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Abstract

The process of learning from data is central in statistical learning

and the problem of selecting an appropriate method for a particular

situation can be rather challenging. Two widely used linear classifica-

tion methods are logistic regression and linear discriminant analysis.

This thesis aims to compare these linear classifiers, partly from a the-

oretical perspective and partly through practical simulations, in order

to study their similarities and differences in several aspects. The the-

oretical part outlines the concept of statistical learning and provides a

detailed presentation of the methods of interest. The simulation part

contains four experiments with different setups in order to evaluate

the predictive power for each method. It turned out that logistic re-

gression and linear discriminant analysis performed similarly, despite

the fact that a variety of simulated data sets were used. Some notable

differences were observed, which can be explained by the two meth-

ods’ different ways of estimating parameters. Overall, the simulation

study agreed with the theory provided in this thesis, that the two

methods give similar results but that their prediction accuracy might

deviate slightly from each other in some situations. This emphasizes

the importance of examining the underlying structure of data before

determining which method to use.
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my supervisor Ola Hössjer for the invaluable theoretical discussions, advice
and guidance in mathematical statistics with great commitment and en-
couragement. Further, I also want to pay attention to my fellow students
for the rewarding discussions and suggestions. I also want to express my
gratitude to my family and friends who have supported me throughout my
education and my work on this thesis. Last but not least, I want to give
a special thanks to my childhood friend Nicola Fitzgerald for proofreading
this thesis.

2



Contents

1 Introduction 5

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Aim and Purpose . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theory 7

2.1 Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Statistical Decision Theory . . . . . . . . . . . . . . . 9
2.1.2 The Bias-Variance Trade-o↵ . . . . . . . . . . . . . . . 10

2.2 Classification Methods . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Multiple Logistic Regression . . . . . . . . . . . . . . . 11
2.2.3 Fitting Logistic Regression Models . . . . . . . . . . . 13
2.2.4 Multinomial Logistic Regression . . . . . . . . . . . . 14
2.2.5 Linear Discriminant Analysis . . . . . . . . . . . . . . 15
2.2.6 Quadratic Discriminant Analysis . . . . . . . . . . . . 17
2.2.7 Relationship Between Logistic Regression and Linear

Discriminant Analysis . . . . . . . . . . . . . . . . . . 18
2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Misclassification Rate . . . . . . . . . . . . . . . . . . 20
2.3.2 AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Mahalanobis Distance . . . . . . . . . . . . . . . . . . 22

3 Simulation and Modeling 22

3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Experiment A - Separability between Classes . . . . . 24
3.2.2 Experiment B - Number of Observations and Pre-

dictor Variables . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Experiment C - Classes with Di↵erent Covariance

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Experiment D - The E↵ect of Non-Normality . . . . . 26

4 Results 28

4.1 Experiment A - Separability between Classes . . . . . . . . . 28
4.2 Experiment B - Number of Observations and Predictor Vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Experiment C - Classes with Di↵erent Covariance Matrices . 32
4.4 Experiment D - The E↵ect of Non-Normality . . . . . . . . . 34

5 Discussion 36

5.1 Predictive Power . . . . . . . . . . . . . . . . . . . . . . . . . 36

3



5.1.1 Experiment A - Separability between Classes . . . . . 36
5.1.2 Experiment B - Number of Observations and Pre-

dictor Variables . . . . . . . . . . . . . . . . . . . . . . 37
5.1.3 Experiment C - Classes with Di↵erent Covariance

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.4 Experiment D - The E↵ect of Non-Normality . . . . . 38

5.2 Evaluation, Interpretation and Complexity . . . . . . . . . . . 39

6 Conclusions 40

7 Appendix 41

7.1 Experiment A - Separability between Classes . . . . . . . . . 41
7.2 Experiment B - Number of Observations and Predictor Vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Experiment C - Classes with Di↵erent Covariance Matrices . 45
7.4 Experiment D - The E↵ect of Non-Normality . . . . . . . . . 46

4



1 Introduction

The central concept of statistics and machine learning is the process of
learning from data. Many of today’s problems, for instance in the fields of
medicine, industries and finance, can advantageously be solved by learning
from available information [6]. Although this concept is based on knowledge
from years of research, this area is still under enormous development as the
demand for solving Big Data problems is increasing. Problems which were
previously considered to be unsolvable, can now be solved by using tech-
niques from statistical learning. For this reason, the elements of statistical
learning have a significant role in science and research. Roughly speak-
ing, statistical learning can be divided into two categories; supervised and
unsupervised. The main di↵erence between these two categorizations of stat-
istical learning is the availability of the outcome. In supervised learning, the
learning process is guided by the presence of both input and output vari-
ables, in order to predict the output for new observations. In contrast, a
more challenging situation occurs when only measurement of the input vari-
ables are available and this falls under the category unsupervised learning.
The problems in supervised learning can in turn be divided into regression

and classification depending on whether the type of the output variable is
either quantitative or qualitative. All classification methods which are used
for identifying and assigning an observation to a specific category or class,
are called classifiers. With regard to linear classifiers, logistic regression

and linear discriminant analysis are two well-known parametric methods
for predicting qualitative responses and are commonly used in many fields.

Further, the question often arises about which method is more suitable to
apply on a particular set of data. Since both logistic regression and linear
discriminant analysis usually perform similarly, we are interested in invest-
igating the distinctions between these two methods. Thus, the intention is
to give a motivation of when one method is more preferred over the other.
The approach is as follows: In this thesis, we are going to study two linear
statistical classification methods, namely logistic regression and linear dis-
criminant analysis. To facilitate the study, this thesis is divided into two
parts; one theory part and one practical part. We are going to compare these
two linear classifiers in order to evaluate their predictive power in di↵erent
situations from a mathematical and statistical point of view.
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1.1 Background

In supervised learning, logistic regression and linear discriminant analysis
are two widely used methods for statistical classification problems [6, 7]. Lo-
gistic regression is a commonly used method in many fields and is frequently
used in binary classification. On the other hand, another frequently used
method is linear discriminant analysis, which is based on more assumptions
of the underlying data compared to logistic regression. Despite this, linear
discriminant analysis usually has higher prediction accuracy when all the
assumptions are approximately satisfied. As long as data approximately
comes from a multivariate normal distribution with a common covariance
matrix, then a good choice of method is linear discriminant analysis. For a
real-life data set, it is rather unlikely that all conditions in linear discrim-
inant analysis are satisfied. Because of this, logistic regression is considered
to be preferred in such situations. Generally, logistic regression is often as-
sumed to be more flexible and robust in this context and it is not a↵ected
by outliers to the same extent as linear discriminant analysis. However,
linear discriminant analysis is usually preferred over logistic regression with
respect to nominal outputs. The main di↵erence between logistic regression
and linear discriminant analysis is the procedure of estimating the para-
meters. Overall, these two linear classifiers are closely related and usually
produce similar results.

This leads us to some interesting questions that we find worth investigating.
Can we expect similar results despite violated assumptions for linear dis-
criminant analysis? Is it possible to find situations where a method proves
to be significantly better in prediction accuracy than the other? Or con-
versely, is there no major di↵erence between the two classifiers with respect
to predictive performance and thus no distinction of which method to be
selected? In more complicated cases, linear classification methods can be in-
capable of capturing the underlying structure of the data, which often leads
to underfitting. One option is to use a more complex non-linear method
such as support vector machines, tree-based methods or neural networks.
Nevertheless, there are several extensions of both logistic regression and lin-
ear discriminant analysis that can improve the adaptation to data and one
extension of linear discriminant analysis is quadratic discriminant analysis,
which will also be considered in this thesis. However, since the focus is to
compare these two linear classifiers with respect to their properties and per-
formance in prediction accuracy, we will delimit ourselves and only consider
quadratic discriminant analysis more briefly, in order to prevent the study
from becoming too extensive.
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1.2 Aim and Purpose

A comparison of logistic regression and linear discriminant analysis aims to
give a deeper understanding of linear classification methods. The purpose
is to statistically evaluate the properties for each method, in order to in-
vestigate how much influence the choice of either logistic regression or linear
discriminant analysis may have on the predictive power, both theoretically
and practically. In particular, the intention is to provide some guidelines
and emphasize the importance of selecting the most appropriate linear clas-
sifier for the situation at hand. In more detail, we are going to study the
adaptability of these classifiers on a variety of simulated data sets by mod-
elling the number of observations, dimensions, correlation, etcetera. From
this we will distinguish the similarities and di↵erences, as well as discuss the
advantages and disadvantages of each method. Moreover, the interpretation
and computational complexity will be discussed. All this will be the basis
for the analysis of when one method dominates and is preferred over the
other.

1.3 Outline

The outline of this thesis starts with section 2, covering the central theory
of statistical learning and the classification methods. The setup for the
simulation is explained in section 3, followed by a presentation of the results
in section 4. Section 5 contains the discussion of the content of the theory,
the simulation results, the overall study and possible improvements. Lastly,
the conclusions are stated in section 6.

2 Theory

The following section covers the key concepts and framework of statistical
learning, as well as all relevant theory of the two parametric linear classific-
ation methods of interest, namely logistic regression and linear discriminant
analysis. One natural extension of linear discriminant analysis is quadratic
discriminant analysis and a general description of this method will also be
given. The fundamental idea is to provide a useful theoretical toolbox in a
mathematical and statistical aspect, which prepares us to be able to perform
the statistical applications in practice. With this intention in mind, we are
able to understand the underlying computations in the upcoming simula-
tion study in section 3. Moreover, the elegance of mathematics is di�cult
to resist, at least for some of us.
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2.1 Statistical Learning

This section aims to give an overview of statistical learning and unless oth-
erwise stated we refer to [6]. The key concept of statistical learning can be
described as the process of learning from data, which can be considered as
a function approximation.

We start by letting f(x) be a function that describes the relationship between
inputs and outputs, and whose domain is the p-dimensional Euclidean space
denoted by IRp. The aim is to find a useful approximation f̂(x) to the
function f(x), that predicts the outcome given a set of observations. Before
getting started with the implementation of the learning process, the set of
observations is initially split into a training set for learning and a test set for
evaluation. Consider training data T = {xi, yi}, for i = 1, ..., N , with pairs
(xi, yi) corresponding to points in the p + 1-dimensional Euclidean space.
From now on, we will refer to inputs as predictors with the representation
X = (X1, ..., Xp)T such that xi = (xi1, ..., xip)T where p is the dimension of
the predictors, and outputs as responses denoted by Y . Further, suppose
that the function Yi = f(xi) + ✏i, where ✏i is the error with E[✏i] = 0, is
used for the setting of the learning, based on training data T . This leads
to a learning algorithm which desirably produces approximations f̂(xi) that
are useful.

In general, statistical learning is often divided into supervised and unsuper-

vised. The main di↵erence between these two categorizations of statistical
learning is the availability of the response. In short, the learning process in
supervised learning is guided by the presence of both predictors as well as the
matching responses. The ambition is to approximate a function Ŷ = f̂(X)
with minimal errors f̂(X)�f(X) and a high accuracy in Y �Ŷ for prediction.
In contrast, a more challenging situation occurs when only the predictors are
available. The absence of a supervisor Y means that there are no responses
to learn from and this issue goes under the category unsupervised learning.
Methods in statistical learning can be either parametric or non-parametric,
which depends on whether assumptions are made of the form of the function
f or not [7]. Problems that occur in supervised learning are usually categor-
ized into regression problems and classification problems, depending on the
outcome type. Regression refers to responses taking quantitative values in
IR, while classification have nominal or ordinal responses assuming values in
the set of classes C. Regarding supervised learning for classification meth-
ods, the intention of the learning process is to build an optimal classifier
with perfect prediction accuracy based on training data, in order to obtain
an excellent classifier with minimal errors in predictive performance of the
test data.
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2.1.1 Statistical Decision Theory

As mentioned in section 2.1, the goal in statistical classification is to find
a function f(X) for predicting the categorical response variable Y taking
values in the set of classes C, given values of the predictor variables X, that
minimizes the amount of errors. Therefore, we will provide a statistical
framework for building such classifiers, referring to section 2.4 in [6] and
section 2.2.3 in [7]. Let L be a K⇥K loss matrix or also called loss function,
for K = card(C), penalizing errors in prediction. It is common to use the
0-1 loss function with zeros on the diagonal and ones outside the diagonal.
Then the cost of classifying observations that belong to class Ck as Cl is given
by

L(k, l) =

(
0, if k = l

1, if k 6= l.
(1)

Now, also let the estimated response variable Ŷ take values in the set of
classes C. Using the 0-1 loss function (1), the expected prediction error can
be defined as

EPE(f̂) = E[L(Y, f̂(X))],

with respect to the joint probability Pr(Y,X). Further, conditioning on X
and the definition of expectation gives

EPE(f̂) = EXEY |X [L[Y, f̂(X)]|X = x)]

= EX
PK

k=1 L[Ck, f̂(X)]Pr(Ck|X).

The expected prediction error is minimized pointwise by

f̂(X) = argmin
c2C

PK
k=1 L[Ck, c]Pr(Ck|X = x)

= argmin
c2C

[1� Pr(c|X = x)]

= argmax
c2C

Pr(c|X = x),

(2)

assuming a 0-1 function, where the minimum is obtained for c 2 C for
which the probability Pr(c|X = x) is the largest. The result derived from

9



(2) leads to the optimal Bayes’ classifier, when all K classes are a priori
equally likely. This gives the lowest possible test error rate called Bayes’

rate. The Bayes’ classifier averagely minimizes the test error rate by as-
signing observations to the most probable class based on the conditional
probability of the response, given values of the predictors. That is, given a
test set, the predictor x0 is classified as class Ck such that the conditional
probability Pr(Y = Ck|X = x0) is the largest. In binary classification,
where C = {0, 1}, Bayes’ classifier assigns observations to one class if it ful-
fills Pr(Y = 1|X = x0) > 0.5, otherwise observations are assigned to the
other class. The prediction is set by the Bayes’ decision boundary which
constitutes a linear or a non-linear border between the classes. Usually, it is
necessary to estimate an approximation of the optimal Bayes’ classifier since
the conditional probabilities in most real-world situations are unknown.

2.1.2 The Bias-Variance Trade-o↵

The process of finding a useful approximation f̂ of a function f can be con-
sidered as an optimization problem, since a minimal expected test error is
desirable, while maintaining both low bias and low variance. A statistical
learning method with high bias and low variance underfits the data, while
low bias and high variance overfits the data. This issue of avoiding under-
fitting and overfitting data leads us straight to the bias-variance trade-o↵.
This section follows section 2.2.2 in [7], unless otherwise stated.

For the sake of convenience, we use regression to highlight the central parts
of the bias-variance trade-o↵ since its setting is rather convincing. The ex-
pected test mean squared error (MSE) can be decomposed into non-negative
terms consisting of the variance of f̂(x0), the squared bias of f̂(x0) and the
variance of the error ✏, for some value of x0 in the test set. Thus the expected
test MSE, for predicting Y0 = f(x0) + ✏, can be expressed as

E[(Y0 � f̂(x0))
2] = Var(f̂(x0)) + [Bias(f̂(x0))]

2 +Var(✏). (3)

An evaluation of (3) at all possible values of x0 in the test set enables
computation of the average test MSE. It is clear that the expected test MSE
is larger or equals the variance of the error, because of the non-negativity of
the terms in the decomposition in (3). Hence, it is obvious that a statistical
learning method with both low variance and low bias is preferred.

The remaining part of this section focuses on giving a general explanation
of the bias-variance trade-o↵ among statistical methods with di↵erent prop-
erties. Methods with high complexity tend to have lower bias and higher
variance compared to less flexible methods. In other words, as the complex-
ity increases, the bias decreases simultaneously as the variance increases
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[6]. Methods with high variance can be sensitive to small changes in the
function-approximation f̂ . The relationship between training data and test
data with respect to prediction error varies with method complexity. The
di↵erence between the estimated training error and the test error increases
with higher complexity, although the test data has larger prediction errors
than training data irrespective of complexity. To exemplify, assume a re-
markably complicated situation where observations appear to be non-linear.
If a parametric method with a linear adaption to data is used in this case, the
simplicity of the method underfits data. Hence, the inflexible method will
have low variance but su↵er from high bias. Challenges in model selection
arises when trying to find a good trade-o↵ between a small bias and vari-
ance of f̂ . In particular, the awareness of the bias-variance trade-o↵ makes
it possible to avoid mistakes that would result in devastating consequences.

2.2 Classification Methods

This section covers the general theory of the classification methods logistic
regression, linear discriminant analysis and quadratic discriminant analysis.

2.2.1 Logistic Regression

The theory provided in this section comes from chapter 5, 6 and 8 in [1],
unless otherwise stated. Logistic regression (LR) is a widely used model
in many fields for dealing with categorical response data. Specifically, the
model is commonly used in binary classification problems. The main purpose
of logistic regression is to study and understand the relationship between
inputs and outcomes. In real-world problems, it is often of interest to fit a
model to predict the outcome, given a set of observations. The fitted logistic
regression model consists of predictor variables as inputs with main e↵ects
and possible interaction terms in order to predict the response variable. As
the number of interaction terms of higher order increases, the more di�cult
it is to make a sensible interpretation of the model. For this reason, it
is preferable to fit a model that is complex enough to be able to perform
predictions with high accuracy, but still easy to interpret. There are many
techniques to use when finding a suitable model that fits data well, but a
survey of these is out of the scope of this thesis.

2.2.2 Multiple Logistic Regression

Suppose we have a binary response variable Y with two possible outcomes,
usually taking values Y = 1 and Y = 0, where the two events correspond to
a ”success” and a ”failure”.
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Let ⇡(x) = Pr(Y = 1|X = x) = 1� Pr(Y = 0|X = x) be the probability of
a success given values X = x = (x1, x2, ..., xp)T of p predictor variables. To
clarify, the response variable is always qualitative, but the predictor variables
can be qualitative as well as quantitative. Then the conditional probability
for the multiple logistic regression model is

⇡(x) =
exp(�0 + �1x1 + �2x2 + ...+ �pxp)

1 + exp(�0 + �1x1 + �2x2 + ...+ �pxp)
=

exp(�0 + �Tx)

1 + exp(�0 + �Tx)
,

where �0 is the intercept and � = (�1,�2, ...,�p)T are the coe�cient para-
meters. Equivalently, the logit or log odds transformation is the alternative
formula of a linear representation which is given by

logit[⇡(x)] = log
⇡(x)

1� ⇡(x)
= �0 + �1x1 + �2x2 + ...+ �pxp.

In other words, multiple logistic regression can be used to predict the con-
ditional probabilities for the response variable given a set of observations.
However, this requires that the intercept �0 and the coe�cients � can be
estimated by some method, such as Maximum Likelihood Estimation. The
sensitivity of the log odds of success, with respect to changes in xj , corres-
ponds to the value of the parameter �j . In particular, the interpretation of
exp(�j) is reasonably intuitive where a one-unit increase in the correspond-
ing xj can be considered as a multiplicative e↵ect on the odds of success,
when the remaining levels of xk are held fixed. Now, consider the classi-
fication problem of assigning the conditional probabilities of the response
variable to either Y = 1 or Y = 0. Thus, introducing a cuto↵ c such that

Pr(Y = 1|X = x0) > c,

for 0 < c < 1, enables us to classify new observations x0 to class 1, otherwise
to class 2. One common option is to set the cuto↵ c to 0.5, since Bayes’
classifier assigns observations to one class if Pr(Y = 1|X = x0) > 0.5, as
mentioned in section 2.1.1.

12



2.2.3 Fitting Logistic Regression Models

A necessary step in the model fitting procedure is to estimate the parameters
of the logistic regression model. Hence, finding estimators corresponding to
the observed data enables us to fit the logistic regression model. In general,
the established method called Maximum Likelihood Estimation is used to
estimate the value of the parameter by maximizing the probability of the
observed values.

Let xi = (xi1, xi2, ..., xip)T denote the value of the p predictor variables for
setting i = 1, ..., N . As a result of using a data set containing quantitative
predictors, there is one outcome for each setting xi. Moreover, let yi be
the response variable for the ith setting, where the corresponding random
variables Yi are independent and binomially distributed. For one trial, the
likelihood function is given by

L(�0,�) =
NY

i=1

⇡(xi)
yi [1� ⇡(xi)]

1�yi

=

(
NY

i=1

exp


log

✓
⇡(xi)

1� ⇡(xi)

◆yi�)(
NY

i=1

[1� ⇡(xi)]

)

=

(
exp

 NX

i=1

yi log

✓
⇡(xi)

1� ⇡(xi)

◆�)(
NY

i=1

[1� ⇡(xi)]

)

=

(
exp

 NX

i=1

yi

✓
�0 +

pX

j=1

�jxij

◆�)(
NY

i=1


1 + exp

✓
�0 +

pX

j=1

�jxij

◆��1
)
.

By taking the logarithm of the likelihood function we obtain the log-likelihood
function

log L(�0,�) = l(�0,�)

=
NX

i=1

yi

✓
�0 +

pX

j=1

�jxij

◆
�

NX

i=1

log


1 + exp

✓
�0 +

pX

j=1

�jxij

◆�
.

We obtain the likelihood equations by di↵erentiating the log-likelihood func-
tion, with respect to �0 and � respectively, and then letting the partial
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derivatives equal zero. A computation of the partial derivatives gives that

@l(�0,�)
@�0

=
PN

i=1 yi �
PN

i=1
exp(�0+

Pp
k=1 �kxik)

1+exp(�0+
Pp

k=1 �kxik)
,

@l(�0,�)
@�j

=
PN

i=1 yixij �
PN

i=1 xij
exp(�0+

Pp
k=1 �kxik)

1+exp(�0+
Pp

k=1 �kxik)
,

for j = 1, ..., p. Thus, the likelihood equations are

PN
i=1 yi �

PN
i=1 ⇡̂i = 0,

PN
i=1 yixij �

PN
i=1 ⇡̂ixij = 0,

for j = 1, ..., p, and where ⇡̂i = exp
�
�̂0 +

Pp
k=1 �̂kxik

��⇥
1 + exp

�
�̂0 +Pp

k=1 �̂kxik
�⇤

is referred to as the maximum likelihood estimate of the condi-
tional probability ⇡(xi). Since the likelihood equations are non-linear, they
can with advantage be solved by using the Newton-Raphson algorithm [6].
An application of the iterative algorithm results in the maximum likelihood
estimates �̂0 and �̂ of the parameters �0 and �. In other words, �̂0 and �̂
are estimated such that the likelihood function is maximized. Finally, the
estimators are obtained and a response curve is fitted.

2.2.4 Multinomial Logistic Regression

Suppose now that we are interested in a model that can handle more than
two quantitative outcomes. A generalization of the logistic regression is
the Multinomial Logistic Regression, where the restriction of a binary re-
sponse variable is expanded into a multinomial response variable Y with
K classes. In total, there are

�K
2

�
pairs of categories in the multinomial

logistic regression, which describes the log odds for all such pairs. Let
⇡k(x) = Pr(Y = k|X = x) be the probability of the event Y = k, for
k = 1, ...,K, given a setting x of p predictor variables, with the constraintP

k ⇡k(x) = 1. We choose the last category to be used as a baseline. In
that case, the conditional probability of the multinomial logistic regression
model is

⇡k(x) =
exp(�k0+�T

k x)

1+
PK�1

l=1 exp(�l0+�T
l x)

,

⇡K(x) = 1
1+

PK�1
l=1 exp(�l0+�T

l x)
,
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for k = 1, ...,K � 1. Alternatively, the equivalent and more trivial repres-
entation is the logit transformation given by

log
⇡k(x)

⇡K(x)
= �k0 + �T

k x, (4)

for k = 1, ...,K�1. The fitting procedure for multinomial logistic regression
is similar to the multivariate case, but also more complex. Therefore, we are
content with the derivation of the model fitting for the multivariate logistic
regression in section 2.2.3.

2.2.5 Linear Discriminant Analysis

Back in 1936, R.A. Fisher [5] came up with the idea of using linear discrim-

inant analysis (LDA) to classify observations into two well-defined classes,
which was later expanded to classify observations into more than two classes
[14]. The main idea is to find a linear combination of a set of observations
for an optimal partition into di↵erent classes. All theory covered in this
section follows chapter 4 in [6], unless otherwise stated. Generally, linear
discriminant analysis is based on more assumptions, in contrast to the al-
ternative linear statistical classification method based on logistic regression.
Let Y denote the response variable with k classes. One assumption is that
the p > 1 predictor variables X 2 IRp come from a multivariate normal
distribution within each class. Another assumption is that each class should
have a common covariance matrix ⌃k = ⌃, for all k. In other words, the
linear discriminant analysis is characterized by the assumption

X|Y = k ⇠ N(µk,⌃), (5)

with mean vector µk and a positive definite covariance matrix ⌃ [12], for
all k. In consideration of the assumption (5), this yields that each class has
the multivariate normal density function

fk(x) =

✓
1

2⇡

◆p/2 1p
det ⌃

exp


� 1

2
(x� µk)

T
⌃

�1(x� µk)

�
.

Futhermore, an application of Bayes’ theorem gives us

Pr(Y = k|X = x) =
Pr(X = x|Y = k)⇡kPK
l=1 Pr(X = x|Y = l)⇡l

=
fk(x)⇡kPK
l=1 fl(x)⇡l

, (6)

15



where ⇡k = Pr(Y = k) with
PK

k=1 ⇡k = 1. By using Bayes’ theorem (6) we
are able to compute estimates of Pr(X = x0|Y = k), for a new observation
x0 of class k. This in turn leads to that these estimates can be used in order
to calculate an estimation of Pr(Y = k|X = x0). First we need to estimate
the prior probability, the mean vector and the covariance matrix, given a
set of training data where observations come from the multivariate normal
distribution. Let Nk denote the number of observations of class k. Then the
estimations of these parameters are given by

⇡̂k =
Nk

N
, (7)

µ̂k =
1

Nk

X

yi=k

xi, (8)

⌃̂ =
1

N �K

KX

k=1

X

yi=k

(xi � µ̂k)(xi � µ̂k)
T . (9)

for k = 1, ...,K. Now we can insert the estimations (7), (8) and (9) such
that

cPr(X = x|Y = k) =

✓
1

2⇡

◆p/2 exp[�1
2(x� µ̂k)T ⌃̂

�1
(x� µ̂k)]p

det ⌃̂
. (10)

Finally, by using Bayes’ theorem (6) and the conditional probability (10)
obtained for class k, for given a set of observations, the requested estimation
is given by

cPr(Y = k|X = x) =
cPr(X=x|Y=k)⇡̂kPK
l=1

cPr(X=x|Y=l)⇡̂l

=
exp[� 1

2 (x�µ̂k)T ⌃̂
�1

(x�µ̂k)]⇡̂k
PK

l=1 exp[�
1
2 (x�µ̂l)T ⌃̂

�1
(x�µ̂l)]⇡̂l

.

(11)

This establishes the fundamental principle of linear discriminant analysis.
In summary, the classifier uses the maximized estimation given a new ob-
servation x0 and assigns it to the class k. A decision boundary is a (p� 1)-
dimensional hyperplane that separates each pair of classes, which is de-
scribed as the set of values of x such that the log odds equals zero in the
p-dimensional space. In particular, the border is a line in a two-dimensional
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space. Further, a comparison between two classes k and l can be made when
considering the estimated log ratio

log
cPr(Y = k|X = x)
cPr(Y = l|X = x)

= log
exp[�1

2(x� µ̂k)T⌃
�1(x� µ̂k)]⇡̂k

exp[�1
2(x� µ̂l)T⌃

�1(x� µ̂l)]⇡̂l
, (12)

due to (11). Further simplification gives

� 1
2(x� µ̂k)

T
⌃̂

�1
(x� µ̂k)� (�1

2(x� µ̂l)
T
⌃̂

�1
(x� µ̂l)) + log

⇡̂k
⇡̂l

= �1
2(µ̂k + µ̂l)

T
⌃̂

�1
(µ̂k � µ̂l) + xT ⌃̂

�1
(µ̂k � µ̂l) + log

⇡̂k
⇡̂l

,

and it can be noticed that both the normalization factor and the quadratic
parts in the exponent are canceled out. Consequently, when the log odds
(12) equals zero, it leads to the fact that

xT ⌃̂
�1

µ̂k � 1
2 µ̂

T
k ⌃̂

�1
µ̂k + log ⇡̂k = xT ⌃̂

�1
µ̂l � 1

2 µ̂
T
l ⌃̂

�1
µ̂l + log ⇡̂l. (13)

The equation (13) corresponds to the set {x : �̂k(x) = �̂l(x)}, which describes
that the estimated decision boundary between each pair of classes k and l
is linear in x. In summary, from the derivation we obtained

�k(x) = xT⌃�1µk �
1

2
µT
k⌃

�1µk + log ⇡k,

which is called the linear discriminant function. The classifier computes the
discriminant values by finding linear combinations of the predictor variables,
in order to assign observations to a specific class k for which the linear
discriminant value is the largest. Each of the first K�1 di↵erences between
the linear discriminant functions �k(x) � �K(x) requires p + 1 parameters.
These di↵erences define the linear discriminant classifier for K classes with
(K � 1)(p+ 1) parameters.

2.2.6 Quadratic Discriminant Analysis

So far, we have only discussed linear classification methods to separate ob-
servations. An extension of linear discriminant analysis is the more flexible,
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non-linear method quadratic discriminant analysis (QDA) which is prefer-
able to use when the Bayes’ decision boundary is quadratic. If the as-
sumption that each class has a common covariance matrix is violated, the
quadratic term in x remains in (12). This classifier assigns an observation
to the class for which the quadratic discriminant function

�k(x) = �1

2
log (det⌃k)�

1

2
(x� µk)

T
⌃

�1
k (x� µk) + log ⇡k

is the largest. The quadratic equation {x : �k(x) = �l(x)} describes the
decision boundary between each pair of classes k and l. To clarify, the
quadratic discriminant analysis is based on the assumption

X|Y = k ⇠ N(µk,⌃k),

with mean vector µk and covariance matrix⌃k for class k. That is, quadratic
discriminant analysis allows a unique covariance matrix for each class. For
quadratic linear discriminant analysis there are (K � 1)(p(p + 3)/2 + 1)
parameters.

2.2.7 Relationship Between Logistic Regression and Linear Dis-

criminant Analysis

Previous sections 2.2.1 and 2.2.5 cover the most central parts of the the-
ory of the two statistical classification methods logistic regression and linear
discriminant analysis. Both classifiers are used in order to find the rela-
tionship between a set of quantitative predictor variables and a qualitative
response variable. Remember that logistic regression does not make any as-
sumption about the predictor variables, only on the distribution of Y given
x [1]. Unlike logistic regression, linear discriminant analysis also makes an
assumption of X given y. In one sense, these methods are closely related,
leading us to the interesting question of when one method is more preferable
in a particular situation over the other method. At this point, it is obvi-
ous that logistic regression and linear discriminant analysis perform overall
similar results in most cases [6]. As a reminder, the log odds of the logistic
regression in the multinomial case (4) is given by

log
⇡k(x)

⇡K(x)
= log

Pr(Y = k|X = x)

Pr(Y = K|X = x)
= �k0 + �kx, (14)

and the log odds for linear discriminant analysis (12) can be written on the
form
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log ⇡k(x)
⇡K(x) = log Pr(Y=k|X=x)

Pr(Y=K|X=x)

= �1
2(µk + µK)T⌃�1(µk � µK) + xT⌃�1(µk � µK) + log ⇡k

⇡K

= ↵k0 + ↵kx,
(15)

where ↵k0 and ↵k are functions of ⇡k, ⇡K , µk , µK and⌃, for k = 1, ...,K�1.
Both (14) and (15) are linear functions of x and have linear decision bound-
aries for p > 1. As mentioned before, the parameters �k0 and �k in logistic
regression can be estimated by using maximum likelihood estimation. On
the other hand, linear discriminant analysis makes assumptions of a mul-
tivariate normal distribution (5) and uses the estimated mean and variance
to get an estimation of the parameters ↵k0 and ↵k. Also, each class needs
to have a common covariance matrix. It can be realized that the di↵erence
between these linear classifiers is the method of parameter estimation.

In general, logistic regression is often assumed to be more flexible and robust,
since it makes no assumptions on distribution of the predictor variables and
handles outliers better, whereas linear discriminant analysis makes more as-
sumptions of the underlying data and is strongly a↵ected by outliers. For a
real-life data set, it is rather unlikely that the conditions in linear discrimin-
ant analysis are satisfied, thus logistic regression is considered to be prefer-
able in those situations. Despite this, linear discriminant analysis usually
has higher prediction accuracy when all the assumptions are approximately
satisfied. As long as data approximately comes from a multivariate normal
distribution, with di↵erent means and a common covariance matrix, then
a good choice of method is linear discriminant analysis. It is also suitable
when Bayes’ decision boundary is linear and it is also a good choice for small
sample sizes, when few parameters need to be estimated. It is argued that
linear discriminant analysis is the right choice, when it comes to nominal
response variables [7].

2.3 Evaluation Metrics

In order to do a decent comparison of di↵erent classification methods in
the simulations in section 3, some kind of metric is required for assessing
the predictive power. Since di↵erent metrics have their advantages and
disadvantages, we will use two types of distinct measures to evaluate the
performance of the classifiers. Also, a metric for measuring distances is
presented.
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2.3.1 Misclassification Rate

The following section follows section 2.2.3 in [7]. The misclassification rate

or error rate is an intuitive measure to assess the prediction accuracy of a
classifier, where the proportion of incorrect observations is computed.

Given a training set, let yi be the response of the actual class and let ŷi be
the predicted class, for observation i = 1, ..., N . Then training error rate is
given by

1

N

NX

i=1

I(yi 6= ŷi),

where I(yi 6= ŷi) denotes an indicator variable that equals 1 if yi 6= ŷi,
meaning that the ith observation is misclassified by the classifier. Otherwise,
the indicator variable equals 0 for a correct classification. This corresponds
to the average of the loss function (1) in section 2.1.1 for all observations.
The main interest is to calculate the test error rate since the observations
in the test set, as explained in section 2.1, were not involved in the learning
process of the classifier. A classifier is considered to perform well when a
low error rate is obtained.

2.3.2 AUC

Another option to evaluate the predictive power of classifiers is to use ROC
analysis [7]. In binary classification problems, the ROC curve, receiver oper-
ating characteristics, is widely used and graphically displays the relationship
between the true positive rate (TPR) and the false positive rate (FPR) of all
possible cut-o↵ points or thresholds in two-dimensional space. This section
continues to follow [4].

Table 1: The four possible outcomes TP, FN, TN and FP are presented in

a confusion matrix, which refers to the number of observations in a data set

that ends up in each category.

Predicted class

Positive Negative

Actual class
Positive TP FN

Negative FP TN

Consider the actual response of an observation labeled as either positive or
negative. Suppose that the actual outcome is regarded as positive. In this
case, if the classifier predicts the response to be positive, it is called true
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Figure 1: An illustration of a graph in the two-dimensional space showing

the corresponding ROC curve for all possible thresholds. This ROC curve

gives an AUC-value of 0.77.

positive (TP). However, if the response instead is incorrectly classified as
negative, then it is called false negative (FN). In contrast, suppose now that
the response is negative, which is also predicted by the classifier. Unsurpris-
ingly, this situation is termed as true negative (TN), otherwise false positive

(FP). In summary, there are four possible outcomes in binary classification
that can be presented in a confusion matrix, see Table 1. There are many
computations that can be made to obtain di↵erent performance metrics.
The definition of true positive rate and false positive rate is

TPR =
TP

TP + FN
,

FPR =
FP

FP + TN
,

which also can be recognized as sensitivity and 1-specificity respectively.
The true positive rate and false positive rate can be changed by adjusting
the threshold settings. This trade-o↵ between these two rates is made clear
when plotting the false positive rate on the x-axis against the true positive
rate on the y-axis in two-dimensional space, which yields the ROC curve
with terminal points (0, 0) and (1, 1), for all possible thresholds, see Figure
1. The point (0, 0) corresponds to that none of the observations are classified
as positive, so that no false negative errors as well as no true positives are
observed. On the contrary, the point (1, 1) is representing that all of the
observations will be classified as positive, meaning that no false negative or
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true negative results are obtained. A perfect classification corresponds to
the point (0, 1). One measure of the performance of a classifier is the area

under the ROC curve (AUC), representing the proportion of area of the
unit square. Consequently, the AUC takes values between 0 and 1, where
the optimal AUC-value of 1 indicates a perfect prediction accuracy while
random guessing corresponds to a ROC curve along the dashed line in 1,
and hence an AUC-value of 0.5.

2.3.3 Mahalanobis Distance

The distance between two mean vectors of two classes; class k and class l,
in the p-dimensional Euclidean space can be measured using the metric Ma-
halanobis distance [9]. The definition of the squared Mahalanobis distance
is

�2 = (µk � µl)
T
⌃

�1(µk � µl),

where each class has a mean vector µk and µl respectively, with a common
positive definite covariance matrix ⌃ for both classes.

3 Simulation and Modeling

In the following sections we will describe the simulation process for the
statistical classification methods logistic regression and linear discriminant
analysis. Quadratic discriminant analysis will also be considered in one
situation. The purpose is to study the adaptability and the performance in
prediction accuracy of these classifiers on a variety of simulated data sets.
The simulation study is divided into four experiments, in order to distinguish
these variations, which will facilitate the upcoming discussions of the results
later in section 5. Each experiment consists of di↵erent simulated data sets,
based on di↵erent assumptions, where some parameters are adjusted while
others are held fixed.

Throughout this thesis, the statistical software package R is used for all
simulations, computational issues, and graphical views. We use the im-
plementations in R of logistic regression, linear discriminant analysis and
quadratic discriminant analysis for the fitting procedure. The glm() func-
tion for logistic regression is included in the base package, whereas the lda()
and qda() function for linear discriminant analysis and quadratic discrim-
inant analysis respectively, are provided by the MASS package. Data sets
generated from a multivariate normal distribution are also included in the
MASS package.
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3.1 Simulation Setup

The simulation study consisting of Experiments A-C have the following de-
fault setting: First, random samples x = (x1, x2, ..., xp)T of p predictor
variables of size N and M are generated from two multivariate normal dis-
tribution groups with density function

fk(x) =

✓
1

2⇡

◆p/2 1p
det ⌃k

exp


� 1

2
(x� µk)

T
⌃

�1
k (x� µk)

�
,

having mean vector µk and covariance matrix ⌃k > 0 for class k = {1, 2}.
For all p > 1, the mean vector of class 1 is consistently set to zero, such
that µ1 = (0, ..., 0), while the mean vector of class 2 is set in the direction
of the first principal component of the covariance matrix along which the
variance is the greatest. The angle of the direction of µ2 in relation to µ1 is
determined by the spectral decomposition of the covariance matrix

⌃ = QDQT ,

where Q is a p⇥p matrix with columns containing the unit eigenvectors and
D is a diagonal matrix with p eigenvalues [8]. Consequently, the direction
of the first principal component is obtained by calculating the unit eigen-
vector with the highest corresponding eigenvalue. That unit eigenvector is
scaled such that the distance between µ1 and µ2 for classes with a common
covariance matrix has a certain value measured in the Mahalanobis distance.

A symmetric matrix with equal elements on the diagonal, or more specific-
ally, an autocovariance matrix or an autoregressive covariance matrix (AR)
are constructed according to

⌃k = �2
k

2

6666664

1 ⇢k ⇢2k . . . ⇢p�1
k

⇢k 1 ⇢k . . . ⇢p�2
k

⇢2k ⇢k 1 . . . ⇢p�3
k

...
...

...
. . .

...

⇢p�1
k ⇢p�2

k ⇢p�3
k . . . 1

3

7777775
= �2

kPk (16)

with variance �2
k and correlation �1 < ⇢k < 1, for class k = {1, 2} with p

predictor variables [3]. The autocovariance matrix (16) is a positive definite
Toeplitz matrix [10] which satisfies the assumption (5) of a non-singular mul-
tivariate normal distribution [12]. We let the variance �2

k equal 1, such that
the autocovariance matrix and the autocorrelation matrix Pk are identical.
Then (16) measures the correlation between pairs of predictor variables and
the closer the elements are to the diagonal, the higher correlation between
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the pairs. These correlations vary exponentially with the distance to the
diagonal. Thereafter, the observations generated from the first group of size
N are assigned to class 1, whereas the observations from the second group of
size M are assigned to class 2, which will form a data set. The responses are
balanced when the number of observations generated from the two groups
are equal, that is to say if N = M , and the cuto↵ c = 0.5 is being used for
logistic regression. Then, the total number of observations equals 2N . The
next step is to randomly split the data set into a training set and a test set.
The splitting consists of 50 percent training set which is intended for the
learning process for the classification methods of interest. The remaining 50
percent test set of size N is for evaluating the predictive power in terms of
misclassification rate and AUC-value, both provided in section 2.3, for each
classifier. This simulation procedure will be replicated 50 times. The aver-
age values of the evaluation metrics, as well as the standard deviation, are
computed and the final results are presented for each classification method.

3.2 Simulation Experiments

This section provides the di↵erent setups for each of the simulation experi-
ments in more detail.

3.2.1 Experiment A - Separability between Classes

In the first experiment, the separation of two classes is going to be in-
vestigated when adjusting the Mahalanobis distance between the two mean
vectors in the direction of the first principal component of the covariance
matrix. The main idea of the experiment can intuitively be illustrated in
the two-dimensional space as in Figures 2a and 2b. In order to evaluate
the performance of separability of logistic regression and linear discriminant
analysis, they are both examined on data from two multivariate normal dis-
tribution groups with di↵erent mean vectors but with common covariance
matrix according to the AR-process (16) with correlation ⇢ = 0.5. In this
context, the assumptions of linear discriminant analysis are met. In this
experiment we fix the number of observations N to 500 and let the Ma-
halanobis distance take the values � = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, both with
two and twenty predictor variables.

3.2.2 Experiment B - Number of Observations and Predictor

Variables

The focus in the second experiment lies on varying the number of observa-
tions and predictor variables. All the assumptions remain from the setting
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(a) � = 1 (b) � = 2.5

Figure 2: Two classes, each of size N = 100, generated from a normal

distribution with di↵erent mean vectors in the direction of the first principal

component, and common covariance matrix with variances 1 and correlation

0.5. The blue arrows show the unit eigenvectors which represent the two

principal components in the two-dimensional space. The Bayes’ decision

boundary is linear.

of Experiment A and follows the default setting in section 3.1. The number
of observations N varies within a range of 20 to 3000 in two dimensions
and the two mean vectors di↵er along the direction of the first principal
component. Then, the number of observations N are fixed to 500 while
changing the dimensionality from 2 up to 100. The Mahalanobis distance is
constantly set to 1.0, using the common covariance matrix with correlation
⇢ = 0.5 according to the AR-process (16).

3.2.3 Experiment C - Classes with Di↵erent Covariance Matrices

In this experiment we adjust the covariance matrix for one class according to
an AR-process (16), while the covariance matrix for the other class remain
with correlation ⇢ = 0, which corresponds to the identity matrix. Because
of this setup, we let the mean vector µ1 be the zero vector with the identity
covariance matrix ⌃1. The mean vector µ2 for class 2 is set according to
the same procedure as in previous experiments, but its location is based
on the associated autocovariance matrix ⌃2 in (16), where the correlation
⇢ = {0, 0.2, 0.3, 0.4, 0.6, 0.8} is modified stepwise. We fix µ2 as the scaled
unit vector in the direction of the first principal component when the Ma-
halanobis distance equals 1.0 and its evaluation is based on the case when
the covariance is the identity matrix. That is to say, we set � = 1.0 based on
the covariance matrix (⇢ = 0) of class 1, regardless of the covariance matrix
of class 2. This simulation will be evaluated for 20 predictor variables. As
a result of the violation of the assumption of equal covariance matrices, the
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Bayes’ decision boundary becomes quadratic and we will study the change
in adaptation for logistic regression and linear discriminant analysis, but
also consider the method quadratic discriminant analysis.

3.2.4 Experiment D - The E↵ect of Non-Normality

The final experiment aims to study the impact of non-normality on the
predictive power for logistic regression and linear discriminant analysis. In
other words, the adaptability of these methods will be examined on data
sets, for which the multivariate normal distribution is replaced by a more
heavy-tailed one, to study how the methods are a↵ected by outliers. For this
purpose, we are going to generate spherically symmetric random samples,
and then modify the distribution of the radius. Consequently, spherically
symmetric observations for both classes according to the same symmetric
distribution are generated around their mean vectors. Its stochastic repres-
entation follows the report [2], unless otherwise stated. Regardless of the
distribution of the p-dimensional random vector Z, it can be expressed as

Z = R · U = R · Y

||Y || ,

with radius R = ||Z|| > 0 of Z. The radius is independent of the direc-
tion represented by U = Y/||Y || which is uniformly distributed US1 on the
p-dimensional sphere S1 of unit radius in the Euclidean space, after normal-
ization of Y . In this experiment, we let Y be a standard normal random
vector. If Z is also a spherical standard normal random vector, the squared
radius R2 follows a Chi-squared distribution with p degrees of freedom, that
is R2 = ||Z||2 ⇠ �2(p), for Z ⇠ Np(0, Ip).

For this setup, random samples are generated from a distribution Z with
mean vector µ1 = (0, ..., 0) for class 1, while the distribution for class 2 is
o↵set according to the mean vector µ2, that is µ2 + Z, and is scaled in an
arbitrary direction such that the Mahalanobis distance (with an identity
matrix in its definition) equals 1.0. Here it is utilized that a spherically
symmetric random vector X around its mean vector µ can be decomposed as
X = µ+Z = µ+R·U , where R = ||X�µ|| and U = (X�µ)/||X�µ|| ⇠ US1 .
Figure 3 illustrates the direction with a uniform distribution on the three-
dimensional sphere of unit radius.
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Figure 3: An illustration of uniformly distributed observations on the three-

dimensional sphere of unit distance to their mean vectors, for two classes

around their respective mean vector. This corresponds to a setting where R
has a one point distribution at 1.

The inverse transformation method will be used to simulate di↵erent con-
tinuous random variables, in order to model the radius R [11]. First, the
random variable V is generated from a standard uniform distribution. Then
V is passed through the inverse cumulative distribution function F�1

R to ob-
tain the radius R with the continuous cumulative distribution function FR.
That is, for any continuous function FR that satisfies

R = F�1
R (V )

for V ⇠ U(0, 1), then the radius R has the continuous cumulative distribu-
tion function FR. We introduce the limitation of using the one-tailed Cauchy
distribution for the radius, where the location parameter is set to zero such
that the two-tailed Cauchy probability density function is symmetric around
zero, while its scale parameter is set to 0.5, 1.0 and 2.0.

First, we let the radius follow the square root of a Chi-squared distribution
with same degrees of freedom as the number of dimensions, which corres-
ponds to that the observations come from a standard normal distribution.
Thereafter, the distribution of the radius is interchanged to the Cauchy dis-
tribution which will generate extreme values, which is the main focus in this
experiment. The number of observations N is set to 500 for both three and
ten predictor variables. Figures 4a and 4b visualize the e↵ect of changing
the distribution of the radius in the three-dimensional space.
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(a) Square root of Chi-
square

(b) Cauchy

Figure 4: An illustration of two di↵erent distributions of the radius for obser-

vations that are spherically symmetric around their centers, for two classes

with 500 observations respectively.

4 Results

This section presents the results from Experiment A-D obtained from the
simulations in section 3. The results are described and shown in boxplots
in Figures 5-14. The horizontal line inside the box shows the median. A
more detailed presentation of the results can be found in Tables 2-14 in
the Appendix. Overall, the results show that the prediction accuracy of
the linear classifiers were similar, despite the fact that a variety of simulated
data sets were used. Some notable di↵erences in performance were observed.

4.1 Experiment A - Separability between Classes

There are no clear di↵erences in separability between the classes in the two-
dimensional space and the results are more or less identical. Figures 5 and
6 show that linear discriminant analysis does not separate classes better
than logistic regression or vice versa, regardless of distance between the two
classes. When increasing the dimensionality to twenty, the prediction follows
the same pattern but with a slightly worse accuracy, see Tables 4 and 5 in
the Appendix. Same interpretation can be made out of the two metrics,
but one can observe that the misclassification rate decreases more linearly,
while the AUC-value increases in a more nonlinear way, as the Mahalanobis
distance increases.
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Figure 5: Experiment A. Separability of classes in two dimensions. Metric:

MR. Parameters: N = 500, p = 2, ⇢ = 0.5.

Figure 6: Experiment A. Separability of classes in two dimensions. Metric:

AUC. Parameters: N = 500, p = 2, ⇢ = 0.5.
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4.2 Experiment B - Number of Observations and Predictor

Variables

The results of varying the number of observations in two dimensions can be
viewed in Figures 7 and 8 which indicate that both logistic regression and
linear discriminant analysis perform similarly. Noteworthy is that smaller
sample sizes lead to higher uncertainty and the spread is much wider, but the
pattern is quite clear; the prediction accuracy stabilizes when the number of
observations increases. Further, it can be seen in Figures 9 and 10 that both
logistic regression and linear discriminant analysis perform similar and get
worse in prediction accuracy as the number of predictor variables increases,
for a fixed number of observations. Consequently, the methods perform
worse as the dimension of the data increases.

Figure 7: Experiment B. Number of observations N in two dimensions.

Metric: MR. Parameters: Mahalanobis distance � = 1, p = 2, ⇢ = 0.5.
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Figure 8: Experiment B. Number of observations N in the two-dimensional

space. Metric: AUC. Parameters: Mahalanobis distance � = 1, p = 2,
⇢ = 0.5.

Figure 9: Experiment B. Number of predictors. Metric: MR. Parameters:

Mahalanobis distance � = 1, N = 500, ⇢ = 0.5.
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Figure 10: Experiment B. Number of predictors. Metric: MR. Parameters:

Mahalanobis distance � = 1, N = 500, ⇢ = 0.5.

4.3 Experiment C - Classes with Di↵erent Covariance Matrices

The consequences of letting the two classes have di↵erent covariance matrices
are illustrated in Figures 11 and 12. The results show that quadratic dis-
criminant analysis improves its predictive power as the correlation between
the predictor variables of the second population increases, in contrast to lo-
gistic regression and linear discriminant analysis, which instead appear to be
relatively unchanged. It can be observed that the linear classification meth-
ods perform slightly better in prediction for the highest tested correlation
⇢ = 0.8 compared to the case where the covariance matrices are approx-
imately equal. Again, the two linear classifiers tend to perform similarly
for the tested correlations, but quadratic discriminant analysis outperforms
them both in prediction accuracy when the adjusted correlation ⇢ for one
class is equal to or greater than 0.3.
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Figure 11: Experiment C. Classes with di↵erent covariance matrices. Met-

ric: MR. Parameters: N = 500, p = 20. The correlation ⇢ is adjusted along

the x-axis of the graph for one class, while the other class is fixed at ⇢ = 0.

Figure 12: Experiment C. Classes with di↵erent covariance matrices. Met-

ric: AUC. Parameters: N = 500, p = 20. The correlation ⇢ is adjusted

along the x-axis of the graph for one class, while the other class is fixed at

⇢ = 0.

33



4.4 Experiment D - The E↵ect of Non-Normality

The adaptability of logistic regression and linear discriminant analysis is ex-
amined for spherically symmetric random samples where the distribution of
the radius is modified as heavy-tailed. When the radius alternates to follow
a one-tailed Cauchy distribution with di↵erent settings in ten dimensions, it
can be observed in Figures 13 and 14 that the prediction accuracy decreases
when increasing the value of the scale parameter. For linear discriminant
analysis, the spread becomes wider as the value of the scale parameter in-
creases, in contrast to logistic regression which displays another pattern.
When the scale parameter is set to 0.5, the dots excluded from the whiskers
confirm that the use of logistic regression results in a low prediction accur-
acy slightly better than guessing for some of the simulations. The pattern
of the spread among logistic regression and linear discriminant analysis can
also be confirmed, in terms of standard deviation, in Tables 13 and 14 in
the Appendix. There are no other clear di↵erences in performance between
the linear classifiers when the results of each modification of the radius are
considered separately in ten dimensions.

The same pattern occurs in the three-dimensional space, but we can notice
that logistic regression has a somewhat lower average of the misclassification
rate and a higher average of the AUC-value, particularly in the case where
the radius follows a standard Cauchy distribution, see Tables 13 and 14.
From the same tables, the standard deviation is noticeably higher in three
dimensions than in ten dimensions. Similar results as in previous experi-
ments are achieved when the radius follows the square root of a Chi-squared
distribution with the number of dimensions set as degrees of freedom, which
can be found in Table 12 in the Appendix.
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Figure 13: Experiment D. The radius follows a one-tailed Cauchy distribu-

tion with the specified scale parameter. Metric: MR. Parameters: Mahalan-

obis distance � = 1, N = 500, p = 10.

Figure 14: Experiment D. The radius follows a one-tailed Cauchy distri-

bution with the specified scale parameter. Metric: AUC. Parameters: Ma-

halanobis distance � = 1, N = 500, p = 10.
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5 Discussion

The classification methods logistic regression and linear discriminant ana-
lysis, as well as quadratic discriminant analysis, are statistically evaluated
based on the simulation plan of section 3, which contains the practical simu-
lations with four experiments with di↵erent setups. In the following section
we are going to do the final comparison between logistic regression and linear
discriminant analysis based on the results presented in section 4. It turned
out that the linear classification methods performed similarly in most cases.
However, some notable di↵erences in prediction accuracy were observed,
which will be highlighted and possible explanations of the behaviour in each
experiment will be discussed, with the underlying theory in mind. Improve-
ments of the study will also be suggested. Lastly, these linear classification
methods will be put in a broader perspective.

5.1 Predictive Power

The results of Experiment A-D in section 3.2.1 - 3.2.4 will be discussed and
linked to the theory, with respect to the predictive power. To clarify, all
discussions concerning the most suitable method in these experiments are
based on that particular setup.

5.1.1 Experiment A - Separability between Classes

The Mahalanobis distance between the two mean vectors, which are related
in the direction of the first principal component of the common covariance
matrix, is varied for both two and twenty normally distributed predictor
variables. Data with this setup implies that the Bayes’ decision boundary
divides observations linearly. Therefore, a linear classification method is
probably a wise choice. This setting can be viewed as tailor-made for linear
discriminant analysis since it fulfills all assumptions discussed in the theory
part of section 2.2.5. For that reason, linear discriminant analysis could be
expected to perform better compared to logistic regression, but this does not
seem to be consistent with the results. Figures 5 and 6 show that the task of
classifying observations correctly is more di�cult when the two populations
are close to each other, but both methods follow the same pattern and
perform similarly. With reference to the theoretical relationship between
logistic regression and linear discriminant analysis in section 2.2.7, both
classifiers have linear decision boundaries but di↵er in their estimation of
the parameters. This means that the methods’ di↵erent parameter estimates
contribute to hyperplanes that separate data with di↵erent slopes. However,
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the di↵erence is not large enough to be able to distinguish the prediction
accuracy of the methods from each other.

5.1.2 Experiment B - Number of Observations and Predictor

Variables

When exploring the number of observations in the two-dimensional space
with the same default setting as in Experiment A, the results show the high
uncertainty with few observations and that the prediction accuracy stabilizes
when the number of observations increases. The reason for the convergence
can be explained by the fact that normally distributed random samples ap-
proximate the distributions they are drawn from better, as the number of
observations increases. In section 2.2.7, linear discriminant analysis is said
to be a good choice when the sample sizes are small. However, the results
do not show any remarkable indication of that linear discriminant analysis
tends to work better than logistic regression for small sample sizes. On
the contrary, when the number of observations are fixed and the number of
predictor variables increases, both methods perform worse and the reason
can be explained by overfitting. Apparently, logistic regression and linear
discrimination analysis lack the ability to maintain the predictive power
as the number of predictors increases. A brief comment with a suggestion
of improvement for logistic regression is to use shrinking methods, for in-
stance ridge regression or the lasso, by introducing penalty terms [6], which
can prevent overfitting and improve the performance in prediction accur-
acy of new unseen data. Corresponding regularization techniques exist for
linear discriminant analysis as well. Nowadays, it is usual to encounter high-
dimensional data in real-world problems, such that the number of predictor
variables is much bigger than the number of observations, that is p >> N .
Speaking of high-dimensional data, an interesting expansion of this study
could be to consider regularization techniques for solving high-dimensional
problems, and investigate the distinctions in performance between the linear
classifiers in such cases.

5.1.3 Experiment C - Classes with Di↵erent Covariance Matrices

This experiment investigates the adaptability for logistic regression, linear
discriminant analysis and quadratic discriminant analysis on data containing
two classes where the covariance matrix for one class is adjusted while hold-
ing the other fixed as the identity matrix. This construction leads to that the
Bayes’ decision boundary is quadratic. Consequently, classification methods
with linear adaption to data face a risk of underfitting. This establishes the
fact that when the decision boundary is non-linear, other methods, for in-
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stance quadratic discriminant analysis in this case, should perform better in
terms of predictive power. This situation can be confirmed by the results
viewed in Figures 11 and 12. Nevertheless, linear discriminant analysis still
performs remarkably well and does not seems to be disturbed by unequal
covariance matrices, even though the assumption is not satisfied. It can be
seen as an indication of the robustness of the linear classifiers, despite that
they might su↵er from high bias. This suggests that there may be situations
where linear classifiers still are considered to be useful. Further, quadratic
discriminant analysis seems to be preferable when the adjusted correlation
⇢ for one class is equal to or greater than 0.3. A low correlation will rapidly
converge to zero since the correlation between the pairs changes exponen-
tially according to an AR-process (16). This means that the correlations
close to the diagonal are low and the other correlations can be considered
negligible. Thus, the assumptions are approximately fulfilled, which is one
possible reason of why the e↵ect is relatively unnoticed with a correlation
less than 0.3.

5.1.4 Experiment D - The E↵ect of Non-Normality

The approach of this experiment is to generate data sets containing out-
liers and confirms that the prediction accuracy can vary between logistic
regression and linear discriminant analysis. The results of the simulations
presented in Figures 13 and 14 show that both classifiers are sensitive to out-
liers, in terms of scattered and uncertain results. The visualizations show
that the prediction accuracy gets worse when increasing the scale parameter.
An explanation is that the probability density function of the Cauchy distri-
bution gets more heavy-tailed as the value of the scale parameter increases,
which in turn results in outliers even further away from the mean. The box-
plot captures the inability of logistic regression to predict some of the data
sets, when the scale parameter equals 0.5, corresponding to a narrow prob-
ability density function. Nevertheless, the overall results of the simulations
indicates that logistic regression might not be a↵ected to the same extent
as linear discriminant analysis, which is consistent with the theory given in
section 2.2.7. On several occasions, probabilities in the fitting procedure for
logistic regression were close to 0 or 1 when the distribution of the radius
was chosen as heavy-tailed. This problem is triggered by the outliers. How-
ever, logistic regression still produces reasonable classification results and
did not seem to be noticeably a↵ected by these numerical problems when
they occurred, compared to the case when they did not occur. Therefore,
the problem is ignored since the aim is to compare the performance of lo-
gistic regression and linear discriminant analysis and their ability to handle
extreme values for these particular data sets.
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5.2 Evaluation, Interpretation and Complexity

The main focus in this thesis is to study the predictive power for linear
classification methods. First of all, there are many options when it comes
to measuring the prediction accuracy and we used misclassification rate and
AUC for this purpose, although the reliability of these measurements is
sometimes questionable. The advantage with these evaluation metrics is
that they have an understandable interpretation, but we should be aware of
their disadvantages. For instance, the misclassification rate appears to be
misleading in some cases since correct classifications are equally treated and
the decomposition of the test error rate is not taken into account [13]. As
a consequence, the prediction accuracy can be somewhat optimistic. Vari-
ous functions of the four possible outcomes in the confusion matrix, see
Table 1, can be of interest in order to optimize the trade-o↵ between correct
and incorrect classifications from a certain perspective. Then, the overall
predictive power is not always the primary interest.

Sometimes the interpretability of classification methods can be of great im-
portance and preferred over the predictability. An advantage among these
linear classifiers is the intuitive interpretation of the relationship between the
predictors and the response. Less flexible methods are simpler to interpret
and can to a greater extent identify parameters that have an impact on the
response, compared to more complex methods. In short, the recurring topic
is the bias-variance trade-o↵, explained in section 2.1.2. The result from
Experiment C showed that the non-linear optimal Bayes’ decision boundary
did not a↵ect the linear classifiers remarkably. The argument of choosing
a relatively simple method that is interpretable and has a less computa-
tional complexity is quite convincing if the linear classifier still meets the
required level of acceptable performance. On the other hand, imagine a
situation where one group is totally surrounded by another group. Then,
linear classifiers are incapable of adapting to data since they can only divide
observations linearly, and hence the precision in prediction accuracy is not
better than guessing. Underfitting arises and then a more flexible method
is preferable. However, complex methods have the tendency to overfit data,
and this is also important to take into account. This confirms the pursuit of
maintaining the balance between bias and variance and the choice of method
should depend on the underlying structure of the data. The simulation part
is rather restricted and only regards binary classification problems in selec-
ted situations. A natural extension of the study is to consider observations
with more than two classes. Moreover, it might be of interest to examine
a number of other experiments by combining di↵erent situations and vary
several parameters, while isolating others. The performance of logistic re-
gression and linear discriminant analysis can be evaluated from a di↵erent
perspective and other evaluation metrics can be used.
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6 Conclusions

The aim of this study is to get a deeper understanding of the linear classific-
ation methods logistic regression and linear discriminant analysis. Overall,
the simulations in this thesis agreed with the provided theory; logistic re-
gression and linear discriminant analysis perform similarly in terms of pre-
diction accuracy, despite that a variety of simulated data sets were used.
However, some notable di↵erences between the linear classification methods
were observed.

Unlike logistic regression, linear discriminant analysis is based on more as-
sumptions of the data. The simulations show that linear discriminant ana-
lysis still has high prediction accuracy, even though the assumptions are
violated. The results also show that the performance of the linear classi-
fiers is relatively unchanged when the optimal Bayes’ decision boundary is
non-linear. This is an indication that linear adaptation to data does not ne-
cessarily have devastating consequences in prediction accuracy, but it may
be valuable to consider other more flexible methods.

The main di↵erence between the two linear classifiers is the procedure of es-
timating the parameters, which turns out to have an impact in some cases.
There are no clear di↵erences in prediction accuracy between logistic re-
gression and linear discriminant analysis, for observations generated from
a multivariate normal distribution, when it comes to the distance between
two classes, sample sizes and the number of predictor variables. Further,
both methods are a↵ected by overfitting when increasing the dimensionality
and appear to be sensitive to extreme observations, where logistic regression
tends to handle outliers better than linear discriminant analysis.

To conclude, this study can support the fact that the underlying structure
of data should preferably be examined before determining which method to
use.
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7 Appendix

The results of the simulation experiments in section 3 are presented in Tables
2-14. They contain information about the predictive power of the evaluated
methods logistic regression (LR), linear discriminant analysis (LDA) and
quadratic discriminant analysis (QDA), for a particular setup. The simu-
lation procedure is replicated 50 times for each setup. The performance in
prediction accuracy is measured in terms of the average values (Ave.) and
the standard deviation (sd) of the metrics misclassification rate (MR) and
area under the ROC-curve (AUC).

7.1 Experiment A - Separability between Classes

LR LDA
� Ave. sd Ave. sd
0.5 0.4023 0.0252 0.3979 0.0204
1.0 0.3109 0.0190 0.3076 0.0176
1.5 0.2304 0.0206 0.2326 0.0209
2.0 0.1586 0.0148 0.1596 0.0161
2.5 0.1061 0.0121 0.1078 0.0165
3.0 0.0675 0.0110 0.0664 0.0104

Table 2: Experiment A. Separability of classes (Mahalanobis distance �)

in two dimensions. Metric: MR. Parameters: N = 500, p = 2, ⇢ = 0.5.

LR LDA
� Ave. sd Ave. sd
0.5 0.6392 0.0261 0.6418 0.0237
1.0 0.7564 0.0214 0.7593 0.0189
1.5 0.8528 0.0203 0.8496 0.0211
2.0 0.9208 0.0093 0.9215 0.0107
2.5 0.9604 0.0067 0.9597 0.0083
3.0 0.9833 0.0044 0.9833 0.0042

Table 3: Experiment A. Separability of classes (Mahalanobis distance �)

in two dimensions. Metric: AUC. Parameters: N = 500, p = 2, ⇢ = 0.5.
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LR LDA
� Ave. sd Ave. sd
0.5 0.4260 0.0285 0.4248 0.0254
1.0 0.3245 0.0211 0.3230 0.0226
1.5 0.2425 0.0198 0.2440 0.0202
2.0 0.1698 0.0158 0.1710 0.0166
2.5 0.1152 0.0152 0.1147 0.0153
3.0 0.0733 0.0107 0.0714 0.0114

Table 4: Experiment A. Separability of classes (Mahalanobis distance �)

with 20 predictors. Metric: MR. Parameters: N = 500, p = 20, ⇢ = 0.5.

LR LDA
� Ave. sd Ave. sd
0.5 0.6053 0.0344 0.6079 0.0289
1.0 0.7433 0.0216 0.7403 0.0243
1.5 0.8387 0.0188 0.8366 0.0184
2.0 0.9124 0.0114 0.9133 0.0122
2.5 0.9544 0.0095 0.9559 0.0085
3.0 0.9801 0.0040 0.9810 0.0042

Table 5: Experiment A. Separability of classes (Mahalanobis distance �)

with 20 predictors. Metric: AUC. Parameters: N = 500, p = 20, ⇢ = 0.5.
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7.2 Experiment B - Number of Observations and Predictor

Variables

LR LDA
N Ave. sd Ave. sd
20 0.3380 0.1043 0.3250 0.1131
50 0.3352 0.0743 0.3480 0.0722
100 0.3260 0.0351 0.3142 0.0481
250 0.3065 0.0279 0.3126 0.0289
500 0.3076 0.0214 0.3098 0.0198
1000 0.3098 0.0143 0.3133 0.0150
3000 0.3079 0.0102 0.3101 0.0090

Table 6: Experiment B. Number of observations in two dimensions.

Metric: MR. Parameters: Mahalanobis distance � = 1, p = 2, ⇢ = 0.5.

LR LDA
N Ave. sd Ave. sd
20 0.7310 0.0884 0.7396 0.1253
50 0.7360 0.0709 0.7233 0.0865
100 0.7433 0.0483 0.7465 0.0554
250 0.7624 0.0264 0.7588 0.0314
500 0.7599 0.0229 0.7602 0.0196
1000 0.7580 0.0137 0.7561 0.0145
3000 0.7609 0.0101 0.7586 0.0092

Table 7: Experiment B. Number of observations in two dimensions.

Metric: AUC. Parameters: Mahalanobis distance � = 1, p = 2, ⇢ = 0.5.
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LR LDA
p Ave. sd Ave. sd
2 0.3070 0.0230 0.3049 0.0202
5 0.3151 0.0244 0.3141 0.0238
10 0.3225 0.0267 0.3141 0.0198
20 0.3277 0.0238 0.3263 0.0193
50 0.3436 0.0244 0.3443 0.0193
100 0.3700 0.0223 0.3668 0.0229

Table 8: Experiment B. Number of predictors. Metric: MR. Parameters:

N = 500, Mahalanobis distance � = 1, ⇢ = 0.5.

LR LDA
p Ave. sd Ave. sd
2 0.7623 0.0221 0.7647 0.0187
5 0.7534 0.0249 0.7529 0.0256
10 0.7477 0.0250 0.7543 0.0224
20 0.7389 0.0252 0.7394 0.0191
50 0.7159 0.0273 0.7149 0.0209
100 0.6809 0.0241 0.6846 0.0252

Table 9: Experiment B. Number of predictors. Metric: AUC. Parameters:

N = 500, Mahalanobis distance � = 1, ⇢ = 0.5.
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7.3 Experiment C - Classes with Di↵erent Covariance Matrices

LR LDA QDA
⇢ Ave. sd Ave. sd Ave. sd
0 0.3268 0.0229 0.3268 0.0266 0.3833 0.0196
0.2 0.3199 0.0205 0.3182 0.0190 0.3216 0.0257
0.3 0.3226 0.0227 0.3224 0.0213 0.2644 0.0175
0.4 0.3184 0.0183 0.3175 0.0189 0.1936 0.0169
0.6 0.3120 0.0211 0.3112 0.0207 0.0774 0.0119
0.8 0.2921 0.0194 0.2880 0.0236 0.0118 0.0045

Table 10: Experiment C. Classes with di↵erent covariance matrices.

Metric: MR. Parameters: N = 500, p = 20. The correlation ⇢ given in the

table is adjusted for one class, while the other class is fixed at ⇢ = 0.

LR LDA QDA
⇢ Ave. sd Ave. sd Ave. sd
0 0.7386 0.0267 0.7384 0.0271 0.6599 0.0232
0.2 0.7472 0.0261 0.7468 0.0240 0.7438 0.0286
0.3 0.7447 0.0263 0.7432 0.0235 0.8166 0.0189
0.4 0.7475 0.0182 0.7477 0.0207 0.8900 0.0128
0.6 0.7558 0.0241 0.7529 0.0214 0.9794 0.0043
0.8 0.7668 0.0204 0.7668 0.0218 0.9994 0.0006

Table 11: Experiment C. Classes with di↵erent covariance matrices.

Metric: AUC. Parameters: N = 500, p = 20. The correlation ⇢ given in

the table is adjusted for one class, while the other class is fixed at ⇢ = 0.
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7.4 Experiment D - The E↵ect of Non-Normality

LR LDA
p Metric Ave. sd Ave. sd
3 MR 0.3072 0.0210 0.3071 0.0226
10 MR 0.3176 0.0164 0.3219 0.0192
3 AUC 0.7571 0.0189 0.7626 0.0220
10 AUC 0.7498 0.0174 0.7441 0.0196

Table 12: Experiment D. The distance to the center of symmetry has a

square root of a Chi-squared distribution. Parameters: Mahalanobis

distance � = 1, N = 500.

LR LDA
p Scale Ave. sd Ave. sd
3 0.5 0.1999 0.1120 0.2334 0.1065
3 1.0 0.3208 0.1009 0.3700 0.1084
3 2.0 0.4190 0.0789 0.4495 0.0666
10 0.5 0.1422 0.1083 0.1156 0.0246
10 1.0 0.1830 0.0548 0.2054 0.0557
10 2.0 0.2896 0.0422 0.3065 0.0626

Table 13: Experiment D. The distance to the center of symmetry has a

one-tailed Cauchy distribution. Metric: MR. Parameters: Mahalanobis

distance � = 1, N = 500.
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LR LDA
p Scale Ave. sd Ave. sd
3 0.5 0.7952 0.1144 0.7923 0.0990
3 1.0 0.6813 0.1036 0.6398 0.1188
3 2.0 0.5749 0.0829 0.5604 0.0877
10 0.5 0.8547 0.1076 0.8810 0.0275
10 1.0 0.8056 0.0596 0.7924 0.0453
10 2.0 0.6951 0.0407 0.6902 0.0500

Table 14: Experiment D. The distance to the center of symmetry has a

one-tailed Cauchy distribution. Metric: AUC. Parameters: Mahalanobis

distance � = 1, N = 500.
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