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Abstract

The constant growth of the market for music streaming services

such as Spotify, Pandora or iTunes is accompanied by a growth in

the science of Music Information Retrieval or MIR. One big part of

MIR is the classification of music, a topic that this thesis will cover.

More specifically the classification of songs according to genres will

be performed using various characteristics for songs obtained through

Spotify. For this thesis the genres we will try to classify are Electro,

Hip Hop, Jazz, Pop, R&B and Rock. The purpose of the thesis is to

see if we can create a satisfactory classifier for our 6 genres as well as

gain insight into how the classifier performs on different genres and

with different features. The large quantities of data available when

it comes to music has made various machine learning algorithms the

natural choice for this task. For this thesis we will limit ourselves

to using the relatively new and popular eXtreme Gradient Boosting

or XGboosting. XGboosting is a version of gradient boosting which

uses an ensemble of decision trees to turn many weak learners into one

strong learner. It can be used for classification as well as regression

problems and has shown promising performance for both. After tuning

the parameters for our XGboost model an overall accuracy of 73.43%

was obtained for our classifier, with significantly better performance

on Electro, Jazz and Rock compared to R&B and Pop. Important

features include for example speechiness for Hip Hop, acousticness for

Jazz and danceability for Rock. The result is considered satisfactory

when taking into account inherent difficulties in the task at hand as

well as the somewhat lacking data set. The largest flaws of the data

set is the high percentage of missing data for the lyrics as well as the

limited amount of observations.
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1 Introduction

With the evergrowing music industry there is also growth in the science of
getting information from music, often refered to as Music Information Retrieval
or MIR. With the large amount of music available on music streaming services
such as Spotify, Pandora or iTunes the need for efficient ways of categorizing
music is growing, not only for the individual with a desire to categorize music but
also for the companies when introducing recommendation features. One way to
categorize music is by genre which is what we will explore in this thesis. In search
of a way to automatize this task machine learning algorithms have become the
natural choice. Supervised learning models such as support-vector machines,
neural networks, random forest and tree boosting algorithms are all seeing use,
for example Bahuleyan used these and other machine learning techniques for
classifying music genres [2]. Because of the limited scope of this thesis, an
interest in algorithms using decision trees and widespread positive results in the
use of XGboosting [5] this algorithm was used for classification in this thesis.
Extreme gradient boosting or XGboost is a version of gradient boosted decision
trees which use an ensemble of weak learners (decision trees) to create one
strong learner. The name extreme gradient boosting actually comes from the
engineering goal of increasing the computational resources for these kinds of
algorithms. This is a big reason for the popularity of XGBoost but it will not be
the main focus of this thesis. For our purposes the main difference is the added
regularization that XGboost provides compared to regular gradient boosting
which is used to keep the model from overfitting the training data. All of this
will be discussed in more detail in Section 2. We will use data obtained mainly
from Spotify through their web API [13] and limiting ourselves to the genres
Electro, Hip Hop, Jazz, Pop, R&B and Rock. When discussing the results we
will touch on some of the inherent difficulties in classifying music according to
genres that were encountered in this work, such as the subjectivity of the task.

1.1 Aim

The main aim of this thesis is to see if we can create a classifier with satisfactory
accuracy using eXtreme Gradient Boosting for our data set. We would also like
to gain understanding into the difference in performance on individual genres,
which features are important for the model and how they effect it.

1.2 Disposition

From here we will continue the thesis by, in Section 2, going through the theory
for the methods and concepts used in the thesis. Following that, in Section 3,
we will introduce the reader to the data used for modeling and testing as well as
discussing decisions and assumptions made for the data. In Section 4 we cover
the modeling, which in the case of XGboosting consists mainly of the tuning
of hyper parameters. We continue to Section 5 where the results of the final
model are presented and these results as well as potential improvements are then
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discussed in Section 6. Finally, Section 7 contains the summed up conclusion of
the thesis.

2 Theory

This section contains the theory for methods and concepts used in the analysis
conducted for this thesis. With few stated exceptions the theory described
in the following pages will follow that of the book The Elements of Statistical
Learning by Hastie, Tibshirani, Friedman (2017) [7]. Inspiration has been taken,
especially regarding mathematical notation and layout, from Living with Trees
- Predicting Swedish Apartment Prices with eXtreme Gradient Boosting by
Hörnqvist (2019) [9].

2.1 Cross-validation

The theory in this section follows that of Section 7.10 in Hastie et al (2017) [7].
Cross-validation is one of the most commonly used methods to estimate the

error in predicting response Y with model f̂(X) where X contains all predictor
variables. With this method we directly get the extra-sample error which is the
expected value of the loss of predicting Y with f̂(X)

Err = E[L(Y, f̂(X))].

This is done by using one part of the data to fit a model and another part to
test said model. Doing this in several rounds with K different parts of the data
is called K-fold cross-validation and will be the method used in this thesis.

2.1.1 K-fold cross-validation

In K-fold cross-validation we split the data into K equal parts where we for
k = 1, 2, . . . ,K in step k use the k:th part of the data as a validation set. This
means that we use the other K − 1 parts of the data to fit a model and then
use the k:th part to test this model. We do this using each different part of the
data as validation set and the others to fit data and combine our K estimates
of the prediction error.

This can be written more mathematically using the indexing function κ :
{1, . . . , N} 7→ {1, . . . ,K} that indexes each observation i, i = 1, . . . , N to fold
k, preferably by randomization. We then get the estimate of the error by

CV (f̂) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi))

where f−k(x) is the fitted function obtained when not using the k:th part of
the data, yi and xi are the response and predictor variables for observation i.
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Cross-validation can also be used to find optimal estimates of tuning param-
eters. Given a set of models f(x, α) with tuning parameter α we can with these
models define

CV (f̂ , α) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi, α))

and find the estimate α̂ which minimizes this function and then choose f(x, α̂)
as our final model.

2.2 Decision trees

The theory in this section follows that of Section 9.2 in Hastie et al (2017) [7].
Decision trees is a powerful yet easily interpreted method applicable to super-

vised learning problems. Supervised learning relies on having labeled training
data where each observation, i = 1, 2, . . . , N , has p inputs and a response, (xi, yi)
where xi = (xi1, xi2, . . . , xip). In supervised learning you use this training data
to try and gain understanding of the problem you want to solve. Problems that
supervised learning is used on is usually regression problems or classification
problems, and since this thesis is one on multi-class classification we will put
more focus on this.

There are several different decision tree algorithms such as CART, C4.5 and
ID3, in this thesis we will be using and therefore only describing the method
known as CART, classification and regression trees. As the name implies these
trees can be used both for classification and regression.

These methods work by splitting the space of explanatory variables X into
rectangles by recursively splitting the space parallel to the coordinate axes and
in each rectangle fitting a simple model, like a constant, to all observation
contained in it. We illustrate this in two different ways in Figure 1 with an
example using two continuous explanatory variables X1 and X2 and response
variable Y which could either be continuous or categorical. The right figure
illustrates this in the previously explained way and the left figure shows how it
can be represented in tree-form. In this example we begin by splitting the space
at X1 = t1, after this we proceed by splitting subsequent sub-spaces, X1 ≤ t1
is split at X2 = t2 whereas X1 > t1 is split at X1 = t3 and finally X1 > t3 is
split at X2 ≤ t4. This gives us five disjunct regions R1, R2, . . . , R5 also denoted
as terminal nodes or leaves where all observations in region Rm, m = 1, . . . , 5
are predicted with a constant γm. This constant in chosen in different ways
depending on whether the response variable is continuous or categorical. For a
continuous response variable γm is often chosen as the average of all observations
yi in region Rm and for a categorical response it is often chosen as the proportion
of a class in the region, which can then by some threshold be converted to
categories such as the majority class in the region.

Using the this and the indicator function notation, a decision tree can be
expressed more compactly as

7



(a) Tree visualization (b) Two-dimensional space splitting visualization

Figure 1: Two ways to visualize decision trees with 2 explanatory variables.

f(X) =

M∑
m=1

γm1{X ∈ Rm}

for a tree with M terminal nodes.
The question of how to grow the tree remains, in other words how do we

chose the variable Xj and split point s for each split. If we consider the first
split of all our data the regions obtained by splitting variable Xj at s are:

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s}.
In each split like this j and s are chosen in a greedy manner in the sense that
the split that minimizes a given criteria in each step is selected, without taking
other steps into account. The criteria used for splitting in regression trees is
the sum of squares

∑
(yi − f(xi))

2 where the optimal γ̂m is, as mentioned, the
average of all yi in region Rm. This means that for the split defined above we
are looking for j and s which solve

min
j,s

[
min
γ1

∑
xi∈R1(j,s)

(yi − γ1)2 + min
γ2

∑
xi∈R2(j,s)

(yi − γ2)2
]

and the inner minimization is solved by

γ̂1 = ave(yi|xi ∈ R1(j, s)) and γ̂2 = ave(yi|xi ∈ R2(j, s))
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for any j and s.
The process of splitting is done in the same way for classification trees except

that for classification we need some other criteria to be minimized. For K
classes, Nm observations in region Rm, and the proportion of class k in node m
defined as

p̂mk =
1

Nm

∑
xi∈Rm

1{yi = k}

the two most common criteria used are the following: The Gini index given by

K∑
k=1

p̂mk(1− p̂mk)

and the Cross-entropy(deviance) given by

−
K∑
k=1

p̂mklog(p̂mk).

These two measures are prefered over the misclassification rate, which might
seem like the natural choice. It is given by 1 − p̂mk(m), where p̂mk(m) is the
proportion of the majority class in node m. In other words the proportion of
observations in a node not belonging to the majority class.

The reason why the Gini index and Cross-entropy are prefered even though
all three measures are similar is that the former two are differentiable which
we will see in coming sections is needed when we regard the minimization of
these as numerical optimization. When considering these measures for two class
classification we can see that all measures are minimized when the proportions
of all classes within a leaf are 0 or 1, in other words when a leaf contains only
observations from 1 class.

In theory we could continue doing splits of the feature space until we obtain
perfectly homogeneous leaves like this but this could lead to overfitting our
model to the training data making its performance worse on other or future
data. On the other hand if we don’t grow the tree large enough we might miss
important structure in the data. This problem is in more general terms known
as the Bias-Variance tradeoff which is often illustrated as in Figure 2 where there
is high bias, low variance to the left. Since the model is simple it is underfitting
and misses important structures in data. To the right there is high variance and
low bias, since the model is overfitting to the training data it does not generalize
well to the test data.

The most common way of dealing with this problem in decision trees is to
chose a minimum number of observations a leaf must contain and stop growing
the tree when this is reached, usually chosen depending on your data set. After
this stop criteria is reached a method often called pruning is used where a cost
complexity criteria is used to reduce the tree by balancing the complexity of the
tree with the goodness of fit. For our use of decision trees in gradient boosting
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Figure 2: Illustration of training and test error when varying model complextiy
from low to high.

the trees are by design kept small and their size will instead be decided using
cross-validation. We will therefor not go into more detail on the concept of
pruning.

2.3 Boosting

The theory in this section follows that of Section 10.1-3 and 10.9 in Hastie et al
(2017) [7].

Boosting is an ensemble method that combines many weak learners to create
one strong learner, a weak learner is one that is only slightly better than chance.
In boosting these weak learners are trained in sequence on modified versions of
the data, where each added learner tries to correct the mistakes of previous
learners and it gives a weight, usually depending on how well it performs on the
training data. The base weak learners are then collected to make a committee
of weighted votes to choose the final prediction.

A common choice of weak learners in boosting are decision trees used as
basis functions in an additive expansion. This is known as Forward Stagewise
Additive Modeling and will be described below.

2.3.1 Forward Stagewise Additive Modeling

The basis function expansion as mentioned earlier can be written on the form

f(x) =

M∑
m=1

βmb(x; θm)

where βm m = 1, 2, . . . ,M are the weights for the individual basis functions
and b(x; θ) are the basis functions with explanatory variables x and parameters
θ. Since the basis functions in our case are decision trees {θm}Mm=1 contains the
split variables, split points and leaf predictions.
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The usual way of fitting these kind of models is to minimize some loss func-
tion L(y, f(x)) averaged over the training data

min
{βm,θm}M1

N∑
i=1

L
(
yi,

M∑
m=1

βmb(x; θm)
)
.

Minimizations like this are often computationally intensive so forward stage-
wise additive modeling approximates the solution to this minimization by se-
quentially adding new basis function with weights that minimize the loss in the
current step, without changing previous parameters and weights. In this way the
problem is reduced to solving for a basis function b(x; θm) and weight βm to add
to current expansion fm−1. This is illustrated in Algorithm 1 in pseudo-code.

Algorithm 1 Forward Stagewise Additive Modeling algorithm

1: Initialize f0(x) = 0
2: for m = 1 to M do
3: Compute :

(βm, θm) = arg min
β,θ

N∑
i=1

L(yi, fm−1(xi) + βb(xi; θ)).

4: Set fm(x) = fm−1(x) + βmb(x; θm)
5: end for
6: return f̂(x) = fM (x)

2.3.2 Boosted Trees

For future reference we rewrite our earlier representation of decision trees in the
following way

T (x; Θ) =

J∑
j=1

γj1{X ∈ Rj}

where Θ = {Rj , γj}J1 . If we use these as the basis function in forward stagewise
additive modeling, the sum of such trees make a boosted tree model

fM (x) =

M∑
m=1

T (x; Θm)

where, as in the third step of Algorithm 1, in each step we must solve the
minimization

Θ̂m = arg min
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm)). (1)
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Here Θm = {Rjm, γjm}Jm1 has the region set and leaf constants for the next
tree, given all previous trees contained in current model fm−1(x).

The hard part is usually finding the regions Rjm. Given that we know these
solving for γjm,

γ̂jm = arg min
γjm

∑
xi∈Rjm

L(yi, fm−1(xi) + γjm), (2)

is often easy as the optimal γ̂jm is usually the average of all yi in Rjm for
regression or the modal class for classification.

As finding the regions is a harder task approximate solutions are often used.
In addition to choosing regions by splitting in a greedy fashion by only consid-
ering minimization of the loss criteria in the current step without taking other
steps into consideration it may also be favourable to use a more smooth and
convenient loss criterion

Θ̃m = arg min
Θ

N∑
i=1

L̃(yi, fm−1(xi) + T (xi; Θm)).

An example of this was mentioned in Section 2.2 where Gini index or Cross-
entropy is often used rather than the misclassification rate.

After finding an approximate solution this way and using R̂jm = R̃jm we
can proceed with the easier task of estimating γjm with the original criterion.

2.4 Gradient Boosting

The theory in this section follows that of Section 10.10 in Hastie et al (2017)
[7]. Gradient boosting uses the idea that boosting can be seen as a numerical
optimization problem of some differentiable loss function L(f). Minimization
of the loss of predicting yi with f(x) through

L(f) =

N∑
i=1

L(yi, f(xi))

is given by

f̂ = arg min
f
L(f),

with f = {f(x1), f(x2), . . . , f(xN )}T being the values of the prediction at each
data point.

Numerical optimization solves this minimization problem with a sum of com-
ponent vectors

fM =

M∑
m=0

hm, hm ∈ RN

where after the first guess f0 = h0, subsequent fm are given by fm−1 +hm where
hm tries to improve on what the model performs poorly at in previous steps.

12



2.4.1 Steepest Descent

A way of choosing the component vector hm is by realizing that a function
decreases most rapidly in the direction of the negative gradient gm which has
the components

gim =

[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

.

Steepest descent therefore uses hm = −ρmgm where ρm is a constant that
controls the length of the step taken in the direction of the negative gradient
as to not make a too long or short of a step. This length is found through line
search as the solution to

ρm = arg min
ρ
L(fm−1 − ρgm).

2.4.2 Gradient boosted trees

The way of using the concept explained above with decision trees is by realizing
that just like forward stagewise boosting, steepest descent is a greedy strategy
that in every step minimizes some loss criterion without taking other steps
into consideration. This means that the tree predictions T (xi; Θm) added to
minimize (1) are analogous to the components of the negative gradient.

Since our goal is to make a model applicable to unseen data and the gradient
of the loss function is only defined for the data points xi in our training data we
instead use trees T (x; Θ) whose predictions are as close to the negative gradient
as possible. With squared error as a measure of closeness we get

Θ̃m = arg min
Θ

N∑
i=1

(−gim − T (xi; Θ))2.

When the tree that minimizes the above expression with regions R̃jm is con-
structed we can easily find the leaf weights with (2) as shown in Section 2.3.2.
In other words this is not the tree added as the step from fm−1 to fm, it is the
tree that provides the regions which lets us easily compute the optimal weights.

Since the chosen loss function can differ between problems and applications
there are several different gradients that can be used for this. In this thesis we
will be using the multinomial deviance, or log loss which is the one used when
the response variable takes values in the unordered set G = {G1, . . . , GK}, when
performing K-class classification in XGboost. This is given by

L(y, p(x)) = −
K∑
k=1

yklog(pk(x)) (3)

where y = (y1, . . . , yK) and yk takes the value 1 if it belongs to class Gk and
0 otherwise and pk(x) = P(Yk = Gk|x) where pk(x) is given by the softmax
function

13



pk(x) =
exp(fk(x))∑K
l=1 exp(fl(x))

(4)

which makes sure that 0 ≤ pk(x) ≤ 1 and that the class probabilities pl(x),
l = 1, . . . ,K sum to one.

Using (4) we see that the log loss (3) can be rewritten as

L(y, p(x)) = −
K∑
k=1

ykfk(x) + log

(
K∑
l=1

exp(fl(x))

)
.

From this we get that the components of the negative gradient for step m,
m = 1, . . . ,M and tree k, k = 1, . . . ,K is given by

−gikm =

[
∂L(yi, f1(xi), . . . , fK(xi))

∂fk(xi)

]
f(xi)=fm−1(xi)

= yik − pk(xi)

for i = 1, 2, . . . , N.
Using this we present the Gradient Tree boosting algorithm for K-class clas-

sification in pseudo code in Algorithm 2. Since there are K classes, each with
its own regression function fk, we fit K regression trees with associated regions
Rjkm and coefficients γjkm in each iteration, one for each class.

Algorithm 2 Gradient Tree boosting algorithm for K-class classification

1: Initialize fk0(x) = 0, k = 1, 2, . . .K.
2: for m = 1 to M do
3: Set :

pk(x) =
exp(fk,m−1(x))∑K
l=1 exp(fl,m−1(x))

, k = 1, 2, . . . ,K.

4: for k = 1 to K do
5: (i)Compute : −gikm = yik − pk(xi), i = 1, 2, . . . , N.
6: (ii)Fit a regression tree to − gikm, i = 1, 2, . . . , N.
7: (iii)With obtained regions Rjkm, j = 1, 2, . . . Jm, Compute:

γjkm = arg min
γ

∑
xi∈Rjkm

L(yi, fk,m−1(xi) + γ), j = 1, 2, . . . Jm.

8: (iv)Update: fkm(x) = fk,m−1(x) +
∑Jm
j=1 γjkm1(x ∈ Rjkm).

9: end for
10: end for
11: return f̂k(x) = fkM (x), k = 1, 2, . . . ,K.

14



2.5 Tree boosting parameters

The theory in this section follows that of Section 10.11-12 in Hastie et al (2017)
[7].

Boosted trees have 3 main hyper parameters which will be discussed in this
section, tree size - J , number of boosting iterations - M and learning rate - η.
We will begin by discussing J - the size or number of terminal nodes in each
tree.

2.5.1 Tree size J

This parameter is one used instead of the pruning we mentioned in Section 2.2.
Pruning is the natural choice when a single tree is the whole model but since
boosting fits trees additively this is a poor method as pruning each tree in the
model would increase computation time significantly. The solution is to set a
maximum number of terminal nodes for all trees, Jm = J ∀m. This J should
be chosen depending on data at hand but Hastie et al (2017) [7] mention that
values in the range 4 ≤ J ≤ 8 yield good results from experience. Therefore,
values in this interval can be tested to find which one performs best on the
validation set. The tree size J also dictates the number of interaction effects,
since only 1 variable is used in each split a tree of depth J can only have a
maximum of J − 1 interactions between variables.

2.5.2 Regularization M and η

The other two parameters M and η are used for regularization. Since each
boosting iteration adds a tree (or K coupled trees for K-class classification)
which gives the model a better fit on the training data, a large M would seem-
ingly be prefered but this can lead to overfitting the model to the training data,
leading to worse performance on unseen data as shown in Figure 2. A suitable
number of iterations that gives a good fit but no excessive overfitting is often
obtained through cross-validation. Finally we can also use η for regularization,
the learning rate - η is a shrinkage technique where 0 ≤ η ≤ 1 is used to scale
the contribution of each added tree, η would be added to line 8 in Algorithm 2
in the following way

fkm(x) = fk,m−1(x) + η

Jm∑
j

γjkm1(x ∈ Rjkm).

Since a smaller learning rate gives each tree less of an effect increasing η has a
similar effect as decreasing M , it will give a higher training risk. This means
that at a desired level of training risk reducing the learning rate has to be
compensated by an increase of the number of iterations M . Smaller values of
the learning rate have empirically been shown to perform best Friedman (2001)
[6], often (η < 0.1). The accompanied increase in computations brought by
having to increase M is often acceptable in part due to the previously mentioned
maximum tree depth, keeping the trees small and therefore less complicated.
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2.6 XGboost

In this section we will cover the details of eXtreme gradient boosting, more
commonly refered to as XGboosting, the subsequent theory will follow that of
the paper XGBoost: A Scalable Tree Boosting System by Chen Guestrin (2016)
[5], the developers of XGboost.

XGboosting is similar to that of the gradient boosting we described in Section
2.4 although it uses a slightly different approach than the one described in that
section. For starters it uses the Newton method to approximate the loss function
in each step with a second order Taylor expansion. As a reminder to the reader
the Taylor theorem tells us that a linear approximation of f(x) around a can
be given by

f(x) ≈ f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2.

Given a twice differentiable convex loss function L at step m, with XGboost
we want to minimize following expression at step m

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm)). (5)

Here using our above notation we can see f(x) as the loss function we want to
approximate, f(a) as the loss function in the previous step fm−1 and (x − a)
as the tree T (xi; Θm) we want to add in this step. If we use the following more
convenient notation

gm(xi) =
∂L(yi, fm−1(xi))

∂fm−1(xi)
and hm(xi) =

∂2L(yi, fm−1(xi))

∂2fm−1(xi)

we can, using the second order Taylor expansion, approximate equation (5) well
with

N∑
i=1

[
L(yi, fm−1(xi)) + gm(xi)T (xi; Θm) +

1

2
hm(xi)T (xi; Θm)2

]
and removing the constant terms we get the following expression to be minimized

N∑
i=1

[
gm(xi)T (xi; Θm) +

1

2
hm(xi)T (xi; Θm)2

]
. (6)

In reality XGboost uses an objective function made up out of not only a loss
function but also a regularization term Ω, this regularization term is given by

Ω(T ) = ΓJ +
1

2
λ

J∑
j=1

γ2
j , (7)
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where, as a reminder, J is the number of terminal nodes in the tree and γj the
coefficients for these nodes.

From the XGboost documentaion [15] it can be found that there is also an

option to increase this regularization term to include α
∑J
j=1 |γj |. An in-depth

discussion on this addition to the regularization term will not be included in this
thesis so α will be set to zero. The reason for this and further discussions around
the parameters of the regularization term will be discussed later in Section 2.7.

If we return to equation (6) and include the regularization term Ω we can
write equation (6) as

N∑
i=1

[
gm(xi)T (xi; Θm) +

1

2
hm(xi)T (xi; Θm)2

]
+ Ω(Θm).

If we rewrite this with the further expanded notation for trees T (xi; Θm) =∑J
j=1 γjm1{xi ∈ Rjm} and use the fact that regions Rjm are disjoint we get

N∑
i=1

[
gm(xi)

J∑
j=1

γjm1{xi ∈ Rjm}+
1

2
hm(xi)

J∑
j=1

γ2
jm1{xi ∈ Rjm}2

]
+ Ω(Θm).

Then using that all terms where xi /∈ Rjm are zero and expanding Ω(Θm) we
can rewrite this again as

J∑
j=1

[( ∑
xi∈Rjm

gm(xi)
)
γjm +

1

2

( ∑
xi∈Rjm

hm(xi)
)
γ2
jm

]
+ ΓJ +

1

2
λ

J∑
j=1

γ2
jm

and by moving the last sum in we get

J∑
j=1

[( ∑
xi∈Rjm

gm(xi)
)
γjm +

1

2

( ∑
xi∈Rjm

hm(xi) + λ
)
γ2
jm

]
+ ΓJ.

Finally we simplify the notation again with Gjm =
∑
xi∈Rjm

gm(xi) and Hjm =∑
xi∈Rjm

hm(xi) and get the final expression

J∑
j=1

[
Gjmγjm +

1

2

(
Hjm + λ

)
γ2
jm

]
+ ΓJ (8)

to be minimized at step m.
If we now consider a given tree structure as we have done previously when

computing leaf weights and differentiate (8) with respect to γjm and set to zero,
we find the optimal leaf weights to be

γ̃jm = − Gjm
Hjm + λ

. (9)
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Then, by substituting this expression into (8) we get the optimal value of the
loss function for a given tree structure as

−1

2

J∑
j=1

G2
jm

Hjm + λ
+ ΓJ,

and this equation is used to score tree structures in order to choose optimal
splits.

With this we get a formula for how to choose between potential splits in a
greedy manner by from the top of the tree and downwards finding the split that
maximizes the Gain in each leaf. Consider lettingG2

L/(HL+λ) andG2
R/(HR+λ)

score the left and right leaf respectively after a split and G2/(H + λ) = (G2
L +

G2
R)/(HR+HL+λ) be the score of the unsplit leaf we get following loss reduction

to maximize at each split

Gain =
1

2

[
G2
L

HL + λ
+

G2
R

HR + λ
− G2

H + λ

]
− Γ (10)

where a split is made only if Gain > 0 which is why Γ is often refered to as
minimum split loss.

Using this and extending to the K-class classification case we present the
XGboost algorithm in pseudo code in algorithm 3.

Algorithm 3 XGboosting algorithm for K-class classification

1: Initialize fk0(x) = 0, k = 1, 2, . . .K.
2: for m = 1 to M do
3: for k = 1 to K do
4: (i)Compute : gkm(xi) =

∂L(yi,fk,m−1(xi))
∂fk,m−1(xi)

, i = 1, 2, . . . , N.

5: (ii)Compute : hkm(xi) =
∂2L(yi,fk,m−1(xi))

∂2fk,m−1(xi)
, i = 1, 2, . . . , N.

6: (iii)Fit a tree T (xi,Θkm) i = 1, 2, . . . , N with splits that maximize:

Gain =
1

2

[
G2
L

HL + λ
+

G2
R

HR + λ
− G2

H + λ

]
− Γ

7: (iv)With obtained regions from optimal splits, compute:

γ̃jkm = − Gjkm
Hjkm + λ

, j = 1, 2, . . . Jm.

8: (v)Update: fkm(x) = fk,m−1(x) + η
∑Jm
j=1 γjkm1(x ∈ Rjkm).

9: end for
10: end for
11: return f̂k(x) = fkM (x), k = 1, 2, . . . ,K.
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2.6.1 Sparsity-aware split finding

More often than not data sets for real-world problems contain features with
missing values or a large number of zero-valued observations. In order for the
model to take this into account XGboost adds a default direction for such values
to go to in each split. This default direction is found by splitting based on the
available data for the split variable and then computing the Gain for both
cases of letting missing data go to the left or right node. Whichever direction
minimizes the loss is chosen as the default direction.

2.7 XGboost parameters

Other than the tree boosting parameters we discussed in Section 2.5 XGboost
has a plethora of parameters of its own, both for trees and data subsampling. For
this thesis we will limit ourselves to looking at and tuning the ones explained in
this section due to time and complexity restrictions. We will begin this section
by discussing the tree parameters we encountered in Section 2.6.

2.7.1 Tree parameters

We will start by addressing the part we excluded from the regularization term
as mentioned in previous section.

2.7.1.1 α - L1 regularization

As a reminder the part we chose to exclude from the regularization term was
α
∑J
j=1 |γj |. This term was excluded for two reasons, the first being that L1

regularization, analogous to Lasso regression is not included in the paper [5]
that this section is based on. The second reason is that L1 regularization is
often used to aid in feature selection by shrinking features to zero if they are
unimportant in order to improve speed of the algorithm once implemented. As
the number of features in our data set is not very large this is not a priority.

2.7.1.2 λ - L2 regularization

The parameter λ performs L2-regularization, analogous to ridge regression. We
can see in (9) and (10) that λ has an effect on the leaf weights as well as the
Gain and therefore the structure of the tree. This regularization term will
have a larger effect on nodes with a smaller second derivative (Hessian), hence
shrinking the leaf weights more as well as negatively effecting the gain score.

Interested reader can find more about lasso and ridge regression in Section
3.4 of Hastie et al (20017) [7].

2.7.1.3 Γ - Minimum split loss

This parameter controls the reduction in loss required to split, and as mentioned
before a split is only made if the gain exceeds zero. As we can see in (10) this
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is when the loss reduction is higher than Γ. This is another way to control size
of the tree.

2.7.1.4 hmin- Minimum child weight

The last tree parameter we will cover in this thesis is hmin, usually refered to as
minimum child weight, where child is another word used for leaf. This parameter
uses that the Hessian can be seen as an instance weight for an observation, if
the sum of the Hessian of observations in a node does not exceed hmin the node
will not be split and the tree will not be grown further. This is yet another way
to control the size of the tree. To understand why the Hessian is used we can
look at the case where log loss is used as loss function. The log loss as shown
in (3) has the second order derivative pk(x)(1− pk(x)) when taken with respect
to fk(x). Which as a reminder is related to pk(x) through (4). This means
that when the node is very homogeneous (contains many correctly predicted
observations) the sum of the Hessian will be small and further splitting may
lead to overfitting.

2.7.2 Subsampling parameters

In this thesis we will consider column subsampling by tree as well as row sub-
sampling, as a reminder the observations i = 1, . . . , N are organised as rows and
the p predictors as columns. These take values in the range (0, 1] and in each
iteration XGboost randomly samples the chosen fraction of total columns/rows
of data to grow the tree from. Subsampling is used to prevent overfitting by in-
creasing variance between trees. This is achieved by growing them with different
subsets of the data and thereby reducing the correlation between them.

2.8 Model interpretation

In this section we will briefly cover the confusion matrix which is a commonly
used technique to display performance of a classifier as well as the concept of
feature importance for boosted tree models.

2.8.1 Confusion matrix

As mentioned above confusion matrices are a good way to visualize the perfor-
mance of your model. A confusion matrix is a matrix with predicted classes
displayed along the rows and actual class labels displayed along the columns. In
the confusion matrix it is easy to see, for a given class, all the correctly predicted
observations which are called true positives (tp), all observation mistakenly pre-
dicted as the given class which are called false positives (fp), all the observations
of the given class predicted as another which are called false negatives (fn) and
all the observations not of the given class which are predicted as another class
are called true negatives (tn). With these definitions metrics to evaluate our
classifier can be calculated. A selection of such metrics, intended to be used
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Table 1: Measures for classification

Measure Formula Description

Recall(Sensitivity) tp
tp+fn Rate of positives actually classified as

positives

Specificity tn
fp+tn Rate of negatives actually classified as

negatives

Precision tp
tp+fp Rate of actual positives out of all obser-

vations classified as positives

F1 Score 2·tp
2·tp+fn+fp Performance metric based on both re-

call and precision

Accuracy tp+tn
tp+fp+fn+tn Overall effectiveness of classifier

in Section 5 with description, are shown in Table 1, see also Hossin, M. and
Sulaiman, M. N. [8].

These metrics are natural for a two by two confusion matrix but they can
also be extended to K-class classification in different ways. We will do this by
considering a one versus all situation where one reduces the classification to a
binary one by looking at one class at a time and consider that class versus all
the rest.

2.8.2 Feature importance

The theory in this section follows that of Section 10.13 in Hastie et al (2017) [7].
As shown in the visualization of a decision tree in Figure 1, one of its strengths
is its ease of interpretability. Unfortunately this is lost when our model no
longer consists of only one tree but instead an ensemble of them. Since we
are still interested in the relative importance or contribution of each feature in
X = (X1, . . . , Xp) we need an importance metric for our features. This was
proposed for a single tree T by Breiman et al. (1984) [4] as

I2
`(T ) =

J−1∑
j=1

î2jI(v(j) = `) (11)

which is the measure of importance for feature X` for ` = 1, . . . , p. The idea
is that the variable used to split a node is the one that gives the optimal im-
provement î2j in squared error risk. We use this and sum over the J − 1 internal
nodes and at each node j where feature X` is used to split the node (v(j) = `)
we add the squared improvements. This gives us the relative square importance
for variable X` in the case of a single tree.

For an additive tree expansion we compute (11) for all trees and average
them
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I2
` =

1

M

M∑
m=1

I2
`(Tm)

which gives us the relative square importance of variable X` for the entire ad-
ditive tree expansion. This can be generalized to the K-class classification case
as well where we have one separate model for each class, in this case we can find
the overall importance of feature X` by averaging over all classes.

3 Data

In this section we will discuss and analyze the data used in this thesis, all data
is obtained using the R package Spotifyr which is a wrapper for the Spotify
web API [13] and also has functions to obtain lyrics for songs from the website
Genius.com. The data gathered for this thesis contains 6847 observations, which
was then split into training data and test data using a 80:20 split. When making
models the goal is prediction of unseen data, because of this it is sometimes
(often) good practice to obtain another set of data to test on after the model
has been finalized. This is in part because often the things we wish to predict are
time sensitive. For this thesis this was decided to be unnecessary. The reason
is that even though there are differences over time in music, for example 1950’s
rock probably has some different characteristics from contemporary rock, our
training data already spans a very large time period. The relative short time
during which this thesis was written is also had an impact. Another reason
is that the way our data was gathered makes it extremely difficult to obtain
another reasonably sized data set to test on.

3.1 Predictor variables

We started by manipulating the lyrics and cleaning up the data obtained through
Spotifyr by mostly removing duplicate observations and excluding variables in-
cluded in the data not of interest to us such as the Spotify ID for the track and
URL links to full audio analysis of tracks. After this data cleaning we ended up
with the predictor variables shown and described in Table 2. Most descriptions
were obtained from Spotify’s audio feature value description [12].

3.2 Response variable

The response variable in our data is genre. The response contains six classes
being the genres Rock, Pop, R&B, Electro, Hip hop and Jazz. We have limited
our classification to one with these six classes for a few reasons including time
consuming data collection and availability of data, which will be discussed fur-
ther in Section 6. The proportion of classes in our data is shown in Table 3 and
as we can see the classes are quite well balanced with Rock having slightly more
songs than the others and R&B slightly less.
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Table 2: Predictor variables with value ranges or categories and descriptions.

Variable Value range
or categories

Description

danceability 0.0 to 1.0 Danceability describes how suitable a track is for
dancing based on a combination of musical elements
including tempo, rhythm stability, beat strength,
and overall regularity.

energy 0.0 to 1.0 Energy represents a perceptual measure of intensity
and activity. Typically, energetic tracks feel fast,
loud, and noisy.

key A, A#, B, C,
C#, D, D#,
E, F, F#, G,
G#

The estimated overall key of the track.

loudness -60 to 0.0 The average loudness of a track in decibels.

mode major, minor Mode indicates the modality of a track, the type of
scale from which its melodic content is derived.

speechiness 0.0 to 1.0 Speechiness detects the presence of spoken words in
a track.

acousticness 0.0 to 1.0 A confidence measure of whether the track is acous-
tic.

instrumentalness 0.0 to 1.0 Predicts whether a track contains no vocals.

liveness 0.0 to 1.0 Detects the presence of an audience in the recording.

valence 0.0 to 1.0 A measure describing the musical positiveness con-
veyed by a track.

tempo 0.0 to infin-
ity

The overall estimated tempo of a track in beats per
minute (BPM).

duration ms 0.0 to infin-
ity

The duration of the track in milliseconds.

time signature 1 to 5 An estimated overall time signature of a track. The
time signature (meter) is a notational convention to
specify how many beats there are in each bar.

words 0 to infinity Count of words in lyrics chosen based on number of
occurrences in songs and genres. Words used are the
following: ”love, baby, feel, time, heart, girl, gonna,
day, no, ooh, life, night, black, bad, hey, bitch, fuck,
shit, nigga, niggas, yeah, up, ayy, it, fire, instrumen-
tal, dream, arms, eyes.
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Table 3: Class proportions in our data set.

Class Proportion

Electro 0.175

Hip Hop 0.165

Jazz 0.166

Pop 0.165

R&B 0.128

Rock 0.201

3.3 Data transformation

All predictor variables shown in Table 2 except the word count based on lyrics
are obtained directly from Spotify’s web API [13] and had a natural way to be
quantified. The word count however had to be obtained through manipulation
of the lyrics of each song, the method for this was done as follows: Using the
part of the data set aside for training, as to not use the test to fit on itself,
we find the five most commonly used words for each song. We collect all these
words for songs in each genre and then find the ten most commonly used words
in songs for each respective genre. We do this in 2 steps in order to avoid having
songs that use certain words excessively to skew the results. After this we count
the occurrences of each word in the lyrics of each song.

XGBoost requires categorical variables to be numerical so the two predictor
variables that are categorical, key and mode are encoded using one-hot encoding.
Xgboost also requires this for the response variables class labels. In our case they
need to be numbered from 0 to 5 as we have 6 classes, numbered alphabetically
with Electro as 0, Hip Hop as 1 and so forth.

3.4 Missing data

When considering how to deal with missing data you want to try and understand
why the data is missing. The usual way to deal with missing data is to either
discard the observations with missing data, discard the variables with missing
data, try to impute them with for example the mean of the non missing values
of the variable or have the algorithm deal with them.

When there is missing data in a data set the best situation is the one when
the data is missing completely at random (MCAR). If we consider the variable
with missing data Z and a set of observed variables X then we can express
MCAR as follows

P(Z is missing|X, Z) = P(Z is missing)

in other words that Z being missing is independent of its own missing value as
well as all the observed variables X. This assumption can be hard to test for
and is also often not entirely satisfied for real world data set. A weaker more
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Table 4: The five pairwise most correlated predictor variables in the data set.

Variables Correlation

loudness & energy 0.76

duration ms & instrumentalness 0.37

valence & danceability 0.31

valence & energy 0.26

speechiness & danceability 0.25

common assumption is that data is missing at random (MAR) which can be
expressed as

P(Z is missing|X, Z) = P(Z is missing|X)

or in other words Z being missing can depend on X but not on its own value.
As you might expect you cannot really test for MAR so you have to make an
assumption. If your data is assumed to be MAR it is often deemed ignoreable
in real word data sets, Missing Data, Allison (2002) [1].

In our data set the only variables that contain missing data are the word
counts. Since there is data missing from over 50% of the songs removing the
effected observations is not considered an option. The assumption of MAR is
deemed justified as we do not see any reason the missingness would depend
on how many times a certain word appears in the lyrics. For this reason and
because XGboost deals with missing values through it’s sparsity-aware split
finding discussed in Section 2.6.1, all the variables and observations are left in
the data set for modeling.

3.5 Correlation

Decision trees by design handle collinearity quite well since given two correlated
variables the tree will just choose one to split on and the other one will be given
less importance. For this reason dimensionality reduction by removing collinear
variables is not as important in models using decision trees. That said it is still
good practice to remove perfectly correlated variables from data in order to,
for instance, simplify computations. In Table 4 we see the five most correlated
predictor variables in our data.

As we see in Table 4 there is quite a high correlation between loudness and
energy but because the correlation is not perfect and the number of predictor
variables in our data is already quite small we choose to keep all variables in
the data.

4 Modeling

In this section we will cover how the final model for the classification is decided.
Since XGboost is the chosen algorithm for this thesis modeling consists mainly
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Table 5: Hyper-parameter tuning approach and suitable parameter ranges

Hyper-parameter Tuning approach Range

Boosting iterations(trees) M Default tune→ Fine Tune 100-1000

Max tree depth J Grid Search (4,6,8,10)

Learning rate η Default tune→ Fine Tune (2− 10)/M

Minimum split loss Γ Fixed 0

L2 regularization λ Grid Search (0.01,0.1,1)

Column Sampling Proportion Grid Search (0.4,0.6,0.8,1)

Row Sampling Proportion Grid Search (0.5,0.75,1)

Minimum child weight hmin Fixed → Fine Tune (1,3,5,7)

of tuning the parameters for this algorithm. We will be using the programming
language R for the modelling in this thesis but XGboost is, for example, also
available in Python, Java and C++. As XGboost is still relatively new on
the machine learning scene definite instructions on parameter tuning is not
available. Therefore we will use suggestions for general tree boosting methods,
such as the range for tree depth mentioned in Section 2.5.1 as well as value
ranges of parameters shown to work well in practice by Zhang (2015) [16] and
Thakur (2016) [14].

4.1 Parameter tuning

There are several ways to go about tuning hyper-parameters for machine learn-
ing problems, the two most commonly mentioned ones may be grid search and
random search. In this thesis we will be using grid search as it appears to be
the the most commonly used one. The interested reader is directed to: Random
Search for Hyper-Parameter Optimization, Bergstra and Bengio (2012) [3] for
an in depth look at random search for hyper-parameter tuning.

In grid search we create a grid of all possible combinations of parameter
values and using cross validation on the training set we test these combinations
for the one that gives best result on chosen metric, in our case minimization of
the log loss. As expected this can lead to an extremely computationally heavy
task as the number and range of hyper-parameter grows. To combat this we
use value ranges for parameters shown to give good results as mentioned above,
as well as splitting up the parameter tuning in parts. Ranges that have been
shown to work well for XGboost are shown in Table 5 as well as how we split
up the process of tuning.

As shown in Table 5 we begin by tuning a default model with the learning
rate η and the number of boosting iterations M . At this stage we test a few
relatively high values of η (0.1, 0.5, 1) and decide the value of M with cross
validation, the high value of η makes sure the boosting rounds are kept low
and following grid search kept at a reasonable level computationally. After the
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Table 6: Tuned parameters of the final model

Parameter Value

Boosting iterations M 1200

Max tree depth J 6

Learning rate η 0.01

Minimum split loss Γ 0

L2 regularization λ 1

Column sampling proportion by tree 0.6

Row sampling proportion by tree 0.75

Minimum child weight hmin 5

default tuning we perform grid search on the parameters λ, column sampling
proportion by tree, row sampling proportion by tree and max tree depth. Finally
after tuning these parameters we fine tune η, typically with much lower values
(0.01 - 0.1) and the number of iterations M(therefore higher) as well as the
minimum child weight hmin that we kept fixed in the previous steps. The value
of the minimum split gain Γ is kept fix at 0 throughout. After completing these
steps we have the finally tuned parameters for our model ready to be applied
to the test set.

5 Results

This section will mainly contain the numerical results of running the part of the
data set aside for testing through our classifier while a more in depth discussion
of the results is left to Section 6.

5.1 Model parameters

After following the steps outlined in Section 4.1, using the part of our data set
aside for training, the tuned parameters that decide our final model are the ones
shown in Table 6.

5.2 Model overall results

As the main goal of the classification in our problem is to minimize the number
of incorrect answers and our data is relatively well balanced an appropriate
main metric to measure the performance of our model is the overall accuracy as
described in Section 2.8.1. The accuracy score achieved with the final model on
the test data was 73.43%. The final classifications are displayed in the confusion
matrix of Figure 3.
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Figure 3: Confusion Matrix with the results of applying the classification
method to test data.

5.3 Class specific results

The performance of our model on the individual classes is measured by extending
the metrics from Section 2.8.1 to the multiclass case, by considering classification
of each genre in turn versus a clumped category of all other genres. These class
specific metrics, calculated from the confusion matrix, are shown in Table 7.

6 Discussion

In this section we will more thoroughly discuss the results presented in Section
5. We will also examine the feature importance for our model and finally discuss
possible improvements to be made in future work.

6.1 Fitting

As can be seen in Table 6 the final parameters include changes from the default
values in almost all of the regularization parameters. An explanation to this
can be found by looking at Figure 4. We can see in the left panel depicting
the log loss of 5-fold cross-validation of the default model for three different
values of η that, especially for higher values of η, there’s a significant upswing
in the log loss curve. This indicates that the model is prone to overfitting to the
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Table 7: Performance metrics calculated for each class.

Genre Recall(Sensitivity) Specificity Precision F1 Score

Electro 0.7782427 0.9716060 0.8532110 0.8140044

Hip Hop 0.7876106 0.9421053 0.7295082 0.7574468

Jazz 0.8584071 0.9596491 0.8083333 0.8326180

Pop 0.6177778 0.9053462 0.5627530 0.5889831

R&B 0.4514286 0.9546599 0.5939850 0.5129870

Rock 0.8254545 0.9477544 0.7992958 0.8121646

Figure 4: Log loss curves of 5-fold cross validation for different learning rate
values when tuning the default model, showed in the left panel, and for the
tuned model, showed in the right panel.

training set. The corresponding behaviour is also depicted in Figure 2. In order
to lighten the computational load for the grid search, learning rates lower than
0.1 where not considered for the default model. As we can see the smallest log
loss is obtained at roughly 100 iterations with learning rate 0.1 and therefore
this value is chosen for the default model.

In the right panel of Figure 4 we find corresponding 5-fold cross-validation
log loss curves for a selection of η-values for the tuned model. We see that the
higher values of the learning rate still suffer quite severely from overfitting while
lowering the learning rate levels out the curve. With the significantly different
looking curves it is worth pointing out that all four learning rate values achieved
very similar lowest log loss values but the lowest was achieved with a learning
rate of 0.01. It is possible that a marginally lower log loss could be achieved
by lowering the learning rate even more but this was not considered worthy the
required increase of computational power. By tuning the model a roughly 4.9%
decrease in cross-validated log loss was achieved.
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6.2 Overall performance

As mentioned in Section 5 the overall performance of the classifier measured in
accuracy is 73.43%. As good overall performance is one of the main aims with
this thesis the obvious question is: Is this good? This is not an easy question
to answer as it depends on several things, for example good in comparison to
what and under what circumstances.

With a completely balanced data set the accuracy for random guessing would
be 1/K for K-class classification, our data is close to being entirely balanced
with Rock being the most prevalent class with 20% of the observations, so com-
pared to random guessing our classifier performed quite well. On the other hand,
if we imagine a real world implementation of this model in some application,
would users be satisfied with this accuracy? Probably not.

This being said there are also some problems inherent to classifying music
genres, for one there is some subjectivity in deciding music genres as there are
often no clear definitions of genres and there can also be overlap, as for Pop-
Rock, or a song can contain elements of more than one genre. Music is also often
classified according to genre for artist or albums and not for songs. This is the
case for Spotify which made data collection cumbersome and time consuming.
All these things among other may lead to ambiguity in the labels of training data
which of course will affect any supervised learning method, McKay & Fujinaga
[11].

With all this in mind as well as the limited scope and time constraint for this
thesis the performance of our model is deemed relatively good. Improvements
and potential solutions for some of these problems will be further discussed in
Section 6.5.

6.3 Classwise performance

Further analysis of how the model performs on the individual classes can aid
in understanding the overall performance of the classifier by giving insight in
where the model has a good performance and where it is not performing well.
For this thesis we chose to use the F1 score as main metric of how well the
classifier performs on individual classes. Another choice would be balanced
accuracy which is usually a better choice with unbalanced data and when true
negatives are of large importance. Since we are using the one versus all approach
described in Section 2.8.1 the true negative count in our calculations become
very large as they contain all observations correctly not classified as the class we
are currently interested in, even if the observation is misclassified among other
classes. This is the reason for the large specificity values for all classes in Table
7. They are inflated because of the large true negative counts. Because our data
is quite well balanced and because of the specificity inflation we chose instead
to use the F1 score which does not use this metric. Instead it uses recall and
precision which do not include the true negative count.

As can be seen in Table 7, recall, precision and therefore the F1 score is very
low for classes Pop and R&B compared to the other classes while Jazz, Rock and
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Electro all receive an F1 score of over 0.8. The fact that the model is performing
worse on Pop and R&B is also quite obvious by looking at the confusion matrix
in Figure 3, where we can see that both classes are commonly misclassified
with R&B being misclassified more often than not. This is somewhat expected
for the genre Pop. A clue can perhaps be gleaned from its name as it comes
from the phrase ”Popular Music”. A fair assumption is probably that the genre
Pop generally is broader than other genres and also often contains elements from
other genres. As for R&B it is less obvious why it would be harder to classify but
from the confusion matrix we can see that it predominantly is missclassified as
Pop or Hip Hop which from my experience are big components of contemporary
R&B.

6.4 Feature Importance

As one of the aims of this thesis is to examine at which level different features
affect the classification model as well as in what way they affect it we will
in this section examine the feature importances in our model. The XGboost
package provides three different ways of measuring feature importance, these
are described below following XGboost documentation [15]

• Gain - A feature’s relative contribution to the reduction of the loss func-
tion, this is XGboosts version of the feature importance metric described
in Section 2.8.2.

• Cover - The relative quantity of observations related to a feature, calcu-
lated with the number of observations that go through splits made with a
given feature.

• Frequency - The relative number of times a feature is used to split over
all trees in model.

As one might suspect having three different measures of importance has the
potential to cause confusion as each of them could indicate different features
being the most important. It has also been shown that feature importance
measures such as Gain and Frequency can sometimes be inconsistent and that
there may be other more suitable measures. One such measure is the Shapley
additive explanations value or SHAP value. That said, this is decided to be
an extension of the analysis outside the scope of this thesis but the interested
reader will find more about everything discussed in this paragraph in, Consistent
Individualized Feature Attribution for Tree Ensembles Lundberg et al (2018)
[10].

When considering feature importance in an XGboost model the general con-
sensus is that the Gain usually is the best measure to use for feature importance.
Frequency is generally not used as it is just a simpler way of measuring Gain.

In Figure 5 we can see the most important features for the overall classifier
according to the three different metrics.
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Figure 5: Feature importance for the chosen classifier. The ten most important
features according to the measures Gain, Cover and Frequency are shown.

We can see that when considering the Gain as measure, acousticness and
instrumentalness are the most important followed by speechiness and dance-
ability. It is also noteworthy that for all measures the top 10 important features
are variables directly from the Spotify data, none of the wordcounts are there.
This is perhaps not entirely suprising as the word counts are essentially 1 vari-
able ”lyrics” divided into 29 features. This was done in an attempt to define
explanatory variables that made more sense to use in the model. If we sum
up the relative importance of all words using the Gain measure we receive a
total value of roughly 0.159 which is even higher than for acousticness. It is
not certain that this number is entirely trustworthy though as it might not fully
make sense to sum the importance variables because of potential correlation.
But it is still considered worth mentioning as to not forget the contribution of
the lyrics to model performance.

6.4.1 Classwise feature importance

The feature importance presented in Figure 5 although important is not very
intuitively interpretable. A perhaps better and certainly more intuitive way to
consider the feature importance is to look at which feature is most important
for the specific classes. As to not clutter this section with too many figures
the plots of the three measures of feature importance for each class is shown in
Figure 8 of the appendix. The most important features according to the Gain
measure for our 6 classes are:

• Electro - tempo

• Hip Hop - speechiness

• Jazz - acousticness

• Pop - intrumentalness

• R&B - energy
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Figure 6: Partial dependence plots of the most important feature according to
Gain for each class.

• Rock - danceability

The most important features for Electro, Hip hop and Jazz are perhaps the
ones one would expect to see while the others are a bit less obvious. In order
to understand the effect these features have on the respective classes we look
at the partial dependence plots in Figure 6. These plots show the effect of a
chosen feature after accounting for the average effects of all other features. On
the x-axis we have the values of the features with the blue lines showing the
deciles of the values of the feature in training data. This means that there is
less data available where there’s a large distance between the blue lines. On the
y-axis we have the logits, using the softmax function (4) meaning that higher
values indicate a larger probability of an observation belonging to the given
class, Friedman [6].

The partial dependence plots for classes Hip Hop and Jazz look pretty much
as one would expect with higher values of speechiness corresponding to a higher
probability of belonging to the class Hip Hop and likewise for Jazz and acous-
ticness. The form of the partial dependence plots for Pop and Rock also make
some sense if you consider that Pop usually contains a lot of vocal content which
would mean that instrumentalness is small. Similar arguments can be made for
Rock and danceability where rock is generally not considered as dancing music.
These four classes, especially Hip Hop, Jazz and Rock, also show overpowering
importance for these features in Figure 8 of the appendix. For Electro and R&B
we see a more even distribution of feature importances which is probably why
we see lower ranges on the y-axis in their partial dependence plots. It is also
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Figure 7: Learning curve plotted with cross-validated training and test log loss
for 8 values between 344 and 5481 observations.

worth pointing out that, as mentioned above, large distances between blue lines
in plots means less training data in those ranges, and consequently that those
parts of the plots are less accurate. This includes for example the rightmost
part of the Hip Hop speechiness plot or the leftmost part of the R&B energy
plot.

6.5 Potential improvements

As mentioned in Section 6.2 the performance of the model is deemed to be
relatively good but there is of course room for improvements. Unsurprisingly
as extreme gradient boosting learns from provided training data a lot of the
improvements can potentially be made here. More often than not, if one has a
sufficiently good algorithm more data means better performance in supervised
learning problems and considering that our training data only contains roughly
5500 observations this is almost certainly the case for us. This can be illustrated
using a learning curve, such a plot can be seen in Figure 7 for our model. We
have plotted the cross-validated training and test log loss using an increasing
number of observations. As we can see it seems that the curve for the log loss
of the testing is still on a downward trend as we reach our maximum number of
observations, indicating that adding more observations could keep reducing the
loss.

Other than just increasing the size of the data set there are obvious im-
provements to be made in the quality of the data set. Considering that more
than 50% of data in the variables based on the lyrics is missing a better way of
gathering these as well as a better utilization of lyrics (since we are currently
only using 29 words) would probably improve the performance of the model.

When it comes to the modelling, other than a more theoretically based way of
tuning the parameters of the model, it is possible that multi-label classification
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may be more appropriate when classifying songs according to genres as they
can contain a mix of genres as well as be considered different in terms genre by
different people.

All these things will surely improve the accuracy of a model like this but to
what extent is unclear. It is unlikely that creating models with close to 100%
accuracy is plausible as long as the problem with ambiguity in the labeling
exists, which seems like a problem inherent for these types of data sets.

7 Conclusion

The main aim of this thesis was to create a classifier for music genres, using XG-
boost and our Spotify data set, with satisfactory accuracy. Reaching an overall
model accuracy of 73.43% is under the inherent difficulties of classifying songs
according to genres and the somewhat lacking data set considered a satisfactory
result even if it would not be sufficient in real world applications. Upon writing
the thesis it became clear that XGboost is a very powerful method for problems
like this even though it seems there is much left to be explored when it comes
to tuning the parameters of an XGboost model.

The thesis also demonstrates the, perhaps expected, differences in difficulty
in classification of different genres, with Rock, Jazz, Hip Hop and Electro being
easier than Pop and R&B. We have also shown that several classes are correlated
with one specific predictor, with some correlations being more predictable than
others, such as Hip Hop’s strong dependence on speechiness while R&B seems
to have weaker dependencies with several predictors.
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8 Appendix

Figure 8: Classwise feature importance for all six genres. The ten most impor-
tant features according to the measures Gain, Cover and Frequency.
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