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Abstract

Binary classification is the task of classifying data points into either
one of two groups, based on their coordinates (explaining variables).
Logistic regression and neural networks are two of the most widely used
classification models. The former has its roots in traditional statistics,
while the latter originates from the younger field of machine learning.
Neural networks have seen a renaissance during the past years, and
have been surrounded by a great deal of hype and an aura of mystery,
while logistic regression kept being regarded as a more robust, down-
to-earth method. The scope of this thesis is to dissect the two models,
highlighting their similarities and differences, both theoretically and
practically.

The first part of this work presents the theory behind logistic re-
gression and neural networks. A close look at the structure of a vanilla
neural network reveals that such a model is a rather natural expansion
of logistic regression: in fact, a vanilla neural network with the sigmoid
as its activation and output function and the cross-entropy error func-
tion is exactly a logistic regression in the hidden nodes, as well as each
hidden node is a logistic regression in the explanatory variables. How-
ever, the flexibility gained through the addition of nonlinearity makes
the neural network a more powerful method when the data at hand is
not linearly separable.

The second part of this work consists of three experiments, per-
formed on three different simulated data sets exhibiting different geo-
metrical properties. For each experiment, one logistic regression and
three neural networks with varying numbers of nodes in the hidden
layer were fitted, and the resulting decision boundaries were plotted.
The performance of each model was then tested on 50 simulated valida-
tion data sets. The results coincided with the expected performances,
proving that neural networks do serve as a flexible and powerful ex-
tension of logistic regression, in areas where predictive power, rather
than interpretability, is the priority.
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1 Introduction

1.1 Background

Classification tasks consist in classifying data points into two or more groups,
based on a number of explanatory variables [1]. As much of our behavior
is dictated by context, classification problems lie at the core of decision
making. For instance, the course of action adopted by a doctor dealing with
a patient will depend on the patient’s diagnosis. Whether we decide to show
private information to someone is dependent on us classifying their face as
one we know — recognizing it. Recognition is but a classification problem,
as the names ”digit recognition” and ”facial recognition” suggest.

Classification models stem from a demand for automation of decision
making processes. There exists a variety of such models. Two of the most
widely used ones are logistic regression (LR) and artificial neural networks
(ANN). The former originates from classical statistics, while the latter de-
veloped in the fields of computer science and machine learning [2]. This
study aims to present the two models, highlighting their similarities and dif-
ferences, both theoretically and practically. For this purpose, we will focus
on binary classification problems, where the task is to assign data points
one of two possible groups [3].

1.2 Outline

The thesis begins in Section 2, presenting the background and theory for
logistic regression and neural networks. Section 3 describes the method
used for simulation of the data and modeling of the LR and ANN. The
structure of the experiments and the results are presented in sections 4 and
5, respectively. The text ends with an analysis of the results and a discussion
on possible improvements and expansions to this work.

2 Theory

The theory for both logistic regression and neural networks is taken from
[3], [1] and [2], unless stated otherwise.

Typically, a binary classification problem includes a number p of ex-
planatory variables, or predictors, which can be categorical or continuous,
and one response variable, which is by nature categorical. This work fo-
cuses solely on continuous explanatory variables, coded as an explanatory
(column) vector X̃ = (X1, X2, . . . , Xp)

T . We will furthermore be restricting
ourselves to p = 2, as one of the main purposes of this work is to provide
the reader with an intuitive understanding of the similarities and differences
between logistic regression and neural networks, and these are most easily
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visualized in the case of a predictor plane. As for the response variable,
there are two equally common approaches to coding it. One is to have a
single integer valued response variable Y = I1, where Ii is the indicator
function for the current observation belonging to class i for i = 1, 2. This
corresponds to the response being coded as 1 if the observation belongs to
the first class, and as 0 otherwise. Another approach is to code the response
variable as a column vector Y = (I1, I2)

T , corresponding to (1, 0) in the case
of class 1, and (0, 1) in the case of class 2. The latter is most common in
multi-class classification problems. Though the two approaches are equiva-
lent for binary classification tasks, the former is slimmer and easier to read,
and so it will be used throughout this thesis.

The goal of a classification model is to, given a set of labelled data points
(i.e. a set of observations for which both the explanatory vector x and the
response variable y are known), fit a model which can predict with reasonable
accuracy the response vector for a new data point (i.e. a new x = x∗) drawn
from the same distribution. In the field of machine learning this is known as
supervised learning. In other words, a classification model which has been
fitted to a labelled data set should be able to correctly classify a new point,
provided that the point comes from the same distribution and lies within
the range of values which the model was trained on.

Both logistic regression and neural networks are discriminative models.
These models classify data in two steps. The first one consists in computing
an estimated probability for each class. In binary classification, this boils
down to mapping the conditional probability

π(x) := P (Y = 1 | X = x) = 1− P (Y = 0 | X = x).

The second step consists in setting a threshold c — so called cutoff — such
that if

π(x∗) > c

then the point x∗ is assigned to the first class, otherwise to the second. The
choice of cutoff is dependent on the nature of the problem: a lower cutoff will
reduce the number of observations belonging to class 1 that get misclassified
as class 2 (”false negatives”), but only at the price of misclassifying more
observations of class 2 as class 1 (”false positives”). As this study focuses on
predictive power, we will be using a cutoff of 0.5. In a different scenario, e.g.
when testing for a serious illness, one might want to choose a considerably
lower (or higher) cutoff.

Geometrically, both models will classify a new observation x∗ by drawing
a decision boundary dividing the x1, x2 plane into two or more regions, and
then assigning a class based on which region the point x∗ is located in. The
decision boundary corresponds to the level curve π(x) = c. Sections 2.1 and
2.2 cover the theory behind the methods for computing π(x) employed in
logistic regression and neural networks, respectively.
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2.1 Logistic Regression

2.1.1 Background and Model

Logistic regression belongs to the family of linear models for classification.
The model borrows its name from the logistic function, or sigmoid,

σ(v) =
1

1 + exp(−v)
,

illustrated in Figure 1. The logistic function plays an important role in
many a classification model. Bayes’ theorem, together with the law of total
probability, gives that the conditional probability for class one given an
observed value x can be written as

P (C1 | X = x) =
P (x | C1)P (C1)

P (x | C1)P (C1) + P (x | C2)P (C2)
,

where Ci denotes the observation belonging to class i. Defining v as the
natural logarithm of the ratio of the two terms in the denominator

v := log
P (x | C1)P (C1)

P (x | C2)P (C2)

we find that the conditional probability for class one is precisely the image
of v on the sigmoid curve:

P (C1 | x) = π(x) =
1

1 + exp(−v)
= σ(v).

Interesting qualities of the sigmoid are that it satisfies the symmetry prop-
erty

σ(−v) = 1− σ(v)

and that it is a squashing function, mapping the whole real axis into the
interval ]0, 1[ . This is of course particularly useful when we want our func-
tion to output a probability, as is the case with both logistic regression and
neural networks. The inverse of the sigmoid is the logit function

logit(v) = log
v

1− v
.

Given a p-dimensional input x̃ = (x1, . . . , xp)
T , a logistic regression models

the probability of the corresponding point belonging to the first class as

π(x̃) =
exp (β0 + β1x1 + . . .+ βpxp)

1 + exp (β0 + β1x1 + . . .+ βpxp)
=

exp (β0 + β̃
T
x̃)

1 + exp (β0 + β̃
T
x̃)
,
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Figure 1: The logistic sigmoid function σ(v) (red curve). Included are also
σ(sv) for s = 0.5 (blue curve) and s = 10 (purple curve). The figure is from
[3].

where β̃ = (β1, . . . , βp)
T is the vector of effect parameters for the p predictors

and β0 is a bias term. By adjusting the input vector to feature a 1 in the first
column and including β0 in the parameter vector, the notation simplifies to

π(x) =
exp (βTx)

1 + exp (βTx)
= σ(βTx),

where x = (1, x1, . . . , xp)
T and β = (β0, β1, . . . , βp)

T . The model is, in other
terms, a linear regression of the logit, or log-odds

logit
(
π(x)

)
= log

π(x)

1− π(x)
= σ−1

(
σ(βTx)

)
= βTx

on the explaining variables x1, . . . , xp.
A linear model in the predictors corresponds to a linear decision bound-

ary: for any p, the decision boundary will be a hyperplane in the p-dimensional
feature space. For p = 2 that takes the form of a straight line in the x1, x2
plane. The classification of a new point is solely dependent on which side of
the line it falls on.

2.1.2 Fitting Logistic Regression Models

We fit — train — our model on a training set of N observations with ex-
plaining vectors x1, . . . ,xN and responses y1, . . . , yN . The logistic regression
model is fitted by maximizing the conditional likelihood of the responses
given the observed values of the predictors. If πi := π(xi) is the probabil-
ity of the i-th observation belonging to class 1, the responses y1, . . . , yN are
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drawn from N independent Bernoulli distributions, with Yi ∼ Bern(πi). The
likelihood function is then

L(β) =

N∏
i=1

{
I1,i · P (Yi = 1 | X = xi) + I2,i · P (Yi = 0 | X = xi)

}
=

N∏
i=1

{
πyii (1− πi)1−yi

}
,

where Ik,i is the indicator of yi belonging to the k-th class. This gives the
log-likelihood

l(β) =
N∑
i=1

{
yi log πi + (1− yi) log(1− πi)

}
=

N∑
i=1

{
yi · βTxi − log[1 + exp (βTxi)]

}
.

(2.1)

The log-likelihood is maximized by solving the Score equations

0 =
∂l(β)

∂β0
=

N∑
i=1

{
yi −

exp(βTxi)

1 + exp(βTxi)

}
=

N∑
i=1

{yi − πi}

0 =
∂l(β)

∂βj
=

N∑
i=1

{
yixj,i − xj,i

exp(βTxi)

1 + exp(βTxi)

}
=

N∑
i=1

xj,i(yi − πi), j = 1, . . . , p.

These are p+1 nonlinear equations in β which can be solved via the Newton-
Raphson algorithm.

Expansion by automated model selection
Simple Logistic Regression is a purely linear model, and thus only suitable
when one has reason to believe data can be linearly separated with respect to
the input features. These features, however, need not always coincide with
the raw explanatory variables. A nonlinear model can be achieved by per-
forming a logistic regression on a set of derived features, i.e. (nonlinear) func-
tions of the original explanatory variables. In the case of low-dimensional
data following an easily intelligible pattern, such derived features may be
added manually, but high-dimensional or complex data would make this
option impractical. A common way to overcome this obstacle is to start
with a large number of derived features and successively remove features
or limiting their effect on the outcome, until an optimal model is achieved.
This is precisely what the Least Absolute Shrinkage and Selection Opera-
tor, or LASSO, method seeks to do. It is part of a wider family of shrinkage
methods, designed to slim down the initial model to an optimum. Instead
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of directly maximizing the log-likelihood, a penalized version is introduced:

l∗(β̃) =
N∑
i=1

yiβ̃
T
xi −

N∑
i=1

log
(

1 + exp(β̃
T
xi)
)
− λ

p∑
j=1

|βj | ,

where the constant parameter λ controls the amount of shrinkage of the
coefficients β̃ = (β1, . . . , βp). By shrinking the coefficients to be exactly 0,
the LASSO is able to effectively remove features from the model and achieve
an optimal model. This is a powerful and widely used method to expand
the number of data distributions that logistic regression may be used for,
and was presented for completeness. However, we want to highlight that
this is a separate method, not belonging strictly to nor being part of logistic
regression. Therefore, no shrinkage methods were used in this study, and
instead only simple logistic regressions on the original explaining variables
were performed.

2.2 Neural Networks

2.2.1 Background and Model

Artificial Neural Networks (ANN) are a class of machine learning algorithms
inspired by the learning process adopted by biological neural networks in the
animal brain. Learning in the brain is made possible by continuous adjust-
ments to the synaptic connections between neurons. The ability to mimic
this process lies at the core of the architecture of artificial neural networks.
This work will be dealing with the simplest form of ANN, multilayer percep-
trons with a single hidden layer, sometimes referred to as ”vanilla” neural
networks. The vanilla neural network is a network consisting of a number of
nodes, or neurons, organized in one input, one hidden and one output layer.
It is a feedforward network, meaning that information can only move from
one layer to the next. Each unit in a given layer is connected to all of the
units in the next, forming a bipartite graph, as illustrated in Figure 2. Each
connection is assigned a weight. The set of all the weights will be the set of
parameters that are being optimized during model fitting.

The hidden layer consists of a number M of neurons, each of which
receives a linear combination α1mx1+. . .+αpmxp of the explanatory variables
plus a bias term α0m, and outputs the image Zm of the input through a
nonlinear activation function. The activation function is usually chosen to
be the sigmoid function, giving

Zm = σ(αT
mX), m = 1, . . . ,M ,

where αm = (α0m, α1m, . . . , αpm)T and X = (1, X1, . . . , Xp)
T . If we let

Tk denote the linear combination β1kZ1 + . . . + βMkZM plus a bias term
β0k, and let T = (T1, . . . , TK)T , we have that each of the neurons k =

7



1, . . . ,K in the output layer receives the whole vector T and outputs the
image πk of the input through an output function gk(T). The choice of
output function depends on the task at hand. For regression problems, the
output layer consists of one neuron using the identity function. For binary
classification problems, it suffices to have one output node outputting the
conditional probability π for class 1. The most widely used function for
binary classification is, again, the sigmoid. For K-class classification, the
sigmoid can be extended to the softmax function

gk(T) = softmaxk(T) =
eTk∑K
l=1 e

Tl

,

and the output layer comprises K nodes, each mapping the conditional
probability πk of class k. In summary, our model for binary classification
takes the form

Zm = σ(αT
mX), m = 1, . . . ,M,

π(X) = P (Y = 1 | X) = σ(βTZ),

where Z = (1, Z1, . . . , ZM )T and β = (β0, . . . , βM ) = (β01 − β02, . . . , βM1 −
βM2), as illustrated in Figure 2.

The popularity of the sigmoid function as an activation function is a
consequence of its resemblance with a step function, as shown in Figure
1. The sigmoid can be seen as a smooth, differentiable approximation to
the 0-1 step function. The use of an activation function, and particularly
the use of one reminiscent of the 0-1 step function, was inspired by bio-
logical neural networks: in the human brain, a neuron only activates —
fires — when it receives an input exceeding a certain value, known as the
threshold of excitation. If we were to use a linear activation function, the
neural network would collapse into a linear model, but an ANN with as
few as one hidden layer and an arbitrary squashing function (a bounded,
non-constant activation function) can approximate any continuous function
from one finite-dimensional space to another arbitrarily well, provided that
enough nodes in the hidden layer are available [4][2]. This result is known
as the Universal Approximation Theorem.

2.2.2 Fitting Vanilla Neural Networks

The aim of this section is to summarize the theory behind vanilla neural
networks. Unless stated otherwise, the theory is taken from [3], [1] and [2].

2.2.3 Loss Function

In the case of p predictors, the Vanilla Neural Network described in Section
2.2.1 has (p+ 1)M α-parameters for the connections between the input and
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Figure 2: A vanilla neural network with M hidden units

hidden layers, and M + 1 β-parameters between the hidden and output
layers. These parameters — weights — are optimized via the minimization
of a loss or error function R(θ) over the complete set of weights θ = (α,β).
For regression tasks, the loss function is typically chosen to be the mean
squared error

R(θ) =
1

N

N∑
i=1

(yi − ŷi)2,

where ŷi is the predicted value of yi. Mean squared error was also common
for classification problems in the 1980s and 1990s, but was gradually replaced
by the cross-entropy function

R(θ) = −
N∑
i=1

K∑
k=1

Ik,i log π̂k(xi),

where Ik,i is the indicator of yi belonging to the k-th class, and π̂k(xi) is
the estimated conditional probability of yi belonging to the k-th class. The
switch to cross-entropy losses is believed to be one of the main factors which
contributed to the improvement in performance of ANNs with sigmoid and
softmax outputs [2]. Golik et al. also found, in their 2013 conference paper,
that with randomly initialized weights the cross-entropy allowed to find a
better local optimum than squared loss [5].
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For binary classification, the cross-entropy function takes the form

R(θ) = −
N∑
i=1

{
I1,i log P̂ (Yi = 1 | X = xi) + I2,i log P̂ (Yi = 0 | X = xi)

}
= −

N∑
i=1

{
yi log π̂(xi) + (1− yi) log(1− π̂(xi))

}
,

which is exactly the negative of (2.1). Thus, minimizing the cross-entropy
loss function is equivalent to maximizing the log-likelihood of a logistic re-
gression in the hidden units.

2.2.4 Gradient Descent

Picture a child learning how to play basketball. The child starts with a first
shot which is as good as random, and then observes the outcome. Suppose
the ball could not reach the basket: next time the child will shoot harder.
If the second shot is too long, too high or low, too far left or right, the child
will keep observing the outcomes and adjusting their technique until they
figure out just how hard and in what direction they need to shoot in order
to score.

This is the idea behind gradient descent. Gradient descent is a two-
step algorithm consisting of a forward and a backward sweep, and the most
common approach to minimizing the loss function in neural networks. In
the forward sweep, the output is computed using the current weights, as well
as the corresponding value of the loss function. The first forward sweep will
use random weights, typically drawn from a uniform distribution. Then,
the gradient ∆θR(θ; x,y) of the loss function with respect to all the model
parameters is computed. In the backward sweep, each parameter in the
model is updated. Each gradient descent update has the form

βnewm = βoldm − η
N∑
i=1

∂Ri(θ)

∂βm
, (2.2)

αnew
jm = αold

jm − η
N∑
i=1

∂Ri(θ)

∂αjm
, (2.3)

where η is known as the learning rate, and is discussed in the homonymous
section below. A sweep over the whole training set is referred to as an
epoch. With the right choice of starting weights and learning rate, the algo-
rithm gradually converges to a minimum of the loss function by moving in
the direction of the negative gradient. As this is the direction of fastest de-
crease for the objective function, the algorithm is also called steepest descent.

Batch and Online Learning
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The updates in (2.2) and (2.3) are made using a sum of the error deriva-
tives over an entire epoch: this is known as batch learning. An alternative
to batch learning is online learning, where weights are updated after each
training point is processed. On large training sets, online learning is be-
lieved to yield a faster convergence [6], but for the small-size training sets
which will be used in this work, batch learning will prove to be sufficient,
and is the approach we will be using. It is also common to use a mixture
of the two, so-called mini-batch learning, where the training set is split into
smaller ”mini” sets and batch learning is performed over each mini-batch.

Learning Rate
The parameter η is known as the learning rate. The learning rate determines
how fast the ANN will move along the surface of the loss function, but this
need not be equivalent to the speed of convergence. A higher learning rate
can potentially mean faster convergence to a minimum, but it carries the
risk of having too big a step size and not converging at all. Typically, the
learning rate is set to a small constant, resulting in a slower but more cer-
tain convergence. Another approach, known as line search, is to compute
the update for several values of η and choose the one that results in the
smallest value for the loss. For our work, we will be setting the learning rate
to a small constant, as this is the most common approach.

Multiple Minima
One problem faced by neural networks is the non-convexity of the loss func-
tion, which typically has several local minima corresponding to different
values of the loss function. The nature of gradient descent is that of moving
”downhill” until a minimum is found, regardless of the local or global na-
ture of that minimum. This is illustrated in Figure 3. Typically it is neither
necessary nor desirable to find the global minimum of R(θ) (see the section
on overfitting below), and in general there is no way of knowing whether
the found minimum is local or global, but in order to avoid suboptimal so-
lutions it is often needed to compare several minima. This is usually done
by performing gradient descent with a number of different starting weights,
and choosing the model that yields the best general predictive power.

Standardization of the inputs
Standardization of the inputs is of particular importance in neural networks,
as the scaling of the inputs will determine the subsequent scaling of the α-
weights. It is therefore recommended to always standardize all inputs to
have mean zero and standard deviation one before fitting the model. This
both ensures that all inputs are treated equally by the model, and makes
it possible to choose a meaningful range for the starting weights. With
standardized inputs, the starting weights are usually drawn from a uniform
distribution over the interval (−0.7, 0.7). This is precisely what we did in
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Figure 3: Properties of gradient descent. The figures are taken from [2].

our simulations.

2.2.5 Overfitting

Normally we want to avoid the global minimum of R(θ), as this will generally
be an overfit solution. There exist several techniques to prevent overfitting.
Here we introduce two widely used such techniques.

The perhaps most natural approach is that of early stopping, i.e. to sim-
ply stop training the network before it reaches a minimum. This is usually
done by keeping track of the loss over both the training set and a validation
set, and stopping when the latter starts increasing, as we expect that to
correspond to the point at which the model starts overfitting. Because of its
intuitiveness, we chose to adopt this approach in this work. Another method
to avoid overfitting is to add a penalty term λJ(θ) to the loss function, where

J(θ) =
∑
j,m

α2
jm +

∑
m

β2m

and λ is a positive tuning parameter. This results in an additional term
2λαjm in the update (2.3) of the α-weights and a corresponding 2λβm in
the update (2.2) of the β-weights. Bigger values of λ will shrink the weights
toward zero. The best value for λ can be found via cross-validation.

2.3 Theoretical Comparison of the Two Models

In Section 2.2.3 we showed how minimizing the cross-entropy loss function
is equivalent to maximizing the log-likelihood of a logistic regression in the
hidden units. Indeed, a vanilla neural network with the sigmoid as activa-
tion and output function and the cross-entropy as loss function is exactly
a logistic regression in the hidden nodes. In addition, each hidden node
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performs a logistic regression in the explanatory variables. If one so wished,
one could describe logistic regression as a neural network with a linear acti-
vation function and the sigmoid or softmax output function. The theoretical
similarities between the two models are thus many.

However, there are insurmountable differences between them when it
comes to the number of data distributions that can be analyzed. Simple
logistic regression is a linear classifier, and as such it can only meaningfully
be used when one has reason to believe the data can be separated by a line
in two dimensions, or by a hyperplane in higher dimensions. Logistic regres-
sion, as well as other linear models, can be made to fit nonlinear decision
boundaries by expanding the feature space to include nonlinear functions of
the original features. The logistic regression will then map a linear function
of these basis functions, but this function need not be linear with respect
to the original explaining variables. Through this process, one may fit a
logistic regression to any type of data with satisfactory results. However,
the process is complicated and relies on either a deep understanding of the
geometry of the data from the person fitting the model, or some automated
shrinkage method such as the LASSO described in Section 2.1.2. Both of
these may become impractical as the size of the feature space grows. Neu-
ral networks are an ingenious solution to this very problem. In a neural
network, the basis functions depend on parameters that are optimized to-
gether with the regression parameters. These are, respectively, the α and β
weights in the model. The hidden layer is but a space of derived features.
The introduction of nonlinearity through the activation function allows the
network to create nonlinear derived features. More specifically, the use of a
squashing function (a bounded, non-constant — and thus nonlinear — ac-
tivation function) allows vanilla neural networks to approximate any Borel
measurable function from one finite-dimensional space to another arbitrar-
ily well, provided that enough nodes in the hidden layer are available [4].
The theory around Borel measurable functions lies beyond the scope of this
thesis, for us it will suffice to say that all continuous functions are Borel
measurable [2]. Finally, we want to highlight that while logistic regression
is in itself a linear model, which may be extended to nonlinear data through
the use of an external method for feature selection, neural networks are not
constrained by a predefined mathematical relationship between dependent
and independent variables [7], and possess therefore an inherent flexibility
which vastly surpasses that of logistic regression.

3 Simulation and Modeling

A simulation study was carried out to test the predictive power of logistic
regression and vanilla neural networks in different scenarios. Three different
data sets were simulated, with the difference lying mainly in the geometry of
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the simulated data. Then, for each of the data sets, a logistic regression and
three neural networks with 3, 5 and 15 neurons were fitted to the training
data. The models were then tested on 50 simulated validation data sets, and
their performances were compared. The simulation is carried out entirely in
R.

3.0.1 Fitting of the Logistic Regression

The logistic regressions were fitted using the package Glmnet.

3.0.2 Fitting of the Neural Network

For each experiment and setting, three neural networks were fitted with 3,
5 and 15 hidden units, respectively. These will be referred to as NN3, NN5

and NN15. We decided to implement our own neural network instead of us-
ing a ready library, with the aim of understanding the model in more detail.
Since all the inputs underwent a standardization, the starting weights were
each drawn from a uniform distribution over the interval (−0.7, 0.7). They
were then tuned by gradient descent, with the updates being of the form
presented in (2.2) and (2.3). This was repeated for a total of five times, with
five different simulation seeds, due to the reasons described in Section 2.2.4,
and the best resulting model was chosen. In all runs, a constant learning
rate of 0.015 was used.

Computation of the Parameter Updates
The parameter updates are of the form presented in (2.2) for the β-weights
and (2.3) for the α-weights. To compute these updates, the partial deriva-
tives of the loss function are needed, with respect to each parameter. As the
loss function is a sum over all the data points, its derivative will be a sum
of the derivatives for all data points:

∂R(θ)

∂w
=

N∑
i=1

∂Ri(θ)

∂w

for any weight w,where

Ri(θ) = −yi log(π̂(xi) + (1− yi) log(1− π̂(xi))

is the loss function at the ith data point. Repeated application of the chain
rule yields

∂Ri(θ)

∂βm
=
(
− yi
π̂(xi)

+
1− yi

1− π̂(xi)

)
σ′(βTZi)Zm,i , (3.1)

∂Ri(θ)

∂αjm
=
(
− yi
π̂(xi)

+
1− yi

1− π̂(xi)

)
σ′(βTZi)βm · σ′(αTmxi)xj,i , (3.2)
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where Zi = (Z1,i, . . . , ZM,i)
T . This gives the parameter updates

βnewm = βoldm − η
N∑
i=1

(
− yi
π̂(xi)

+
1− yi

1− π̂(xi)

)
σ′(βTZi)Zm,i , (3.3)

αnew
jm = αold

jm − η
N∑
i=1

(
− yi
π̂(xi)

+
1− yi

1− π̂(xi)

)
σ′(βTZi)βmσ

′(αTmxi)xj,i .

(3.4)

These updates constitute a type of batch learning, as discussed in Section
2.2.4. Equations (3.1) and (3.2) have two common factors. These factors
are only computed once for each training epoch and data point, i.e. for
i = 1, . . . , N . Then, for m = 1, . . . ,M , Zm,i and βmσ

′(αTmxi) are computed
(for the updates of β and α, respectively). Lastly, for j = 0, 1, 2, the last
factor in the α-update is computed. This is done in a nested fashion — with
j nested in m and m nested in i— so that the same calculation never has
to be performed twice. At the end of each epoch, all of the β and α-weights
are updated according to (3.3) and (3.4).

Cross Validation for Early Stopping
Early stopping was employed in order to avoid overfitting. As earlier de-
scribed in Section 2.2.5, this consists in halting the training before a min-
imum is reached. There exist a number of possible criteria for deciding
exactly when training should be halted, none of which is universally recom-
mended. One possible approach is to stop training as soon as the speed of
decrease of the training error (i.e. the loss evaluated over the training set)
falls below a certain level, i.e. when the learning curve ”flattens”. This is
somewhat based on the assumption that the learning curve looks like the
one on the left side of Figure 4, where we can see that the validation error
starts increasing as the training error curve flattens. However, the learning
curve will oftentimes resemble the one plotted on the right side of the same
figure — rather than the idealized left one — both for training and valida-
tion error, in which case the aforementioned approach does not appear as
intuitive: there is no certainty of the onset of overfitting coinciding with a
flattening of the training error curve. One common approach to overcome
the need of such an assumption is to have both one training and one or
several validation sets, and to keep track of the actual validation error as
training progresses. Then the process can be halted as soon as the validation
error shows an increasing trend. For this purpose, we could have simulated
a number of validation sets from the same distribution as the training set,
on which to keep track of the validation error. This is easily done in a simu-
lation study, but is not viable in a real case — where we would hardly need
a classification model if the original distribution were known well enough to
simulate validation data sets from it. The solution to this problem comes
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Figure 4: Idealized learning curve (left) versus a real learning curve (right),
as a function of the number of iterations. The figure is taken from [8].

in the form of K-fold cross-validation. The method consists in dividing the
training set into k uniformly drawn subsets and using k− 1 for training and
the remaining set for validation, until all of the sets have been used for val-
idation exactly once. For our experiments we started with a k equal to 10,
but later found 5 to yield better results. This is likely due to the small size of
the training sets, with the total number of observations for each experiment
being close to 200, so that 5-fold cross-validation yielded more stable results
that were less dependent on exactly what section was left out for validation.

Choice of Stopping Criterion
At the time of writing, there is no universally recommended answer to ex-
actly when training should be halted in cross-validation based early stopping.
The stopping criterion is chosen in an ad-hoc fashion by most researchers
[8]. In this study, the following method was used: at each iteration, the loss
was evaluated over both the current training and validation set. Gradient
descent updates were performed until the validation set loss had been non-
decreasing over the last 150 iterations, or the number of iterations reached
2000. At this point, the process was halted and the minimum over the
validation loss was retrieved, as well as the corresponding value for the
training loss. Because our loss function consists of a sum over data points,
some rescaling was needed to adjust for the cross-validation data sets being
smaller than the entire, final data set. The training loss was thus divided by
the number of observations in the current training set, and the result was
stored in a list together with the corresponding results for the rest of the
cross-validation runs. To avoid contamination by possible extreme values
(e.g. results of runs in which the stopping criteria never was met), values
outside two standard deviations from the mean were removed from the list.
Finally, the mean of the resulting list was multiplied by the total number of
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observations in the training set, and stored in a variable named threshold.
The final model was trained on the whole training set, until the loss became
equal to or lower than the threshold. The fitted model was then tested on
50 validation sets which were simulated from the same distribution as the
training data.

4 Experiments

In all three experiments, the starting point is one or several bivariate normal
distributions, which are then manipulated to obtain data sets organized in
different geometrical shapes. The data was simulated using the R-package
mvrnorm.

4.1 One Linear Boundary

In the first experiment, the training data was simulated as two bivariate
normal distributions with mean vectors (4, 0) and (0, 0), and the unitary
matrix as covariance matrix. Initially, 100 data points were drawn from
the first distribution and assigned a Y -value of 1, corresponding to class
1. Then, 100 more points were drawn from the second distribution and
assigned a Y -value of 0, corresponding to class 2.

Before fitting the model, both the x1 and the x2 inputs were standard-
ized by subtracting the sample mean and dividing by the sample standard
deviation. In our case, the standardization of the x2 inputs was somewhat
unnecessary as they were already originally drawn from a standard nor-
mal distribution, but for the sake of safety and of similarity with real-life
scenarios, we decided to perform it.

As Figure 5 illustrates, the data can be separated by a straight line, and
therefore we expect the logistic regression and the neural network to perform
similarly.

4.2 Piecewise linear boundaries

In the second experiment, the training data was simulated as three bivariate
normal distributions, two of which belonged to the same class. The three
distributions had mean vectors (−4, 0), (4, 0) and (0, 0), and the unitary
matrix as covariance matrix. Initially 50 data points were drawn from the
first distribution and assigned a Y -value of 1, then 50 more points were
drawn from the second distribution and assigned a Y -value of 1, and finally,
100 points were drawn from the third distribution and assigned a Y -value
of 0. This is illustrated in Figure 6.

As in the previous experiment, all inputs were standardized before fitting
the models.
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Figure 5: Simulated training set for the first experiment, after standardiza-
tion of the inputs.

Figure 6: Simulated training set for the second experiment, after standard-
ization of the inputs.

4.3 Nonlinear Boundaries

For the third experiment, 400 data points were drawn from a bivariate nor-
mal distribution with mean vector (0, 0) and unitary covariance matrix.
Then, the points for which x21+x22 < 0.49 were assigned a Y -value of 1, form-
ing class 1. Class 2 consisted of the points for which 0.65 < x21 + x22 < 1.33,
which were assigned a Y -value of 0. The points satisfying neither of the
conditions were ignored, resulting in a total training set of size 160. This
resulted in a training set where class 1 is surrounded by class 2, as illustrated
in Figure 7, and the number of observations from each class is roughly the
same, with class 1 and 2 consisting of 81 and 79 observations, respectively.

As for the other experiments, all inputs were standardized before fitting
the models.
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Figure 7: Simulated training set for the third experiment, after standard-
ization of the inputs.

5 Results

5.1 Validation of the Fitted Models

Misclassification Rate
A widely used measure for the predictive power of a model is its misclassi-
fication rate, defined as the proportion of wrongly classified points

MR =
1

N

N∑
i=1

I(ŷi 6= yi)

where ŷi is the predicted class for the ith observation and I(ŷi 6= yi) is the
indicator function for the predicted class being erroneous.

Type A and Type B Error
The number of misclassified points can be divided into two categories: type
A and type B errors. Errors of type A, or false positives, are points of class
two which have been mistakenly assigned class one. Viceversa, errors of
type B, or false negatives, are points belonging to class one that have been
erroneously classified as class two.

For each experiment, 50 data sets were simulated from the same distri-
bution as the original training data, and used for validation of the fitted
models. Each model was tested on all of the validation data sets and the
model’s misclassification rate, type A error and type B error were recorded
for each data set. Tables 1-3 show the mean and standard deviation of the
misclassification rates over the 50 sets, both given in percents, as well as the
mean type A and type B errors. The last column contains the run time for
the training of the model, in the format ”run time for fitting of the neural
network + run time for cross-validation”. Though not strictly associated
with validation, this measure will prove itself useful for model comparison.
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5.2 Experiment number 1

The results of the first experiment are summarized in Table 1. The neu-
ral network with five hidden neurons exhibits the lowest misclassification
rate (MR) , followed by the logistic regression and NN15. The four models
have nearly identical MR-variance. All the models except NN3 appear to
be slightly biased toward class one. The fitted decision boundaries are il-
lustrated in Figure 8. One major difference between the logistic regression
and the three neural networks is the run time, with NN5 taking 786 times
longer than LR. It should be noted that about 93% of this time is due to
the 5-fold cross-validation rather than the fitting of the neural network it-
self. The result might have differed, had another method been used to avoid
overfitting. However, the model fitting time for NN5 is still 56 times that of
LR. Thus, in terms of comparison of the two models, the result is unaffected.
Model NN15 shows a misclassification rate about 5% higher than NN5. We
interpret this as some overfitting taking place, despite the countermeasures
adopted. Figure 8 shows how the fitted decision boundary is no longer a
straight line, but an S-shaped curve. Model NN3 is the worst-performing,
with a misclassification rate 13% higher than that of NN5.

5.3 Experiment number 2

Table 2 summarizes the results of the second experiment. The best model
here is NN5, with the lowest misclassification rate, variance and errors of
class A. The model appears to be moderately biased towards class two, hav-
ing almost twice as many false negatives as false positives, but still correctly
classifies 96.7% of the data, corresponding to 193.4 out of 200 data points.
A quick inspection of the data illustrated in Figure 9 reveals that the error
is most likely due to the classes overlapping around the decision boundary,
and therefore not necessarily an inherent flaw in the model. Even here,
NN15 exhibits a worse overall performance than NN5, with a misclassifica-
tion rate about 9% higher, indicating that some overfitting has occurred.
With a misclassification rate of 50.01%, the LR is as good a classification
model as a coin toss, and NN3 is not much better with a MR of 40.47%.
The discrepancies between the run times for the models are even greater
than in the first experiment, with NN5 having a run time 1410 times longer
than LR. Having observed such differences in predictive power, however, a
comparison of run times is hardly relevant.

5.4 Experiment number 3

The results of the third experiment are summarized in Table 3. The lowest
misclassification rate over the three experiments is achieved here, probably
due to complete separation of the classes. The best-performing model is
clearly NN15, with the lowest misclassification rate, variance and errors of
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Figure 8: Decision boundaries for experiment nr 1, when the classifier is
based on logistic regression or one of three vanilla neural network models
with varying number of nodes in the hidden layer.

both types. It is followed by NN5, NN3 and lastly LR. The differences in run
times are as harsh as in the previous experiment, but Figure 10 illustrates
how the number of neurons in the hidden layer directly contributes to a
better approximation of the true decision boundary, which we know to be
circular.

Table 1: Results of Experiment nr 1

Classifier Mean MR SDmr Err A Err B Run Time

LR 2.37 1.31 2.66 2.08 0.3
NN3 2.60 1.32 2.58 2.62 7+245
NN5 2.30 1.31 2.52 2.08 17+219
NN15 2.41 1.31 2.68 2.14 119+959
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Figure 9: Decision boundaries for experiment nr 2, when the classifier is
based on logistic regression or one of three vanilla neural network models
with varying number of nodes in the hidden layer.

Table 2: Results of Experiment nr 2
Classifier Mean MR SDmr Err A Err B Run Time

LR 50.01 2.11 50.02 50.00 0.3
NN3 40.47 3.96 44.46 36.48 97+367
NN5 3.30 1.08 2.38 4.22 31+392
NN15 3.59 1.24 4.14 3.04 130+891
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Figure 10: Decision boundaries for experiment nr 3, when the classifier is
based on logistic regression or one of three vanilla neural network models
with varying number of nodes in the hidden layer.

Table 3: Results of Experiment nr 3
Classifier Mean MR SDmr Err A Err B Run Time

LR 47.21 5.73 44.52 32.9 0.2
NN3 34.15 4.65 25.94 30.06 47+172
NN5 8.62 2.49 6.38 7.76 48+622
NN15 1.24 1.44 0.64 1.4 212+1754

6 Discussion

6.1 Predictive Power

In experiment 1, where the classes could be separated by one linear bound-
ary, linear regression obtained a misclassification rate about 3% higher than
that of NN5, with equal variance. We conclude that in the case of lin-
early separable data, logistic regression and a vanilla neural network with
an appropriate number of hidden neurons have similar predictive power. Ex-
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periments 2 and 3 illustrated the flexibility of neural networks in handling
nonlinearity. Here, a simple logistic regression on the explaining variables
could not compete with a neural network equipped with enough hidden
neurons. The results of these last two experiments suggest that the use of
logistic regression is restricted to cases in which one knows that the classes
can be linearly separated. This is not entirely true. It is in fact extremely
common for researchers to apply logistic regression to nonlinear data, via the
introduction of derived features. The key difference lies in the fact that these
features must be derived either ”by hand” or by some automated model se-
lection procedure such as the LASSO discussed in Section 2.1.2, which can
be impractical for complex or high-dimensional data.

6.2 Run Time

The run time for the simplest neural network in each experiment was at best
hundreds of times higher than the run time for logistic regression, making it
appear favorable to choose logistic regression whenever possible. However, it
should be noted that the neural network used in this work was implemented
by the authors themselves, and cannot compete with optimized code such
as the one found in the R-package neuralnet.

6.3 Interpretability

Oftentimes a researcher will not only be intrested in predicting the class
for new observations, but also in understanding the effect of the predictor
variables on the outcome. This is especially the case for studies in the field
of medicine, where membership in a certain class might correspond to the
presence of a disease. It is clearly of great interest to not only be able
to predict the onset of said disease, but also get insight on the effect of
the predicting variables on the risk of developing it. The coefficients βi in
logistic regression are easily interpreted as the increase in conditional log-
odds for class one when xi is increased by one unit while the other xj are
held fixed [9]. Neural networks offer no such direct insight into the effect of
the predictors on the outcome. On the contrary, there exist several different
sets of parameters corresponding to certain minimums of the loss function
[1]. Thus, there is no uniquely determinable optimal set of parameters, and
even if there were, its interpretation would not be as straightforward as that
of the logistic regression parameters.

6.4 Ground for Improvements

There are several ways to expand and/or improve this study, which were
not implemented due to restrictions on time and experience. Here are some
of them.
Due to limited programming experience, the neural network used in this
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study results in unreasonably long run times. One clear way to improve
this work would be to improve the model by means of optimizing the code.
Some structural changes to the neural network model could also be imple-
mented in order to improve its performance: these include the use of the
back-propagation algorithm for computation of the gradient updates, and
exchanging the sigmoid activation function for the ReLU, or rectified linear
unit activation function. According to Ian Goodfellow, ”using a rectifying
nonlinearity is the single most important factor in improving the perfor-
mance of a recognition system” [2].

Automatic early stopping with cross-validation was introduced in order
to automate the model. Further automation can be achieved by performing
node pruning, i.e. starting with a number of nodes and gradually remov-
ing nodes whose weights are near zero, thus making the model slimmer and
faster. This corresponds to eliminating the derived features appearing to
have a low influence on the outcome, much like performing a kind of back-
ward stepwise selection of the nodes. This way, we could have included one
single neural network in each experiment, instead of three different NNs.

A natural extension of this work would also be to manually add the ap-
propriate derived features to the logistic regression models in the experiment,
e.g. x3 = x21 + x22 in the third experiment, and compare the performance of
this adjusted logistic regression with that of a neural network. Alternatively,
the study could be expanded to include more general linear regression mod-
els starting with a large set of derived features and making use of feature
selection methods, such as the LASSO, discussed in Section 2.1.2.

Finally, more reliable results could be achieved by simulating a number
of data sets from each given distribution, i.e. by simulating several different
training data sets for each experiment. The models of interest would then
be fitted to each data set, tested on a number of simulated validation sets,
and the averaged results would be presented. This way, a more general
analysis could be carried out, with a lowered risk of the conclusion being
dependent on particular qualities of the current data set. In the case of
this study, however, we do not expect this to affect the conclusion to a
noticeable extent. The data sets at hand range from a size of 160 to 200
data points, which — in two dimensions — is large enough to guard us from
a strong dependence of the results on the nature of the simulated data set.
Moreover, all inputs were standardized before model fitting, resulting in a
shrinkage of the possible differences between simulated data sets from the
same distribution. Finally, the differences in performance highlighted by
this study were so pronounced that it is highly unlikely they would depend
solely on particular qualities of the simulated data sets.
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7 Conclusion

Our study suggests that neural networks offer much greater flexibility than
logistic regression, and therefore can yield better — or at least equally good
— results in most scenarios. This conclusion is supported by the theory for
the models, as well as by the wide popularity of neural networks in areas
where prediction accuracy is the main concern, such as the field of artificial
intelligence. Classification tasks play a crucial role in the automation of
many processes, and thus the usefulness of a powerful classifier cannot be
overstated, even when it comes at the price of low interpretability. This also
applies to risk assessment tasks, where a higher predictive power can save
lives. For instance, in a study about landslide risk in the Hendek region
in Turkey, neural networks were found to yield more credible results than
logistic regression [10].

Logistic regression is, however, the clear choice when the primary goal
of model development is to look for possible causal relationships between
independent and dependent variables [12]. This has led to a conflict of
opinions regarding the use of neural networks and other machine learning
models, as opposed to the use of older, more easily interpreted models from
the field of statistics. Stephan Dreiseitl and Lucila Ohno-Machado found, in
their 2002 methodological review of logistic regression and neural networks
for biomedical data classification, that ”there was a 5:2 ratio of cases in which
it was not significantly better to use neural networks” [7]. At the same time,
neural networks are being used to analyze images of patients and correctly
identify malignant tumors and recognize solid nodules [11] and many similar
tasks, showing that the predictive power of neural networks can be of great
value even in the medical field, as a precious aid in diagnosing disease.

26



8 References

[1] Bishop, C.M. (2006) Pattern Recognition and Machine Learning,
Springer.

[2] Goodfellow, I., Bengio Y., & Courville A. (2016) Deep Learn-
ing, MIT Press. http://www.deeplearningbook.org

[3] Hastie, T., Tibshirani, R., & Friedman, J. (2017) The Elements
of Statistical Learning, Second Edition, Springer.

[4] Hornik, K., Stinchcombe, M., & White, A. (1989) Multilayer
feedforward networks are universal approximators Neural Networks,
Volume 2, Issue 5, 1989, Pages 359-366.
https://doi.org/10.1016/0893-6080(89)90020-8

[5] Golik, P., Doetsch, P., & Ney, H. (2013) Cross-Entropy vs.
Squared Error Training: a Theoretical and Experimental Comparison.
Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH. 1756-1760.
https://www.researchgate.net/publication/266030536_

Cross-Entropy_vs_Squared_Error_Training_a_Theoretical_

and_Experimental_Comparison

[6] Wilson, D.R., & Martinez,T.R. (2003) The general inefficiency of
batch training for gradient descent learning. Neural Networks, Volume
16, Issue 10, December 2003, Pages 1429-1451.
https://doi.org/10.1016/S0893-6080(03)00138-2

[7] Dreiseitl, S., & Ohno-Machado, L. (2002) Logistic regression
and artificial neural network classification models: a methodology re-
view. Journal of Biomedical Informatics, Volume 35, Issues 5-6, Octo-
ber 2002, Pages 352-359.
https://doi.org/10.1016/S1532-0464(03)00034-0

[8] Prechelt, L. (1998) Automatic early stopping using cross validation:
quantifying the criteria. Neural Networks, Volume 11, Issue 4, June
1998, Pages 761-767.
https://doi.org/10.1016/S0893-6080(98)00010-0
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