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Abstract

In statistical and machine learning, there are many powerful tech-

niques that can be used to make predictions using big data. A central

problem in statistical learning involves choosing the best method for a

given application. In this thesis two classifiers are examined, logistic

regression and random forest, where these two are investigated and

compared to each other in order to find the best classifier. The analy-

sis is done both practically and theoretically and is focused on binary

classification where the response variable is categorical and divided

in classes. The simulation studies are performed for three different

models where the number of predictors and the size of the data set

vary and in each study are 25 data sets generated. AUC, F-score and

misclassification rate are the measures used to analyze and evaluate

the predictive power for the classifiers. It is concluded that the predic-

tive power of logistic regression is better than random forest when the

two classes are linearly separable and random forest predicts better

than logistic regression when the two classes are non-linearly separa-

ble. Both classifiers perform better when the correlation between the

explanatory variables increases.
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1 Introduction

In statistical and machine learning, there are many powerful techniques that
can be used to understand and to interpret the results from big data [9]. A
central problem in statistical learning involves choosing the best method for a
given application. Logistic regression and random forest are two approaches
for supervised learning, where the statistical models are adapted to predict or
estimate an outcome based on one or more input variables. [11]

Logistic regression was introduced in the 1940’s by various authors and is one
of the first explored statistical models when the response variable is binary.
Logistic regression is a parametric method, which implies that an assumption
about the function has to be made. Hence, the parameters in the model are
estimated by the maximum likelihood method [11].

Random forest, on the other hand, is a non-parametric method where no explicit
assumption about the function has to be made [11]. Random forest was generally
introduced in 1995 by Ho, but the properties of random forest were first explored
by Breiman in 2001. The idea of the method is that it should improve a decision
tree’s ability to predict the response variable [3].

The aim of this thesis is to evaluate the predictive power of these two different
statistical methods, logistic regression and random forest, in order to find the
best classifier. By using simulated data sets, we will examine the performance
of each classifier when different types of data sets are used and then compare
the results to each other.

First, in Section 2 the theoretical framework is provided, where the structure
of logistic regression and random forest is explained. In order to understand
the results, different methods used to evaluate the predictive power are also
explained in this section. The creation of the simulated data and the different
simulation studies are explained in Section 3. The results are then presented in
Section 4. Finally, a discussion and the conclusions will be presented in Section
5 and Section 6.
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2 Theory

This section presents the theory that will be used in this thesis. The explanation
of the different models, classification algorithms and measures of model accuracy
are made in order to understand the background of the simulation study.

2.1 Introduce to Machine Learning

The area of machine learning makes use of data where the algorithms iteratively
learn from data. This means that the models of the algorithms are created using
sample data and not by explicit programming [9]. The data set D = {(xi, yi), i =
1, 2, . . . , n} used to create and analyze the algorithms contains n observations
where each observation consists of predictors and a response. The predictors in
the ith observation are given by xi = (xi1, xi2, . . . xip)

′ and the corresponding
response variable is given by yi [14].

The training set denoted by Z = {(xi, yi), i = 1, 2, . . . , ntrain} in our investiga-
tion is generated by randomly selecting ntrain observations from the data set D.
These observations are used to create the function f such that f : X → Y , in
other words a function that maps the set of predictors x = (x1, x2, . . . , xp)

′ into
some label y. In statistics, this function is called a classifier and the relationship
between the inputs and the outcome can be denoted as f(x) = y. The function
represents information that the predictors provide about the response variable
and explain the variations in the response variable related to changes in the
predictors. The algorithms of machine learning aim to find the best classifier
[14].

The remaining observation in D are used as a test set or validation set denoted
by V = {(xi, yi), i = ntrain+1, ntrain+2, . . . , ntrain+ntest} where n = ntrain+
ntest. These observations are used to predict the outcomes by applying the
inputs to the estimated function for f . Thus, the predicted values of the response
variable are given by,

f̂(x) = ŷ.

Since the information of the true value of y can be obtained in the validation
data, a comparison between the predicted outcome ŷ and the true outcome can
be made in order to investigate the predictive power of the classifiers [14].

2.1.1 Classification Problem

In machine learning classification and mainly binary classification is one of the
most usually studied problems when the response variable is qualitative or cat-
egorical. In other words, the response variable belongs to a particular category
or class [21]. The process of predicting the class of a given observation is called
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classification and classifying an observation means that one observation is pre-
dicting to have a certain qualitative response. Binary classification means that
there are only two possible classes for the response variable. Usually dummy
variables are used to denote these outcomes were 0 corresponds to one class and
1 corresponds to the other class [11].

2.2 Multiple Logistic Regression

Logistic regression is a regression model suitable for classification problems. The
model explains the relationship between a response variable, Y , and one or
more explanatory variables X = (X1, X2, . . . , Xp)

′. This method is the most
commonly used to predict the response variable when Y is categorical and the
values of the explanatory variables is given by the vector x = (x1, x2, . . . , xp)

′,
where we have p predictors [8].

Assume that Y is a binary response variable. The logistic regression model
estimates the conditional probability that Y = 1 given the explanatory variables
and it is denoted by p(x). The probability that Y belongs to class 0 is then
given by 1 − p(x). To estimate the probability, a function that generates an
output between 0 and 1 is used. This function is called logistic function and it
is given by,

p(x) = Pr(Y = 1|X = x) =
eβ0+β1x1+···+βpxp

1 + eβ0+β1x1+···+βpxp
, (1)

where β0 is the intercept and β = (β1, . . . , βp)
′ contains the effect parameters of

all predictors. The parameter βj explains the relationship between the proba-
bility that Y belongs to class 1 and the explanatory variable Xj . If βj is greater
than zero, then increase in xj is associated with increasing p(x). The opposite
is true if βj is negative [11].

By rearranging Equation (1), we receive an alternative representation of the
relation between the Y and the predictors called the log-odds or logit transfor-
mation of p(x),

log

(
p(x)

1− p(x)

)
= β0 + β1x1 + · · ·+ βpxp. (2)

On the log odds scale there is a linear relation between the response variable
and the predictors [1].

2.2.1 Predictions and Estimating the Coefficients

The intercept β0 and the effect parameters β = (β1, . . . , βp)
′ are unknown pa-

rameters and maximum likelihood method is used to estimate this parameters
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using the training data set, where i = 1, 2, . . . , ntrain corresponds to the obser-
vations. Since the binary response variable is a Bernoulli random variable, the
maximum likelihood function is given by [19],

L(β0, β) =
∏
i:yi=1

p(xi)
∏
i:yi=0

(1− p(xi))

=

n∏
i=1

p(xi)
yi(1− p(xi))1−yi

(3)

where yi attains the value 1 or 0. The log-likelihood function is obtained by
taking the logarithm of the Equation (3),

logL(β0, β) =

n∑
i=1

yi log p(xi) +

n∑
i=1

(1− yi) log(1− p(xi))

=

n∑
i=1

log(1− p(xi)) +

n∑
i=1

yi log

(
p(xi)

1− p(xi)

)

=

n∑
i=1

− log(1 + eβ0+β1xi1+···+βpxip)

+

n∑
i=1

yi(β0 + β1xi1 + · · ·+ βpxip).

(4)

To find the maximum likelihood estimate of the intercept β̂0 and the effect pa-
rameters, β̂ we differentiate the log likelihood given in Equation (4) with respect
to the parameters, set the derivatives equal to zero and solve the resulting sys-
tem of equations [19]. The estimated parameters and Equation (1) are then
used to make predictions about the response variable, Y . By applying the ob-
servation from the test set to the logistic function consisting of the estimated
parameters, we receive the estimated conditional probability that Y belongs to
class 1 given the predictors [11].

2.3 Random Forest

Random forest is an ensemble learning algorithm where many decisions trees
are used to predicate an outcome [23]. Since the algorithm can both be used for
classification and regression problems, decision trees are also known as CART
which is an acronym for classification and regression trees. In general, CART
is based on yes/no or true/false questions which means that each internal node
has exactly two outgoing branches and then classifies based on the answers
[20].
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Bagging is a resampling version of decision trees and Random forest is an im-
provement of bagging. To apply and understand the algorithm of random forest,
knowledge of both decision trees and bagging must be provided, which will be
presented in this section. We will delimit ourselves to explaining the theory
for classification trees because later in our simulations we have a qualitative re-
sponse variable. The theory in the following sections is from An Introduction to
Statistical Learning James, G. et al. (2017) [11] unless otherwise stated.

2.3.1 Classification Trees

Classification trees are used to predict a qualitative response variable and it is
a non-parametric statistical method. Let Y be a binary response variable with
outcomes 0 or 1 and X = (X1, X2, . . . Xp)

′ be the p predictors. The predictor
space, Rp, in the classification tree methodology is segmented into a number
of distinct and non-overlapping regions [10]. That is, each region is viewed as
homogeneous for the purpose of predicting Y , denoted by R1, R2, . . . , RT .

The trees are created with the training set Z through a top-down approach,
which means that it starts at the top of the tree, followed by a series of splitting
rules and ends with the leaves at the bottom of the tree. The starting point,
called root node, consists the entire training set and it carries out the first split
of the predictor space. This kind of split is called a binary split, which implies
that the condition is either satisfied or not satisfied. Along the tree, more splits
of the predictor space can be made and these are referred to as internal nodes.
The results of each split depend on the previous splits, since there are just a
subset of observations in each internal node. The connection between two nodes
is called branches. The left-hand branch corresponds to all observations that
satisfy the conditions and the right-hand branch corresponds to all observations
who do not. What we have mentioned previously as leaves or regions is also
known as terminal nodes. They constitute the end of the tree where the nodes
do not split anymore. All observations in the same region are classified to the
same outcome according to the most commonly occurring class based on the
training model.

To better understand the process of a classification tree, a simple example is
illustrated in Figure 1 and Figure 2, where we have a two-dimensional classifi-
cation tree involving the predictors, X1 and X2. The outcome of the response
variable Y can either be 0 or 1. In Figure 2, we can see the proportion of obser-
vations between the different regions, when fitting the model with the training
set. We can also see that the observations in the regions are classified to the
most commonly occurring class. By applying the classification tree to new ob-
servations, we can predict the outcome of these. In the root node, where the
first split is made, the observations with a value of X2 less than or equal to θ1
fall down in the left-hand branch and a new decision is made. Of these, the ob-
servations with a value of X1 ≤ θ2 fall down to the region R1 and are predicted
as Y = 0. The observations that do not satisfy this condition fall down to the

6



Figure 1: A two-dimensional classi-
fication tree with four splits and five
terminal nodes

Figure 2: A graph of the partition of the
two-dimensional predictor space

region R2 and the response variable is predicted as Y = 1. The observations in
the root node with a value of X2 bigger than θ1 instead fall to the right-hand
branch. As we can see in Figure 1, more decisions are made in each split before
the observations reach the regions and are classified. [10],[11].

2.3.2 Splitting Strategies

In order to grow a classification tree, there are methods used for the trees to
predict as well as possible. Classification tree is a greedy approach which implies
that we want to choose the "best" split in each node, rather than choosing a
split that leads to a better tree in any future step. In order to choose such splits,
recursive binary splitting is used, such that each possible predictor variable, Xj

j = 1, . . . , p are tested against different cutpoints θ, in order to minimize a
cost function. The procedure of testing the predictor variables works differently
depending on whether the variable is numerical or categorical. Let n be the
number of unique values for a numerical variable, then there are n− 1 possible
cutpoints to be tried in order to find the best split. Instead, if the variable is
an K-categorical variable with categories l1, . . . , lK , there are 2K−1− 1 possible
cutpoints to be tried [10]. The selected splitting criterion that minimizes the
cost function and splits the predictor space in two is defined by,

RL(j, θ) = {X|Xj ≤ θ} and RR(j, θ) = {X|Xj > θ}, (5)

where RL corresponding to the left-hand branch and RR to the right-hand
branch. Splitting continues until the regions are too small or some stopping
criterion is activated. Some problems with classification trees is that the tree
is often too complex and overfits the data. An approach used to reduce the
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variance and increase the interpretation is called pruning trees. This method is
not used in random forest and will therefore not be explained in such detail in
this thesis. In random forest the trees are full-grown [7] which implies that the
minimum size of terminal nodes is set to one [13].

For a categorical response variable with K classes, the selected cost function
that is later used in our simulations is called Gini index, defined by

G =

K∑
k=1

p̂mk(1− p̂mk). (6)

Here p̂mk denotes the proportion of observation in the mth internal node be-
longing to class k and it is given by

p̂mk =
1

nm

∑
x∈Rm

I(yi = k), (7)

where nm indicates the number of observations in node m and I(yi = k) is an
indicator returning 1 if the response variable of observation i belongs to class k,
otherwise it will return 0. When the response variable is categorical with value
0 or 1, Equation (6) can be expressed as

G = 2p̂m(1− p̂m), (8)

where p̂m denotes the proportion of observations in the mth node belonging to
class 1. Other common measures of the cost function are classification error rate
and entropy. The prediction model for an input x in classification trees can be
formulated as [11]:

f(x) =

T∑
t=1

ctI(x ∈ Rt), (9)

where ct = arg max
k
{p̂tk} denotes the predicted class label k based on the train-

ing set for the tth region and I(x ∈ Rt) returns 1 if the input belongs to Rt
[23].

2.3.3 Bagging

Bagging, an acronym for bootstrap aggregating, is an approach that mainly
improve the classification trees’ ability of predicting the outcome. Some trees
may have high variance, that is, the trees can differ quite a lot if we randomly
split the training data into two parts and fit a tree to each of them. The idea
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Figure 3: Illustrated example of B bootstrapped data set generated from the
training set, where the training set contains five observations

of bagging is based on generating B different bootstrapped training data sets
denoted by {Zb; b = 1, . . . , B}, where the observations are drawn randomly but
with replacement from the training set. Hence, some observations may appear
several times or alternatively not at all in any particular Zb. Each bootstrapped
set has observations with the same variance, σ2 and are of the same size as
the training set. Assume that the training set contains ntrain observations,
then the variance of the mean Z̄ is given by σ2/ntrain, if the observations are
independent. A simple example of bootstrapped data is illustrated in Figure 3,
where the training set only contain five observations.

Bagging is applied to the trees when we want to reduce the variance of the trees
but at the same time increase the prediction accuracy. The trees are created by
using the B bootstrapped data sets and fit a classification tree to each of them.
[2] The idea of bagging is to combine all the predictions of an observation from
all B trees into a single classifier, and thereby reduce the variance of the trees.
To classify a test observation, the observation is applied to each one of the B
trees and the classifier is recorded for each one of them. The overall prediction
is decided by a majority vote, which implies that each observation is classified
to the most commonly occurring class among the B predictors [11]. This can
be expressed by using Equation (9) and calculating the predicted outcome of an
input vector x for each bootstrapped set f̂1(x), f̂2(x) . . . f̂B(x) and the single
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classifier is determined by [7]:

f̂(x) = arg max
k

B∑
b=1

I(f̂ b(x) = k). (10)

The bagging technique has some weaknesses since the different trees may be
highly correlated to each other. This is because strong predictors in the data
set entails that the first splits will be similar in many of the trees.

2.3.4 Random Forest

Random forest is a modification of bagging, which aims to reduce the variance
and minimize the correlation between the trees. The approach is similar to
bagging where we fit a tree for each bootstrapped training set and combine
the predicted outcome from each of them to a single predictor. However, the
difference between the two approaches is that random forest only uses a random
subset ofm predictors from the full set of p predictors as split candidates in each
node. Typically, m is determined by m ≈ √p. Notice, when m = p, that all
the predictors can be chosen as split candidates, then pure bagging is obtained
again.

The random forest algorithm can be summarized as follows. In the first step, B
bootstrapped training sets are created as mentioned in Section 2.3.3. For each
Zb, b = 1, . . . , B, a tree is created by using recursive binary splitting described in
Section 2.3.2, but for each split, only a random subset of selected predictors can
be used as split candidates in order to reduce the correlation between the trees.
For a given test observation x, we use Equation (10) to combine f̂1(x), . . . f̂B(x).
The single predicted outcome for the observation is determined by a majority
vote. That is, the most commonly occurring outcome among all the trees.

2.4 Logistic Regression vs Random Forest

A big difference between logistic regression and random forest is that logis-
tics regression is a parametric method while random forest is a non-parametric
method [11]. For a binary response variable that attains the value 1 or 0, this
implies that logistic regression estimates a fixed set of parameters and, as we
will see in Section 2.5, predictor space is divided by a linear hyperplane defined
as:

g(x) = β0 + β1X1 + · · ·+ βpXp = 0, (11)

where observations on one side of the hyperplane will be classified as 1 and the
observations on the other side will be classified as 0 [14].
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Figure 4: Top row: The true decision boundary of the classes is linear where
logistic regression (left) outperform a classification tree (right) that splits the
predictor space parallel to the axes Bottom row: The true decision boundary of
the classes is non-linear where a classification tree (right) outperform logistic
regression (left) The figure is from [11] pp.315

Random forest, on the other hand, is a non-parametric method that is not
characterized by a finite set of parameters. That is, all observations in the
training set are used to fit the model [17] in such a way that the observations in
the test set should be predicted as accurately as possible without the predictive
function being too wiggly or rough. [14].

If the estimated parameters in logistic regression are close to the true form of
the function f , logistic regression will outperform the non-parametric approach.
However, random forest will outperform logistic regression if the relationship be-
tween the response variable and the predictors is highly non-linear and complex
[11].

An illustrated example for one classification tree and logistic regression for the
two-dimensional predictor space is presented in Figure 4. The green area in-
dicates one class and the yellow area indicates the other class. The two plots
at the top shows the case where the predictor space is separated by a linear
hyperplane. Logistic regression (top left) predicts the classes perfectly, for a
very large data set, and random forest (top left) has some struggle and miss-
classifies some observations. The two plots in the bottom shows the case where
the classes are not separated linearly. In this case, random forest predicts the
classes perfectly and logistic regression has some struggle and missclassifies some
observations.
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2.5 Model Accuracy

There are various measures for evaluating the ability of random forest and lo-
gistic regression to predict the outcome. The measurements that will be used
in this study are described in the following sections. For logistic regression, the
classification of an observation is determined by a given threshold value, c. By
default the threshold is set to 0.5, which implies that Y belongs to class 1 if
P (Y = 1|X) > 0.5 or class 0 if P (Y = 1|X) < 0.5 [11]. For random forest,
we recall that Equation (10) is used for classification, with the argmax ranging
over two indices k = 0, 1.

2.5.1 Misclassification Rate

Misclassification rate is also called test error or training error and is the most
common approach to investigate the accuracy of the statistical model when the
response variable is qualitative. Misclassification rate indicates the proportion
of incorrectly classified observations. Let ŷi be the predicted class label for the
ith observation. The misclassification rate is then given by,

1

n

n∑
i=1

I(yi 6= ŷi) (12)

where I(yi 6= ŷi) is an indicator variable returning 1 if the observation is pre-
dicted to the wrong class and 0 if the observation is classified correctly. The
misclassification rate that occurs when we use the same observations to predict
the class label as we used to estimate the statistical model, is called training
error. Instead, if the observations from the test data are applied to the model
in order to predict the outcome, the proportion of incorrectly classified obser-
vations is called test error. A low value of the test error indicates that the
statistical model is a good classifier [11].

2.5.2 Confusion Matrix

Table 1: A confusion matrix

True Condition
0 1

0 TP FPPredicted
Condition 1 FN TN

Total P N

We start by labeling our outcomes as positive and negative. Let class 0 be
defined as a positive outcome and class 1 as a negative outcome. When we have
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a binary classification problem, there are two types of errors that can occur.
The first error, called false positive (FP), implies that an observation belonging
to class 1 is predicted incorrectly. The second error, called false negative (FN),
implies that an observation belonging to class 0 is predicted incorrectly. This
can be represented in a confusion matrix displayed in Table 1. The confusion
matrix also shows the observations that have been correctly predicted. These
observations are called true postive (TP) and true negative (TN) [11]. The true
positive rate and the false positive rate is defined by,

True positive rate =
TP

TP + FN
(13)

False positive rate =
FP

FP + TN
. (14)

It is also possible to determine the misclassification error by using the confusing
matrix,

Misclassification rate =
FP + FN

FP + FN + TP + TN
. (15)

2.5.3 F -Score

F -score, also known as F1-score or F-measure, is another method for measuring
performance to predict the response variable of different statistical models based
on the confusion matrix. To compute the F -score, both recall and precision
are included in the model. Recall is the same as the true positive rate defined
in Equation (13) and precision is the fraction between the true positives and all
the positively predicted outcomes given by,

Precision =
TP

TP + FP
. (16)

A high recall score indicates that the model does well to predict the response
variable relative to all the true positive observations and a high precision score
indicates that the model does well relative to all the predicted positive outcomes.
Since both measures are often equally important, a single measure called F -score
was developed for combining these two,

F -score = 2 · Precision ·Recall
Precision+Recall

, (17)

and it attains a value between 0 and 1. A value close to 1 indicates that the
statistical model predicts well and a value close to 0 indicates that it does not
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perform well [5]. F -score is derived from the harmonic mean between precision
and recall [18],

Harmonic mean =
2

1
P + 1

R

=
2

P+R
P ·R

= 2 · P ·R
P +R

2.5.4 ROC

Receiver operating characteristics (ROC) graph is also a commonly used method
to evaluate the accuracy of a statistical method using the information from
confusion matrices based on several thresholds. ROC is presented in a two-
dimensional graph, where the true positive rate is plotted against the false
positive rate for all possible thresholds. The coordinates (fpr,tpr) correspond
to a single point in ROC space, obtained from the confusion matrix that each
threshold produces. An example of a ROC curve is shown in Figure 5. The
diagonal line shows where the true positive rate is equal to the false negative
rate. Any points at that line means that the proportion of correctly classified
positives is the same as the proportion of incorrectly classified positives. The
diagonal is also referred as the the result when the classifier randomly guesses
a class. The upper right point (1,1) represents the case when the threshold is
so large that every observation is classified as a positive. The opposite scenario
is presented in the lower left point (0,0), where the threshold is low enough so
that all observations are classified as negatives. The ideal classifier corresponds
to the upper left point (0,1), were the fitted model makes perfect classification
or near that [6].

To use ROC as a single measure of the accuracy of a statistical model, the
area under the ROC curve (AUC) is used. The value of AUC is obtained by
calculating the area under the ROC curve and it is a number between 0 and 1.
A value of AUC close to one indicates that the method classifies almost perfectly
and a value close to or less than 0.5 implies that the classifier performs poorly
[6].
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Figure 5: An illustrated example of a ROC-curve where the true positive rate is
plotted against the false positive rate for all possible thresholds.

3 Simulation

The purpose of this simulation study is to investigate the predictive power of the
two statistical models, logistic regression and random forest, for different data
sets when the number of observation and predictors vary. This section explains
how the simulated data sets are generated and the various simulation scenarios.
The entire simulation study has been performed with the statistical software R
and the development of the simulated data set is inspired by a previous thesis
written by A.Nöu [15].

3.1 Simulation Data

To create our simulated data set, we start by generating the values of the pre-
dictors, xi = (xi1, xi2, . . . , xip)

′ for each observation i = 1, . . . , n, by sampling
from a multivariate normal distribution with the density function

fX(x) =

(
1

2π

)p/2
1√

det Σ
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
, (18)

where µ = (µ1, µ2, . . . , µp)
′ is the mean vector and Σ denotes the covariance

matrix. In our studies, we let the expected values, µi, and the variance, V ar(Xi)
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be equal to 0 respectively 1 for all X. The form of the covariance matrix is a
Toeplitz matrix where each descending diagonal from left to right have the same
value and is expressed as follows

Σ =


1 ρ ρ2 · · · ρp−1

ρ 1 ρ · · · ρp−2

ρ2 ρ 1 · · · ρp−3

...
...

...
. . .

...
ρp−1 ρp−2 ρp−3 · · · 1

 (19)

where ρ attains values between 0 and 1. To generate the values of the response
variable, yi, to our observations, we use a sigmoid function given by,

σ(x) =
1

1 + e−g(x)
(20)

where g(x) is a given real-valued function that can attain both positive and
negative values. The function is based on given values of the intercept β0, the
effect parameters β = (β1, . . . , βp)

′ and the predictors. Then, the values of the
response variable is sampled from a Bernoulli distribution where P (Y = 1|X =
x) is equal to σ(x).

The simulated observations are then divided into a training set used to train
the models and a test set used to investigate the predictive power of the model.
The training set contains 75% of the observations and the test set 25%. The
same training and test set are used when the two methods are trained and used
for prediction.

3.2 Simulation Studies

As mentioned in the previous section we will use a real-valued function in our
sigmoid function to generate the probability that yi belongs to class 1 given
xi. The two different functions we will use in our simulation studies are the
following:

g(x) = β0 + β1x1 + · · ·+ βpxp (21)

g(x) = β0 + β1x
2
1 + · · ·+ βpx

2
p (22)

where β0 is used to balance the outcomes so we get approximately the same
number of observations belonging to class 0 and class 1.
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3.2.1 Linearly Separable Classes with Uncorrelated Predictors

Simulation Study 1

In Simulation study 1 are we going to investigate the predictive power of the
methods when the two classes are linearly separable and the predictors are
independent (ρ = 0). The covariance matrix is then given by the identity
matrix. Furthermore, to get a balanced data set, we set the intercept β0 equal
to zero and the other parameters are set to

β1 = β2 = · · · = βp = 1.

To get the two classes linearly separable, we insert Function 21 into the sig-
moid function when we generate the response variables. The probability that y
belongs to class 1 is then given by,

σ(x) =
1

1 + e−(x1+x2+···+xp)
. (23)

This function is also known as the logistic function as we explained in Section
2.2.

3.2.2 Linearly Separable Classes with Correlated Predictors

Simulation Study 2

Simulation study 2 is almost similar to the previous one but in this study the
predictors are correlated. The intercept β0, the effect parameters β and the
sigmoid function are determined in the same way as in Section 3.2.1. Since
the variances of the predictors are set to one, we get a correlation between two
predictors Xi and Xj that equals ρ|i−j|, as seen from the covariance matrix.
Since 0 ≤ ρ ≤ 1, predictors close to each other are highly correlated when ρ is
close to 1 and predictors far from each other are less correlated. For instance,
the correlation between X1 and X2 is given by ρ and the correlation between X1

and X3 is given by ρ2. In this study we are going to investigate the predictive
power of logistic regression and random forest when ρ is set to 0.2 and 0.8.

3.2.3 Non-linearly Separable Classes

Simulation Study 3

Unlike the previous studies, we want to investigate the predictive power when
we have two non-linearly separable classes and uncorrelated predictors. Let β
be chosen as follows,
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Figure 6: (Left) Example of a simulated data set in the two-dimensional case
where the two classes are non-linearly separable. (Right) The distribution of the
observations for X1 and X2 when the response variable is either 0 or 1. In the
case where y equals to 1 the observations for X1 are distributed between -3 and
3 and for X2 the observations are distributed between -4 and 4. When y equals
0 the observations are distributed between -2 and 2 for X1 and between -2 and
2 for X2.

β1 = β2 = · · · = βp = 1.

We insert Function (22) into the sigmoid function when we generate the response
variable. The probability that y belongs to class 1 is then given by,

σ(x) =
1

1 + e−(−β0+x2
1+x

2
2+···+x2

p)
. (24)

Since a sum of squared independent standard normal random variables have a
χ2-distribution with p degrees of freedom [16], we let β0 equal the median of the
χ2(p)-distribution in order to get a balanced data set. In this case, class 0 gets
trapped by class 1. This is demonstrated in Figure 6 where the observations
belonging to class 0 are in the inner circle and the observations belonging to
class 1 are in the outer circle. The two classes are to a large extent separated
by a circle.

3.3 Package in R

The models of logistic regression and random forest have been created in R
Statistical Software with the packages described in this section.

3.3.1 Logistic Regression

The glm function in the stats [22] package has been used to fit the model of
logistic regression where all the predictors are included in the model.

18



3.3.2 Random Forest

The package randomForest [13] for R is used to fit a model to the simu-
lated data set and it implements Breiman’s random forest algorithm, based
on Breiman and Cutler’s original Fortran code [4]. The number of predictors
m sampled as candidates at each node are set to m =

√
p, where p is the total

number of predictors in the data set. The cost function used to fit the model
of random forest is the Gini index, as explained in Section 2.3.2. The num-
ber of trees created in each simulation are set by default to 500 trees and the
size of the tree is determined by a stop criterion where the size of the terminal
nodes has meaning. By default, the trees are full-grown and stop to split when
the minimum size of the terminal node is equal to one. The sizes of the trees
for each cases of the simulation studies are presented in the appendix (Figures
10-13).

4 Results

The results obtained from our simulations and a brief explanation of how the
results were generated will be presented in this section. The simulation of the
three different cases was repeated 25 times and both models were fitted with
the same training set and used to predict the same test set. In each simulation
the misclassification rate, F -score and AUC are calculated both for logistic
regression and random forest. In Figures 7-9 the results are represented for
each simulation when ntest = 500 and p = 50. In Figure 8 the results are
represented for ρ = 0.8.

In order to get a single value for these measurements, we take the average of
the outcomes in each simulation and examine the standard deviations. These
results are given in Table 2 - 4 when the number of observations in the test
set are 1000, 500 or 100 and the number of predictors are 100, 50 or 10. The
differences between the mean AUC, ME and F -scores are also presented in these
tables. For mean AUC and F -score, the differences are calculated by taking the
mean values of logistic regression minus those for random forest. For mean ME,
the differences are calculated by taking the mean values of random forests minus
those for logistic regression. A positive difference implies that logistic regression
predicts better than random forest and a negative value indicates that random
forest predicts better than logistic regression.
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4.1 Results from Linearly Separable Classes with Uncor-
related Predictors

The results in this section are based on Simulation study 1 presented in Section
3.2.1

Figure 7: The values of the misclassification rate, F -score and AUC in each
simulation for logistic regression and random forest when the two classes are
linearly separable but uncorrelated and ntest = 500 and p = 50

Table 2: Results from Simulation study 1

ntest p AUC F -score ME
Ave. Diff. Sd. Ave. Diff. Sd. Ave. Diff. Sd.

LR 1000 100 0.9862 0.12 0.0032 0.9359 0.13 0.0091 0.0637 0.13 0.0084
RF 0.8623 0.0079 0.8012 0.0214 0.1966 0.0158
LR 1000 50 0.9792 0.08 0.0027 0.9205 0.09 0.0084 0.0795 0.08 0.0080
RF 0.9027 0.0037 0.8353 0.0123 0.1642 0.0120
LR 1000 10 0.9244 0.03 0.0086 0.8396 0.03 0.0139 0.1594 0.03 0.0129
RF 0.8943 0.0069 0.8123 0.0124 0.1861 0.0116
LR 500 50 0.9784 0.10 0.0050 0.9166 0.10 0.0139 0.0809 0.10 0.0109
RF 0.8832 0.0099 0.8172 0.0202 0.1778 0.0180
LR 500 10 0.9227 0.03 0.0125 0.8380 0.04 0.0177 0.1621 0.04 0.0155
RF 0.8879 0.0095 0.8017 0.0212 0.1979 0.0195
LR 100 10 0.9236 0.07 0.0321 0.8477 0.06 0.0466 0.1540 0.06 0.0440
RF 0.8498 0.0244 0.7896 0.0557 0.2160 0.0502

The standard deviations and the average values of misclassification rate, F -score and AUC for
logistic regression and random forest when the classes are linearly separable but uncorrelated and
the number of observations in the test set and the number of predictors vary. The size of the
training data set is ntrain = 3ntest.
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4.2 Results from Linearly Separable Classes with Corre-
lated Predictors

The results in this section are based on Simulation study 2 presented in Section
3.2.2

Figure 8: The values of the misclassification rate, F -score and AUC in each
simulation for logistic regression and random forest when the two classes are
linearly separable and correlated with ρ = 0.8 and ntest = 500 and p = 50
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Table 3: Results from Simulation study 2

ntest p AUC F -score ME
Ave. Diff. Sd. Ave. Diff. Sd. Ave. Diff. Sd.

ρ = 0.2 LR 1000 100 0.9766 0.09 0.0044 0.9122 0.10 0.0117 0.0879 0.09 0.0116
RF 0.8853 0.0086 0.8162 0.022 0.1810 0.0174
LR 1000 10 0.9424 0.02 0.0064 0.8628 0.02 0.0107 0.1366 0.02 0.0110
RF 0.9229 0.0042 0.8402 0.0151 0.1590 0.0151
LR 500 50 0.9835 0.06 0.0036 0.9300 0.02 0.0123 0.0694 0.08 0.0116
RF 0.9205 0.0061 0.8460 0.0185 0.1530 0.0146
LR 500 10 0.9416 0.02 0.0112 0.8660 0.03 0.0140 0.1357 0.03 0.0140
RF 0.9167 0.0072 0.8378 0.0185 0.1646 0.0205
LR 100 10 0.8881 0.08 0.0293 0.8277 0.09 0.0332 0.1764 0.08 0.0341
RF 0.8080 0.0242 0.7351 0.0621 0.2592 0.0476

ρ = 0.8 LR 1000 100 0.9837 0.003 0.0136 0.9697 0.04 0.0054 0.0301 0.04 0.0052
RF 0.9804 0.0022 0.9304 0.0087 0.0690 0.0083
LR 1000 10 0.9827 0.005 0.0023 0.9274 0.006 0.0098 0.0723 0.006 0.0089
RF 0.9779 0.0025 0.9211 0.0088 0.0786 0.0079
LR 500 50 0.9955 0.01 0.0016 0.9636 0.03 0.0082 0.0355 0.03 0.0079
RF 0.9828 0.0022 0.9288 0.0136 0.0697 0.0132
LR 500 10 0.9815 0.005 0.0036 0.9249 0.006 0.0118 0.0752 0.006 0.012
RF 0.9765 0.0031 0.9194 0.0115 0.0807 0.0119
LR 100 10 0.9095 -0.05 0.0744 0.8694 -0.006 0.0735 0.1312 -0.01 0.0678
RF 0.9592 0.0234 0.8758 0.0770 0.1184 0.0583

The standard deviations and the average values of misclassification rate, F -score and AUC for
logistic regression and random forest when the classes are linearly separable and correlated with
ρ = 0.2 and ρ = 0.8 and the number of observations in the test set and the number of predictors
vary. The size of the training data set is ntrain = 3ntest.
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4.3 Results from Non-linearly Separable Classes

The results in this section are based on Simulation study 3 presented in Section
3.2.3

Figure 9: The values of the misclassification rate, F -score and AUC in each
simulation for logistic regression and random forest when the two classes are
non-linearly separable but uncorrelated and ntest = 500 and p = 50

Table 4: Results from Simulation study 3

ntest p AUC F -score ME
Ave. Diff. Sd. Ave. Diff. Sd. Ave. Diff. Sd.

LR 1000 100 0.5126 -0.26 0.0118 0.4970 -0.23 0.0235 0.5008 -0.23 0.0161
RF 0.7757 0.0097 0.7267 0.0191 0.2756 0.0151
LR 1000 10 0.5126 -0.38 0.0099 0.5379 -0.29 0.0392 0.5138 -0.33 0.0203
RF 0.8974 0.0136 0.8315 0.0151 0.1808 0.0037
LR 500 50 0.5156 -0.29 0.0177 0.4989 -0.23 0.0276 0.4998 -0.23 0.0227
RF 0.8055 0.0106 0.7328 0.0276 0.2681 0.0244
LR 500 10 0.5176 -0.36 0.0132 0.5146 -0.31 0.0458 0.5168 -0.33 0.0237
RF 0.8801 0.0070 0.8243 0.0234 0.1875 0.0193
LR 100 10 0.5483 -0.28 0.0297 0.4909 -0.27 0.0777 0.4900 -0.25 0.0458
RF 0.8249 0.0244 0.7592 0.0466 0.2400 0.0375

The standard deviations and the average values of misclassification rate, F -score and AUC for
logistic regression and random forest when the classes are non-linearly separable but uncorrelated
and the number of observations in the test set and the number of predictors vary.The size of the
training data set is ntrain = 3ntest.
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5 Discussion

In this section, the results as we obtained in Section 4 will be explained and
commented on. A discussion of improvements in the study will also be presented
in this section.

5.1 Investigate the Predictive Accuracy

In Figure 7, we see the results in each simulation for Simulation study 1 when
the number of observations in the test set is ntest = 500 and the number of
predictors is p = 50. In this case, logistic regression performs better than
random forest since both F -score and AUC are higher for logistic regression
at each simulation. We can also see that ME is lower for logistic regression
in comparison with random forest in each simulation in this case. Table 2
summarizes all results when the number of observations and the number of
predictors vary. As expected, logistic regression predicts better than random
forest in all this cases since the data set is simulated from the logistic regression
model and as mentioned in Section 2.4, a parametric method outperform a
non-parametric method if the estimated function f is similar to the true model
as it is in this case. The biggest difference in the predictive power between
logistics regression and random forest occurs when ntest = 1000 and p = 100,
where logistic regression has a higher mean AUC by 12 percentage points, higher
mean F -score by 13 percentage points and a lower mean ME by 13 percentage
points.

We also obtain from the results in Simulation study 1, when the number of obser-
vations are fixed, the differences in mean ME, AUC and F -score between logistic
regression and random forest increases as the number of predictors increases.
The predictive power of logistic regression increases while the predictive power
of random forest decreases. The reason to the increases in the predictive power
of logistic regression depends on the fact that we generate our data set from the
logistic regression model and let β = β1 = β2 = · · · = βp = 1. This makes the
two classes more separated when the number of predictors p increases and this
effect is in our case stronger than the one who tends to impair the ability of
predict. A more detail explanation is represented in the appendix. For random
forest, the reduction of predictive power is probably due to the classification
trees becoming more complex as the number of predictors increases. These two
effects together result in the increases of the differences in the mean ME, AUC
and F -score between logistic regression and random forest.

Figure 8 shows the case for Simulation study 2, when ntest = 500, p = 50
and ρ = 0.8. Compare to Figure 7, the differences in mean ME, AUC and F -
score between logistic regression and random forest seems to be reduced when
the predictors are correlated but still, logistic regression preform slightly better
than random forest in each simulation for this case. Table 3 indicates that the
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differences for mean AUC, F -score and ME are quite small between logistic
regression and random forest when ρ = 0.8. Logistic regression is somewhat
better than random forest in the cases where ntest and p vary, except that case
where ntest = 100 and p = 10. In this case, random forest preforms slightly
better than logistic regression. The case where the biggest differences between
the predictive power of logistic regression and random forest are obtained is
when ntest = 500 och p = 50 which are represented in Figure 8. The cases where
the predictors are less correlated (ρ = 0.2), is also presented in Table 3. Even
here, logistic regression preforms better than random forest in all cases.

By examining Table 2 and Table 3, logistic regression predicts better than ran-
dom forest in almost every case when the two classes are linearly separable but
the differences between logistic regression and random forest decrease for all
measures as the correlation between the predictors increases and ntest and p are
fixed, except when ntest = 100, p = 10 and ρ increases from 0 to 0.2. Also the
predictive power increases for both logistic regression and random forest as the
correlation increases. The reason to why the predictive power of logistic regres-
sion increases is due to an increase in variance V (ρ) for the projection of X onto
to the direction v of the gradient of our sigmoid function σ(x) in the Bernoulli
distribution. As X becomes more scattered along the gradient, the larger ρ is,
the more separated two classes are. Even here, a more detail explanation is
presented in the appendix. As mentioned, also random forest increases as the
the correlation increase. An increased ρ means that fewer principal components
are necessary to explain all variations in the data [12] which then makes it easier
for random forest to perform well, apart from the fact that the two classes get
more separated when ρ increases.

Lastly, the results from Simulation study 3 are presented in Table 4 and Figure
9. In this case, the two classes are non-linearly separable, since the observations
from class 1 and class 0 can be separated by a circle. By examining the graphs
in Figure 9, we can deduce that the difference between the measurements of
predictive power differs markedly between random forest and logistic regression
in the case where ntest = 500 and p = 50. Both F -score and AUC are much
higher and ME is much smaller for random forest in each simulation of this
study. In Table 4 the results are summarized for all cases when the number
of observation and predictors vary for non-linearly separable classes. Since the
differences have relatively large negative values for all the measures in all cases,
we conclude, as expected based on the theory in Section 2.4, that the predictive
power of random forest is better than for logistic regression since the relation-
ship between the response variable and the predictors is highly non-linear. By
examining mean ME, it can be seen that logistic regression predicts about half
of the observations correctly and attains a mean AUC around 0.51. Based on
the theory in Section 2.5.4, it implies that logistic regression performs as well
as the classifier which randomly guesses a class to the observation and this in
turn indicates that the model is a bad classifier when the classes are non-linearly
separable as in Simulation study 3.
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5.2 Further Investigation of the Work

Due to limited time, some delimitations have been made in this thesis which
may be used for further investigations. Since the class of an observation was
generated by the logistic regression model in our simulations for linearly sep-
arable classes, it resulted in that the true model and the estimated model for
logistic regression were almost identical. As mentioned i Section 5.1, this had a
major impact on the predictive power of logistic regression in those cases where
the classes was linearly separable and it would be interesting to analyze the pre-
dictive power when the data set is simulated in a different way and not through
the logistic regression model. The results for logistic regression in Simulation
study 1 were affected by the fact that we chose β = β1 = · · · = βp = 1, which
resulted in the classes becoming more separate as p increased. Some improve-
ments to the already existing simulation method that can counteract this effect
are choosing β1 = · · · = βp = 1√

p . Then we expect that the predictive power of
logistic regression may decrease slightly with increasing p. The two classes will
then be equally separable for all p, but there are more parameters to estimate
for a larger p.

We also mentioned in Section 5.1 that the results for logistic regression in Sim-
ulation study 2 are affected by the fact that we generate our data through the
logistic regression model. The variance V (ρ) of X along it first principal compo-
nent increases when the correlation ρ increases and X becomes more scattered
along the direction v which separates the two classes. This resulted in the
classes becoming more separable. This effect can be avoided by normalizing the
covariance matrix Σ of X, so that V (ρ) = 1 for all values of ρ.

An improvement in Simulation study 3 can be made by expanding the logistic
regression model by adding a non-linear function of the predictors, such as
x = (x21, x

2
2, . . . , x

2
p). In this case, logistic regression will perform better and the

estimated model will almost perfectly fit the data set. The problem with this is
that one has to use the data to find out which non-linear functions of xi that will
be included as explanatory variables. In other cases, when the true boundary is
unknown, it can be difficult and problematic to find an appropriate form of the
logistic regression predictors when the classes are non-linear separable.

Improvement in random forest can also be made by using hyper-parameter tun-
ing for random forest, which means that we for example can use cross validation
to find the optimal numberm of predictors used as split candidates in each split.
In our case, we have used the recommended m =

√
p. It would also be possible

to limit the number of trees that are constructed in random forest and examine
different stop criteria that can optimize the random forest algorithm.
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6 Conclusion

In this thesis, two different methods have been introduced, logistic regression a
parametric method and random forest a non-parametric method. The purpose
of the study was to compare and investigate the predictive power of them both
and find the best classifier. The analysis was made both practically and the-
oretically. We conclude, based on the results from the simulation studies that
logistic regression predicts better than random forest when the two classes of
the data set were linearly separable and random forest predicts better when the
classes was non-linearly separable. In the case were the classes could be sepa-
rated by a circle , we found that logistic regression was an inappropriate method
to use since the mean ME and AUC were around 0.5 which indicates that the
classifier predicts about half of the observations correctly. We also discovered
that two of the simulation studies were to the advantage of the logistic regres-
sion method since the data was generated through the logistic regression model.
This resulted in logistic regression predicting very well when the two classes
were linearly separable. Some suggestions for improvements were mentioned
in view of reducing this impact. Some improvements of the logistic regression
classifier were also proposed for non-linearly separated classes.
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Appendix

Size of Trees

The mean size of the trees in each simulation study for each case is presented
in Figures 10-13, where the size presented is calculated by taking the average of
the 500 trees that random forest generate in one simulation.

Size of trees in Simulation study 1

Figure 10: The mean size of the trees for each simulation in Simulation study
1 where n = ntest
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Size of trees in Simulation study 2, ρ = 0.2

Figure 11: The mean size of the trees for each simulation in Simulation study
2 when ρ = 0.2 and n = ntest

Size of trees in Simulation studie 2, ρ = 0.8

Figure 12: The mean size of the trees for each simulation in Simulation study
2 when ρ = 0.8 and n = ntest
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Size of trees in Simulation studie 3

Figure 13: The mean size of the trees for each simulation in Simulation study
3 where n = ntest
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Explanation of the Results

As discussed in Section 5.1, the results for logistic regression in the cases where
the two classes are linearly separable are affected by the data being generated
though the logistic regression model. A detailed explanation to why the predic-
tive power of logistic regression increases when the number of predictors p and
the correlation ρ increases will be present here.

Predictive power of logistic regression increases as the number of
predictors increases

The reason why the separation between the two classes increases as the number
of predictors p increases is due to the fact that our sigmoid function σ(x) in the
Bernoulli distribution grows fastest (has its gradient) along the unit vector v =
(1, 1, · · · , 1)/

√
p because we let β1 = · · · = βp = 1. In Simulation study 1, we

generate the predictors X from a standard normal distribution in p dimensions.
This means that the projection Z = v · X along the gradient of σ(x) has a
standard normal distribution N(0, 1) in one dimension. The derivative of g(x) =
x1+· · ·+xp in direction v is equal to √p, that is, it grows when p increases. This
means that even σ(x) grows in the direction of v faster the larger p becomes. At
the same time, the variance for X is kept constant in this direction and is not
affected by the fact that p increases. This in turn means that the classes become
more and more separated when the number of predictors p increases.

Predictive power of logistic regression increases as the correlation
increases

Even in Simulation study 2, the sigmoid function σ(x) grows fastest along the
direction v which implies that the optimum classifier consists of the hyperplane
g(x) = 0 which is orthogonal to v. The reason to why the predictive power of
logistic regression increases as ρ increases depends on the projection of X onto
the direction v of the gradient. Since X is normally distributed N(0,Σ) then
Z = v · X is normally distributed with variance V (ρ) = v · Σ · v′ where V (ρ)
increases as ρ increases. X is then more scattered along v the larger ρ is, which
results in the classes becoming more separated.
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