road(Public road vs Express/Motorway) 0.49 0.35- 0.7
Speed(50 km/h vs Other), Road(Public road vs Express/Motorway) 0.33 0.24- 0.47

Weekday(Week vs Weekend) 1.85 1.67-2.02
Weekday(Week vs Weekend), Light(Daylight vs Darkness) 0.524 0.43-0.648

Weekday(Week vs Weekend), Light(Daylight vs Sunset/Sundown) 0.512 0.42- 0.634
Reg(Big city vs Normal) 0.81 0.68- 1.01

Reg(Big city vs Normal), Light(Daylight vs Sunset/Sundown) 0.71 0.587- 0.858
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Table 28: Odds ratios with 95

8.8 Significant coefficients Cars/light trucks vs. Heavy trucks/buses

Label OR estimate Wald CI
Env(Sparse pop. vs Dense pop.) 0.724 0.576- 0.89

Env(Sparse pop. vs Dense pop.), Acc(Single vs Meeting) 1.12 0.76- 1.7
Env(Sparse pop. vs Dense pop.), Acc(Single vs Overtaking) 0.78 0.578- 1.1
Env(Sparse pop. vs Unknown), Acc(Single vs Overtaking) 0.76 0.394- 1.41
Env(Sparse pop. vs Dense pop.), Acc(Single vs Other) 1.23 0.89-1.76
Env(Sparse pop. vs Unknown), Acc(Single vs Other) 0.78 0.4-1.53

Env(Sparse pop. vs Dense pop.), Week(Week vs Weekend) 0.97 0.72- 1.3
Env(Sparse pop. vs Unknown), Week(Week vs Weekend) 0.99 0.39- 2.0

Env(Sparse pop. vs Dense pop.), Loc(Road section vs Crossing) 1.42 0.4-1.88
Env(Sparse pop. vs Dense pop.), Reg(Big city vs Normal) 0.715 0.599- 0.86

Acc(Single vs Crossing/turn) 0.274 0.175-0.42
Acc(Single vs Meeting ) 0.5 0.3- 0.79

Acc(Single vs Overtaking ) 0.23 0.16- 0.34
Acc(Single vs Other) 0.57 0.37- 0.85

Acc(Single vs Crossing/turn), Loc(Road section vs Roundabout) 0.43 0.2-0.877
Acc(Single vs Overtaking ), Loc(Road section vs Roundabout) 0.28 0.135- 0.55

Acc(Single vs Other), Loc(Road section vs Roundabout) 0.28 0.11-0.73
Acc(Single vs Crossing/turn), Loc(Road section vs Crossing) 0.58 0.4-0.84

Acc(Single vs Meeting ), Loc(Road section vs Crossing) 0.57 0.32-0.999
Acc(Single vs Other), Loc(Road section vs Crossing) 0.58 0.4-0.858

Acc(Single vs Crossing/turn), Speed(50 km/h vs 70 km/h) 1.8 1.26- 2.6
Acc(Single vs Crossing/turn), Speed(50 km/h vs 90 km/h) 1.85 1.2-2.89

Acc(Single vs Other), Speed(50 km/h vs 90 km/h) 0.71 0.45- 1.17
Acc(Single vs Meeting ), Speed(50 km/h vs 90 km/h) 2.0 1.24- 3.3
Acc(Single vs Meeting ), Speed(50 km/h vs Other) 1.75 1.1- 2.86

Acc(Single vs Overtaking ), Speed(50 km/h vs Other) 2.04 1.42- 3.07
Acc(Single vs Overtaking ), Light(Daylight vs Darkness) 1.36 1.0-1.84
Acc(Single vs Crossing/turn), Surf(Dry vs Ice/Snow) 1.72 1.14- 2.6
Acc(Single vs Overtaking ), Surf(Dry vs Ice/Snow) 1.75 1.1- 2.85
Acc(Single vs Crossing/turn), Surf(Dry vs Wet) 1.43 1.1 - 1.87

Acc(Single vs Meeting ), Surf(Dry vs Wet) 1.54 1.16- 2.02
Acc(Single vs Crossing/turn), Surf(Dry vs Unknown) 1.58 1.03- 2.36
Acc(Single vs Crossing/turn), Week(Week vs Weekend) 1.73 1.19- 2.5

Acc(Single vs Meeting), Week(Week vs Weekend) 1.64 1.15- 2.35
Acc(Single vs Overtaking ), Week(Week vs Weekend) 1.51 1.02- 2.26

Speed(50 km/h vs 90 km/h), Light(Daylight vs Darkness) 2.32 1.69-3.23
Speed(50 km/h vs Other), Light(Daylight vs Darkness) 2.31 1.72-3.16

Speed(50 km/h vs Other), Light(Daylight vs Sunset/Sundown) 1.51 0.69-1.51
Week(Week vs Weekend) 0.24 0.194- 0.29

Week(Week vs Weekend), Light(Daylight vs Darkness) 1.32 1.0- 1.72
Reg(Big city vs Normal) 1.11 0.99- 1.23

Reg(Big city vs Normal), Light(Daylight vs Darkness) 1.3 1.08- 1.58

Table 29: Odds ratios with 95
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8.9 Plots & classification tables

Car/Light truck MC Heavy truck/Bus
Car/Light truck 98106 6712 3009
MC 69 83 2
Heavy truck/Bus 0 0 0

Table 30: Classification table, Model A on training data.

Car/Light truck MC Heavy truck/Bus
Car/Light truck 98139 6758 3008
MC 36 37 3
Heavy truck/Bus 0 0 0

Table 31: Classification table, Model C on training data.
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