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Abstract

We let each point in a two dimensional homogeneous Poisson pro-

cess with intensity λ be the center of a disk of radius r. By an argu-

ment of scaling, we can assume r = 1 without loss of generality. We

ask for how many disks it is possible to draw a straight line from its

boundary to the origin with crossing through other disks. We find

the expectation to be e
−λπ

(

π

λ
+ π

2

2

)

and discuss why the variance is

difficult to find.
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1 Introduction

1.1 Overview

Imagine standing in a forest of randomly placed trees all being perfectly
circular having radius one. How many trees are visible from our location, if
we can look in all 360 degrees?

A more precise definition of the model is as follows:

Let each point in a two dimensional homogeneous Poisson process
with rate λ be the center of a disk with radius r. Let a tree be
visible, if a straight line can be drawn from some point on its
boundary to the origin without passing through the interior of
any tree.

The question is then, from the boundary of how many trees do we expect
that, we can draw a straight line, not passing through the interior of any
tree, to the origin? Or simply, how many trees do we expect to be visible
from the origin? Also what is the variance in the number of visible trees?
It will also be of interest to ask what happens, when the intensity grows to
infinity.

Following directly from the definition of the model, if the interior of a tree
overlaps with the origin, we will not be able to see anything in the forest.
Trees overlapping with the origin can be handled in other ways, including the
following three. Modify the definition such that the line drawn may not pass
through the interior of any other tree, thus if a single tree overlaps with the
origin it will be the only visible. Let all trees overlapping with the origin be
visible, this model wouldn’t be very interesting, as more trees overlap with
the origin when the intensity grows. Condition on no trees overlapping with
the origin, this can be interpreted as “not standing inside of a tree”, however
the following argument of scaling will not work, as the area conditioned on
not containing any points changes, when the radii change.

A way to imagine, what happens to the process as λ and r change, is to
realise, that an equivalence exists between changing the radii and changing
the intensity. If we imagine having the unit intensity of 1 tree per m2 with
unit trees, r = 1 m, then this can also be expressed as having the intensity of
1,000,000 trees per km2 and trees with radii r = 0.001 km. Thus if we ignore
the units, when we increase the intensity we will have to decrease the radii to
not alter the process. It should be quite intuitive that increasing the radii of
the trees, without decreasing the intensity of trees, will lead to stochasticly
less trees being visible. Thus increasing the intensity, without decrasing the
radii, will have the same effect, that is less trees being visible. Thus we do
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not have to include the radii, r, in the calculations but can assume that we
have r = 1.

Using the above argument we expect the mean number of visible trees to
tend to zero and λ → ∞. Another way to imagine this, is to realise that as
the intensity grows it will be more and more likely, that a tree overlaps with
the origin, and thus nothing is visible.

1.2 Motivation

A quite gruesome motivation for this model is the 2005 London tube bomb-
ings. It was speculated, that a reason for the low number of deaths and
injuries was, quite counter-intuitively, the high number of people on the
train and the fact, that they were packed very tightly, essentially making the
people closer to the bomb human shields for those further away. Thus it is
of interest to know, if it is actually true, that if you pack more people into a
space fewer will be exposed to the blast of a bomb.

Of course, another much less gruesome motivation is imagining the pro-
cess as trees in a (very idealised) forest and asking how many one can see,
when standing in the forest.

1.3 Similar models

This model is quite similar to the dead leaves model in two dimensions,
proposed first in 1968 by G. Matheron [2]. The two dimensional dead leaves
model consist of a Poisson process on R2× [0,∞), where the each point is, as
in our model, the center of a disk (parallel to the plane), the third dimension
is used to keep track of “the order” of the arrivals. In higher dimensions than
two, the disks are instead replaced by d-dimensional balls. Since an extra
dimension is added, the dead leaves model provides a way to tessellate the
d-dimensional space. In two dimensions one might imagine the process as
dead leaves falling onto a table, if the leaves fall for all eternity the table will
almost surely be completely covered, when looking from above, the model can
be thought of as evolving in time since the set of visible leaves are changing.
If the table is imagined as being a glass table, one can look from below and
the leaves will form the same stationary distribution. The model gets its
name from just this example of dead leaves falling from above and stacking
on top of each other.

In [4] the dead leaves model is imagined in both one and two dimensions
as leaves on the line and in the plane respectively. The leaves are allowed to
have different sizes. The process that occurs by counting the visible parts of
the leaves is then studied.
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A special case of the dead leaves model is the confetti percolation model,
in which each disk is coloured black with probability p and white with proba-
bility 1−p. It is then asked for what values of p do we get unbounded curves
to infinity consisting of points of one colour only (basically a path to infin-
ity)? T. Müller showed in 2015 [3] that for p > 1/2 such curves of black points
almost surely exist and for p ≤ 1/2 almost surely all connected components
of black points are bounded. The confetti percolation model gets its name
from imagining two different colours of confetti raining down on a glass table
and looking below. The percolation is when p = 1/2 where neither the white
nor the black points create unbounded curves to infinity.

A model, which would be more realistic for the interpretation of trees in
a forest, is the Poisson disk distribution, where each point produced cannot
be too close to any other point. It is a Poisson process with disks, with
the condition that the disks cannot overlap. The study of this distribution
however is focused on sampling from it in an efficient manner [1] and not
much about its theoretical properties. One might imagine that working with
the distribution theoretically would be quite the challenge, as the placement
of the points in the process no longer are independent.

1.4 Notation

We will denote the Poisson processes both by the number of points in a
region, {N(t), t ≥ 0} for the number of points in [0, t) for the process on
[0,∞), and by the placements of the points of the process, {Sn, n ≥ 0} for
the process on [0,∞) or {(Xn, Yn), n ≥ 0} for the two dimensional process.
These two notation will be used interchangeably when it is convenient.

In [5], Resnick introduces the notation N(A) = ∑n εXn for the number of
points in the area A for a general point process. Here Xn is the distribution
of points, and εXn is an indicator variable being 1 if Xn ∈ A. Resnick then
uses N = ∑n εXn as notation for the process in general. This notation is
quite flexible and can easily be expanded to more than one dimension, e.g.
N = ∑n ε(Xn,Yn) if we want a process in two dimensions. The notation also
allows for multiple points at each location, then N = ∑n ξnε(Xn,Yn), where
{ξn} indicates the number of points.

We will however use the notation {N(t), t ≥ 0} and {Sn, n ≥ 0}, as they
are versatile enough for the uses, we need them for. Similar notation is used
in [6].

1.5 Theory

The theory in this section is mostly rewriting of [5, ch. 4] and [6, ch. 5.3].
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Definition 1: (Poisson random variable)
The random variable X is said to be Poisson (distributed) with mean λ, if
it takes the values k = 0,1,2,3, . . . with probability P (X = k) = λk

k! e
−λk, it is

denoted X ∼ Po(λ). ∎
A Poisson variable has mean E [X] = λ and variance Var (X) = λ.
Definition 2: (Poisson process)

For d ∈ N+, let m (⋅) be the d-dimensional measure for subsets of Rd, that is

m (A) = ∫
A

1da.

Then let a random process produce points in E ⊆ Rd, and for A ⊆ E let
N(A) denote the number of points in A. The collection of random variables
{N(A) ∶ A ⊆ E} is a Poisson process with rate (or intensity) λ > 0, if the
following axioms are satisfied:

• N(A) is Poisson distributed with mean λ ⋅m (A)

• For all sequences of pairwise disjoint subsets of E, (A1,A2, . . .),
(N(A1),N(A2), . . .) is a sequence of independent random variables.

∎
If λ > 0 is constant on all of E, the process is said to be homogeneous.

The definition can be extended to include the inhomogeneous case, where
λ = λ(a) is a non-constant, non-negative function over E. Then we need the
mean measure of the region A, which is defined as

µ(A) = E [N(A)] = ∫
A
λ(a)da,

and the mean in the first axiom then becomes µ(A). The inhomogeneous
Poisson process is said to have local intensity λ(a) at a. To simplify notation,
we will often not write λ as a function if it is not specifically needed.

The second axiom is called complete randomness, or independent incre-
ments when E ⊆ R.

Definition 3: (o-notation)
A function f(⋅) is said to be o(h) (read little o of h) if

lim
h→0

f(h)
h

= 0.

∎
An important property of the Poisson process is that
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• P (N(A) = 1) = λ ⋅m (A) + o(m (A))

• P (N(A) ≥ 2) = o(m (A))

• P (N(A) = 0) = 1 − λ ⋅m (A) + o(m (A)).
This holds for the homogeneous case. For the inhomogeneous case, λm (A)
is substituted for µ(A), but for m (A) close to 0, the integral simply becomes
λm (A). The property is realised by Taylor expanding the Poisson probability
once with respect to m (A).

For the one-dimensional Poisson process on E = [0,∞), this can be used in
the definition of the process, (together with N(0) = 0 and that {N(t), t ≥ 0}
has independent increments), after which it is then deduced that the number
of points in an interval must be Poisson distributed.

Proposition 1: (Transformation of the Poisson process) From [5,
proposition 4.3.1, p. 310].
Let

T ∶ E ↦ E′

be a bijective transformation of one (Euclidian) space, E, to another, E′,
with the property that if B′ ⊂ E′ is bounded in E′, so is T −1(B′) in E, where
T −1 ∶ E′ ↦ E is the inverse transformation. Suppose that {N(⋅)} is a Poisson
process on E with intensity λ(⋅), then {N ′(⋅)} ∶= {N(T −1(⋅))} is a Poisson
process on E′ with intensity λ′ ∶= λ(T −1(⋅)).

Proof: In the proof we will use that µ(A) = ∫A λda instead of the in-
tensity to prove both the homogeneous and inhomogeneous case. We have
that

P (N ′(B′) = k) = P (N(T −1(B)) = k) = µ(T
−1(B))k
k!

e−µ(T
−1

(B)),

so N ′ is Poisson, and we have proved the first axiom. The complete ran-
domness property follows from the fact that if B′

1, . . . ,B
′

n are disjoint, so are
T −1(B′

1), . . . , T −1(B′

n), and thus

(N ′(B′

1), . . . ,N ′(B′

n)) = (N(T −1(B′

1)), . . . ,N(T −1(B′

n)))

are independent random variables. Having shown that both properties are
satisfied, we are done. ∎

We need to show, how we can construct an inhomogeneous Poisson pro-
cess on E = [0,∞) by transforming the homogeneous unit Poisson process.

Construction 1: (Inhomogeneous Poisson process) From[5, p. 312].
We want to construct {N(t), t ≥ 0} with mean measure µ, which is abso-

lutely continuous, with density λ(t).
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Let
Λ(t) = µ([0, t]) = ∫

t

0
λ(s)ds,

and let it have the inverse

Λ←(x) = inf{u ∶ Λ(u) ≥ x}.

If we also let Λ(∞) =∞, then {u ∶ Λ(u) ≥ x} is non-empty for all x. We see
that Λ(x) is continuous, and thus Λ←(x) is strictly increasing. We also see
that Λ← ∶ [0,∞) ↦ [0,∞). If {Sn, n ≥ 1} are the points of a homogeneous
Poisson process with λ = 1, then by Proposition 1 {Λ←(Sn), n ≥ 1} are points
of a Poisson process {N ′(t), t ≥ 0}. The mean measure of N ′ is

µ′([0, t]) = ∣{x ∶ Λ←(x) ≤ t}∣ = ∣{x ∶ x ≤ Λ(t)}∣ = ∣[0,Λ(t)]∣ = Λ(t) = µ([0, t]),

so we have constructed a Poisson process with mean measure µ, which is
what we wanted. ∎

In the above construction, the assumption of µ being absolutely contin-
uous is often made, but it is more than is needed, it is only needed that
Λ(t) is continuous and Λ(∞) = ∞. One might realise, that Sn = ∑ni=1 Ti ∼
Gamma(n,1), where Ti ∼ Exp(1) are the interarrival times, which can be
used in simulations.

Construction 2: (Two dimensional Poisson process) From [5, ex-
ample 4.4.2, p. 319].
Let {(Xn, Yn), n ≥ 0} be the points of a two dimensional Poisson process

with intensity λ. Let T (x, y) = (r, θ) = (
√
x2 + y2,arctan( yx)) be the trans-

formation to polar coordinates. By Proposition 1 {T (Xn, Yn), n ≥ 0} is also
a Poisson process. The mean measure of ([0, r] × [0, θ]), µ′, is

µ′([0, r] × [0, θ]) =∬
{(x,y)∶T (x,y)∈[0,r]×[0,θ]}

λdxdy =∬
{s≤r,η≤θ}

λsdsdη

= λ1

2
r2θ = πr2 θ

2π
(= θ

2π ∫
r

0
λα(s)ds) ,

where α(s) = 2πs. Here we use α(s) instead of λ(s) to minimize confusion
in notation. We know from Construction 1, that we can construct the inho-
mogeneous Poisson process, {Sn, n ≥ 0}, with local intensity α(r) = 2πλr by
transforming the unit Poisson process by Λ←(x) =

√
x
λπ .

Thus if we let {Un} be iid. uniform on [0,2π), independent of {Sn, n ≥ 0},
we can construct

{(
√

Sn
λπ
,Un), n ≥ 0}
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and transform by
(r, θ)↦ (x, y) = (r cos θ, r sin θ)

to get a two dimensional homogeneous Poisson process with intensity λ. ∎
Above,

√
Sn
λπ , is the distances from the origin to the n-th point. We

are going to use this construction not by transforming back into Cartesian
coordinates, but by using the two independent processes in polar coordinates.

Lastly let us define an indicator variable, as this will be quite central in
the calculations further on.

Definition 4: (Indicator variable)
A random variable, 1E, is called an indicator variable of some event, E, if

1E =
⎧⎪⎪⎨⎪⎪⎩

1, if E happens
0, if E does not happen

. ∎

If E happens with probability p, then 1E is a random variable with
P (1E = 1) = E [1E] = p and Var (1E) = p(1 − p).

2 Calculations
We will only look at the process where the trees have radii r = 1. By the
argument in the introduction this will be sufficient. We say that we cannot
see any trees, if a tree overlaps with the origin.

2.1 The expected number of visible trees

To find the mean number of visible trees, we are going to start with finding
the probability of seeing a tree placed at a certain point. Then generalise
this to trees placed at any point and integrate over the whole plane to yield
the mean.

Let us place a tree at Y = (0, y) and a point X = (sinα, y − cosα) on
the boundary of the disk with center Y at angle α, when measuring counter-
clockwise from the y-axis. What is the probability of X not being covered
by trees to the left of the y-axis and to the right of the y-axis?

We start with trees on the left. In Figure 1 we want to find the areas of

(◻OXBA/△OXD) ∪ (ÂXY B/△XYD) = (◻OXBA ∪ ÂXY B) /△OXY ,

as well as the wedge in the lower circle with angle π
2 + β. The angle β is the

angle which X forms in a circle of radius ∣∣X ∣∣ measured clockwise from the
y-axis, it will have the same sign as α.
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Figure 1: Sketch of the situation for the left-side area. Placing a tree inside
OY BA or the part of the unit circle to the left of the y-axis will block the
view to X from the left.
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Since ◻OXBA has length ∣∣X ∣∣ and width 1,

A◻OXBA = ∣∣X ∣∣ =
√

(sinα)2 + (y − (cosα)2) =
√

1 + y2 − 2y cosα.

The area of △OXY is found as A△OXY = ∣CX ∣⋅∣Y O∣

2 = sinα⋅y
2 . We know that a

wedge of angle θ in a circle of radius r has area θ
2r

2, so our wedges have areas
AÂ

π
2
+β =

π
2
+β

2 and AÂXY B =
π
2
−α−β

2 .
Now we can find the area on the left of the y-axis, where placing a tree

will block X at angle α on Y , let us call it the forbidden area to the left.

Afl = A◻OXBA +AÂXY B −A△OXY +AÂ
π
2
+β

= ∣∣X ∣∣ +
π
2 − α − β

2
− sinα ⋅ y

2
+

π
2 + β

2

=
√

1 + y2 − 2y cosα − y sinα

2
+ π − α

2
(1)

Let us move on to the right side of the y-axis. Here we want to find
the area of ◻OEFX and the wedges with angles π

2 + α + β and π
2 − β. The

situation is drawn up in Figure 2.
The area of ◻OEFX is the same as ◻OXBA, so A◻OEFX = ∣∣X ∣∣. The

two wedges have areas AÂ
π
2
−β =

π
2
−β

2 and AÂ
π
2
+α+β =

π
2
+α+β

2 .
Thus the forbidden area to the right is

Afr = ◻OEFX +△OXY +AÂ
π
2
−β +AÂ

π
2
+α+β

= ∣∣X ∣∣ + y sinα

2
+

π
2 − β

2
+

π
2 + α + β

2

=
√

1 + y2 − 2y cosα + y sinα

2
+ π + α

2
. (2)

If we want to be more specific we might write the forbidden areas as
Afl((x, y), α) and Afr((x, y), α), where α indicates the angle at which X lies
and (x, y) the coordinates of the center of the tree. Though to minimize
notation, we will simply write Afl and Afr if we do not need to be specific.

Now, because we have a Poisson process, we know the probability of X
not being blocked by a tree from the left is given by

P (N(Afl) = 0) = exp{−λ(
√

1 + y2 − 2y cosα − y sinα

2
+ π − α

2
)} .

Since

P (N(Afl) = 0) = P (X not blocked by tree from the left)
= P (Tree being blocked at most upto an angle α from the left)

= P (max angle blocked by tree from the left < α) , (3)
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Figure 2: Sketch of the situation for the right-side area. Placing a tree inside
OEFY or the part of the unit circle to the right of the y-axis will block the
view to X from the right.
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we also have the distribution function for the angle of a tree being blocked
from the left. This holds for −arccos ( 1

y) ≤ α ≤ arccos ( 1
y) and y ≥ 1, by the

argument, that if α < 0 we make α positive and switch to the formula for the
right side, but for that one, when α < 0 we also make it positive and switch
the formula for the left side. Of course ∣α∣ ≤ arccos ( 1

y), as we cannot see X
if it is placed behind the tangent point with the origin. If y < 1 we are going
to block the origin and thus we cannot see X.

The same of course holds for the distribution of being blocked from the
right, so

P (N(Afr) = 0) = exp{−λ(
√

1 + y2 − 2y cosα + y sinα

2
+ π + α

2
)} ,

and

P (N(Afr) = 0) = P (min angle blocked by tree from the right > α) , (4)

also for arccos ( 1
y) ≥ α ≥ −arccos ( 1

y), y ≥ 1. The above probability is a bit
tough to put into words, it can be thought of as “angle at which blocking
by tree from the right starts > α”. Note that this probability grows as α
decreases.

We know that P (N(Afr) = 0) and P (N(Afl) = 0) are independent, as Afl
and Afr are disjoint areas, thus we also have the probability of seeing the
point X:

P (X not blocked by trees from left or right) = P (X visible)
= P (N(Afr) = 0)P (N(Afl) = 0)
= exp{−λ (Afl +Afr)} = exp{−λ (2

√
1 + y2 − 2y cosα + π)} (5)

These probabilities are for a given point X placed at an angle α on a tree
at placed Y . We would like to know, if we can see a tree placed at Y at all.
Thus we want to integrate α out of the formulas. From (3) and (4) we can
find the probability density functions of left and right side blockage as their
derivatives with respect to α. That is

fleft,y(α) =
∂

∂α
P (N(Afl) = 0) = λ

⎛
⎝

1

2
+ y cosα

2
− y sinα√

1 + y2 − 2y cosα

⎞
⎠

⋅ exp{−λ(
√

1 + y2 − 2y cosα − y sinα

2
+ π − α

2
)} (6)
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and

fright,y(α) =
∂

∂α
P (N(Afr) = 0) = λ

⎛
⎝

1

2
+ y cosα

2
+ y sinα√

1 + y2 − 2y cosα

⎞
⎠

⋅ exp{−λ(
√

1 + y2 − 2y cosα + y sinα

2
+ π + α

2
)} . (7)

Notice that the exponentials are P (N(Afl) = 0) and P (N(Afr) = 0) respec-
tively, we are going to use this in a bit.

The tree at Y is visible if X at angle α = −arccos 1
y is visible or if for some

α ∈ (−arccos 1
y ,arccos 1

y ], α is the maximum angle being blocked by a tree
from the left and α is not blocked from the right. For α ∈ (−arccos 1

y ,arccos 1
y ]

we can multiply the left-side density with the right-side probability. However
for α = −arccos 1

y we have to use the left-side probability multiplied with the
right side probability. The left-side density multiplied with the right-side
probability is

fleft,y(α)P (N(Afr) = 0)

= λ
⎛
⎝

1

2
+ y cosα

2
− y sinα√

1 + y2 − 2y cosα

⎞
⎠
P (X visible)

= λ
⎛
⎝

1

2
+ y cosα

2
− y sinα√

1 + y2 − 2y cosα

⎞
⎠

⋅ exp{−λ (2
√

1 + y2 − 2y cosα + π)} , (8)

which is the density of the left side angle of blockage while not being blocked
from the right. For α = −arccos 1

y we have

P(N(Afl((0, y),−arccos
1

y
)) = 0)P(N(Afr((0, y),−arccos

1

y
)) = 0)

= P (X visible)∣α=−arccos 1
y

= exp{−λ (2
√
y2 − 1 + π)} . (9)

This argument of course also holds for the right-side probabilities and densi-
ties, but for angles in the other direction.

We can now find the probability of seeing a tree placed at Y .

P (seeing a tree placed at Y )

= P (X visible)∣α=−arccos 1
y
+ ∫
(−arccos 1

y
,arccos 1

y
]

fleft,y(α)P (N(Afr) = 0)dα
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= ∫
arccos 1

y

−arccos 1
y

λ
⎛
⎝

1

2
+ y cosα

2
− y sinα√

1 + y2 − 2y cosα

⎞
⎠
e−λ(2

√

1+y2−2y cosα+π)dα

+ e−λ(2
√

y2−1+π) (10)

= ∫
arccos 1

y

0
λ
⎛
⎝

1

2
+ y cosα

2
− y sinα√

1 + y2 − 2y cosα

⎞
⎠
e−λ(2

√

1+y2−2y cosα+π)dα

+ ∫
arccos 1

y

0
λ
⎛
⎝

1

2
+ y cosα

2
+ y sinα√

1 + y2 − 2y cosα

⎞
⎠
e−λ(2

√

1+y2−2y cosα+π)dα

+ e−λ(2
√

y2−1+π) (11)

= ∫
arccos 1

y

0
λ(1 + y cosα)e−λ(2

√

1+y2−2y cosα+π)dα + e−λ(2
√

y2−1+π) (12)

Where we in (11) use the argument from earlier, that for negative α we
make it positive and switch to the right-side formula, that is fright,y(α) ⋅
P (N(Afl) = 0). By the symmetry of the set up

∫
arccos 1

y

0
fright,y(α)P (N(Afl) = 0)dα = ∫

0

−arccos 1
y

fleft,y(α)P (N(Afr) = 0)dα.

Now using the change of variables t = y cosα in (12), implying α = arccos t
y

and ∣dαdy ∣ = 1
√

y2−t2
, we get

P (seeing a tree placed at Y )

= e−λ(2
√

y2−1+π) + λ∫
y

1
(1 + t)e−λ(2

√

1+y2−2t+π) 1√
y2 − t2

dt

= e−λπ
⎛
⎝
e−2λ

√

y2−1 + λ∫
y

1

1 + t√
y2 − t2

e−2λ
√

1+y2−2tdt
⎞
⎠
, (13)

where the limits have been switched as y cosα is decreasing on α ∈ [0,arccos 1
y ].

As shown in Construction 2, we can construct a homogeneous two di-
mensional Poisson process from two independent processes. This can also be
thought of in reverse, that we can split the two dimensional Poisson process
in two. We can use this by realising that the area Afl and Afr, and thus
the subsequent probabilities (3), (4) and (13), do not actually depend on Y
being placed on the y-axis, but rather that Y = (y, θ) in polar-coordinates,
as we only need Y to be a distance y from the origin. The angle α of course
will not be measured from the y-axis, but rather the axis going through the
origin and Y . In Construction 2, also notice that the 2π in the local intensity
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arises from integrating over θ to get the right number of points in the plane.
When we integrate over the whole plane to calculate the mean, we are also
going to integrate over θ. We can thus let the distances from the origin be
an inhomogeneous Poisson process with local intensity λy at y.

Using the properties of the Poisson process, that the probability of having
exactly one point in an interval of length h is λh+ o(h), we will have exactly
one point in a small interval of length dy around y with probability λydy for
some small dy.

P (a visible tree existing at (y, θ)) = P (seeing a tree placed at Y ) ⋅ λydy

= λye−λπ
⎛
⎝
e−2λ

√

y2−1 + λ∫
y

1

1 + t√
y2 − t2

e−2λ
√

1+y2−2tdt
⎞
⎠
dy (14)

Define

1(y, θ) =
⎧⎪⎪⎨⎪⎪⎩

1 when a visible tree exists at (y, θ)
0 else

(15)

to be the indicator of a visible tree existing at distance y from the origin and
at angle θ with the x-axis. Notice that the indicator will be zero even when
a tree exists at (y, θ), but it cannot be seen. In equation (14) we found the
probability of the indicator being 1 as

P (1(y, θ) = 1) = P (a visible tree existing at (y, θ)) ,

and by the properties of indicator variables

E [1(y, θ)] = P (a visible tree existing at (y, θ)) .

If we integrate the indicator variable of seeing a tree over the whole plane,
we will get the number of trees, that are visible from the origin. Taking the
mean of this of course yields the expected number of visible trees. By the
properties of expectations we can integrate over the expected value, since
E [1(y, θ)] <∞ for all points on the plane.

As the unit disk, by definition, will not add any visible trees, we do not
have to include it in the integration, thus we are going to integrate θ over 0
to 2π and y over 1 to ∞.

E [Number of visible trees] = E [∫
θ
∫
y
1(y, θ)dydθ] = ∫

θ
∫
y
E [1(y, θ)]dθ

= 2λπe−λπ ∫
∞

1
y
⎛
⎝
e−2λ

√

y2−1 + λ∫
y

1

1 + t√
y2 − t2

e−2λ
√

1+y2−2tdt
⎞
⎠
dy (16)
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In ∫θ ∫y E [1(y, θ)]dθ the dy is left out, as it is already present in the expec-
tation.

Using the change of variables z =
√
y2 − 1, implying ∣dy

dz
∣ = y

z , we get

∫
∞

1
ye−2λ

√

y2−1dy = ∫
∞

0
ze−2λzdz = 1

4λ2
. (17)

For the second part of the integral, we first change the order of integration,

∫
∞

1
∫

y

1
y

1 + t√
y2 − t2

e−2λ
√

1+y2−2tdtdy

= ∫
∞

1
∫

∞

t
y

1 + t√
y2 − t2

e−2λ
√

1+y2−2tdydt (18)

then perform the change of variables z =
√

1 + y2 − 2t, implying y =
√
z2 + 2t − 1,√

y2 − t2 =
√
z2 − (t − 1)2 and ∣dy

dz
∣ = z

y , we get (18) to be

= ∫
∞

1
∫

∞

t−1
z

1 + t√
z2 − (t − 1)2

e−2λzdzdt = ∫
∞

0
∫

∞

t
z

2 + t√
z2 − t2

e−2λzdzdt, (19)

where the lower limit in the first integral is
√
t2 − 2t + 1 =

√
(t − 1)2 = t − 1,

when t ≥ 1, and a change of variable has happened in the second with t′ = t−1,
but we haven’t changed the name of the variable. Changing the order of
integration again, (19) becomes:

= ∫
∞

0
ze−2λz ∫

z

0

2 + t√
z2 − t2

dtdz

= ∫
∞

0
ze−2λz (∫

z

0

2√
z2 − t2

dt + ∫
z

0

t√
z2 − t2

dt)dz

= ∫
∞

0
ze−2λz

⎛
⎜
⎝

2∫
z

0

1

z
√

1 − t2

z2

dt + ∫
z

0

t√
z2 − t2

dt
⎞
⎟
⎠
dz

= ∫
∞

0
ze−2λz (2 arcsin( t

2

z2
)∣
z

t=0

−
√
z2 − t2∣

z

t=0
)dz

= ∫
∞

0
ze−2λz (π + z)dz = π∫

∞

0
ze−2λzdz + ∫

∞

0
z2e−2λzdz

= −πe
−2λz(2λz + 1)

4λ2
∣
∞

z=0

−e
−2λz(2λ2z2 + 2λz + 1)

4λ3
∣
∞

z=0

= π

4λ2
+ 1

4λ3
(20)
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We can now substitute (17) and (20) into (16) to get:

E [Number of visible trees] = 2λπe−λπ ( 1

4λ2
+ λ( π

4λ2
+ 1

4λ3
))

= e−λπ (π
λ
+ π

2

2
) (21)

This confirms our argument in the introduction about seeing fewer trees
as the intensity grows.

If we want to condition on no trees overlapping with the origin, we will
have to subtract π

2 from both Afl and Afr, which corresponds to the part
in the unit circle. We can also use the properties of conditional expectation
and divide (21) by the probability of not having any trees in the unit disk,
which is e−λπ.

E [Number of visible trees ∣ No trees overlap with the origin] = π
λ
+ π

2

2
(22)

This approaches π2

2 as the intensity grows to infinity.

2.2 Problems with calculating the variance

In this section we are going to present some problems, one might encounter
when trying to compute the variance.

Using some of the properties of sums of variances for stochastic variables,
which are not independent, we can write the variance as:

Var (Number of visible trees) = Var(∫
y
∫
θ
1(y, θ)dθdy)

= ∫
y1
∫
θ1
∫
y2
∫
θ2
Cov (1(y1, θ1),1(y2, θ2))dθ2dθ1dy2dy1

= ∫
y
∫
θ
Var (1(y, θ))dθdy

+ 2∫
y1
∫
y2>y1
∫
θ1
∫
θ2>θ1

Cov (1(y1, θ1),1(y2, θ2))dθ2dθ1dy2dy1 (23)

We can expand the first double integral a bit.

∫
θ
∫
y
Var (1(y, θ))dydθ = ∫

θ
∫
y
E [1(y, θ)2] −E [1(y, θ)]2

dydθ

= e−λπ (π
λ
+ π

2

2
) − ∫

θ
∫
y
E [1(y, θ)]2

dydθ
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The first problem, that we encounter, is the last integral, which will be tough
to compute.

We also need to find the covariance. Generally

Cov (X,Y ) = E [(X −E [X])(Y −E [Y ])] = E [XY ] −E [X]E [Y ] .

In our case

E [1(y1, θ1) ⋅ 1(y2, θ2)] = P (1(y1, θ1) ⋅ 1(y2, θ2) = 1) (24)

and

E [1(y1, θ1)] ⋅E [1(y2, θ2)] = P (1(y1, θ1) = 1) ⋅ P (1(y2, θ2) = 1) . (25)

So we can expand the integral over the covariance in (23) as

∫
y1
∫
y2>y1
∫
θ1
∫
θ2>θ1

Cov (1(y1, θ1),1(y2, θ2))dθ2dθ1dy2dy1

= ∫
y1
∫
y2>y1
∫
θ1
∫
θ2>θ1

P (1(y1, θ1) = 1) ⋅ P (1(y2, θ2) = 1)dθ2dθ1dy2dy1

− ∫
y1
∫
y2>y1
∫
θ1
∫
θ2>θ1

P (1(y1, θ1) = 1) ⋅ P (1(y2, θ2) = 1)dθ2dθ1dy2dy1. (26)

We can find (25), just apply (14) for two different values of y and multiply
them together, the integral over them most likely is not nice. However (24)
is quite a lot more difficult. We will need to find the probability of seeing
any pair of two trees simultaneously.

Let us call the two trees of interest T1 and T2, for simplicity this will both
refer to the center of the tree and the tree itself. Let T1 = (y1, θ1) = (y1,0)
and T2 = (y2, θ2) in polar coordinates, and assume that y2 > y1 and θ2 > θ1.
We need to specify how we measure the angles. We are going to measure θ
counter-clockwise starting at the x-axis, we also measure β in Figure 1 and 2
clockwise from the axis going through the tree, this such that α and β have
the same sign.

Let us sketch the situation for which we can see both T1 and T2. This is
done in Figure 3, the area inside of the blue lines is Afr(T2, α2) and inside
of the orange lines Afl(T1, α1). We want for T1 and T2 to not be completely
blocked from “the outside”, that is by trees to the right of T1 and trees to the
left of T2. We also do not want T1 and T2 to completely block each other.
Let us say, that T2 is blocked up to an angle α2 < arccos 1

y2
from the left, then

T1 may not block from α2 from the right. T1 might also be blocked from an
angle α1 > −arccos 1

y1
from the right, such that it is not completely blocked.

If this is the case, we will need to find the forbidden area “between” the two
trees, such that neither of the trees are blocked completely.
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Figure 3: Sketch of the situation for the variance. Placing a tree in the area
that is both inside of the blue and orange lines will block the view to both
T1 and T2 completely. Placing within either the orange or the blue will block
T1 or T2 respectively.

18



From earlier we already have the density for the blockage on the two trees
from the left and the right, equation (6) and (7) respectively. Ensuring that
T1 does not block from an angle α2 on T2 is equivalent to T1 /∈ Afr(T2, α2).
A thought on how to ensure this, is to look at the angles, since y1 < y2. It
seems that if θ2 − β2 < θ1 − β1,min then T1 ∈ Afr(T2, α2), where β1,min is β for
the point X1,min in Figure 3, which is when X lie at α1 = −arccos 1

y1
. This

however is not the case. It becomes the most obvious for values of α2 close
to zero, but it also does not hold for larger angles. Thus the second problem
is knowing when one tree is in the forbidden area of the other. It will suffice
to to find the formula one way, as T1 /∈ Afr(T2, α2) implies T2 /∈ Afl(T1, α1),
when y1 < y2.

Let us assume we have the situation where T1 /∈ Afr(T2, α2). We then
need to find the area between the trees, where placing a tree would lead
to at least one being blocked completely. This is Afl(T1, α1) ∪Afr(T2, α2) ∪
{the unit disk}. To find the area of this, an intuitive thought would be to find
the area of the polygon OEGA and subtract it from Afl(T1, α1)+Afr(T2, α2),
while also making sure to not double count the area in the unit circle. This
approach will not work, as when T1 and T2 are moved close together in
their angle, the point G will lie further from the origin than both B and F .
It is also possible that T2 is placed such that G is further from the origin
than B but closer than F . In either case, the area of the polygon OEGA
cannot be used directly. The third problem in computing the variance of the
number of visible trees is thus to find the area of Afl(T1, α1) ∪Afr(T2, α2) ∪
{the unit disk}.

3 Further questions
Some further questions to look at might be:

• Is it possible to find the variance?

• What happens when the radii are random?

– If all of the radii are the equal, say R ∼ F , we can simply make
the intensity random, with some proper scaling to match the radii,
and integrate over the density multiplied with e−λπ (πλ + π2

2 ) from
Equation (21). The mean thus becomes

∫
Λ
fΛ(λ)−λπ (

π

λ
+ π

2

2
)dλ,

where fΛ(λ) is the density of the intensity. The distribution of
the intensity should of course be non-negative.
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Figure 4: A case that might happen if the radii are random and iid. The
tree T2 is visible from origin both to the left and to the right of the tree T1.

– If the radii for each tree are different, it will not be possible to
use the method, that has been used up to now. This since the
forbidden areas rely on all trees having the same radius. A case
that might occur, is that a tree with a large radius is visible on
both sides of a tree with smaller radius closer to the origin. How
this might look is drawn up in Figure 4.

• What would happen when conditioning on no trees overlapping?
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