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Abstract

The aim of this thesis is to investigate which factors that have an

impact on the probability to graduate and the time it takes to grad-

uate at natural science bachelor’s programs, given that the programs

begin with the same basic course in mathematics, Mathematics I, at

Stockholm University. The factors used are the time to finish their

first course in mathematics and the grade in the course, the gender, the

age of the student when starting the education and which bachelor’s

program the student is enrolled in. Students not following a program

are also included in the model predicting the time to exam. The sam-

ple data consist of undergraduate students that were registered in the

course Mathematics I from 2007 until January 2019. A model for the

prediction of graduation success is computed with a binomial logis-

tic regression model, where we investigate whether students obtain a

bachelor degree within six years, using a data sample from year 2007

until 2012. The results of the analysis is that the time to finish Math-

ematics I, the bachelor’s program, the grade in Mathematics I and

the student’s age when starting the education, are associated with the

probability to graduate. Though, when visualizing the performance

of the model the AUC-value indicate bad predictability. The ’time to

degree’-model implements a gamma generalized linear model with a

data sample of students that have completed their thesis given that

they have completed Mathematics I, from year 2007 until 2017. In this

model we include students taking stand-alone courses. The analysis of

the time it takes to obtain a degree resulted in two gamma generalized

linear models with an identity and logarithmic link function, and the

time to finish Mathematics I as a significant explanatory variable.
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1 Introduction

The natural science bachelor’s programs at Stockholm University consist of
students enrolled in programs but also those who frame their degree with
stand-alone courses. Given the possibility to adapt the studies according to
the student’s needs, it results in students with a variety of aims. This thesis
aims to firstly analyze if the students will finish their thesis or not, given that
they enrolled the basic course in mathematics year 2012 and before, with a
binomial logistic regression model. Secondly to predict the time it takes to
finish the thesis with a gamma generalized linear model, given that they en-
rolled the basic course in mathematics year 2007 until 2017. The basic course
in mathematics is Mathematics I, which constitutes of 30 university credits,
given the first term or first year in the used bachelor’s programs. The course
is split into two parts which are analysis and linear algebra. The explanatory
variables in both models are the time to finish Mathematics I, the bache-
lor’s program the student is enrolled in with four or five levels depending on
the model (including stand-alone courses in the ’time to degree’-model), the
grade in Mathematics I with five levels, the student’s age in the beginning
of the education and the gender.

Zhong’s thesis (2016) has a similar subject but she does her analysis only
on students in the bachelor’s program in mathematics and mathematics and
economics, while this thesis analyze all natural science bachelor’s programs
at Stockholm University whose first course is Mathematics I. The author’s
models are also formed differently. She builds two generalized linear mod-
els that are binomial logistic regression models. The first model predicts the
probability to obtain a thesis within three years while this thesis predicts the
probability to finish the thesis within five to six years to include the delayed
students, and the students that studies in half-time. Zhong’s second model
predict the time to finish the degree with a categorical response variable
with four factor levels while this thesis uses a continuous response variable
measured in years, for the gamma distributed generalized linear model.

The interest in this topic comes from institutions wanting to know the
factors influencing students’ course of studies and how large the impact is.
The data material is given by the Department of Mathematics at Stockholm
University from LADOK, a student administration system where student’s
merits and registrations are documented.

2 Description of the data material

The data material used to obtain the models in this thesis is a sample of
1381 undergraduate students from year 2007 until 2019 in January, that
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started their program with Mathematics I. This is not the entire sample of
1629 observations which includes all students that are enrolled in programs,
even those that are not bachelor’s programs or stand-alone courses, and also
includes students majoring in economics. In the sample of 1381 students we
exclude all students that are not enrolled in bachelor’s programs or stand-
alone-courses, and also the students majoring in economics since it is not
a subject of natural science. We are with this sample computing two mod-
els with different approaches and motives, so the data is tidied in different
ways. In the binary model we investigate the probability that someone fin-
ishes the thesis given that he or she has finished Mathematics I. We filter
the data such that we only use observations of bachelor’s students that were
registered in Mathematics I year 2012 and before. This is built on the as-
sumption that the students that still have not finished their theses after five
to six years on the bachelor’s programs, most likely never will, including
the students that studies in half-time. Note, that since we are investigating
the probability to finish the bachelor’s thesis, we assume that the students
enrolled in bachelor’s programs have intentions to finish their theses unlike
the students taking stand-alone courses. Since we cannot be certain about
their intentions, the later ones are not included in the analysis. This leaves
us with 381 bachelor’s students that have finished Mathematics I, to fit the
model.

In the analysis of the time to finish the thesis we exclude all students that
have not finished their thesis, since we are investigating the time to finish
the thesis given that the student has finished Mathematics I. This leaves us
with 361 students enrolled in bachelor’s programs and stand-alone courses,
that have finished their thesis. The time to finish the thesis is measured by
taking the time difference of when the student is enrolled in the basic course
until it has received a grade in the bachelor’s thesis. It is important to stress
that since we are only using observations with finished theses, some students
of year 2015 and 2016 may have not gotten the chance to finish their theses
which gives us skewed data. The students of those years might seem "lazy"
compared to older classes. The variables will be presented in Table 1 below.
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Table 1: List of variables
Variable Type Description
Time.Finish.MM2001 Continuous Time to finish Mathematics I and obtain a grade

in years
Program Nominal The bachelor’s program the student is enrolled

in
Grade.MM2001 Ordinal The student’s grade in Mathematics I, grade A

to E
Age Continuous Age of the student when starting the education
Gender Nominal The student’s gender
Finish.Thesis Nominal If the student has finished his/her thesis or not

within five to six years
Time.Finish.Thesis Continuous Time to finish the thesis counting from registra-

tion date of Mathematics I until an approved
thesis, in years

2.1 Explanatory variables

Both models that we will fit will contain the given explanatory variables
Time.Finish.MM2001, Program, Grade.MM2001, Age and Gender from Ta-
ble 1. Each independent variable will be shortly presented in the following
subsections and the figures presented will contain both those that have fin-
ished the thesis, those who have not and the students taking stand-alone
courses.

2.1.1 Bachelor’s Program

The natural science bachelor’s programs, at Stockholm University, are manu-
ally put into five categories: computer science, physics, mathematics, stand-
alone courses and the rest which includes the bachelor’s programs in astron-
omy, meteorology, biomathematics and biomathematics and computational
biology. Table 2 presents the size proportions in each category and we can
see that the students taking stand-alone courses consist of almost half of the
data sample. They are followed by the student majoring in mathematics
with 29% etc. Note that this data sample consists of all students that have
enrolled and passed Mathematics I from year 2007 until 2019 with and with-
out a finished bachelor’s thesis.
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Table 2: Proportion of students in each program
Program Frequency Proportion
Stand-alone 686 49.7 %
Mathematics 404 29.3 %
Physics 128 9.3 %
Computer Science 39 2.8 %
The Rest 124 9.0 %

2.1.2 Time to finish Mathematics I

The time to finish the first term basic course Mathematics I, of 30 university
credits (hp), is a continuous variable, obtained by taking the difference in
years between the date of registration and the date when the grade of the
course is registered. Table 3 presents the median of time it takes to finish the
basic course in each program. We see that physics and mathematics students
take shorter time than the rest, and that students in computer science take
the longest time. This is due to the computer science program have the basic
course on half-time which is a year. Though, it is important to stress that we
have only 39 computer science students which is 2.8% of the data. Among
those we have 24 students whom have taken more than 1 year to finish this
course and 18 of those students have not finished their thesis while 6 students
have.

Table 3: Median time to finish Mathematics I in each program
Program Time (years)
Physics 0.36
Mathematics 0.37
Stand-alone 0.41
Computer Science 1.78
The Rest 0.38

2.1.3 Grade in Mathematics I

The grades in Mathematics I is in five levels from A to E and Grade.MM2001
is a categorical variable of the ordinal type. Below in Figure 1 we find the
box plots where the time to finish the thesis is plotted against the grades
in Mathematics I. We can see that all plots are skewed and that there exist
outliers in every grade of the course except for the grade C. Though, for
the grade C, and the grade D, the data is more spread indicating that the
time to finish the thesis vary more for the students with the given grades
in Mathematics I. Note that a few students have finished their thesis in a
very short amount of time were e.g. one student finished the thesis after
0.5 years and received the grade A. This student is a physics major and
must have taken courses before being enrolled in the course Mathematics I.
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The same goes to other students that have finished their thesis in less than
three years. It is important to stress that you can earn a bachelor’s thesis
in e.g. mathematics or mathematical statistics by just taking the obligatory
courses, and sufficient amount of courses in the subject, if you have other
courses to include in your degree. It can also be the case that some are not
finished with their bachelor’s programs but have been able to write their
thesis despite of that.

Figure 1: Time to finish the thesis vs. grade in MM2001

2.1.4 Age

Age is a continuous variable which gives us the age of the student when
he or she was first registered in the course Mathematics I. The variable is
obtained by taking the difference in years between the date of birth and the
registration date of Mathematics I. By observing Figure 2 below we see that
the majority of students are 19-20 years old when starting their education.
This variable will be quite important to investigate when evaluating if the
age of the student when they begin the education is important or not.
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Figure 2: The distribution of age when starting the education

2.1.5 Gender

Gender is a nominal variable taking two values. The distribution of gender
is presented in Table 4 below where it is shown that the students of the data
sample of 1381 observations only consist of one third females. Looking at
the box plots of Figure 3 we see that they are very much alike with medi-
ans close to each other. Also, note that there are more outliers of the male
students which is self-evident since there are twice as many males as females.

Table 4: The distribution of gender
Gender Proportion
Male 66.7 %
Female 33.3 %

Figure 3: Time to finish the thesis vs. gender
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3 Theory

3.1 Models

3.1.1 Generalized linear models

In the case of having non-normal response distributions generalized linear
models, (GLM), are to be used as an extension of ordinary regression models
(Agresti, 2012, p. 114). The GLM consist of three components which is
the random response component Y , a systematic component related to the
explanatory variables and a link function that links together the random
and systematic component. The random component is the response variable
with independent observations with the probability density function

f(yi; θi) = a(θi)b(yi) exp[yiQ(θi)] (1)

where θi varies depending on the outcome of explanatory variables for i =
1, ..., N and Q(θi) is the natural parameter.

The systematic components illustrates a linear relationship between a
vector (η1, ..., ηN ) and explanatory variables (Agresti, 2012, p. 114). If xij
is the value of the predictor j for observation i we obtain

ηi = β0 +
∑
j

βjxij (2)

which is called the linear predictor for j = 1, ..., p and i = 1, ..., N .

The link function links µi = E(Yi) to ηi by ηi = g(µi) when i = 1, ..., N ,
where g is the monotonic and differentiable link function (Agresti, 2012, p.
114). The function g has the formula

g(µi) = β0 +

p∑
j=1

βjxij (3)

which links E(Yi) to the explanatory variables.

The first assumption made for the distribution is that yi, given xi, are
conditionally independent, and the second assumption is that the distribu-
tion of yi|xi is from a simple exponential family (Fahrmeir & Tutz, 2001,
p. 19). The expected value will be E[yi|xi] = µi and the distribution may
depend on a dispersion parameter φ.
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3.1.2 Odds ratio

In a logistic regression when using categorical data we look at the odds and
odds ratio (Agresti, 2012, p. 44). The odds is the proportion of a successful
event and a failed event. Given a probability π of success the odds is

Ω =
π

1− π
(4)

where π ∈ (0, 1). Having odds greater than one means that a success is more
likely than a failure, and if they are less than one a failure is more likely to
happen. The odds ratio is when you measure the difference in proportion to
succeed for two groups like the following:

θ =
Ω1

Ω2
=
π1/(1− π1)
π2/(1− π2)

(5)

where Ω1 is the odds ratio of group 1 and Ω2 is the odds ratio of group 2.
If the odds ratio is greater than one it means that group 1 is more likely to
have success than group 2, and the opposite holds if the odds ratio is smaller
than one. In the case of odds ratio being one, both groups will equally likely
have success.

3.1.3 Logistic regression for the probability to finish the thesis

With a binary response variable Y and a vector of explanatory variables X,
we use a logistic regression model to fit the data (Agresti, 2012, p. 119, 163-
164). The assumption is that there exist a non-linear relationship between
x and π(x) which is defined as:

π(x) =
exp (α+ βx)

1 + exp (α+ βx)
(6)

where the sign of β illustrates an increase or decrease of π(x) as x increases.
Hence, as x increases and β > 0, π(x) increases, and the opposite holds
for when β < 0. The probability that Y = 1 given that we have observed
X = x is denoted as π(x) = P (Y = 1|X = x). Most often the non-linear
relationship between π(x) and x is monotonic meaning that a change in π(x)
is monotonic and continuous depending on x. Having a β close to zero or
zero means that Y is independent of X. Using multiple predictors in the
logistic regression we get the GLM and taking the logit of it we obtain the
linear relationship

logit[π(xi)] = log
π(xi)

1− π(xi)
= β0 +

p∑
j=1

βjxij (7)

which is the log odds for the explanatory variable j and observation i. The
models have a logit link function and a binomial random component. The
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monotonic and continuous relationship between π(xi) and xi gives us there-
fore a linear relationship between the log odds and the data. We know that
the logit can be a real number since π(xi) ∈ (0, 1).

The odds are an exponential function of xi which we can see by ex-
ponentiating the logit function of equation (7). Hence, eβj is the odds of
the explanatory variable xj , meaning that the odds increase multiplicatively
by eβj for every increase in the unit of the explanatory variable xj . In
this case, we will use the binomial GLM with the logarithmic link function
g(µi) = log(µi).

3.1.4 Multiple regression for the time to finish the thesis

A multiple regression model with a response variable yi and explanatory
variables xij for observation i and variable j has the following expression

yi = β0 +

p∑
j=1

βjxij + εi (8)

where εi is the error term for observation i (Sundberg, 2016, p. 64). In this
case the response variable is yi = Time.Finish.Thesisi.

3.1.5 Assumptions

When constructing a regression model there are some assumptions to make
(Gelman & Hill, 2007, p. 45). Following are the assumptions, listed in a
decreasing order of importance:

1) Validity: appropriate data is used to solve the problem.

2) Additivity and linearity: Additivity is one of the most important as-
sumptions for a regression model where the effects of the explanatory vari-
ables on the expected value of the dependent variable are additive. Hence,
the explanatory variables’ influence on the response variables is independent
of other influences, like the intercept. If this is violated transformations can
be used. There should be a linear relationship between the response variable
and the predictors.

3) Independence of errors: The error terms should be independent.

4) Homoscedasticity: The error terms should be constant meaning V ar(εi) =
σ2.
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5) Normality: All error terms should be normal distributed i.e. εi ∈
N(0, σ2).

3.1.6 Gamma distribution

In the case of having continuous and positive variables the gamma distribu-
tion is appropriate when computing a regression analysis (Fahrmeir & Tutz,
2001, p. 23). The density will be

f(y|µ, ν) =
1

Γ(ν)
(
ν

µ
)νyν−1 exp (−ν

µ
y), y ≥ 0 (9)

where µ > 0 is its mean and the shape parameter is ν > 0 which gives us
the form of the density. The dispersion parameter is φ = 1/ν. Depending
on the shape parameter we will obtain the following different cases:

f(y) =


decreases monotonically, if 0 < ν < 1

exponential distribution, if ν = 1

0 at y=0 or mode at y = µ− µ/ν and positively skewed, if ν > 1

(10)
In case of the gamma distribution the link function can be the inverse

link function i.e. g(µi) = 1/µi, the identity meaning g(µi) = µi and the
log-link meaning g(µi) = log(µi).

3.2 Selection of models

The method of choosing a model from data that reflects the true outcome,
and minimize the number of variables, is to create a more numerically stable
model (Hosmer & Lemeshow, 2013, p. 90). The standard error gets larger
the more variables included in the model which makes the model more de-
pendent on the observed data. These methods differs depending on if it is a
logistic regression model or another regression model. Hence, in the follow-
ing sections we will present different approaches depending on the type of
model. We will implement purposeful selection and stepwise procedures.

3.2.1 Purposeful Selection

Purposeful selection is used in logistic regression and consists of seven steps
normally used when choosing a model (Hosmer & Lemeshow, 2013, p. 90).
According to Bursac et al. (2008) purposeful selection works well for smaller
sample sizes i.e. 240-600 observations, like in this study. This method is
preferred since it allows the statistical analysts to control every step. In
this way the analyst can find the variables that influence the dependent and
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explanatory variables and cause false relation, i.e. confounders.

Step 1
The method starts with an analysis of the explanatory variables. In the case
of categorical variables a contingency table is to be made for each variable,
with frequency counts where the outcome y = 0, 1 is analyzed against the k
levels of the explanatory variable. Pearson’s chi-square test of independence
(H0: independence) will be used in the test since it is asymptotically equiv-
alent to the likelihood ratio chi-square test, were both have k − 1 degrees
of freedom. For the continuous variables the likelihood ratio test will be
used to test each variable. In both cases we will use the significance level of
25% since variables can be insignificant in the initial stage but later on show
significance to the model together with other variables. The equation of the
Pearson chi-square statistics is (Agresti, 2012, p. 75)

χ2 =
∑
i

∑
j

(nij − µ̂ij)2

µ̂ij
(11)

where µ̂ij = nπ̂i+π̂+j = ni+n+j/n, π̂i+ = ni+/n and π̂+j = n+j/n for row i
and column j. The equation of the likelihood ratio statistics is

G2 = −2 log Λ = 2
∑
i

∑
j

nij log(nij/µ̂ij) (12)

Step 2
Now a model with the significant variables from step 1 is fitted (Hosmer
& Lemeshow, 2013, p. 91). We investigate what variables that are not
significant on a 5% significance level according to the Wald statistic and
exclude these. Thereafter we use the partial likelihood ratio test to test this
model against the one we obtained from step 1. The partial likelihood ratio
test is the following (Agresti, 2012, p. 11)

− 2(L0 − L1) (13)

where L0 and L1 are the maximized log-likelihood functions.

Step 3
Now we will compare the models’ values of the estimated coefficients from
step 2, i.e. the smaller model with significant variables with the larger model
(Hosmer & Lemeshow, 2013, p. 92). We will compute the following ratio
(Hosmer & Lemeshow, 2013, p. 67)

∆β̂% = 100
θ̂i − β̂i
β̂i

(14)
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where θ̂i is the coefficient estimate i of the smaller model and β̂i is the co-
efficient estimate i of the larger model. They state that if the ∆β̂ is larger
than 20% then there is a risk that the excluded variables are important to
the other variables as a group, and should be added back.

Step 4
In this step each variable that was insignificant in step 1 will be added back
one at a time, and the significance will be checked with the Wald statistic
p-value. In the case of categorical variables with more than two levels the
likelihood ratio test will be used. This is done due to investigate which vari-
ables that contribute more in presence of other variables than individually.

Step 5
This step consists of examining the continuous variables, and check if the
logit increases or decreases linearly against the variable. This can be com-
puted by splitting up the data in four categories based on the data’s quartile
(Hosmer & Lemeshow, 2012, p. 95). Thereafter we compute a categori-
cal variable with the four levels, the lowest one is used as reference level.
Then, a new model is created where the continuous variable is replaced by
the categorical version. We plot the estimated factor levels of the coefficient
against the midpoints of the three upper quartiles. Additionally, we plot a
coefficient that euqals zero against the first quartile. By observing the plot
and comparing the models we decide what variable is more appropriate.

Step 6
We will now check if there are two-way interactions among the variables in
the model we obtained from step 5 (Hosmer & Lemeshow, 2012, p. 92).
The interaction terms should be added one at a time, and their significance
tested with a likelihood ratio test at a 5% significance level. Thereafter we
redo step 2 to get a simpler model.

Step 7
The final step is to check if the model fits the data well and the models
prediction ability. This will be done by Hosmer-Lemeshow test, AUC and
ROC-curves and also k-fold cross-validation, which will be discussed more
thoroughly in the next sections.

3.2.2 Goodness of fit

The goodness of fit illustrates how well a certain model can predict the data
(Agresti, 2012, p. 173). A logistic regression model can be tested with
Pearson’s chi-square test and the likelihood ratio G2-test. When the data
is ungrouped the statistics will not converge leaving us with the Hosmer-
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Lemeshow test. In this test, using the ungrouped original data and according
to the estimated probabilities of success, we partition observed and fitted
values. They should have equal sizes, and most often they are partitioned
in ten groups g that are ordered in a rising order. Then the partitions are
compared with the observed and fitted counts. Having a binary outcome,
yij in group i for observation j, and the fitted probabilities for the model for
ungrouped data, π̂ij , we get the statistic K

K =

g∑
i=1

(
∑

j yij −
∑

j π̂ij)
2

(
∑

j π̂ij)[1− (
∑

j π̂ij)/ni]
(15)

where j = 1, ..., ni and i = 1, ..., g. The test is approximately chi-squared
distributed with degrees of freedom g − 2, and tests the null hypothesis if
the model fits the data well.

3.2.3 ROC-curve

To measure a model’s prediction ability we use the Receiver Operating Char-
acteristic Curve (Agresti, 2012, p. 224; Hosmer and Lemeshow, 2013, p.
173). This is a plot of true signal, sensitivity, against the probability of false
signal which is computed by (1 − specificity) for range of possible cutoffs.
Since classification tables are less informative than ROC-curves they will not
be applied, this is due to the ROC-curve that summarizes predictive powers
for all possible cutoffs. The sensitivity, also called the true positive rate, is
defined as the probability of a correct classification when y = 1, so the pre-
dicted value is successful given that the true value is successful. The false
positive rate is another definition of 1-specificity and is the probability of an
incorrect classification when y = 0 , so the predicted value is failed given
that the true value is failed. Plotting these against each other it will result
in a convex curve where the area between this curve and a straight line going
through (0, 0) and (1, 1) yields the AUC, the Area Under Curve, evaluating
the model’s ability of prediction. This is illustrated in the figure below taken
from Agresti (2013, p. 225).
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Figure 4: Example of a ROC-curve with AUC

According to Hosmer and Lemeshow (2013, p. 177) there are some gen-
eral guidelines that interprets the given AUC-value which is presented in the
following table:

AUC: Discrimination:
0.5 No
(0.5, 0.7) Poor
[0.7, 0.8) Acceptable
[0.8, 0.9) Excellent
≥ 0.9 Outstanding

3.2.4 K-fold Cross-validation

Cross-validation is very often used to estimate the prediction error (Hastie et
al., 2009, p. 241). When splitting the data set into K data sets, we use K−1
part of it fitting the model and the remaining to test the model’s fit to the
data. Here the model’s prediction error is calculated in the prediction of the
kth part. Usually k is five or ten and it’s then called k-fold cross-validation.
The procedure is repeated K times so each fold can be used as the test set.
For this type of cross-validation the method estimates the expected error.
With 5-fold the method has lower variance but depending on the training
set’s size, it can be biased. By looking at the performance of the method in
relation to the size they come to the conclusion that the training set of size
40 is not good for 5-fold cross-validation but with 160 observations the bias
would lower. With higher data sets the conclusion would be the same.
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3.2.5 Variance Inflation Factor (VIF)

The variance inflation factor is used in a correlation analysis to examine
collinearity between the explanatory variables in both linear, gamma GLM
and logistic regression models (Sundberg, 2016, p. 73). It shows how much
larger variance each variable has in a model with other variables, than if
it would be the only explanatory variable in the model, or if it would be
orthogonal to the rest. The variance of a regression coefficient is expressed
as

Var(β̂j) =
σ2

s2jj
VIF (16)

where the VIF-factor is expressed as

VIF =
1

1−R2
j

(17)

where R2
j is the coefficient of determination for variable xj in relation to the

other variables. This coefficient is defined as the portion of the variance that
is explained by the model (Sundberg, 2016, p. 69). The following is the
equation of the coefficient of determination

R2
j = 1− SSE

SST
= 1−

∑
i(yij − y∗ij)2∑
i(yij − yj)2

(18)

where SSE is the sum of squared errors, SST is the total sum of squares,
yij − y∗ij is the residuals and yj is the mean.

3.2.6 Akaike Information Criterion (AIC)

The Akaike information criterion is another way of evaluating different mod-
els (Agresti, 2012, p. 212). The criterion uses the maximized log-likelihood
function and the model’s degrees of freedom. So with this criterion you get
how close the fitted values are to the true mean values. It is given by

AIC = −2(log(L̂)− k) (19)

where L̂ is the maximized likelihood-function and k is the number of param-
eters of the model.

3.2.7 Forward selection

The following three model selection procedures are the ones that can be
both used for linear models, gamma GLM and logistic regression models.
Forward selection starts its algorithm with the intercept only and the model
is expanded with one variable every time (Sundberg, 2016, p. 71). The
explanatory variable chosen into the model is the most significant one or
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the one that yields the smallest AIC-value for the model. This study will
compute the model selection based on the AIC and not the p-value. So the
variables are chosen depending on the model with the most minimized AIC
value.

We are using the R-function step() which does this procedure based on
the models’ AIC. This function is used for the stepwise and forward selection,
and backward elimination for both models in this thesis.

3.2.8 Backward elimination

This method assumes that we have a model with all its explanatory variables
(Sundberg, 2016, p. 71). In every step the variable that gives the model
the largest AIC-value is removed, and the model is compared against other
reduced models. If multiple variables give us relatively high AIC-values the
method chooses the variables that give us the model with the lowest AIC.
The procedure is repeated until we obtain the model with the lowest possible
AIC.

3.2.9 Stepwise selection

In the stepwise selection we start with an empty model and its intercept
(Sundberg, 2016, p. 71). In every step the algorithm apply an explanatory
variable that gives the model a lower AIC value, as in forward selection,
but it also searches for the model with the lowest AIC-value considering the
variables that are already applied. Hence, if the model gets a higher AIC-
value with the newly applied variable but only in relation to one already
applied variable, the old variable will be eliminated.

4 Analysis

4.1 Logistic regression for the probability to finish the thesis

The model built to evaluate if a natural science bachelor’s student at Stock-
holm University graduates or not, given that they have finished the course
Mathematics I, is a generalized linear model in the binomial family. Hence,
a logistic regression model will be built with the explanatory variables
Time.Finish.MM2001, Program, Grade.MM2001, Gender and Age, with the
response variable Finish.Thesis that gives us 1 for a student that has finished
its thesis within six years, or 0 for the one that has not. The variables Pro-
gram, Grade.MM2001 and Gender are factors which means that one level of
each variable is chosen as reference level.
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4.1.1 Purposeful selection

To evaluate which model has the best predictability, and fits the data best,
we will implement purposeful selection.

Step 1: The first step consists of an univariate analysis of the explanatory
variables. We will first test the continuous variables with the null hypoth-
esis H0 : βi = 0, of the i:th variable, with the log likelihood test. Both
Time.Finish.MM2001 and Age were significant on a 25% level. To test the
categorical variables with chi-square tests we compute contingency tables,
presented in Appendix A Table 1-3, that result in the variable Gender being
insignificant on a 25% level. The table below presents the univariate analysis
of the variables:

Table 5: The p-values obtained from the tests
Parameter P-value
Time.Finish.MM2001 0.0133
Age 0.0902
Program 0.00764
Grade.MM2001 0.00114
Gender 0.616

We proceed to step 2 with a multiple logistic regression model excluding
the gender variable.

Step 2: Now we use the model with the explanatory variables that were
significant on a 25% level from step 1, the result is presented in Table 6.
Looking at the Wald statistics we see from the p-values that all variables
are insignificant except for a factor level of Grade.MM2001 and two factor
levels of Program, therefore we cannot exclude the variables. We compute a
likelihood ratio test to see if the data needs the other variables by testing a
model, without these variables, against a model including them. Hence, we
fit a new model with only Program and Grade.MM2001, since all the other
variables were insignificant in our multiple logistic regression model. We test
this model with the likelihood ratio test against the model we obtained from
step 1. The result indicates that we cannot reject the null hypothesis on a
5% level since the test’s p-value was 9.8%. This means that a reduced model
may be appropriate for the data so we continue on with the reduced model
that only includes the variables Program and Grade.MM2001, and the result
is presented in Table 7 in Step 3.
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Table 6: The multiple logistic regression model excluding Gender
Parameter Levels Coefficient SE P-value
Intercept 0.257 0.604 0.671
Time.Finish.MM2001 -0.139 0.0957 0.148
Program Physics 0.613 0.268 0.0223*

Computer science 0.435 0.583 0.455
The Rest 0.851 0.272 0.00173 **
Mathematics 1.0 - -

Grade.MM2001 A 0.931 0.321 0.00369 **
B 0.109 0.327 0.738
C 0.146 0.317 0.646
D 1.0 - -
E -0.558 0.399 0.162

Age -0.0363 0.0244 0.138

Step 3: In this step we will compare the variables we have in both models
and evaluate if the coefficients differ more than 20%. The two variables that
are in the smaller model, which is presented in Table 7, are Program with 4
levels, were the bachelor’s program in mathematics is used as reference level,
and Grade.MM2001 with five levels, were the grade D is used as reference
level. The old model, presented in Table 6, is the model we compare the
reduced model against. The calculations of the proportional differences in
the coefficients between the models are the following:

∆β̂Physics% =
0.643− 0.613

0.613
∗ 100 = 4.89%

∆β̂Comp.Science% =
0.0829− 0.435

0.435
∗ 100 = −80.94%

∆β̂Rest% =
0.854− 0.851

0.851
∗ 100 = 0.35%

∆β̂A% =
1.010− 0.931

0.931
∗ 100 = 8.49%

∆β̂B% =
0.198− 0.109

0.109
∗ 100 = 81.65%

∆β̂C% =
0.206− 0.146

0.146
∗ 100 = 41.10%

∆β̂E% =
−0.568− (−0.558)

(−0.558)
∗ 100 = 1.80%

We see a large proportional difference in the bachelor’s program in com-
puter science where the proportion is approximately 81%, though negative.
So the difference is larger than 20% but not for the bachelor’s programs in
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physics and the rest. The grades in the course Mathematics I show that
two grades, B and C, have differences larger than 20% but not in the other
two cases, for the grades E and A. This creates a difficulty in drawing a
conclusion about the models. Though, since the mentioned factors indicate
that there is a risk that the excluded variables are important to the data,
we choose to add them back. Not the same conclusion is drawn in step 2
with the LR-test but since the proportional differences are so large for the
coefficients we choose to continue with the model that only excludes the
gender.

Table 7: The multiple logistic regression with Program and Grade.MM2001
Parameter Levels Coefficient SE P-value
Intercept -0.707 0.247 0.00424 **
Program Physics 0.643 0.267 0.0158*

Computer science 0.0829 0.529 0.876
The Rest 0.854 0.270 0.00155 **
Mathematics 1.0 - -

Grade.MM2001 A 1.010 0.313 0.00125 **
B 0.198 0.321 0.537
C 0.206 0.313 0.510
D 1.0 - -
E -0.568 0.400 0.151

Step 4: In the univariate analysis in step 1 the variable Gender was not
significant. By adding it back to the model it will still be insignificant on a
5% level. We continue to the next step with the model excluding Gender.

Step 5: In this step we will examine the continuous variables by controlling
that the logit increases or decreases linearly against the variable. We start
off by computing the quartiles and by those split up the data in categories,
using cutpoints based on the quartiles. This gives us a four factor level vari-
able where the first quartile will be the reference group. Thereafter, we plot
the three categorical factor levels of Age against the upper three quartiles,
and a coefficient that equals zero against the first quartile, and get Figure
5a. By the figure it is obvious that they are not linear but scattered, so
we compute a likelihood-ratio test of the model with categorical age against
the one with continuous age. The test shows insignificance which indicates
that a reduced model is more appropriate for the data. Hence, we continue
with using the continuous age in our model. The same approach was applied
to test the second continuous variable in the model, Time.Finish.MM2001.
With a scattered plot, Figure 5b, and an insignificant p-value we draw the
same conclusion as for the age, that we keep the continuous variable and
proceed with the model from step 4.
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(a) (b)

Figure 5: Categorical age coefficients vs. quartiles to the left (a) and cate-
gorical time to finish MM2001 coefficients vs. quartiles to the right (b)

Step 6: In this step we will check for all possible two-way interactions
among our main effects. The four main effects result in six two-way inter-
action terms. By adding them one at a time we get no significant likelihood
ratio test at a 5% significance level so we continue with the model that has
only excluded the gender-variable.

Step 7: In this step we evaluate the model’s prediction ability. First we will
do this by the AUC-value and the ROC-curve. We will sample out 80% of
the data for the training sample and the rest for testing, which is computed
once. The AUC with this approach is 0.548 meaning that the model has a
poor ability to predict the data and is almost making random guesses. By
computing a 5-fold cross validation we obtain the AUC-value 0.645 for our
last model which is larger than what the sampled data obtained, but still
a poor prediction. The 5-fold cross validation is computed by splitting up
the data into five data sets, use four sets to fit the data and the remaining
to test the model’s fit. Hence, the procedure is computed five times where
each fold is used as both train and test set. Due to the small data sample we
could not have a validation set. Since the 5-fold cross-validation has lower
variance and bias, this method is more reliable than the sampling method
described before.

The ROC-curve for the sampled data, Figure 6a, is presented below along
with the ROC-curves for the cross validated data in Figure 6b. Figure 6b is
obtained by printing all five folds from the cross-validation and the AUC is
also obtained from the cross validation. The R-package and functions used
for this procedure is the package caret with the functions trainControl and
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train. The Hosmer-Lemeshow test shows that the model does not fit the
data well since we got a small p-value, i.e. a significant result. This means
that the difference between the model and the observed data is significant so
the results can be misleading. Though, we will continue with the stepwise
procedures and thereafter conclude which model to choose.

(a) (b)

Figure 6: ROC-curves from sampled data with AUC 0.548 to the left (a)
and 5-fold cv data with AUC 0.645 to the right (b)

4.1.2 Stepwise regression

Now we will use stepwise selection, backward elimination and forward selec-
tion to fit a model. By using the AIC as a measure for choosing the right
model and choosing the model with the lowest AIC we come to the conclu-
sion that both stepwise selection and backward elimination give us the same
model as purposeful selection, while forward selection give us the original
full model. The AUC with sampled data for the full model will be 0.545
which is slightly lower than the AUC for the reduced model and still a bad
prediction. By using the 5-fold cross-validation the AUC will again be higher
than the AUC obtained from sampled data, with an AUC of 0.637, which is
lower than the AUC of the reduced model. This is again a poor value but
better than the AUC we obtained by sampling the data. Since 5-fold cross
validation has lower variance and bias in this case, its result is more reliable
than the sampling method. The ROC-curves for the full model are presented
in Figure 7a and Figure 7b below. Figure 7b is obtained in a similar manner
as Figure 6b.
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(a) (b)

Figure 7: ROC-curves from sampled data with AUC 0.545 to the left (a)
and 5-fold cv data with AUC 0.637 to the right (b)

The Hosmer-Lemeshow test gives us a p-value higher than 5% i.e. an
insignificant result for the full model, meaning that we have no significant
difference between the model and the observed data. Hence, the model fits
the data well. Conversely, the AUC-values have been slightly higher for
the reduced model than the full model. It is also important to stress that
since three out of four used model selection methods resulted in the reduced
model, and that we aim to obtain the most predictive model based on the
AUC, we can conclude that our reduced model is more appropriate for the
data material despite the outcome of the Hosmer-Lemeshow test.

4.2 Multiple linear and gamma regression for the time to
finish the thesis

The multiple regression model that evaluated the students’ time to finish
the thesis given that they have finished the course Mathematics I is ei-
ther a linear or a gamma distributed model. The model will be built with
the explanatory variables Time.Finish.MM2001, Program including stand-
alone courses, Grade.MM2001, Gender and Age, with the response variable
Time.Finish.Thesis which consists of continuous, positive decimal numbers
measured in years.

4.2.1 Correlation analysis

In the first stage when evaluating data material with a continuous dependent
variable and multiple explanatory variables, we have to investigate if they are
collinear or multicollinear, meaning that they are linearly predicted by other
variables. Firstly we will compute Pearson’s correlation coefficient of the
continuous variables of both the dependent and independent variables. To
analyze the categorical variables’ collinearity we create contingency tables of
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two variables at a time and compute chi-square tests to see if they are inde-
pendent or have some kind of correlation. The continuous variables show no
severe correlation but Time.Finish.Thesis and Time.Finish.MM2001 has a
weak correlation of 0.31. The other variables have even weaker correlations,
where Time.Finish.Thesis and Age have a negative correlation of −0.026,
and Time.Finish.MM2001 and Age have a correlation of 0.0078. The reason
for the higher but weak correlation between the time to finish the thesis
and Mathematics I could be that both variables’ starting point is when the
student enrolled the course Mathematics I.

Before computing the chi-square tests we create contingency tables for
two categorical variables at a time which are presented in Appendix A Ta-
ble 4-6. The chi-square test between Program and Grade.MM2001 is in-
significant meaning that we cannot reject the null hypothesis that they are
independent. The test between Gender and Program is significant so we
reject that they are independent and therefore correlation can exist between
these variables. The chi-square test between Gender and Grade.MM2001
show insignificance meaning that we cannot reject that they are indepen-
dent. To check multicollinearity we use the variance inflation factor which
shows generalized vif-values not larger than 1.3 for the linear model, the val-
ues are presented in Appendix B. The correlation between a continuous and
a categorical variable is more complicated since the correlation measures if
there is a linear relationship between two variables, which cannot be the case.

4.2.2 Stepwise regression

The data is fitted in a linear model that even with transformations cannot
show evenly spread observations around zero of the fitted values against the
residuals of the model, which is used to show linearity and non-constant
error variances. The explanatory variable is not linear to the independent
variables either. We start off by implementing backward elimination, step-
wise and forward selection with AIC to reduce the variables, and again
test the linearity-assumptions. Forward selection gave us the full model.
Both backward elimination and stepwise selection gave us a model with only
Time.Finish.MM2001 as an explanatory variable, since that was the model
with the lowest AIC. Even then the fitted values against the residuals did
not imply linearity nor constant variance of error terms, so the conclusion
can be drawn that the error terms are not normally distributed. We try to
transform the dependent variable in the reduced models by taking the loga-
rithm or the square root of the dependent variable, but it does not confirm
the assumption of the error terms normality nor constant variance. Since
the dependent variable is positive, skewed and continuous we can compute
a generalized linear model with the gamma distribution as stated in section
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3.1.6. The skewness is presented in Figure 8 below which shows that the
time to finish the thesis is right skewed i.e. positively skewed. This means
that the mean is greater than the median which is a correct illustration since
the mean is 3.5 years while the median is 3.1 years. Therefore we continue
with gamma distributed generalized linear models. Also, note the discus-
sion we had in section 2.1.3 about outliers. It is important to stress that
some students that have finished their thesis in less than three years, have
been able to due to the opportunity to include courses in other subjects in
their degrees. We do not have information about this manner, but since the
opportunity is given we can conclude this.

Figure 8: Boxplot of time to finish the thesis

Computing the gamma distributed model with the identity, the logarith-
mic and the inverse link-functions, it gives us models presented in Appendix
C Table 8-10. From the tables we see that the AIC-values are close to each
other but the model with the identity link function has the lowest AIC-value.
The plots from Appendix D illustrates the fitted values against the residuals
of each of these models in Figure 9a, 10a and 11a. The result is skewed but
since the assumed distribution is the gamma distribution we cannot draw
the conclusion that the residuals should be normal. Therefore we fit a model
where the response variables are simulated from the gamma distribution,
where the shape and scale parameters are determined from the models we
want to compare the simulated residuals against. The result, presented in
Appendix D, of the gamma GLM with inverse link function show no simi-
larities since the simulated residuals in Figure 11b are more spread to the
right while the model’s residuals are in a cluster to the left. The other two
models’ simulated residuals, Figure 9b and 10b, show similar patterns as the
models’ residuals so we draw the conclusion that we can proceed in investi-
gating the two gamma distributed models with the identity and logarithm
link functions.
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We will now use stepwise and forward selection and backward elimination
to examine which explanatory variables contribute to the models depending
on the AIC-value. According to backward elimination and stepwise selection
the GLM with the lowest AIC value for both the logarithm and identity link
function is the one consisting of only Time.Finish.MM2001 as a dependent
variable. Obviously, the models have different coefficients and AIC-values
due to different link-functions and these are presented in Appendix C, Table
11-12. Forward selection choose the full model for both link functions leading
us to investigate four models. Firstly, we will start by plotting the residuals of
the two reduced models and the simulated residuals for each model. Looking
at Appendix D, Figure 12a-b and 13a-b, we see that the real and simulated
residuals are spread or clustered in a similar way for both models. Hence,
we continue with all four models to look closely on their AIC-values. As
stated, in Appendix C, Table 8-9 and Table 11-12, the reduced model with
the identity link function has the lowest AIC of 1095.1 so that could be our
last model. However, due to the minor differences in the AIC value both
link functions are appropriate to the data. Since both stepwise selection and
backward elimination resulted in a model with only Time.Finish.MM2001 as
explanatory variable we can conclude that the reduced models fit the data
better than the full model.

5 Results

5.1 Interpretation of the logistic regression model for the
probability to finish the thesis

With a binomial logistic regression analysis we obtained the model presented
in Table 6 to predict graduation success. This model was given by both pur-
poseful selection and the stepwise procedures except for the forward selection.
Hence, the variables that are significant to predict graduation success are the
time to finish the course Mathematics I, the bachelor’s program the student
is enrolled in, the grade in Mathematics I and the student’s age when first
enrolled in Mathematics I. The predictive power of this model, with and
without cross validation was poor according to section 3.2.3. With just sam-
pled data we obtained an AUC of 0.548 which is very poor and indicate that
the model is almost as bad as random guesses. The 5-fold cross validation
gave the AUC-value 0.645 which is higher than the AUC of sampled data but
still poor. Though, since 5-fold cross validation give us a model with smaller
variance and bias, the later AUC is more reliable. For the AUC to be on
an acceptable level it should have been at least 0.7. The Hosmer-Lemeshow
test show significance, meaning that this model does not fit the data sample
which can be misleading. Though, as mentioned, since three out of four
methods chose this model, and it has the highest predictive power among
the models, we choose it. The model’s odds ratios and their corresponding
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confidence intervals are presented in Table 8 below:

Table 8: Frequency and odds ratios of the last model
Parameter Levels Frequency Odds ratio 95 % Wald Confidence

Interval
Time.Finish.MM2001 381 0.871 0.722 1.050
Program Physics 97 1.846 1.0912 3.123

Computer science 17 1.545 0.493 4.846
The Rest 96 2.342 1.375 3.988
Mathematics 171 1.0 - -

Grade.MM2001 A 90 2.538 1.353 4.758
B 71 1.116 0.588 2.116
C 76 1.157 0.621 2.155
D 100 1.0 - -
E 44 0.572 0.262 1.250

Age 381 0.964 0.919 1.0117

5.1.1 Time to finish Mathematics I

The odds ratio for the continuous time to finish the course Mathematics I
is 0.871 which means that for each increase in year the odds of finishing the
thesis is 0.871 with the confidence interval (0.722, 1.050). Hence, there is
a 12.9% decrease in the odds of finishing the thesis for each year. We can
interpret this as that students who take longer time to finish Mathematics I
are less likely to finish their thesis. Note that the Wald confidence interval
is obtained by taking the exponential of the interval β̂ ± zα/2(SE).

5.1.2 Bachelor’s program

The odds ratio for each level of the categorical variable Program is in relation
to the reference level Mathematics. This means that the students majoring
in physics have a 84.6% increase in the odds of graduating in relation to the
mathematics students. The students majoring in computer science have a
54.5% increase in the odds of finishing the thesis compared to the mathemat-
ics students. The students majoring in all the other program, the Rest, have
a 134.2% increase in the odds of finishing the thesis in relation to the math-
ematics majors. This can also be seen in the coefficients presented in Table
6 were all factor levels have positive coefficients, so all levels in relation to
mathematics majors have an increase in odds of graduating. The significant
levels are Physics and The Rest. Since the reference level is mathematics,
which is the largest bachelor’s program group, the groups of physics majors
and the rest are significant since they are as well large groups. The com-
puter science students are few, only 17 students, which in comparison to the
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mathematics group is insignificant.

5.1.3 Grade in Mathematics I

The odds ratio for the levels of the grade in the course Mathematics I are in
relation to the grade D in the course. This means that the odds of gradu-
ating in relation to the students getting a D in Mathematics I is an 153.8%
increase in the odds for the students getting an A, an 11.6% increase in the
odds for students getting a B, an 15.7% increase in the odds for students
getting a C and a 42.8% decrease in the odds for students getting an E.
This can also be observed in the coefficients presented in Table 6 where only
the factor level of the grade E is negative. The only significant level is the
grade A and among those 24% are mathematics majors, 35% are physics
majors, 18% are computers science majors and the rest are 13%, measured
in relation to their corresponding bachelor’s program. So each percentage
is computed by taking the number of students with the significant grade
in each bachelor’s program and divide it with the total number of students
in that program. Hence, the largest proportion of group with the highest
grade in Mathematics I is the physics-group which is a significant factor
level. The second largest proportion in the programs with the highest grade
in Mathematics I are the mathematicians but they are the reference level. It
is important to stress that these are the largest groups among the bachelor’s
programs and with the highest percentage of students that have received an
A in the course Mathematics I.

By observing Table 13 in Appendix C, we can see that the bachelor’s pro-
grams with the largest proportion of graduates are in mathematics, physics
and the rest-group. So it is self-confident that the physics and the rest factor
levels will be significant in the bachelor’s program-variable. The physics ma-
jors also have the largest proportion of A-students in the course Mathematics
I, as mentioned earlier. The conclusion can be drawn that having earned an
A in the basic course will result in a higher probability to graduate, lead-
ing us to the larger groups of majors. Though, the same conclusion cannot
be drawn about the rest-group, since the proportion of students that have
earned the grade A in the course Mathematics I is not as large as for the
physics majors. The rest group consist though of different kinds of students
with different aims, which can create extreme results.

5.1.4 Age when starting education

The students age when starting the bachelor’s program, or being enrolled in
the course Mathematics I, is a continuous variable. The odds ratio shows
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that for each increase in age the odds of finishing the thesis is a decrease in
3.6%. Hence, students who are older when starting their programs are less
likely to finish their thesis in time. Note that this variable’s coefficient in
Table 6 can be interpreted in a similar way.

5.2 Interpretation of the gamma GLM for the time to finish
the thesis

The gamma generalized linear regression analysis resulted in two models
with the identity and logarithm link function. These models were obtained
from both stepwise regression and backward elimination. The models are
presented in Appendix C Table 11-12, and are presented below respectively:

Identity: µi = 3.206 + 0.396Time.Finish.MM2001i

Logarithm: log(µi) = 1.177 + 0.0956Time.Finish.MM2001i

In both cases the significant variable to predict the time to graduation is the
time to finish Mathematics I, with a positive coefficient and a low standard
error. This means, for the first model, that as the time to finish Mathematics
I increases with one year, so does the mean of the time to finish the thesis with
3.206 + 0.396 = 3.602 years. Hence, when the time to finish Mathematics I
increases with a year, the time to finish the thesis increases with 3.602 years.
For the model with a logarithmic link function the change is multiplicative,
meaning that for each increase in years the change is exp(1.177 + 0.0956) =
3.57. So, as the time to finish Mathematics I increases with a year, the time
to finish the thesis increases with 3.57 years. The AIC-values are 1095.1 and
1095.6 respectively and due to the small difference we conclude that both
models are appropriate to use for the given data material.

6 Discussion

6.1 Discussion of the logistic regression model for the prob-
ability to finish the thesis

The chosen logistic regression model has the explanatory variables
Time.Finish.MM2001, Program, Grade.MM2001 and Age. We start off by
confirming that the Hosmer-Lemeshow test indicate that the model does not
fit the data well, so the result can be misleading. Though, we want the most
predictive model and both the AUC-value of the sampling method and 5-fold
cross validation suggests the chosen model. The majority of the used model
selection methods also come to the same conclusion, i.e. both stepwise selec-
tion, backward elimination and purposeful selection. Therefore, we choose
this model and continue with discussing it.
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From Table 8 we can see that the variable with the strongest effect on
the probability to finish the thesis, given that the student has finished Math-
ematics I, is the grade A in Mathematics I compared to the grade D. Hence,
a student which has obtained the grade A in the basic course has a higher
probability to finish the thesis in time compared to the ones that obtained
a D. This is quite logic since a high grade in the basic course means that
the student has a solid fundamental knowledge in the subject, and will not
need to extend higher level courses in more than six years, as we defined the
variable Finish.Thesis.

The variable with the second strongest effect on the probability to finish
the thesis is the Rest in Program. This means that students in bachelor’s
programs in astronomy, meteorology, biomathematics and biomathematics
and computational biology are more likely to finish their degree in time as
defined. The logistic model investigates the probability to finish the thesis
or not given that they have finished Mathematics I, as mentioned earlier.
So, the students taking stand-alone courses are not included in the analysis
since we cannot predict their motives. Removing the students taking stand-
alone courses we will obtain that the students in the Rest-category represent
25% of the data material. This means that compared to the mathematics
students, who make up 45% of data material, they are more likely to finish
their thesis on time. Since the rest-category consists of such a small group
it can have extreme values. It consists of different bachelor’s programs that
works differently, which might be one of the reasons of the extreme result.

The variable of the time to finish Mathematics I and the age when start-
ing the education are continuous variables and are both relevant to the model,
according to the methods used. The 95% confidence intervals for these vari-
ables are not as wide as for the categorical variables. However, we can still
draw the conclusion that larger sample size for the analysis is needed. In
our attempt to get smaller intervals for the coefficients, we changed refer-
ence level from the computer science students to the mathematics students
in the variable for bachelor’s programs, since the mathematics majors are
a majority. This did not result in much smaller intervals, since the average
width of the intervals with computer science as reference level is 3.24 while
the average width of the intervals with mathematics as reference level is 3.0.
Though, we continued with mathematics as reference level since it is the
largest bachelor’s program and the study is from a mathematicians point
of view. In the case of grade in Mathematics I the largest group was the
students that obtained the grade D, which is the reference level of that fac-
tor. The model’s predictability is certainly questionable since the AUC-value
with sampled data is 0.548 and 0.645 with 5-fold cross-validated data, mean-
ing that the model has poor predictability. With sampled data you could say
that the model’s predictability is like random guesses and with 5-fold cross
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validation it is a poor prediction. Though, since the 5-fold cross-validation
method reduced the variance and bias, we choose to rely on its result more.

6.2 Discussion of the gamma GLM for the time to finish the
thesis

The gamma generalized linear models with the identity and logarithm link
functions, and time to finish the course Mathematics I as explanatory vari-
able, are our last obtained models. The reason that we choose to assume
a gamma distribution for the response variable is due to it being positive,
skewed and continuous according to Figure 8. This is logic since the time to
finish the thesis consist of a majority finishing their thesis in approximately
three years, with Mathematics I as starting point. The fitted linear model got
residuals that did not show linearity nor constant variance, despite transfor-
mations of the response variable. Hence, with this knowledge we concluded
that a gamma generalized linear model would be more appropriate. The link
function depends on the data, therefore we tested the possible link functions
when fitting the models. In Appendix D we find our simulated residuals and
obtained residuals from the models, that helped us conclude if the models
have residuals as the gamma distribution. This method of confirming the
models’ distribution can certainly be questioned, but since we compare the
models against simulated models, using their corresponding scale and shape
parameters, it is a quite reasonable approach since the simulated part is the
response variable. We believe that regardless of sample size, we would still
have not obtained normally distributed error terms since the majority finish
their thesis in approximately 3 years. Though, transformations might had
given us a linear result so it would have been interesting to investigate this
manner further with a larger sample size.

6.3 Suggestions for improvement

For further studies it would have been valuable to use a larger sample size,
which might give a better result. This might had help reducing our wide
95% confidence intervals of the odds ratios, and compute a linear model
even though it would have needed transformations. It would also have been
valuable in both analyses to include more relevant explanatory variables.
The factors that can affect if a student finishes the degree and the time it
takes are if they already have a degree when starting the education, their
high school grades in mathematics courses, how much the students work
parallel with the university studies and if they have children when obtaining
their degree. It would also have been interesting to include data from other
universities, and make an analysis that works for the different institutions.
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A Contingency Tables

Table 1: Contingency table of Finish.Thesis and Program
Finish.Thesis\Program Computer

science
Physics Mathematics The Rest Total

No 10 41 104 42 197
Yes 7 56 67 54 184
Total 17 97 171 96 381

Table 2: Contingency table of Finish.Thesis and Grade.MM2001
Finish.Thesis\Grade.MM2001 A B C D E Total
No 31 38 40 57 31 197
Yes 59 33 36 43 13 184
Total 90 71 76 100 44 381

Table 3: Contingency table of Finish.Thesis and Gender
Finish.Thesis\Gender F M Total
No 69 128 197
Yes 69 115 184
Total 138 243 381

Table 4: Contingency table of Grade.MM2001 and Program
Grade.MM2001\Program Computer

science
Physics Mathematics The

Rest
Stand-alone Total

A 1 32 34 10 27 104
B 1 14 25 11 19 70
C 2 10 28 19 17 76
D 3 10 29 21 20 83
E 0 5 9 7 7 28
Total 7 71 125 68 90 361

Table 5: Contingency table of Gender and Program
Gender\Program Computer

science
Physics Mathematics The

Rest
Stand-alone Total

Female 1 13 54 28 32 128
Male 6 58 71 40 58 233
Total 7 71 125 68 90 361
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Table 6: Contingency table of Gender and Grade.MM2001
Gender\Grade.MM2001 A B C D E Total
Female 35 21 30 31 11 128
Male 69 49 46 52 17 233
Total 104 70 76 83 28 361

B The Variance Inflation Factor

Table 7: VIF for the linear full model
Parameter General VIF Degrees of Free-

dom
Time.Finish.MM2001 1.16 1
Program 1.22 4
Grade.MM2001 1.17 4
Age 1.05 1
Gender 1.06 1

C The Gamma Generalized Linear Models

Table 8: The full gamma GLM with identity link function and AIC 1104.6
Parameter Levels Coefficient SE P-value
Intercept 3.292 0.383 2.65e-16***
Time.Finish.MM2001 0.414 0.0900 5.84e-06***
Program Stand-alone -0.212 0.166 0.200

Physics 0.0769 0.189 0.684
Computer science -0.213 0.540 0.694
The Rest -0.101 0.185 0.584
Mathematics 1.0 - -

Grade.MM2001 A -0.00710 0.189 0.970
B -0.218 0.196 0.268
C 0.0439 0.199 0.825
D 1.0 - -
E 0.385 0.292 0.188

Age -0.00530 0.0152 0.727
Gender Female 1.0 - -

Male 0.131 0.134 0.330
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Table 9: The full gamma GLM with logarithm link function and AIC 1106.1
Parameter Levels Coefficient SE P-value
Intercept 1.212 0.113 <2e-16***
Time.Finish.MM2001 0.0985 0.0195 7.09e-07***
Program Stand-alone -0.0471 0.0491 0.338

Physics 0.0255 0.0537 0.636
Computer science -0.0491 0.141 0.728
The Rest -0.0294 0.0534 0.582
Mathematics 1.0 - -

Grade.MM2001 A -0.00655 0.0547 0.905
B -0.0656 0.0584 0.262
C 0.0116 0.0563 0.837
D 1.0 - -
E 0.105 0.077 0.175

Age -0.00192 0.00453 0.671
Gender Female 1.0 - -

Male 0.0334 0.0396 0.400

Table 10: The full gamma GLM with inverse link function and AIC 1107.6
Parameter Levels Coefficient SE P-value
Intercept 0.294 0.0331 <2e-16***
Time.Finish.MM2001 -0.0235 0.00421 4.84e-08***
Program Stand-alone 0.00837 0.0141 0.552

Physics -0.00843 0.0151 0.577
Computer science 0.0104 0.0347 0.766
The Rest 0.00852 0.0152 0.576
Mathematics 1.0 - -

Grade.MM2001 A 0.00249 0.0156 0.873
B 0.0190 0.0171 0.268
C -0.00350 0.0156 0.823
D 1.0 - -
E -0.0282 0.0202 0.164

Age 0.000611 0.00133 0.647
Gender Female 1.0 - -

Male -0.00768 0.0113 0.499

Table 11: The reduced gamma GLM with identity link function and AIC 1095.1
Parameter Coefficient SE P-value
Intercept 3.206 0.0831 <2e-16***
Time.Finish.MM2001 0.396 0.0847 4.16e-06***
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Table 12: The reduced gamma GLM with logarithm link function and AIC 1095.6
Parameter Coefficient SE P-value
Intercept 1.177 0.0232 <2e-16***
Time.Finish.MM2001 0.0956 0.0181 2.27e-07***

Table 13: Frequency and proportion of students’ graduation success
Bachelor’s program Finished thesis Not finished thesis

Frequency Proportion Frequency Proportion
Mathematics 67 36.4 % 104 52.8 %
Physics 56 30.4 % 41 20.8 %
Computer science 7 3.8 % 10 5.1 %
The rest 54 29.3 % 42 21.3 %

D Residual plots for data and simulated response

(a) (b)

Figure 9: Residuals of the full gamma GLM with identity link function to
the left (a) and the corresponding simulated residuals to the right (b)

(a) (b)

Figure 10: Residuals of the full gamma GLM with logarithm link function
to the left (a) and the corresponding simulated residuals to the right (b)
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(a) (b)

Figure 11: Residuals of the full gamma GLM with inverse link function to
the left (a) and the corresponding simulated residuals to the right (b)

(a) (b)

Figure 12: Residuals of the reduced gamma GLM with logarithm link func-
tion to the left (a) and the corresponding simulated residuals to the right
(b)

(a) (b)

Figure 13: Residuals of the reduced gamma GLM with identity link function
to the left (a) and the corresponding simulated residuals to the right (b)
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