
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Applying the EM algorithm to pixel-
based approximations of bimodal data
Magnus Pierrau

Matematiska institutionen

Kandidatuppsats 2019:9
Matematisk statistik
Juni 2019

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2019:9

http://www.math.su.se

Applying the EM algorithm to pixel-based

approximations of bimodal data

Magnus Pierrau∗

June 2019

Abstract

In this thesis we develop and study an approximative version of the

Expectation-Maximization algorithm, modified to analyze quantized

data. The quantized data consists of a grid of pixels and emulates low

resolution images of simplified protein structures. We perform several

experiments designed to capture the performance of the approxima-

tive and regular EM algorithms under different circumstances. We

find that the approximative variant consistently performs worse than

the regular algorithm but provides acceptable results. However, as the

size of the pixels decrease, the approximative variant approaches the

results of the regular algorithm. We find that the approximative vari-

ant has a highly unstable convergence rate and that the assumption

of homoscedasticity is not suited well for this variant.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: magnus.pierrau@gmail.com. Supervisor: Ola Hössjer, Christian Blau.

Acknowledgements

I would like to sincerely thank my supervisors Prof. Ola Hössjer and
Christian Blau for their invaluable feedback and encouragement, and with-
out whom this thesis would not have been possible. I would also like to
thank Linnea Axelsson for introducing me to the research at the SciL-
ifeLab and Assoc. Prof. Chun-Biu Li for encouraging me to pursue this
topic. Finally, I would like to thank my good friends Dasha Medvedeva
and Lauge Gregers Hedegaard for their support and suggestions during
the writing process.

2

Contents

1 Introduction 4

2 Model 5
2.1 Gaussian Mixture Model (GMM) 5
2.2 A pixel-based approximative GMM model 6

3 Parameter estimation and the EM algorithm 7
3.1 Maximum Likelihood-estimation . 7
3.2 The general EM algorithm . 8

3.2.1 The iterative steps . 9
3.2.2 Result 1 - Independence of observed data 10
3.2.3 Result 2 - Decomposition of Q-function 10
3.2.4 Iterative relations for parameter estimates 12
3.2.5 Initiation . 13

3.3 EM for quantized data - the approximative grid-based method . 14
3.3.1 Deriving the Q-function for the approximative method . . 15
3.3.2 Iterative relations for the approximative method 17

4 Method and results 18
4.1 Experiment 1 – Canonical setup . 19

4.1.1 Assuming homoscedasticity 23
4.2 Experiment 2 – Impact of initial values on parameter estimations

and iterations . 25
4.2.1 Disruptive initial values of mean vectors 26
4.2.2 Disruptive initial values of covariance matrices 27

4.3 Experiment 3 – Impact of overlap between distributions 28

5 Discussion 32
5.1 Convergence unto undesired local maxima 33
5.2 The point estimate approximation 35
5.3 Improving the approximative EM method 35

5.3.1 Maximum A Posteriori (MAP)-estimation in EM 36

6 Appendix 38
6.1 Proof of Result 1 - Independence of Y 38
6.2 Proof of update formulae . 38
6.3 Some details on the k-means clustering algorithm 41
6.4 Extreme initial values of covariance matrices 41
6.5 Complimentary graphics . 43
6.6 Full tables . 44

References 48

3

1 Introduction

The topic of this thesis is inspired by the rapid development in protein struc-
ture determination methods in the past five years. The dramatic increase in
understanding protein structure and function builds partly on an increase in
experimental methods and better microscopes, but not the least on improved
numerical algorithms for protein structure determination. One of these experi-
mental methods is based on using cryo-electron microscopy (cryo-EM), in which
proteins (extracted from e.g. frog eggs) are very rapidly frozen to a temperature
of −150 ○C. This keeps the protein structures intact within a layer of vitrified
ice (supercooled water). The proteins are then bombarded from above with
electrons, creating a through-view of the protein, captured on a detector be-
low. The method of using cryo-EM imaging to create high resolution models
of proteins is a field that has seen a surge lately due to increased quality in
image resolution. The developers of cryo-EM were awarded the Nobel Prize in
Chemistry in 2017 [1].

The most common algorithm that is used for protein structure determina-
tion from cryo-EM data is a Bayesian Expectation-Maximisation algorithm.
Its most common implementation is a software called RELION (REguralized
LIkelihood OptimizatioN), which for example is used by researchers at the Sci-
ence for Life Laboratory (SciLifeLab) at Karolinska Institutet [2].

Protein structures are highly complex, and the data analyzed by RELION are
2D images of proteins in various structural states and angular positions. These
images cannot easily be emulated by data from some two-dimensional proba-
bility distribution, but to fit the scope of this thesis we simplify this problem
grossly by simulating data from a bivariate Gaussian Mixture Model with two
underlying clusters and consider this an emulation of an image of a protein.
Furthermore, we will ignore issues of interfering colored noise and the strength
of the signal from the imaging process that researchers at SciLifeLab face.

The purpose of this thesis is thus to consider the canonical example of learn-
ing the underlying distributions of a Gaussian Mixture Model (GMM) under
several different conditions, by using the EM algorithm. We will also develop
and study an approximative variant of the EM algorithm which applies to data
distorted by quantization. The quantization corresponds to ”pixlifying” data to
resemble imaging data from cryo-EM or other microscopy applications analyzed
by RELION.

Some theory is presented and derived both for the regular EM algorithm and
the approximative variant. We then perform several simulation experiments to
study the performance of the approximative variant on the quantized data and
compare it to that of the regular algorithm on undistorted data. Finally, we
discuss the challenges that can arise in the implementation of this algorithm
and some areas of improvement and future research.

4

2 Model

The data inferred on is simulated from a bivariate Gaussian Mixture Model, as
defined in section 2.1 below. The EM algorithm is a powerful tool when there
exist latent data, which in the case of the GMM is which underlying Gaussian
distribution each data point originates from. The Gaussian Mixture Model can
be considered when data is not unimodal and thus cannot be modelled by a
single Gaussian distribution in a satisfactory way.

2.1 Gaussian Mixture Model (GMM)

The observed data, y, is a vector of outcomes of the random variable Y , with
the ith element being the cartesian coordinates of yi ∈ Y = R2. The latent data,
z carries the information about which of the p underlying Gaussian distribu-
tions that yi originated from. The restriction of bimodal data in this thesis
implies that p = 2. The complete data is thus X = (Y ,Z). Throughout this
paper the variables y and x will be used to denote the observed and the com-
plete data respectively, and we will therefore denote the cartesian coordinates
by yi = (yi1, yi2).

Table 1: Type of data

Data Notation Definition State space

Observed y ∼ Y (y1,y2, ...,yn)
T Y = R2

Latent z ∼ Z (z1, z2, ..., zn)
T Z = {1, . . . , p}

Complete x ∼X (y,z) X = Y ×Z = R2 × {1, . . . , p}

We will throughout the rest of this paper refer to each underlying Gaussian
distribution as either ”the underlying distribution” or ”the cluster”. Based on
the assumption that there exist two underlying Gaussian distributions, we wish
to infer on the respective mean vectors, covariance matrices and weights of each
distribution. With wj being the weight of the jth underlying distribution, we
have the restriction ∑

p
j=1wj = 1. Since p = 2 this is equal to the restriction

w1 = 1 − w2. The weight provides the expected proportion between the num-
ber of data points originating from each respective distribution. With each
underlying distribution having parameters {wj ,µj ,Σj} we yield the parameter
vector

θ = ({wj},{µj},{Σj}) j = 1,2. (1)

The probability of observing some xi as an outcome of the GMM-distributed
random variable Xi is the sum of the probabilities of each of the p underlying

5

distributions multiplied by their respective weight. For a model with p under-
lying bivariate Gaussian distributions with respective parameters (w1,µ1,Σ1),
... , (wp,µp,Σp), where µj is the vector of expected mean values, Σj the covari-
ance matrix and wj the weight of the jth underlying distribution, we have the
following probability density function:

p(xi∣θ) =
p

∑
j=1

wj ⋅ φ(xi ∣ µj ,Σj), (2)

where

φ(xi ∣ µj ,Σj) =
1

√
(2π)2det(Σj)

exp{−
1

2
(xi −µj)

TΣ−1
j (xi −µj)}.

2.2 A pixel-based approximative GMM model

Many challenges can appear when analysing data from the real world. Data
can be distorted or compromised by for example white or colored noise or poor
resolution.

We choose to consider the problem of distortion by poor resolution of images.
To emulate images that are analyzed at the SciLifeLab (and in other research)
we quantize the GMM data by creating a grid around data and counting the
number of data points in each square, as visualized in Figure 1. To draw a
parallel to image analysis we can see each square as a pixel and the number of
observations as the brightness, or the intensity of that pixel. A higher num-
ber of observations in a square corresponds to a higher intensity of that pixel.
Henceforth we will mainly refer to these grid squares as pixels, but sometimes
as ”squares” or ”boxes” if clarity is needed.

To apply this model on real images an assumption of linearity between the
intensity of a pixel and the number of observations, or the amount of mass,
inside the area of each box is needed. While the reality of this assumption can
be questioned, it is a reasonable first assumption, that we will hold on to.

With ∆ denoting the side length of each pixel, the grid is constructed by
finding the lowest and highest yi1– and yi2–coordinates of the observed data
and rounding them to their respective closest lower multiple of ∆. Let y1 =

(y11, y21, ..., yn1)
T and y2 = (y12, y22, ..., yn2)

T be the vectors containing all re-
spective yi1– and yi2–coordinates (note that these are not the same as y1 and
y2 in section 2.1) and let ⌊yij⌋ be the integer part of yij . Then,

ymin,1 = ⌊min(y1/∆)⌋ ⋅∆,

ymin,2 = ⌊min(y2/∆)⌋ ⋅∆,

ymax,1 = ⌊max(y1/∆)⌋ ⋅∆,

ymax,2 = ⌊max(y2/∆)⌋ ⋅∆.

6

For example, if ∆ = 0.4 and the lowest yi1-coordinate of the data set is 3.4,
then ymin,1 = 3.2, since it is the closest lower multiple of 0.4. With K =

Figure 1: Example of regular GMM data (A) and its quantization (B) with
pixel side length ∆ = 1.

(ymax,1 − ymin,1)/∆ and L = (ymax,2 − ymin,2)/∆ being the scaled range of the
yi1– and yi2–coordinates of the data, we get a K ×L grid of pixels covering the
data set. Each pixel has sides of length ∆ and subsequently an area of A = ∆2.

Our new algorithm will come to sum over each pixel and we thus need to index
them. We let q = K ⋅L be the total number of pixels and denote pixel k by bk,
with k = 1,2, ..., q. The centerpoint of each box will come into play later on and
it is denoted by ck. As will the intensity of each pixel, which we denote by Nk.

3 Parameter estimation and the EM algorithm

This section gives an overview of the theoretical framework of the EM algorithm,
as well as some useful mathematical results for its expansion. Here we will also
develop and discuss the approximative variant of the EM algorithm for the
quantized data.

3.1 Maximum Likelihood-estimation

To infer on the underlying parameters of the GMM we want to calculate the pa-
rameter vector which maximizes the likelihood function of θ given the complete
data y, over the parameter space Ω. This vector is called the maximum likelihood
estimate (MLE) of θ and is denoted θ̂. The MLE is most often found by solving
the score equation d

dθ
L(θ∣y) = 0 with regards to θ, where L(θ∣y) ∶= p(y∣θ) is

the likelihood function and p(y∣θ) is the density function of Y given θ. The
solution provides the set of parameters that are most likely to have produced

7

the observed data.

For ease of calculation it is a common method to maximise the natural log-
arithm of L(θ∣y), called the log likelihood function and denoted `. This is
possible since log(⋅) is a monotonic and injective function, which results in `
and L having the same argmax over θ. Thus, from equation (1) we have that
our MLE is

θ̂MLE = ({ŵj},{µ̂j},{Σ̂j}) , j = 1,2. (3)

3.2 The general EM algorithm

The Expectation-Maximization algorithm is an iterative algorithm that, for each
iteration provides an estimate, θ(0),θ(1), ...,θ(m), of θ, which, under some con-
ditions, converges to θ̂MLE, as m tends to infinity. Since the resulting estimate
from the algorithm is an approximation of the MLE (the algorithm stops at
some point), we will henceforth denote the theoretical MLE by θ̂MLE and the
resulting estimates by θ̂.

One reason for the popularity of EM is its general form, making it applicable to
many different problems and areas, for example genetics, neural networks, text
mining and clustering. Another reason is the promise of the likelihood function
of θ increasing in each iteration – a result of the monotonicity theorem. Thus,
as m tends to infinity, the estimates θ(m) converges to θ̂MLE, given that the
function has no local maxima. A third reason is its simple analytical and nu-
merical form for distributions of the exponential family, as we will see later in
section 3.2.4 [3][4].

The algorithm had been proposed already in the 1950’s under special circum-
stances, and its convergence was proven by Rolf Sundberg in his doctoral thesis
[7] at Stockholm University in 1976. Sundberg did extensive work on the algo-
rithm and especially for the case of mixtures and convolutions of exponential
family distributions. The algorithm was eventually generalized and explained
thoroughly by Dempster, Laird and Rubin in their 1977 publication [5]. Max-
imum likelihood fitting has since then become a very common tool for fitting
mixture distributions and the EM algorithm has been studied and developed
for special cases in countless papers. [4][6].

In the sections below we will give a more thorough mathematical presentation
of the algorithm, but to put it in words; in every iterative step of the algorithm
we form the function Q, a conditional expectation of the log likelihood of our
current parameter guess. We then solve for the parameters which maximize Q,
and substitute the result as our new parameter guess in the next iteration. This
process then repeats until convergence. This Q-function is the heart of the EM
algorithm and is a function of the parameter vector θ. We will present it for

8

the complete data X here and use it to describe the iterative process, before
looking more closely at how to expand and interpret it more explicitly:

Q(θ∣θ(m)) = EX ∣y,θ(m) [log p(X ∣θ)] . (4)

The subscript X ∣y,θ(m) in (4) is used to explicitly convey that the expectation
is with regards to the complete data X conditioned on the observed data y and
θ(m), the estimate of θ in the mth iteration of the algorithm. The estimate
in the next step of the algorithm, θ(m+1), is based on the current parameter
estimates by relations detailed in section 3.2.4.

The function in (4) is called the Q-function since the original paper [5] used
a Q to notate it, but, as put in [4]: ”We like to say that the Q stands for
quixotic because it is a bit crazy, hopeful and beautiful to think you can find
the maximum likelihood estimate of θ in this way that iterates round-and-round
like a windmill. If Don Quixote had been a statistician, it is just the sort of
thing he might have done.”

3.2.1 The iterative steps

To clarify we split up the algorithm into five smaller steps [4]:

Step 1. Let m = 0 and make an initial guess θ(m) for θ.

Step 2. Assume now that the initial guess θ(m) is correct and formulate
the conditional probability distribution p(X ∣θ).

Step 3. Using the conditional probability distribution from the previous
step, form the conditional expected log-likelihood, (4).

Step 4. Maximise (4) over each and every parameter in θ and solve for
that respective parameter.

Step 5. Let the parameters solved for in step 4 be the new θ-guess, θ(m+1),
set m ∶= m + 1 and repeat from step 2 until reaching some prede-
termined level of convergence.

Steps 2 and 3 are commonly comprised to one step, called the E-step, for expec-
tation and step 4 the M-step, for maximisation and hence gives the algorithm
its name [5].

A standard stopping criterion is ∣∣θ
(m)
i − θ

(m−1)
i ∣∣ < ε for some ε > 0 and for

all components θi in θ. Throughout this thesis we will use ε = 10−5. When
decreasing the precision to 10−3 we found that the number of iterations until
convergence decreased on average, but the standard errors of the parameter es-
timates increased. Some discussion on alternative stopping criteria is found in

9

section 5.

To proceed we need to expand (4), for which two mathematical results are
necessary. The proof of result 1 is straightforward and is laid out in section 6.1
of the appendix, while the proof of result 2 can be found in section 1.4.2 of [4].

3.2.2 Result 1 - Independence of observed data

The Q-function above was formulated in terms of complete data, X. However,
this result will allow us to solely condition on the latent data Z when evaluating
the Q-function:

Q(θ∣θ(m)) = EX ∣y,θ(m) [log p(X ∣θ)]

= EZ∣y,θ(m) [log p(y,Z ∣θ)] . (5)

∎

3.2.3 Result 2 - Decomposition of Q-function

Another important result for us to be able to expand (4), as well as implement
this algorithm into a program script, is the ability to decompose the Q-function
into a sum of its parts:

Suppose all Xi are independent and identically distributed. It then holds for
all Xi ∈ X that fulfill the Markov relationship θ → Xi → Y i (i.e. that yi is a
function only of xi) for all i = 1, ..., n, and all θ ∈ Ω, that

Q(θ∣θ(m)) =
n

∑
i=1
Qi(θ∣θ

(m)
), (6)

where

Qi(θ∣θ
(m)

) = EXi∣yi,θ
(m)[log p(Xi∣θ)], i = 1, ..., n.

∎

By using (5) we can rewrite Qi(θ∣θ
(m)

) as a conditional expectation with re-
gards to the latent data:

Qi(θ∣θ
(m)

) = EXi∣yi,θ
(m) [log p(Xi∣θ)]

= EZi∣yi,θ
(m) [log p(yi,Zi∣θ)]

=

p

∑
j=1

P (Zi = j∣yi,θ
(m)

) log p(yi,Zi = j∣θ).

10

This, together with equation (6) from result 2, finally lets us express (4) as

Q(θ∣θ(m)) =
n

∑
i=1
Qi(θ∣θ

(m)
)

=
n

∑
i=1

p

∑
j=1

P (Zi = j∣yi,θ
(m)

) log p(yi,Zi = j∣θ). (7)

The expansion in (7) is done by first decomposing the expression as a sum over
all Qi components, and then inserting the definition of the conditional expecta-
tion, which sums over all j.

The probability P (Zi = j∣yi,θ
(m)

) is denoted γ
(m)
ij and is interpreted as the

relative probability in the mth iteration that observation yi originates from
cluster j. This is called the responsibility of cluster j for yij . It is calculated as

γ
(m)
ij ∶=

w
(m)
j φ(yi∣µ

(m)
j ,Σ

(m)
j)

∑
p
l=1w

(m)
l φ(yi∣µ

(m)
l ,Σ

(m)
l)

,

and consequently ∑
p
j=1 γ

(m)
ij = 1.

Figure 2 visualizes the product γ
(m)
i1 ⋅ γ

(m)
i2 of the regular EM algorithm for

a data set of size n = 1000 at the mth iteration. The product is maximised

when γ
(m)
i1 = γ

(m)
i2 = 0.5, i.e. when both distributions are given equal responsi-

bility for yi. The red area of overlapping data points, in this example, creates a
clear region of uncertainty, where data is equally likely to belong to either dis-
tribution, whereas points that are further away from the opposite cluster center
have a higher relative probability, indicated with the blue color.

We let γ(m) denote the n×p matrix with γ
(m)
ij as the ijth element. The column

sums of γ(m) will come into play later and are denoted n
(m)
j = ∑

n
i=1 γ

(m)
ij , for

j = 1, ..., p.

The second part of (7) is the log likelihood function of θ given the complete
data xi for observation i and has the explicit form

log p(yi,Zi = j∣θ) = log
⎛

⎝

wj
√

(2π)2det(Σj)
exp{−

1

2
(yi −µj)

TΣ−1
j (yi −µj)}

⎞

⎠

= logwj − log 2π −
1

2
log det (Σj) −

1

2
(yi −µj)

TΣ−1
j (yi −µj)

∝ logwj −
1

2
log det (Σj) −

1

2
(yi −µj)

TΣ−1
j (yi −µj),

where the proportionality in the last step is with regards to θ.

11

Figure 2: A visualization of γ
(m)
i1 ⋅ γ

(m)
i2 for a dataset of n = 1000, µ1 =

(1,1)T , µ2 = (3,3)T , Σ1 = Σ2 = I2 and w1 = w2 = 0.5.

3.2.4 Iterative relations for parameter estimates

In some applications of the EM algorithm the Q-function can be highly compli-
cated and not possible to optimize analytically, especially in cases with higher
dimensions. However, in the case of the GMM, the maximisation in step 4 is
analytically tractable and gives us explicit expressions for the next parameter
guess θ(m+1).

This is due to each underlying Gaussian distribution in the GMM belonging
to the exponential family. One can show that the score function of Q then
involves data in terms of a sum of all minimal sufficient statistics T (Xi) for
all Xi multiplied by a function of θ. It can then be shown that the maximum
likelihood estimate is the inverse of the expectation of T (X), and since in the
case of the GMM (and in most important cases), these inverses exist, this yields
us an explicit analytical form for the MLE [7].

After maximisation with respect to each respective parameter we get the fol-

12

lowing results (the derivations can be found in the appendix, section 6.2):

w
(m+1)
j =

n
(m)
j

∑
p
l=1 n

(m)
l

, (8)

µ
(m+1)
j =

1

n
(m)
j

n

∑
i=1
γ
(m)
ij yi, (9)

Σ
(m+1)
j =

1

n
(m)
j

n

∑
i=1
γ
(m)
ij (yi −µ

(m+1)
j)

T
(yi −µ

(m+1)
j) , (10)

all for j = 1, ..., p.

We observe especially that in the iterative step for Σ
(m+1)
j we use the new

estimate of µ
(m+1)
j in the calculations. It is therefore important to perform

the calculations in a correct order, i.e. (9) before (10), when implementing the
algorithm. These formulae can both be interpreted as a form of weighted aver-

ages for the coordinates and sample variates, using the responsibilities γ
(m)
ij as

weights.

Later we will discuss the possibility of applying the restriction of homoscedas-
ticity, i.e. that Σ1 = ... = Σp = Σ, in order to make the algorithm more robust.
When applying this restriction we get the following iterative step for Σ:

Σ(m+1)
=

1

∑
p
j=1 n

(m)
j

p

∑
j=1

n

∑
i=1
γ
(m)
ij (yi −µ

(m+1)
j)

T
(yi −µ

(m+1)
j) .

3.2.5 Initiation

The algorithm requires initial parameter guesses θ(0) as starting values. There

are several ways to choose the initial guesses – for example by simulating µ
(0)
1

and µ
(0)
2 from N (ȳ,V), where ȳ is the sample mean and V the sample covari-

ance matrix of data. This V can then be chosen as our Σ
(0)
j and w(0) as 1/p

[6]. However, we choose a different initiation for µ(0) by applying the commonly
used method of k-means clustering, laid out in section 6.3 of the appendix. In
our case k = p but we will use the term k -means. This method provides us with
rough estimates, which are expected to be in a vicinity of the mean vectors,

and we use these as the initial guesses µ
(0)
1 and µ

(0)
2 [4]. The parameters wj

will be initiated by w
(0)
1 = w

(0)
2 = 1/p = 0.5 throughout all experiments. We will

use different µ(0) and Σ(0) as means of initiation in the different simulation
experiments in section 4, and we will discuss these choices there.

13

3.3 EM for quantized data - the approximative grid-based
method

After distorting data we no longer know the exact yi1- and yi2-coordinates of
each observation – only which pixel they were observed in. To use the EM algo-
rithm on this data we will have to rework the algorithm and its iterative steps.
To begin with we will have to rewrite the formula for equation (7).

We consider some pixel bk from the grid and assume that it has an intensity of
one, i.e. that a single data point, yi has been observed inside of it. To calculate
P (yi ∈ bk), i.e. the probability of observing yi in bj , we have to integrate the
probability density function p(⋅, ⋅) of the assumed underlying distribution over
the area of bk. We thus have to evaluate a double integral of the density function
of a GMM over the area of the pixel:

P (yi ∈ bk) =∬
bk
p(yi1, yi2)dyi1 dyi2

=∬
bk

2

∑
j=1

wj
√

(2π)2det(Σj)
exp{−

1

2
(yi −µj)

TΣ−1
j (yi −µj)}dyi1 dyi2.

However, it is known that there exists no analytical closed form for the integral
of the density function of a bivariate Gaussian distribution, and we thus have
to approximate the sought for probability. We could for example use Monte
Carlo-approximation, but we choose to settle for a more practical alternative.

Figure 3: Visualization of the relative error between the Monte Carlo approx-
imation using 1000 random samples and the point estimate approximation of
P (yi ∈ bk) for ∆ = 0.5 (A) and ∆ = 1 (B). Calculations are based on a Gaus-
sian Mixture Model with parameters w1 = w2 = 0.5, µ1 = (2,2)T , µ2 = (5,5)T

and Σ1 = Σ2 = I2. The points indicate the two cluster centers µ1 and µ2. All
relative errors larger than 1 are truncated to the same color in order to allow
a more interpretable visualization and a direct comparison between A and B.
See Figure 14 in appendix 6.5 for a larger version of Figure 3B.

14

The approximation of our choice is a point estimate, where we take the value of
the density function at the centerpoint of the pixel and multiply it by its area,
A. It is practical since it allows us to retain the closed analytical expressions
for the iterative formulae with only minor modifications, which would not be
possible by Monte Carlo-approximation.

From Figure 3 we note that for both ∆ = 0.5 and 1 the relative error is high in
the fringes of the figure, but lower around the mean vectors, where the majority
of the data points for this distribution are located.

When decreasing the size of the pixels, i.e. as ∆→ 0, we have that ck(yi)→ yi,
and thus p(ck(yi)) → p(yi), i.e. the approximative probability will converge
to its true value. As ∆ decreases each pixel will eventually only contain one

single observation, implying that q → n and Γ
(m)
kj → γ

(m)
ij . Thus, as ∆ → 0 the

approximative variant converges to the regular EM algorithm.

All this indicates that the approximation is feasible on the data scale that we
operate at throughout this paper.

3.3.1 Deriving the Q-function for the approximative method

With ck defined as the centerpoint of bk, and with Bi the pixel which yi was
observed in, we have that the estimated probability of yi being observed in bk,
given that yi originated from some Gaussian distribution with parameters µ
and Σ is

p̂(Bi = bk ∣µ,Σ) = A ⋅ φ(ck ∣µ,Σ).

By conditioning on which cluster yi was observed in we can now find the joint
probability that yi is observed in bk and also originates from the underlying
cluster center j:

p̂(Bi = bk, Zi = j∣θ) = P (Zi = j) ⋅ p̂(Bi = bk ∣Zi = j,θ)

= wj ⋅A ⋅ φ(ck ∣µj ,Σj). (11)

In order to rewrite the Q-function we also need to find P̂ (Zi = j∣Bi,θ
(m)

), which
is interpreted as the approximative relative probability that yi originated from
cluster center j, conditioned on both which pixel it was observed in as well as
on the current guess θ(m):

P̂ (Zi = j∣Bi = bk,θ
(m)

) =
w
(m)
j ⋅A ⋅ φ(ck ∣µ

(m)
j ,Σ

(m)
j)

∑
p
l=1w

(m)
l ⋅A ⋅ φ(ck ∣µ

(m)
l ,Σ

(m)
l)

=
w
(m)
j ⋅ φ(ck ∣µ

(m)
j ,Σ

(m)
j)

∑
p
l=1w

(m)
l ⋅ φ(ck ∣µ

(m)
l ,Σ

(m)
l)

∶= γ
(m)
kj . (12)

15

We note here that since every pixel has the same area, the A’s cancel out, which

makes (12) almost identical to γ
(m)
ij , with the sole difference of exchanging ck

with yi. Thus, the difference in relative probability between the underlying
distributions is attributed to a shift of each yi to the centerpoint of that pixel.

We note also that ck is a vector valued function of yi (and of ∆ as well, but
since ∆ is a fixed variable we will use the notation ck(yi) in the expression
below, and ck thereafter, except if clarity is needed):

ck ∶= ck(yi) = (⌊
yi
∆

⌋ +
1

2
) ⋅∆,

where ⌊
yi

∆
⌋ = (⌊

yi1
∆

⌋, ⌊yi2
∆

⌋), i.e. the floor function is taken componentwise of yi.
Now, by using the approximations (11) and (12), we can express the Q-function
for the quantized data:

Q̂(θ∣θ(m)) =
n

∑
i=1

p

∑
j=1

P̂ (Zi = j∣Bi,θ
(m)

) log p̂(Bi, Zi = j∣θ)

=
n

∑
i=1

p

∑
j=1

w
(m)
j ⋅ φ(ck(yi)∣µ

(m)
j ,Σ

(m)
j)

∑
p
l=1w

(m)
l ⋅ φ(ck(yi)∣µ

(m)
l ,Σ

(m)
l)

log (wj ⋅A ⋅ φ(ck(yi)∣µj ,Σj)) .

(13)

We note that every yi that was observed in the same pixel will yield the same

expression for its respective Q̂i(θ∣θ
(m)

), since they all map to the same ck.
Therefore, we can, instead of summing over every yi, sum over every pixel bk
and multiply each term in the sum with its respective pixel intensity, Nk. Thus,
(13) becomes

q

∑
k=1

Nk ⋅
p

∑
j=1

w
(m)
j ⋅ φ(ck ∣µ

(m)
j ,Σ

(m)
j)

∑
p
l=1w

(m)
l ⋅ φ(ck ∣µ

(m)
l ,Σ

(m)
l)

log (wj ⋅A ⋅ φ(ck ∣µj ,Σj))

∝

q

∑
k=1

Nk ⋅
p

∑
j=1

w
(m)
j ⋅ φ(ck ∣µ

(m)
j ,Σ

(m)
j)

∑
p
l=1w

(m)
l ⋅ φ(ck ∣µ

(m)
l ,Σ

(m)
l)

log (wj ⋅ φ(ck ∣µj ,Σj)) (14)

=

q

∑
k=1

Nk ⋅
p

∑
j=1

w
(m)
j ⋅ φ(ck ∣µ

(m)
j ,Σ

(m)
j)

∑
p
l=1w

(m)
l ⋅ φ(ck ∣µ

(m)
l ,Σ

(m)
l)

log (p(ck, Zk = j∣θ))

=

q

∑
k=1

p

∑
j=1

Nk ⋅ γ
(m)
kj ⋅ log p(ck, Zi = j∣θ)

=

q

∑
k=1

p

∑
j=1

Γ
(m)
kj ⋅ log p(ck, Zi = j∣θ),

with Γ
(m)
kj ∶= Nk ⋅ γ

(m)
kj , Zk denoting the cluster origin of all observations in bk,

and p being the density function of the GMM (equation (2)). Step (14) above
is due to the sum of all terms involving logA being proportional to θ and thus

16

will disappear in the maximization step.

The term Γ
(m)
kj can be interpreted as the number of observations in bk that

is attributed to cluster j. In contrast to γ
(m)
ij , Γ

(m)
kj does not sum to 1 over all

j’s, and thus gives more weight to pixels with a high intensity. Figure 4 illus-

trates γ
(m)
k1 ⋅ γ

(m)
k2 for the same data set as in Figure 2. We can discern a clear

region of uncertainty between the two clusters, as for the unquantized example.

Figure 4: A visualization of γ
(m)
k1 ⋅ γ

(m)
k2 from a representative quantized dataset

with ∆ = 0.5, n = 1000 and parameters µ1 = (1,1)T , µ2 = (3,3)T , Σ1 = Σ2 = I2
and w1 = w2 = 0.5. The darker pixels indicate a higher Nk (intensity/count).

3.3.2 Iterative relations for the approximative method

To find the new iteration formulae we modify the original equations (8), (9) and
(10). Instead of summing over all yi we sum over the closest pixel midpoints,
ck(yi). All data points observed in the same pixel will thus have identical ex-

pressions for γ
(m)
ij and ck(yi) − µ

(m+1)
j , and so instead of summing over every

data point we can sum over all pixels and for each term multiply it by its re-
spective intensity.

17

With q
(m)
j = ∑

q
k=1 Γ

(m)
kj for j = 1, ..., p, we get the following iterative relations:

w
(m+1)
j =

q
(m)
j

∑
p
l=1 q

(m)
l

, (15)

µ
(m+1)
j =

1

q
(m)
j

q

∑
k=1

Γ
(m)
kj ck, (16)

Σ
(m+1)
j =

1

q
(m)
j

q

∑
k=1

Γ
(m)
kj (ck −µ

(m+1)
j)

T
(ck −µ

(m+1)
j) , (17)

for j = 1, ..., p.

These relations are derived by analytically maximising (13) with respect to each
respective parameter, but with ck instead of yi. The multiplicative constant of
A disappears in the maximisation over the parameters and the calculations are
then analogous to those for equations (8) – (10) for the original EM algorithm.

As with the regular EM algorithm we can apply the restriction Σ1 = ... = Σp = Σ,
which gives rise to the following iterative relation:

Σ(m+1)
=

1

∑
p
l=1 q

(m)
l

p

∑
j=1

q

∑
k=1

Γ
(m)
kj (ck −µ

(m+1)
j)

T
(ck −µ

(m+1)
j) .

Equations (15) – (17) are next to identical to the formulae for the regular EM

algorithm, with the difference of replacing yi by ck, then γ
(m)
ij by Γ

(m)
kj and

finally summing over every pixel k = 1, ..., q, instead of every data point i =
1, ..., n.

4 Method and results

In this section we perform multiple simulation experiments to study how both
the regular and approximative EM algorithms perform under different circum-
stances. There are countless scenarios to study, and we choose to restrict our
experiments to a few interesting ones. In the coming three sections we will
vary some underlying assumptions of the distribution, the initial values and the
overlap between the two clusters.

To quantify the performance of each algorithm we will simulate R different
data sets from the same underlying distribution, quantize the simulated data
and then apply each algorithm and the particular variants specified in that ex-
periment, to each of the R data sets. With θ̂ri denoting the estimate of the
ith component of the parameter vector from the rth data set, and θi the true
value, we then calculate the standard error of each parameter estimate for each

18

variant of the algorithms by

SE(θ̂i) =

¿
Á
ÁÀ 1

R − 1

R

∑
r=1

(θ̂ri − θi)2.

We compare the errors of the approximative EM algorithm applied to the quan-
tized data to the ones of the regular EM algorithm applied to the original data.
We also consider some different statistics of the number of iterations until con-
vergence for each algorithm.

In section 4.1, we study the results of a canonical setup to see how well the algo-
rithms perform on non-overlapping data and with non-disruptive initial starting
values, both in the homoscedastic and heteroscedastic case. The results here
will serve as reference points for the later experiments. In section 4.2 we inspect
how supplying different initial starting values of µ(0) and Σ(0) to the algorithms
affect the standard errors and number of iterations, and lastly, in section 4.3,
we study how well the algorithms perform when the underlying distributions
overlap to different extents.

Throughout section 4 the following notation is used: Σjkl indicates element
k, l of covariance matrix Σj and µjk indicates element k of µj , for cluster j.
Since w2 = 1 − w1 the two parameters have the same standard error and will
therefore be presented in all tables as w. For most tables we will present a
selection of representative parameters, chosen to display general trends in the
results, to make the tables more orderly. The full tables for all experiments can
be found in section 6.6 of the appendix.

4.1 Experiment 1 – Canonical setup

To compare the algorithms on a canonical setup we simulate R = 1000 data sets
from a homoscedastic GMM of size n = 1000 data points with underlying param-
eters w1 = w2 = 0.5, µ1 = (1,1)T , µ2 = (5,5)T and Σ1 = Σ2 = I2, where I2 is the
identity matrix of size 2. In order to deduce how the approximative algorithm
performs for varying pixel sizes we will consider the three values ∆ = 0.1,0.5 and
1. We will also compare the results when assuming equal covariance matrices
and not.

To initiate the algorithms we use the initial guesses of Σ
(0)
j = I2 and w

(0)
j = 0.5

for j = 1,2. For the two mean vectors µ
(0)
j we use k-means clustering. Note that

the initial guesses w
(0)
j and Σ

(0)
j equal the true parameter values. In section 4.2

we will consider how the algorithms handles more challenging and compromis-
ing initial guesses. As seen in Figure 5A, there is very little overlap between the
underlying distributions. In the case of ∆ = 0.1 the distortion is minimal, with
the highest intensity of any pixel being 4, as seen in Figure 5B. As we increase
∆ to 0.5 and 1 (fig. 5C and D) the quantized data becomes cruder and less

19

Figure 5: A representative of the R = 1000 data sets visualized at varying levels
of ∆: A: Original data. B: Quantized data at ∆ = 0.1. C: Quantized data at
∆ = 0.5. D: Quantized data at ∆ = 1.

detailed, but still with a clear outline of two separate clusters.

Table 2 indicates that the standard errors increase with the size of the pix-
els. This feels intuitive, as when we increase the size of the pixels, we remove
more and more information, and thus make the approximation less accurate.
We note also from Table 2 that at ∆ = 0.1 the approximative variant performs
equally well as the regular EM algorithm. Although it cannot be discerned from
these tables, the difference in errors appear at the fifth decimal place, for all
parameter estimates.

Table 3 shows that while the mean and median for ∆ = 0.1 and the regular
algorithm are similar in size, there is a discrepancy between these statistics for

20

Table 2: Experiment 1 - Standard errors of representative parameter esti-
mates from the regular EM algorithm (Regular) and the approximative variant
(Approx.), with R = 1000 and n = 1000 on varying levels of ∆. See Table 11 in
appendix for more information.

Standard error of

EM variant ∆ µ̂11 µ̂22 Σ̂111 Σ̂112 Σ̂222 Σ̂212 ŵ

Regular - 0.045 0.047 0.064 0.047 0.066 0.048 0.016
Approx. 0.1 0.045 0.047 0.064 0.047 0.066 0.048 0.016
Approx. 0.5 0.077 0.076 0.147 0.140 0.164 0.125 0.017
Approx. 1 0.099 0.154 0.207 0.189 0.235 0.215 0.025

Table 3: Experiment 1 - Mean and median number of iterations for the regular
EM algorithm and the approximative variant on varying levels of ∆.

No. of iterations
EM variant ∆ Mean Median

Regular - 6.6 7
Approx. 0.1 7.0 7
Approx. 0.5 13.9 8
Approx. 1 34.4 10

∆ = 0.5 and especially for ∆ = 1. The larger mean indicates that there might
exist a tail of high values skewing the mean.

By inspecting Figure 6B we find that there are indeed a few extreme obser-
vations that disrupt the convergence of the mean, creating several large spikes
in the convergence curve. We desire a curve that might initially fluctuate, but
eventually stabilizes towards some value, as seen in Figure 6A for the regular
algorithm. By analyzing the particular data sets with a very large number of
iterations we find that two of these have significantly erroneous parameter esti-
mates for all parameters.

We observe this behaviour in this experiment for ∆ = 0.5 as well, but not for
∆ = 0.1. The convergence to unwanted local maxima is a known shortcoming of
the EM algorithm, and one that is exemplified and discussed further in section
5.1.

After removing these two erroneous estimates for ∆ = 1 we obtain a reduced
mean, but the convergence is still compromised by one extreme observation, as
seen in Figure 6C. This observation has converged to the desired local maxi-
mum, but a very large number of iterations (9617) was required for converge.
By running five identical simulations with different random seeds we find that
the same does not occur in repeated simulations (see Figure 6C).

21

Figure 6: A-D visualizes the convergence of the mean number of iterations
until convergence of the regular EM algorithm (A) and the approximative vari-
ant with ∆ = 1 (B-D). The curve highlighted in red corresponds to the results
presented in Table 4. The grey curves visualize five different simulation runs
for comparison. A: Regular EM algorithm. B: Approximative variant with no
data sets removed. C: Approximative variant with two data sets removed. Both
observations corresponded to undesired parameter estimates. D: Approxima-
tive variant with the two data sets from C removed, as well as an additional
extreme data set that corresponds to a desired parameter estimate with a long
convergence time.

If we remove the extreme observation the convergence is similar to that of the
other simulation runs (Figure 6D). This indicates that the extreme observation
is not systematically reoccurring and we choose to regard it as an outlier. Ta-
ble 4 illustrates some summarizing statistics after removal of the two erroneous
observations as well as the one with a very large number of iterations. By con-
sidering Figure 6D we note that the convergence is unstable and does not seem
to level out, even after removing the unjustified outlier. This indicates that a
longer simulation run is required to make a proper conclusion on the conver-
gence of the mean for ∆ = 1.
The number of iterations aside, as we remove the undesired estimates, the stan-
dard errors for the parameter estimates greatly improve, as seen by comparing
tables 5 and 2. Removing the desired but extreme observation does not impact
the estimates and is therefore excluded from the table. The trend of having

22

Table 4: Experiment 1 - Mean, median and max number of iterations for
the regular EM algorithm and the approximative variant after removing RM
extreme observations, with R = 1000, n = 1000 and for varying levels of ∆.

No. of iterations
EM variant ∆ RM Mean Median Max

Regular - - 6.6 7 11
Approx. 0.1 - 7.0 7 11
Approx. 0.5 1 11.9 8 2468
Approx. 1 2 23.1 10 9617
Approx. 1 3 13.5 10 1475

Table 5: Experiment 1 - Standard errors of representative parameter estimates
from the regular EM algorithm and the approximative variant after removing
RM undesired observations, with R = 1000, n = 1000 and on varying levels of
∆. See Table 11 in appendix for more information.

Standard error of

EM variant ∆ RM µ̂11 µ̂22 Σ̂111 Σ̂112 Σ̂222 Σ̂212 ŵ

Regular - - 0.045 0.047 0.064 0.047 0.066 0.048 0.016
Approx. 0.1 - 0.045 0.047 0.064 0.047 0.066 0.048 0.016
Approx. 0.5 1 0.046 0.048 0.069 0.049 0.071 0.049 0.016
Approx. 1 2 0.047 0.049 0.107 0.052 0.108 0.052 0.016

larger errors with larger ∆ is still apparent but weaker. The largest increase
is seen for the estimates of Σ111 and Σ222, which both increase from around
0.065 when ∆ = 0.1 to 0.107 for ∆ = 1 (relative increase of almost 65%). The
remaining parameters experience an increase of about 0.002−0.005 (4% relative
increase).

The issue of inflated iteration means and parameter standard errors will prove
to reoccur throughout the experiments and the following tables will therefore
only present results after removal of reoccurring local maxima convergences.
The number of removed observations are indicated by the RM column. The
full tables with unedited results can be found in section 6.6 of the appendix and
will be referred to in table captions.

4.1.1 Assuming homoscedasticity

A method of alleviating the issue of undesired local maxima is to impose the re-
striction of homoscedasticity, i.e. equal variance between the two clusters. This
assumption is common in implementations of the EM algorithm even when there
is no real natural or physiological reason for this assumption to be true [4][6].

After applying the restriction to the algorithms, we simulate R = 1000 new

23

Table 6: Experiment 1 - Standard errors of representative parameter esti-
mates from the regular EM algorithm and the approximative variant under
the restriction Σ1 = Σ2 = Σ after removing RM undesired observations, with
R = 1000, n = 1000 and on varying levels of ∆. See Table 12 in appendix for
full results.

Standard error of

EM variant ∆ RM µ̂12 µ̂21 Σ̂22 Σ̂12 w

Regular - - 0.045 0.045 0.047 0.032 0.016
Appr. 0.1 20 0.044 0.045 0.047 0.032 0.016
Appr. 0.5 19 0.044 0.045 0.052 0.033 0.016
Appr. 1 23 0.045 0.046 0.097 0.034 0.016

data sets according to the aforementioned parameters and analyze the standard
errors of the estimated parameters for both algorithms. We observe all data sets
carefully and note that there is a large increase in the number of observations
converging to the undesired local maximum, on all levels of ∆. After removing
these erroneous data we obtain the result of Table 6.

By comparing tables 6 and 5 we note that, for all variants, on all levels of
∆, the errors for the µj parameter estimates see a marginal decrease of 5− 7%,
while the errors for the Σj11 and Σj22 estimates decrease by around 0.01-0.02
for both j = 1,2, which corresponds to a relative decrease of between 25-35%
depending on parameter. The largest decrease in error is observed for Σ̂112 and
Σ̂212 – the covariance estimates, which decrease by 35% from 0.052 to 0.034.
The parameter estimates of Σ111 and Σ222 see the smallest decrease, from 0.107
to 0.97, and still show the largest errors of any parameter estimates. The ob-
served decrease in standard errors for the Σ̂jkl agrees with our expectation,
given that this is indeed the restricted parameter, and especially given that the
underlying assumption of homoscedasticity is actually true.

We find that even after removing undesired results there still exist a large dis-
crepancy between mean and median number of iterations for the approximative
variant. Figure 7 shows that applying the restriction has created a heavy tail
of large iterations and increased the variance for the approximative variant on
all levels of ∆. The regular EM algorithm sees a decreased mean number of
iterations and maintains a similar variance. See Table 13 of the appendix for
full results.

The restriction improves the parameter estimates but makes the algorithm more
unreliable, as the number of erroneous results has increased by an order of mag-
nitude(!) – from around 0.2% to 2%, as well as increasing the variance of the
number of iterations until convergence. If there exists feasible means to sort
out the undesired results, this is an effective method to increase the accuracy
of the estimates. However, if the underlying assumption of homoscedasticity

24

Figure 7: A: Boxplot of the natural logarithm of number of iterations until
convergence for the approximative EM algorithm on R = 1000 dataset on three
levels of ∆ and assuming homoscedasticity. B: Boxplot of the natural logarithm
of number of iterations for both algorithms with and without the assumption of
homoscedasticity, with R = 1000, n = 1000 and ∆ = 0.5.

is unrealistic and it is hard to interpret the results visually, perhaps as a con-
sequence of high-dimensional data, then this restriction is not optimal for the
approximative variant.

4.2 Experiment 2 – Impact of initial values on parameter
estimations and iterations

In section 4.1 the algorithms were initiated with the true parameter values as
initial guesses for the weights and covariance matrices – only the initial guess
of the means were unprecise. ”Unprecise” should also be taken lightly, since
we used k-means clustering to provide the initiating mean vectors. This pro-
vided us with an uncompromised point of reference but most likely leads to
a decreased mean number of iterations and more precise parameter estimates.
To investigate how sensitive both algorithms are to inaccurate guesses of the
different parameters we will now fix all parameters except one at a time and use
the same methodology as in section 4.1, without any restrictions.

Since we have seen similar trends at varying levels of ∆ we choose to only
regard the case when ∆ = 0.5 and consider these results as representative for
the approximative algorithm when applied to these data sets. However, we do
keep in mind that there might be nuances in the results for other ∆ that are
lost by doing this.

Unless specified, we will use w
(0)
1 = w

(0)
2 = 0.5, Σ

(0)
1 = Σ

(0)
2 = I2 and k-means for

µ
(0)
j to initiate the algorithms in the coming sections.

25

4.2.1 Disruptive initial values of mean vectors

Here we choose to disrupt the algorithms by using µ
(0)
1 = (0,4)T and µ

(0)
2 =

(6,2)T as initiation. These guesses are chosen since they are not too close the
undesired local maxima in the middle between the clusters and are equally far
(
√

10 units in Euclidean distance) from their respective true values. This way
the guess is disruptive in a sense that we are not close to the true value, but
at the same time generous by hopefully steering the algorithm away from un-
desired local maximum results.

After removing one observation from the results of the approximative variant ini-
tiated by k-means we find no differences in the parameter estimates between the
different initiation methods, and the same size of errors as in the canonical ex-
periment. The only differences that occur are observed at the sixth and seventh
decimal place (the largest relative difference being approximatively .0005%).
The results suggest that neither of the two algorithms are sensitive to this par-
ticular disruptive initial guess of the two mean vectors. However, to state this
for disruptive mean vectors in general we would have to explore many other
scenarios as well. Full results are found in Table 14 of the appendix, section 6.6.

As in experiment 1 there is one undesired observation which greatly inflates
the mean number of iterations for the approximative EM with k-means initia-
tion. We find two more extreme observations which converged to the desired
local maxima. If we only remove the one faulty observation the disruptive guess
decreases the mean, whilst if all three extreme observations are removed the
disruptive guess increases the mean by 5 iterations. Full results are found in
Table 15 of the appendix.

From Figure 8 we find that both algorithms increase in iterations for the
majority of the data sets, with the regular algorithm increasing slightly more.
However, unlike the regular algorithm, the approximative variant also sees an
increase in variance of the convergence in all data sets, reconfirming that the
approximative variant is less reliable when it comes to convergence rate.

For the approximative variant there are 16 data sets that see a decrease in
number of iterations required for convergence when using the disruptive guess.
Three of these differences were considerably larger than the others and de-
creased with 699, 2001 and 2459 iterations respectively. This is attributed to
the approximative algorithm being the only one of the four variants (regular and
approximate variant with and without disruptive guess respectively) with a high
number of iterations on those specific data sets when initiated by k-means but
not when using the disruptive guess. These results suggest that the algorithms
take a few iterations to first reach the vicinity of the cluster centers from the
disruptive guess before converging at an equal rate as when undisrupted.

26

Figure 8: Boxplots of number of iterations for the regular EM algorithm (EM)
and the approximative algorithm (Appr.) with disruptive µ(0) (disruptive) and
by µ(0) generated by k-means clustering (K-means). A: Linear scale of number
of iterations which excludes four observations valued 77, 88, 709 and 2468. These
values still affect the statistics but are not visualized for a clearer visualization
of the body of the results. B: Natural logarithmic scale of number of iterations
with no observations removed.

4.2.2 Disruptive initial values of covariance matrices

In this section we try to disrupt the algorithms by using inaccurate initial guesses

of Σ
(0)
j for both j = 1,2. The experiment is carried out as in section 4.2.1, using

∆ = 0.5, n = 1000 and R = 1000. The initial guesses of the covariance matrices

are chosen to be Σ
(0)
1 = (

6 3
3 6

) and Σ
(0)
2 = (

6 −3
−3 6

). This allows the variance

to be great enough to encompass both clusters, which could potentially produce
more undesired results, i.e. erroneous local maxima.

After carrying out the simulations we find that, as in the previous experiments,
there are no noteworthy differences in any of the standard errors (results are
found in Table 16 of the appendix). The differences appear at the sixth or sev-
enth decimal place for all parameter estimates and are similar to those of the
canonical case.

Just as for the case with a disruptive µ(0), we find from Table 7 that the
mean and median number of iterations increase when we introduce the disrup-
tive Σ(0)-guess. When comparing every particular data set between the two
methods of initiation we find that the number of required iterations for con-
vergence increases for every single data set for the regular EM algorithm, on
average by 5 iterations.

For the approximative variant we find that the number of iterations increased

27

Table 7: Experiment 2 - Summary table for number of iterations of the regular

and approximative EM algorithms initiated by disruptive values of Σ
(0)
j (disr.)

and by the correct guess I2 with R = 1000, n = 1000 and ∆ = 0.5. See Table 17
for full results.

No. of iterations

EM variant Σ(0) RM Mean Median Max

Regular disr. - 11.7 12 17
Regular I2 - 6.6 7 11
Appr. disr. 1 12.1 12 18
Appr. I2 1 8.7 8 72

for all but two of the data sets by on average 3.5 iterations. We conclude that
when it comes to convergence, the regular EM algorithm gains more by an ac-
curate initial guess than the approximative variant but none of the algorithms
are sensitive to this disruptive Σ(0) for producing good parameter estimates.

When initiating the algorithm with an extremely inaccurate Σ(0) we found
that the parameter estimates were unaffected but that the number of erroneous
results increased greatly from 0.1-0.2% to 4-5%. Complete results and some
comments are presented in section 6.4 of the appendix.

4.3 Experiment 3 – Impact of overlap between distribu-
tions

The data in sections 4.1 and 4.2 is relatively easy to handle for the algorithm
since there is little overlapping data and no covariance present. One of the real
challenges for a cluster-finding algorithm like EM, is when there is overlapping
data and we will therefore now examine how the algorithms handle data with
varying degree of overlap.

On the other hand, if we would use exactly the same parameters for both under-
lying Gaussian distributions and allow them to overlap completely, then it would
be too hard for the algorithm to infer on the weights due to non-identifiability,
since data would just look like (and theoretically be) a sample of n = 1000 data
points from one single Gaussian distribution. Since the main idea of the exper-
iments is to study how well the algorithms estimates two different underlying
Gaussian distributions, we will avoid completely overlapping data. This is done
by introducing covariance between yi1 and yi2 by simulating data from a GMM
with parameters

Σ1 = (
1 −0.7

−0.7 1
) and Σ2 = (

1 0.7
0.7 1

) (18)

This will tilt the two underlying Gaussian distributions in opposite directions of
each other, preventing them from overlapping completely, even when µ1 = µ2.

28

For weights we use w1 = w2 = 0.5. We will denote the two underlying clusters
with 1 and 2, with 1 being the one with a negative correlation (red) and 2 with
positive correlation (yellow). To execute the experiment in a consistent manner
we will simulate one data set from the underlying GMM and then shift the part
of the data set that originated from distribution 1, towards the mean vector of
distribution 2, so that the variability within each data set remains the same,
and only their relative position is shifted, as illustrated in Figure 9.

Table 8: Table of mean vector coordinates and their Euclidean distance for each
step in experiment 3.

Step µ1 µ2 ∣∣µ2 −µ1∣∣

1 (2,2)T (5,5)T 3
√

2

2 (7
2
, 7

2
)T (5,5)T 3

2

√
2

3 (5,5)T (5,5)T 0

This will allow us to study the effect of the overlap without having to consider
the randomness between different dataset in different steps. We will regard
data at three levels of overlap, by decreasing the distance between µ1 and µ2

Figure 9: Visualization of one of the R = 1000 datasets. Simulated with Σ1 and
Σ2 from equation (18), w1 = w2 = 0.5, µj according to Table 8 and with n =

1000. A1: Non-overlapping data (step 1). A2: Non-overlapping quantized data
(step 1). B1: Partially overlapping data (step 2). B2: Partially overlapping
quantized data (step 2). C1: Overlapping data (step 3). C2: Overlapping
quantized data (step 3). ∆ = 0.5.

29

by shifting µ1 with 1.5 units in each coordinate direction per step (see Table
8). The steps are solely determined by ocular inspection of the simulated data
sets and what to us appear as a reasonably challenging level of overlap.

The Euclidean distance between cluster centers is not always very indicative
of the amount of overlap between distributions if unaware of the variance of
these. An alternative metric is the Mahalanobis distance, which intuitively in-
dicates how many standard deviates the mean vectors are from each other. The
metric is defined as:

DM(µ1,µ2,Σ) =

√

(µ1 −µ2)
TΣ−1

(µ1 −µ2)

where Σ−1 is the inverse of the shared covariance matrix of the two distributions
with mean vectors µ1 and µ2. However, in our case we have that Σ1 /= Σ2 and
thus consider a sort of ”mean” covariance matrix by calculating the mean of the
elements in Σ1 and Σ2. From (18) we get that the ”mean” covariance matrix
is: Σ̄ = 1

2
(Σ1 +Σ2) = I2. The Mahalanobis distance using I2 becomes

DM(µ1,µ1, I2) =
√

(µ1 −µ2)
T I2(µ1 −µ2) = ∣∣µ1 −µ2∣∣, (19)

and thus we find it feasible to use the Euclidean distance as a metric here.

We shift data according to Table 8 for each of the R = 1000 data sets, and
as in previous experiments we will regard the standard errors and mean number
of iterations of the two algorithms, with ∆ = 0.5 for the approximative variant.
As seen in Table 9, the standard error of the estimated µ1-vector behaves as

Table 9: Experiment 3 - Standard errors of parameter estimates for the regular
EM algorithm and the approximative variant with varying levels of overlap and
with R = 1000, n = 1000 and ∆ = 0.5. Full results are found in Table 20 of the
appendix.

Standard error of

EM variant Step µ̂12 µ̂22 Σ̂111 Σ̂112 Σ̂222 Σ̂212 ŵ

Regular 1 0.045 0.050 0.061 0.055 0.075 0.066 0.016
Regular 2 0.049 0.079 0.066 0.066 0.100 0.083 0.028
Regular 3 0.050 0.052 0.075 0.078 0.078 0.078 0.041
Appr. 1 0.046 0.050 0.065 0.056 0.080 0.069 0.016
Appr. 2 0.050 0.083 0.070 0.069 0.106 0.088 0.029
Appr. 3 0.052 0.053 0.081 0.082 0.084 0.082 0.044

expected – the more overlap, the higher the error, albeit with marginal impact.
The same trend is observed for the error of the Σ1- and w- estimates. However,
the errors tell us that the estimates of distribution 2 are worse when there is
some overlap, in step 2, compared to full overlap, in step 3, which at first feels
counterintuitive.

30

As seen in Figure 9 there is overlapping data in the lower left of distribution
2. Since this overlap is located mainly around the center of distribution 1 the
responsibility for those data points are attributed to distribution 1, which, if
true, would mean that distribution 2 has a smaller variance for both yi1 and
yi2. Meanwhile, in step 3, the overlap takes place around the centers of both
underlying distributions and thus does not ”amputate” any data from either
distribution. That is, it doesn’t increase the difficulty of estimating Σ2 com-
pared to estimating Σ1, as in step 2. The estimates are therefore improved in
step 3.

Figure 10: A visualization of γ
(m)
k1 ⋅ γ

(m)
k2 from a representative dataset from

the simulations in experiment 3. The darker the pixels indicate a higher Nk
(intensity/count). A1-C1 illustrates steps 1-3 for the regular EM algorithm.
A2-C2 illustrates steps 1-3 for the approximative EM algorithm.

The errors of the weights, on the other hand, increase with each step, for both

algorithms. The explanation for this is that the iterative formula for w
(m+1)
j ,

(equations (8) and (15) for the regular and approximative variants respectively)
is a function only of the relative probabilities in γ(m) for the two distributions.
When data is overlapping, it is harder to determine which underlying distri-
bution is responsible for each overlapping point, and especially so when they
overlap around the centers of both distributions simultaneously.

This is visualized in figures 10C1 and C2 for the regular and approximative

31

algorithms respectively. The probability is then similar for both distributions,

i.e. γ
(m)
ij is close to 0.5 for both j = 1,2, and thus those data points add equal

weight to the estimates of w1 and w2. If they were not overlapping, the relative
probability for some yi would be closer to either 0 or 1 depending on which
cluster it originated from, and would thus contribute more to one ŵj than the
other, as seen in figures 10A1 and A2. As seen in Figure 11, the mean number

Figure 11: Boxplot of number of iterations until convergence for the regular and
approximative EM algorithm in the three steps of experiment 3.

of iterations increases dramatically when introducing overlap, from around 15
iterations in step 1 up to 60 in step 2 for both algorithms, and with a large
increase in variance for both variants. In step 3 we see a slight increase for
the approximate variant but a decrease for the regular algorithm. Except for
this we are unable to discern any difference in trends between the regular and
approximative variant, with the latter showing marginally worse errors, as in
previous experiments. We note that there are no extreme observations or con-
vergences to undesired local maxima, as in previous examples, and that the
median and mean behave equally for both variants of the algorithm for all steps
in the experiment.

5 Discussion

To conclude, we have found that it is possible to apply the EM algorithm to
the problem of analyzing quantized bimodal data. The experiments have shown
that the approximative variant performs relatively well on the data sets handled

32

in these particular settings, especially for ∆ = 0.1. The parameter estimates are
consistently worse for the approximative variant than for the regular algorithm
and does generally increase with larger ∆. However, the errors are still very
much acceptable and in some cases for low ∆ similar to those of the regular EM

algorithm. We found that initiations by disruptive µ
(0)
j and Σ

(0)
j , when imposed

separately, do not seem to affect either algorithms’ parameter estimates signifi-
cantly. However, the approximative variant was found to perform considerably
worse when it comes to convergence, both quantitatively and qualitatively. It
provides more erroneous results as well as takes a higher number of iterations
to converge.

The assumption of equal covariance matrices improved the parameter estimates
slightly but on the other hand greatly increased the unreliability of the approxi-
mative variant. We did not explore the results when the underlying assumption
was false. Both algorithms handled data with two overlapping distributions
of equal weight relatively well, but results are most likely depending on the
characteristics and degree of overlap, and we cannot draw any conclusions on
overlapping data in general.

Below follow some comments on the approximation done in section 3.3, chal-
lenges when implementing the algorithm, improvements of the approximative
algorithm and undesired convergence towards local maxima.

5.1 Convergence unto undesired local maxima

The problem of convergence unto undesired local maxima is sometimes encoun-
tered when applying any of the two algorithms to some data. The algorithms
allocate the majority of the responsibility for the observed data points to one
cluster – for instance to cluster j = 1. This leads to ŵ1 increasing towards 1 and

consequentially ŵ2 = 1− ŵ1 towards zero. This in turn leads to all γ
(m)
i2 tending

to zero, and since the iterative formulae for the new estimates include the γ
(m)
ij -

term, all estimates with j = 2 will carry a very small weight and can thus be
greatly inflated without affecting the overall likelihood notably. In the canon-
ical case in section 4.1, this leads to µ̂1 converging to some point in between
the two clusters, with the elements of Σ̂1 large enough to cover all observa-
tions, while µ̂2 and Σ̂2 may take on any arbitrary value within the parameter
space Ω. This corresponds to the algorithm finding an undesired local maximum
in the probability landscape and converging there, as is visualized in Figure 12.

In the experiments we have used the common stopping criteria of ∣∣θ
(m)
i −

θ
(m−1)
i ∣∣ < 10−5, for all components θi of θ. When parameters have different

magnitudes, this can lead to some estimate converging before others, and a
relative change in estimates might therefore be preferred. The criteria used is
more an indicator of halted progress, but not necessarily one of convergence.
One could imagine a region in the parameter landscape Ω that is almost a sad-

33

Figure 12: Data simulated from parameters specified in section 4.1 with n = 1000
and ∆ = 0.5. The filled dots indicate the mean vectors and the ellipses 99% con-
fidence ellipses of the true parameters (green) and their estimates (yellow and
red). The relative size of the dots corresponds to the estimates of wj . A: Exam-
ple of true parameter estimates. B: Example of undesired parameter estimates
to local maximum corresponding to a local maximum of the likelihood in be-
tween clusters, found by regular EM algorithm. C: True parameter estimates
over quantized data. D: Example of undesired parameter estimates to local
maxmimum corresponding to a local maximum of the likelihood in between
clusters found by approximative variant.

dlepoint, but actually has a very small incremental slope. If the chosen ε is
larger than the slope, the algorithm stops there even though this is not a local
maxima in the probability landscape [6].

A measure of convergence that would be preferred is the difference in the likeli-
hood function of θ(m), i.e. to stop the algorithm when L(θ(m)∣y)−L(θ(m−1)

∣y) <
ε for some small ε. From an implementational point of view this is a clearer
measure of convergence, since it is a one-dimensional scalar, whilst the current

34

implementation applies the same convergence restriction ε to every parameter
difference. Perhaps this would have decreased the number of iterations on the
extreme observations, as probably there was just one parameter not converging
as fast as the others. With the likelihood function as convergence criterion, all
parameter estimates contribute to that criterion.

Another way of improving the algorithm is to run the algorithm multiple times

on every dataset but with different initial values for µ
(0)
j and then choosing the

result with the highest likelihood as the final estimate.

By plotting the estimates, we could observe how they change in each itera-
tion, as well as if there is some parameter that seems to converge prior to the
others, and especially at what point erroneous estimates arise. By studying this
we could find a reasonable cut-off limit for a maximum number of iterations to
decrease the computational time.

With all that said, the current convergence criteria provide reasonable results
when it comes to parameter estimates but is not optimal in terms of convergence
rate.

5.2 The point estimate approximation

We have to keep in mind that the size of the pixels will stand in relative pro-
portion to the spread of data. A smaller variance requires smaller pixels not to
lose too much information when discretizing, and vice versa. If applying this
theory to data from another distribution, we have to consider, not the absolute,
but the relative size of the pixels in proportion to the spread of the data. A
point of further investigation is how the relation between the size of the pixels
and the variance of data impacts the estimates.

A possible way of modifying the algorithm would be to incorporate a more pre-

cise approximation of P (yi ∈ bk) in γ
(m)
ij , which is not required to be a closed

expression, since the value is evaluated numerically, rather than solved for an-
alytically. This would theoretically yield a higher precision but would greatly
increase the computational cost, as for example Monte Carlo-approximation of
each pixel would need at least 1000 operations instead of 1 in order to be precise.

5.3 Improving the approximative EM method

By taking pixels into account where no data points have been observed, the
approximative algorithm could be improved. For example, this could prevent
the algorithm from converging to the local maxima between the two clusters,
as seen in experiment 1 and visualized in Figure 12D, by double-checking if
the result is feasible. If the algorithm has produced an erroneous result in an
empty or low-intensity pixel, for instance bk, in between two non-overlapping
distributions, we could use the probability of observing none or very few points

35

in that pixel to decide if the result is probable or not. The number of points bk
is Bin(Nk, πk) distributed, with πk = A ⋅ pY (ck(yi)), where pY is the density
function of the GMM, ck the centerpoint of and A the area of bk. We could
then either choose to reinitiate the algorithm or choose another of the multiple
initiation results as the final one, if using these techniques (which we did not
implement).

A problem that has reoccurred throughout the implementation of both the reg-
ular and the approximate EM algorithm is computer precision. When using the
r-function DMVNORM to calculate values of the density function of a multi-
variate Gaussian distribution, the probability of 0 was occasionally returned for
some extreme observations. This led to matrices of non-full rank, NaN:s and
crashing code. This was mainly an issue initially when exposing the algorithm
to extreme data sets with high covariance and n < 100. Introducing the assump-
tion of equal covariance matrices did ease this problem for some cases, but for
us to be able to compare the performance of the algorithm with and without
this assumption we had to solve it in another manner. One ad hoc solution is
to reinitiate the algorithm when faced with this problem, however there was no
room to apply this to our implementation. We solved this problem by regarding
trivial data sets. In this way when the problem rarely occurred we solved it by
changing the random seed until success. Another, more general solution is to
imply prior information via a Bayesian approach (then called MAP-estimation),
as discussed in section 5.3.1 below [4].

The RELION software used at the SciLifeLab uses MAP-estimation, which al-
lows researchers to introduce prior knowledge about, for example the structures
of proteins and features of the interfering noise. The results from RELION also
suffer from similar problems that appear in our implementation of the EM al-
gorithm. Some results are discarded by researchers based on prior knowledge of
what protein structures are supposed to look like and that the results either do
not resemble the desired structure, or that they resemble noise. This is a con-
sequence of the EM algorithm converging to a local maximum and corresponds
to our erroneous results visualized in Figure 12.

5.3.1 Maximum A Posteriori (MAP)-estimation in EM

A method that is often used when trying to infer on parameters is to impose
some prior information on the parameters. This would probably be an effective
way of avoiding erroneous results, if for example imposing prior knowledge on
the range of wj or the size of Σj . The idea is that instead of maximising
the log likelihood function we maximise the natural logarithm of the posteriori
distribution. By Bayes’ law we have that:

p(θ∣x) =
p(x∣θ)p(θ)

∫Ω p(x∣θ)p(θ)dθ
=
p(x∣θ)p(θ)

p(x)
, (20)

36

where x = (x1, ...,xn)
T and xi = (yi, zi).

The expression with the integral in the denominator of (20), called the marginal
likelihood, integrates over all θ ∈ Ω and is thus only depending on x. Since the
denominator f(x) does not depend on θ and since the denominator is positive
for all x, we yield that

arg max
θ

p(θ∣x) = arg max
θ

p(x∣θ)p(θ). (21)

We can now conveniently introduce prior information to the algorithm via p(θ),
as long as p(⋅) is a proper prior, i.e. that its probability mass integrates to 1, or
else the integral in the denominator of equation (20) diverges [6].

In the M-step of the original EM algorithm we maximise Q(θ∣θ(m)) with regards
to θ, i.e. we want to find the arg max of the joint log likelihood function of Z
and y, conditioned on θ. By instead regarding considering the posterior distri-
bution and applying the result of equation (21) we can expand the algorithm to
take prior information into account:

arg max
θ

EZ∣y,θ(m) [log p(θ∣Z,y)]

=arg max
θ

EZ∣y,θ(m) [log p(Z,y∣θ) + log p(θ)] .

It is practical to use some conjugate prior, for example the inverse gamma dis-
tribution, which after maximisation results in an additional additive term in the
iterative equations (8) – (10) and (15) – (17).

37

6 Appendix

6.1 Proof of Result 1 - Independence of Y

Here follow the proof of result 1. It suffices to condition on the latent data Z
in the expectation of equation (4):

Q(θ∣θ(m)) = EX ∣y,θ(m) [log p(X ∣θ)]

= ∫
X

log p(x∣θ)p(x∣y,θ(m))dx

= ∫
X

log p(y,z∣θ)p(y,z∣y,θ(m))dx

= ∫
X

log p(y,z∣θ)p(z∣y,θ(m)))dx

= ∫
Z

log p(y,z∣θ)p(z∣y,θ(m))dz (22)

= EZ∣y,θ(m) [log p(y,Z ∣θ)] .

∎

Here (22) follows as the only random part of x = (y,z) is z (y is already
observed). We can thus equally well integrate over Z.

6.2 Proof of update formulae

We will here provide the derivations of the update formulae for equations (8) -
(10). The calculations here follow the proof laid out in [4].

We find µ
(m+1)
j by maximizing (7) with respect to µj . This is done by solving

the score equation:

0 =
dQ(θ∣θ(m))

dµj
=

d

dµj
(
n

∑
i=1

p

∑
l=1
γ
(m)
ij log p(yi, Zi = l∣θ))

=
n

∑
i=1

−
γ
(m)
ij

2

d

dµj
((yi −µj)

T
Σ−1
j (yi −µj) +C1) , (23)

where C1 is independent of µj and thus becomes 0 after differentiation. Simi-
larly, all terms in the sum with l /= j are constants that disappear after differ-
entiation.

It can be shown from straightforward but tedious algebraic manipulations that
if W is symmetric, and x and s are vectors, then

d

ds
(x − s)TW (x − s) = −2W (x − s).

38

Thus, (23) becomes

n

∑
i=1

−
γ
(m)
ij

2
(−2Σ−1

j (yi −µj))

=
n

∑
i=1
γ
(m)
ij Σ−1

j (yi −µj)

= Σ−1
j

n

∑
i=1
γ
(m)
ij (yi −µj)

= Σ−1
j (

n

∑
i=1
γ
(m)
ij yi −µj

n

∑
i=1
γ
(m)
ij) ,

where moving Σ−1
j and µj outside of the sum is due to them being independent

of i.

With n
(m)
j = ∑j=1 γ

(m)
ij , this, when solving for µj yields

µ
(m+1)
j ∶= µj =

1

∑
n
i=1 γ

(m)
ij

n

∑
i=1
γ
(m)
ij yi =

1

n
(m)
j

n

∑
i=1
γ
(m)
ij yi.

∎

Similarly, for Σ
(m+1)
j we set up the score equation:

0 =
dQ(θ∣θ(m))

dΣj
=

d

dΣj
(
n

∑
i=1

p

∑
l=1
γ
(m)
ij log p(yi, Zi = l∣θ))

=
n

∑
i=1

−
γ
(m)
ij

2

d

dΣj
(log det (Σj) + (yi −µj)

T
Σ−1
j (yi −µj) +C2)

=
n

∑
i=1

−
γ
(m)
ij

2

d

dΣj
log det (Σj) +

n

∑
i=1

−
γ
(m)
ij

2

d

dΣj
((yi −µj)

T
Σ−1
j (yi −µj))

(24)

where C2 is a constant, independent of Σj , which vanishes after differentiation.

By using Jacobi’s formula one can show that for some differentiable matrix
X it holds that

d

dX
det (X) = det (X) (X−1

)
T
.

Using this together with the product rule we get that

d

dΣj
log det (Σj) =

det (Σj) (Σ
−1
j)

T

det (Σj)
= (Σ−1

j)
T
= Σ−1

j ,

39

since Σj is symmetric.

It can also be shown by straightforward but long algebraic manipulations that
for some vector s and matrix X

d

dX
sTX−1s = −X−1ssTX−1,

which gives us

d

dΣj

(yi −µj)
T

Σ−1
j (yi −µj) = −Σ−1

j (yi −µj) (yi −µj)
T

Σ−1
j .

These two results now allow us to express (24) as

n

∑
i=1

−
γ
(m)
ij

2
Σ−1
j +

n

∑
i=1

γ
(m)
ij

2
Σ−1
j (yi −µj) (yi −µj)

T
Σ−1
j

= −
Σ−1
j

2

n

∑
i=1
γ
(m)
ij +

Σ−1
j

2
(
n

∑
i=1
γ
(m)
ij (yi −µj) (yi −µj)

T
)Σ−1

j

Since Σj is independent of i we can move the two Σ−1
j -terms outside of the sum

and thus after setting the equation equal to 0 we yield the equation

Σ−1
j (

n

∑
i=1
γ
(m)
ij (yi −µj) (yi −µj)

T
)Σ−1

j = Σ−1
j

n

∑
i=1
γ
(m)
ij

which after multiplication with Σj from both sides and then solving for Σj

becomes

Σ
(m+1)
j ∶= Σj =

∑
n
i=1 γ

(m)
ij (yi −µj) (yi −µj)

T

∑
n
i=1 γ

(m)
ij

=
∑
n
i=1 γ

(m)
ij (yi −µj) (yi −µj)

T

n
(m)
j

∎

Finding w(m+1) means we want to maximize

n

∑
i=1

p

∑
j=1

γ
(m)
ij logwj +C3 ∝

n

∑
i=1

p

∑
j=1

γ
(m)
ij logwj =

p

∑
j=1

n
(m)
j logwj ,

subject to the restriction ∑
p
j=1wj = 1. We use the method of Lagrange multipli-

ers, which gives the expression

0 =
d

dwj
(

p

∑
l=1
n
(m)
l logwl − λ(

p

∑
l=1
wl − 1)) =

n
(m)
j

wj
− λ,

which gives the solution wj =
n
(m)
j

λ
. By choosing λ so that the restriction is

fulfilled we get that

w
(m+1)
j ∶= wj =

n
(m)
j

∑
p
l=1 n

(m)
l

.

∎

40

6.3 Some details on the k-means clustering algorithm

The k-means clustering algorithm is an iterative algorithm that estimates the
centeroids of k data clusters. If assuming k = p = 2, then the basic idea is the
following:

Step 1. Two data points are randomly sampled from the data set as initial
guesses for the cluster centeroids.

Step 2. Assigned each data point to its closest respective cluster centroid.

Step 3. Calculate a new centroid for each cluster based on the centerpoints
of the allocated data in step 2.

Step 4. Allocated every point anew to the closest of the updated center-
points.

Step 5. Repeated steps 3-4 until convergence (when no points switch al-
location).

The k-means clustering algorithm dates back to 1967 and the EM algorithm
can be seen as an expansion of it by instead of allocating every observation yi
to a specific cluster, we allocate a responsibility γ

(m)
ij to each cluster for every yi.

More details can be found in the original paper [8].

6.4 Extreme initial values of covariance matrices

To see how the algorithms handle a completely inaccurate guess we initiate the

algorithms with Σ
(0)
1 = (

100 30
30 100

) and Σ
(0)
2 = (

100 −30
−30 100

), w1 = w2 = 0.5 and

µ
(0)
j by k-means. Representative results are presented in Table 10. Because of

many singular results in the simulations we only consider R = 100 data sets in
this experiment, with n = 1000 and ∆ = 0.5. Yet again we come to the conclusion

Table 10: Experiment 2 - Standard errors of parameter estimates for the
regular EM algorithm and the approximative variant when initiated with the
extreme initial guess Σ(0) (disr.) and with the correct guess I2. See Table 18
for full results.

Standard error of

EM variant Σ(0) RM µ̂12 µ̂21 Σ̂111 Σ̂222 Σ̂212 ŵ

Regular disr. 5 0.045 0.051 0.064 0.061 0.051 0.016
Regular I2 - 0.045 0.052 0.064 0.061 0.050 0.016
Appr. disr. 4 0.046 0.053 0.071 0.068 0.053 0.016
Appr. I2 - 0.045 0.053 0.071 0.067 0.051 0.016

41

that neither of the algorithms seem to struggle with faulty initial guesses for
the covariance matrices, even when they are two orders of magnitude(!) from
the true value, I2. The size of the errors are approximately the same as for the
canonical example (compare with row 1 and 3 in Table 5).

However, we do note that with a larger covariance matrix, we also obtained
a significantly higher number of undesired results. Even though we only simu-
lated 100 data sets, 5 of these produced undesired estimates for the algorithms.
Comparing this with the experiments in sections 4.2.1 and 4.2.2, where there
were 1 or 2 undesired results on 1000 data sets, this is a significant increase –
from 0.1 - 0.2% to 4 - 5%.

Figure 13: Boxplot of the natural logarithm of the number of iterations until
convergence for the regular and approximative EM algorithm when initiated

with extremely disruptive Σ
(0)
j and with the true value I2 respectively.

As seen in Figure 13 the extreme initiation dramatically increases the num-
ber of iterations, from a mean of 6.8 to almost 103 for the regular algorithm,
and from 8.7 to over 156 for the approximative variant. We find that both algo-
rithms are both equally sensitive to this extreme initial guess and even though
it takes them longer to do so, they eventually converge to very similar results
as with a good initial guess. The full results of iterations can be found in Table
19 in section 6.6 of the appendix.

42

6.5 Complimentary graphics

Figure 14: Visualization of relative error between Monte Carlo approximation
and the point estimate approximation of P (yi ∈ bk) with ∆ = 1 based on a un-
derlying Gaussian Mixture Model with parameters w1 = w2 = 0.5, µ1 = (2,2)T ,
µ2 = (5,5)T and Σ1 = Σ2 = I2. The points indicate the two cluster centers µ1

and µ2. All relative errors larger than 1 are truncated to the same color to allow
for a more interpretable visualization. The color scale of all values less than 1
is directly comparable to Figure 3.

43

6.6 Full tables

Table 11: Experiment 1 - Standard errors of all parameter estimates for the
regular EM algorithm and the approximative variant after removing RM unde-
sired observations, with R = 1000, n = 1000 and for varying levels of ∆.

Standard error of

EM variant ∆ RM µ̂11 µ̂12 µ̂21 µ̂22 Σ̂111 Σ̂122 Σ̂112 Σ̂211 Σ̂222 Σ̂212 ŵ

Regular - - 0.045 0.046 0.045 0.047 0.064 0.064 0.047 0.066 0.066 0.048 0.016
Approx. 0.1 - 0.045 0.046 0.045 0.047 0.064 0.064 0.047 0.066 0.066 0.048 0.016
Approx. 0.5 - 0.077 0.077 0.081 0.076 0.147 0.137 0.140 0.140 0.164 0.125 0.017
Approx. 1 - 0.099 0.106 0.057 0.154 0.207 0.210 0.189 0.187 0.235 0.215 0.025
Approx. 0.5 1 0.046 0.047 0.046 0.048 0.069 0.069 0.049 0.07 0.071 0.049 0.016
Approx. 1 2 0.047 0.048 0.048 0.049 0.107 0.109 0.052 0.108 0.108 0.052 0.016

Table 12: Experiment 1 - Standard errors of all parameter estimates from
the regular EM algorithm and the approximative variant with the restriction
Σ1 = Σ2 = Σ with R = 1000, n = 1000 and for varying levels of ∆.

Standard error of

EM variant ∆ RM µ̂11 µ̂12 µ̂21 µ̂22 Σ̂11 Σ̂22 Σ̂12 ŵ

Regular - - 0.046 0.045 0.045 0.045 0.045 0.047 0.032 0.016
Approx. 0.1 - 0.280 0.273 0.281 0.284 0.563 0.551 0.579 0.040
Approx. 0.5 - 0.284 0.256 0.348 0.250 0.543 0.530 0.562 0.040
Approx. 1 - 0.295 0.303 0.306 0.378 0.604 0.615 0.618 0.045
Approx. 0.1 20 0.046 0.044 0.045 0.045 0.045 0.047 0.032 0.016
Approx. 0.5 19 0.046 0.044 0.045 0.045 0.051 0.052 0.033 0.016
Approx. 1 23 0.048 0.045 0.046 0.046 0.095 0.097 0.034 0.016

Table 13: Experiment 1 - Mean and median number of iterations for the regu-
lar EM algorithm and the approximative variant after removing RM undesired
observations, with the restriction Σ1 = Σ2 = Σ and with R = 1000, n = 1000 and
for varying levels of ∆.

No. of iterations
EM variant ∆ RM Mean Median

Regular - - 4.4 4
Appr. 0.1 - 62.8 12
Appr. 0.5 - 51.6 7
Appr. 1 - 66.1 7
Appr. 0.1 20 38.3 12
Appr. 0.5 19 29.8 7
Appr. 1 23 24.6 7

44

Table 14: Experiment 2 - Standard errors of all parameter estimates of the
regular EM algorithm and the approximative variant after removing RM un-

desired observations. Both algorithms initialised with a disruptive µ
(0)
j (disr.)

and by a k-means generated µ
(0)
j (k-m.) respectively, with R = 1000, n = 1000

and ∆ = 0.5.

Standard error of

EM variant µ(0) RM µ̂11 µ̂12 µ̂21 µ̂22 Σ̂111 Σ̂122 Σ̂112 Σ̂211 Σ̂222 Σ̂212 ŵ

Regular disr. - 0.045 0.046 0.045 0.047 0.064 0.064 0.047 0.066 0.066 0.048 0.016
Regular k-m. - 0.045 0.046 0.045 0.047 0.064 0.064 0.047 0.066 0.066 0.048 0.016
Appr. disr. - 0.046 0.047 0.046 0.048 0.069 0.069 0.049 0.070 0.071 0.049 0.016
Appr. k-m. - 0.077 0.077 0.081 0.076 0.147 0.137 0.140 0.140 0.164 0.125 0.017
Appr. k-m. 1 0.046 0.047 0.046 0.048 0.069 0.069 0.049 0.070 0.071 0.049 0.016

Table 15: Experiment 2 - Summary table for number of iterations of the
regular and approximative EM algorithms after RM removed undesired obser-
vations. Both algorithms initiated with disruptive µ(0) (disr.) and by a k-means
generated µ(0) (k-m.) respectively, with R = 1000, n = 1000 and ∆ = 0.5.

No. of iterations

EM variant µ(0) RM Mean Median Max

Regular disr. - 10.4 10 16
Regular k-m. - 6.6 7 11
Appr. disr. - 10.7 11 17
Appr. k-m. - 13.9 8 2468
Appr. k-m. 1 11.5 8 2010
Appr. k-m. 3 8.8 8 88

Table 16: Experiment 2 - Standard errors of all parameter estimates of the
regular EM algorithm and the approximative variant after removing RM unde-

sired observations. Both algorithms initialised with disruptive Σ
(0)
j (disr.) and

by Σ
(0)
1 = Σ

(0)
2 = I2 respectively, with R = 1000, n = 1000 and ∆ = 0.5.

Standard error of

EM variant Σ(0) µ̂11 µ̂12 µ̂21 µ̂22 Σ̂111 Σ̂122 Σ̂112 Σ̂211 Σ̂222 Σ̂212 ŵ

Regular I2 0.045 0.046 0.045 0.047 0.064 0.064 0.047 0.066 0.066 0.048 0.016
Regular disr. 0.045 0.046 0.045 0.047 0.064 0.064 0.047 0.066 0.066 0.048 0.016
Approx. I2 0.046 0.047 0.046 0.048 0.069 0.069 0.049 0.070 0.071 0.049 0.016
Approx. disr. 0.046 0.047 0.046 0.048 0.069 0.069 0.049 0.070 0.071 0.049 0.016

45

Table 17: Experiment 2 - Summary table for number of iterations of the

regular and approximative EM algorithms initiated by a disruptive Σ
(0)
j (disr.)

and by Σ
(0)
1 = Σ

(0)
2 = I2 respectively, with R = 1000, n = 1000 and ∆ = 0.5.

No. of iterations

EM variant Σ(0) RM Mean Median Max

Regular disr. - 11.7 12 17
Regular I2 - 6.6 7 11
Appr. disr. - 13.9 12 1848
Appr. I2 - 9.8 8 1122
Appr. disr. 1 12.1 12 18
Appr. I2 1 8.7 8 72

Table 18: Experiment 2 - Standard errors of all parameter estimates of regular
EM algorithm and the approximative variant after removing RM undesired

observations. Both initialised with extreme Σ
(0)
j (extr.) and by Σ

(0)
1 = Σ

(0)
2 = I2

respectively, with R = 100, n = 1000 and ∆ = 0.5.

Standard error of

EM variant Σ(0) RM µ̂11 µ̂12 µ̂21 µ̂22 Σ̂111 Σ̂122 Σ̂112 Σ̂211 Σ̂222 Σ̂212 ŵ

Regular I2 - 0.045 0.045 0.052 0.048 0.064 0.062 0.050 0.073 0.061 0.050 0.016
Regular extr. - 0.427 0.445 0.384 0.419 0.915 0.819 0.885 0.641 1.168 0.867 0.081
Appr. I2 - 0.045 0.045 0.053 0.048 0.071 0.065 0.051 0.078 0.067 0.051 0.016
Appr. extr. - 0.380 0.417 0.365 0.397 0.833 0.672 0.817 0.629 1.019 0.783 0.073
Regular extr. 5 0.046 0.045 0.051 0.048 0.064 0.063 0.050 0.073 0.061 0.051 0.016
Appr. extr. 4 0.046 0.046 0.053 0.049 0.070 0.065 0.052 0.078 0.068 0.052 0.016

Table 19: Experiment 2 - Summary table for number of iterations for the
regular and approximative EM algorithms initiated by extreme initial guess
(extr.) and the correct guess I2.

No. of iterations

EM variant Σ(0) RM Mean Median Max

Regular extr. - 155.3 78.5 1936
Regular I2 - 6.8 7 11
Appr. extr. - 191.9 79 1913
Appr. I2 - 8.7 8 13
Regular extr. 5 102.9 78 1936
Appr. extr. 4 156.3 77.5 1913

46

Table 20: Experiment 3 - Standard errors of all parameter estimates for the
regular EM algorithm and the approximative variant with varying levels of over-
lap and with R = 1000, n = 1000 and ∆ = 0.5.

Standard error of

EM variant Step µ̂11 µ̂12 µ̂21 µ̂22 Σ̂111 Σ̂122 Σ̂112 Σ̂211 Σ̂222 Σ̂212 ŵ

Regular 1 0.045 0.046 0.048 0.050 0.061 0.064 0.055 0.074 0.075 0.066 0.016
Regular 2 0.049 0.049 0.076 0.079 0.066 0.069 0.066 0.095 0.100 0.083 0.028
Regular 3 0.050 0.051 0.051 0.052 0.075 0.076 0.078 0.076 0.078 0.078 0.041
Approx. 1 0.046 0.046 0.048 0.050 0.065 0.068 0.056 0.078 0.080 0.068 0.016
Approx. 2 0.050 0.050 0.080 0.083 0.070 0.073 0.069 0.101 0.106 0.088 0.029
Approx. 3 0.052 0.052 0.052 0.053 0.081 0.082 0.082 0.082 0.084 0.082 0.044

Table 21: Experiment 3 - Summary table for number of iterations of the
regular and approximate EM algorithm respectively for varying levels of overlap
with R = 1000, n = 1000 and ∆ = 0.5.

No. of iterations
EM variant Step Mean Median Max

Regular 1 14.4 15 26
Regular 2 63.2 62 172
Regular 3 59.7 59 125
Appr. 1 15.5 17 26
Appr. 2 61.4 59 158
Appr. 3 72.9 71 182

47

References

[1] Baker, M., ”Cryo-electron microscopy shapes up”, Nature, vol. 561, pp.
565-567, 2018.
Retrieved from: https://www.nature.com/articles/d41586-018-06791-6
[Accessed on May 6th, 2019].

[2] Scheres, S. H. W., ”RELION: Implementation of a Bayesian approach to
cryo-EM structure determination”, Journal of Structural Biology, vol. 180,
no. 3, pp. 519-530, 2012.
Retrieved from: DOI: 10.1016/j.jsb.2012.09.006.

[3] Jank, W., ”The EM algorithm, Its Randomized Implementations for Global
Optimization: Some Challenges and Opportunities for Operations Re-
search”, Perspectives in Operations Research. New York, NY: Springer,
pp. 367-392, 2006.
Retrieved from: DOI: 10.1007/978-0-387-39934-8 21.

[4] Gupta, M. R. and Chen, Y., ”Theory and use of EM Algorithm”, Founda-
tions and Trends in Signal Processing, vol. 4, no. 3: pp. 223-296, 2010.
Retrieved from DOI: 10.1561/2000000034.

[5] Dempster, A. P., Laird, N. M., and Rubin, D.B., ”Maximum Likelihood
from Incomplete Data via the EM Algorithm”, Journal of the Royal Sta-
tistical Society, Series B, vol. 39, no. 1, pp. 1-38, 1977.
Retrieved from: https://www.jstor.org/stable/2984875.

[6] McLachlan, G. and Peel, D., Finite Mixture Models. Hoboken, NJ: John
Wiley & Sons Inc, 2nd Edition, 2000.
Retrieved from: https://www.annualreviews.org/doi/pdf/10.1146/annurev-
statistics-031017-100325.

[7] Sundberg, R. ”An Iterative Method for Solution of the Likelihood Equa-
tions for Incomplete Data from Exponential Families”, Communications
in Statistics - Simulation and Computation, Series B5, vol. 1, pp. 55-64,
1976.
Retrieved from: http://staff.math.su.se/rolfs/Publikationer/CommStatB1976.pdf
[Accessed on May 12th, 2019].

[8] MacQueen, J., ”Some methods for classification and analysis of multivariate
observations”, Proceedings of the fifth Berkeley Symposium on Mathemati-
cal Statistics and Probability, pp. 281-297, 1967.
Retrieved from: https://projecteuclid.org/euclid.bsmsp/1200512974.

48

