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Abstract

In this thesis we investigate an epidemic outbreak of a childhood

disease in a population where many but far from everybody are vac-

cinated. This is a common situation and it is feared to be even more

common as vaccine hesitancy and scepticism are on the rise.

Here we are interested in what effect an active response to an

outbreak, taking the form of quarantine the unprotected population,

might have on the spread of the disease. We consider the population

to be divided into school classes, each individual makes contacts inside

and outside the class at different rates. When an infection is detected

the individual and all unvaccinated class mates get sent to quaran-

tine. A recovered individual attains immunity, which gives our model

similarities with a classical SIR model with household structure, but

with an additional state of quarantine.

We derive expressions for the values of R0 for a school class, which

is independent of how many infected individuals there are inside it,

the expected final proportion school classes that have had at least one

infected individual and with the help of a result from a paper by Trap-

man and Bootsma from 2009 we get an approximate expression for the

expected number infected individuals in a school class which leads us

to an expression for the expected proportion infected individuals in

the population.

Simulations show that the strategy is powerful, the disease reaches

much fewer than when no quarantine is used, for example we have a

situation where 40% are vaccinated in which 99% of the susceptible

population get infected when we do not use quarantine of the school

classes and when we use the quarantine strategy 1% get infected.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: ffredrikaa@gmail.com. Supervisor: Pieter Trapman & Abhishek Pal Majumder .



Sammanfattning

I den här uppsatsen undersöker vi ett epidemiutbrott av en barn-
domssjukdom i en population där m̊anga men l̊angt fr̊an alla är vac-
cinerade. Detta är en vanlig situation och den är befarad att bli allt
vanligare som en följd av att skeptisicm och tveksamhet gentemot vac-
cin är p̊a uppg̊ang.

Vi är här intresserade av vilken effekt karantän av den oskyddade
populationen kan ha p̊a spridningen av sjukdomen. Vi betraktar popu-
lationen som indelad i skolklasser, varje individ kommer i kontakt med
individer inom och utanför klassen med olika intensiteter. När en in-
fektion upptäcks sänds individen och samtliga av dennes ovaccinerade
klasskamrater i karantän. En tillfrisknad individ uppn̊ar immunitet,
vilket ger v̊ar modell likheter med den klassiska SIR modellen med
hush̊allsstruktur, men här med karantän som ett ytterligare tillst̊and.

Vi härleder uttryck för värdet p̊a R0 för en skolklass, vilket är obe-
roende av hur m̊anga smittade individer det är i klassen, den förväntade
slutliga proportionen av skolklasser som har haft åtminstone en smit-
tad individ och med hjälp av ett resultat fr̊an en artikel av Trapman
och Bootsma fr̊an 2009 f̊ar vi ett uttryck för det förväntade antalet
smittade individer i en skolklass vilket leder oss till ett uttryck för den
förvändade proportionen smittade individer i populationen.

Simuleringar visar att strategin är kraftfull, sjukdomen n̊ar m̊anga
färre när karantän används, till exempel har vi en situation där 40%
är vaccinerade i vilken 99% av den mottagliga populationen blir in-
fekterad när vi inte använder karantän av skolklasserna och 1% när vi
använder karantän.
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1 Introduction

Vaccination is a way to give immunity or an increased protection against
some kinds of infectious diseases (WHO), and it has probably prevented
many large outbreaks and saved a tremendous amount of lives. The World
Health Organization, WHO, estimates that vaccine saves 2-3 million lives
each year (WHO, 2019). Even so, some parents are hesitant to vaccinate
their children. The fear of by-effects seem for many of them bigger than the
fear of the disease. Maybe because these are, as a consequence of successful
(in the aspect of disease prevention) vaccinations, more frequently occur-
ring than epidemic outbreaks. However, keeping infectious diseases under
control is often a nationwide, and sometimes worldwide, collaboration and
officials are afraid that vaccine scepticism endangers this work. WHO even
mentioned vaccine hesitancy as one of the ten threats to global health 2019
(WHO, 2019).

One way to respond to this upcoming problem by legislation. The New
Scientist (2009) points out that in some, although few, countries vaccination
is mandatory for attending school. Some of these countries are Germany,
France and the US. They also mention that after the measles outbreak in
Italy a similar policy has come up. Unvaccinated children under 6 years are
not welcome to kindergartens and parents of unvaccinated school children
are punished with e500 fees.

In this thesis we are trying another approach and investigate how well we can
prevent large outbreaks by using quarantine of the unvaccinated population
when someone is diagnosed in the close surroundings.

We are doing this by measuring the expected final size and come up with
expressions for both the outbreak within a class and the outbreak among
classes. Combining these gives the final size counted in proportion of initially
susceptible individuals who ever got infected. We are also interested in what
kind of role parameters such as infectivity levels, time to diagnosis and
percentage vaccinated plays, and if for some combinations this strategy is a
good enough alternative to forcing vaccination upon the entire population.
This is investigated with simulations.

The kind of diseases we are to investigate are all airborne kinds and the vac-
cine is considered to give perfect protection. The diseases are considered to
mainly spread among children and we allow for the children to get the disease
from their classmates or the society as a whole with different probabilities.
There is also an exponentially distributed time between the individual get-
ting the disease and being diagnosed, implying that infectious individuals

1



might have infected their surroundings and unvaccinated classmates before
being put into quarantine, which is why the unvaccinated classmates are put
into quarantine as well.

The spread among school classes is considered to take the form of a branching
process in the beginning, and the epidemic model is a special case of the
SIR (Susceptible, Infectious, Recovered) model, where we add the state
Quarantine. This thesis begins with a closer description of our model to then
in the next section go through some theory about the population structure
and the epidemic spread. We then go on with the computations of R0 for a
school class and the final proportion of school classes to get affected to finish
with simulations of the spread for different rates and percentages vaccinated.

2 The Model

2.1 Clarifications and generalizations

One must always remember that a mathematical epidemic model is only just
that; a model of something happening and not a fully accurate description,
however, often accurate enough. There will always be a trade off between
realism and mathematical convenience and compromises need to me made.
In this thesis we are using the following sometimes somewhat unrealistic
generalizations to make the computations easier.

• The population is considered to be homogeneous, meaning that all
individuals that are not immune are just as likely to get infected and
the disease will evolve the same way for everyone. We also consider
the population to be closed so that no individuals leave or enters the
population.

• We assume homogeneous mixing in the society, meaning that the prob-
ability of meeting someone from the society more than once during the
time of the outbreak is considered to be very low.

• The vaccine is assumed to give a 100% protection.

• All school classes are assumed to be of the same size.

• The vaccinated are supposed to be distributed equally among all school
classes, i.e. all school classes consist of the same number of vaccinated
and unvaccinated children.
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• The time between infection and diagnose for an individual is exponen-
tially distributed.

• An infection is always detected and the individual diagnosed at some
time point prior to recovery. This is not too unrealistic, considering
the distinguishable characteristics of many childhood diseases.

• An individual recovering from the disease is considered immune for
further infections. The immunity is considered to be lifelong.

• An individual coming back from quarantine is considered immune,
even if she never caught the disease. However, we expect that the
probability of the class to get reinfected is very low, low enough for
the generalization not to cause any problems.

2.2 States and possible transitions

We model the spread of the infectious disease with the help of an SIR model
with an additional state of quarantine to emphasize that the individuals do
not spend their whole infectious period among others and that the length
of the stay in the infectious state depend on when the individual gets sent
to quarantine.

The SIR model is a simple epidemic model assuming that an individual
in the case of being infected goes from being susceptible(S) to infected(I)
and finally recovers/gets removed(R). A recovered individual attains lifelong
immunity. The standard SIR model is further described in section 3.2.

As mentioned, we add the state quarantine(Q) to the model. To make things
more clear we also add the state diagnosed(D). An individual is considered to
be infective to others the moment she becomes infected, but she can not be
put in quarantine until she or someone else in her class has been diagnosed.
When someone is diagnosed, all unvaccinated classmates of the person are
preventively put in quarantine, that is, the unvaccinated classmates of the
diagnosed individual who have not showed any symptoms yet but maybe
will later.

The possible transfers between the states are showed below in Figure 1 and
2.
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Figure 1: Transitions between the states for the first diagnosed individual
in a class

Figure 2: Transitions between the states for individuals preventively put
in quarantine. Two possible chains of events exist since individuals might
or might not have been infected. However, an individual who has been in
quarantine is always considered to attain immunity (recover/get removed).

2.3 Parameters and variables

Here we introduce the following parameters and variables that figure in the
thesis, these will be reintroduced upon usage.

n : population size

v : percentage vaccinated

λG : global (in society) daily infection rate. Per pair of individuals: λG/n

λL : local (in class) daily infection rate per pair of individuals

s : size of the school classes (deterministic)

M : size of an outbreak in a school class

D : time to diagnosis for an infected individual. D ∼ Exp(δ), where δ

is the rate of detection

T ∗ : time to the first detection in a school class, given that there is at

least one infected in the class. T ∗ <∞ since detections always happen
first.

I(s) : infected individuals since the first infection in a school class at time
t

A(t) : total infectivity of a class at time t, A(t) =
∫ t
0 I(s)ds
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Figure 3: The first four generations of a branching process with one initial
individual.

3 Theory

3.1 Branching processes

Early stages of epidemic outbreaks, where the disease has only reached a
small part of the population and the probability for an infective to meet
another infective or immune individual is small, can often be described with
a branching process. Following Sheldon Ross (2014 p 234-), we describe the
process by considering a population of individuals with the ability to inde-
pendently produce offspring of the same kind according to some distribution,
and while doing so creating a new generation. The offspring distribution is
the same for all individuals. This can easily be translated into epidemics,
we then consider a large population with mostly susceptible but also some
infective individuals who independently infect new individuals during the
infectious period according to some distribution. Figure 3 is an illustration
of how the first four generation of a branching process may look.

We let pj be the probability that an individual has infected j new individuals
during her infectious period and then get

µ =

∞∑
j=0

jpj

for the mean number of new infected from a single individual. All new
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infectives form the next generation of infectives. Letting Xn be the number
of individuals in the nth generation and Zn−1,i the number of new infectives
from the ith individual in the (n− 1)th generation we get

Xn =

Xn−1∑
i=1

Zn−1,i.

For the expected value E[Xn] we condition on Xn−1 and obtain that

E[Xn] = E[E[Xn|Xn−1]] = E

[
E

[Xn−1∑
i=1

Zn−1,i|Xn−1

]]
= E[µXn−1]

= µE[Xn−1],

E[Xn−1] = µE[Xn−2],

...

E[X2] = µE[X1] and

E[X1] = µE[X0],

where X0 is a deterministic number describing the number of initially in-
fected individuals. For one initial infected we have E[X0] = E[1] = 1. We
then get

E[X1] = µ

E[X2] = µ2

...

E[Xn] = µn.

An important observation is that for µ ≤ 1 the infectious population goes
to zero as n → ∞ with probability 1. Since diseases with µ ≤ 1 will not
create large outbreaks they are of little interest when it comes to epidemic
modeling and we are in this thesis only considering epidemics with µ > 1.
In standard SIR epidemics in a homogeneously mixed population µ often
coincide with R0, which is described in section 4.1.
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The situation with X0 = m for m > 1 can be seen as m independent
branching processes, it then follows that we get E[Xn] = mµn.

3.2 The Standard SIR model

The standard SIR model is one of the most simple epidemic models. With
the help of what is described by Andersson and Britton (2000, p. 11, 22)
we here describe the model, which is of use when setting up an equation
describing the proportion of classes that have been affected by the epidemic
at some time point, which is done in section 4.1.2.

Individuals are considered to be either susceptible(S), infected(I) or re-
moved(R), meaning that an individual has recovered and therefore is of
no further interest for the spread of the disease since lifelong immunity is
assumed. The possible transitions between the states are displayed in Figure
4.

Figure 4: Transitions between the states in the SIR model.

In the model an infected individual contacts a given individual according to
a Poisson process with rate γ/n during the infected period, where γ > 0 and
n denotes the number of initially susceptible in the population. The pop-
ulation is considered to be homogeneously mixed and closed. A contacted
susceptible individual immediately becomes infected. The Poisson processes
for different individuals are considered to be independent and identically dis-
tributed. The time an individual remains infected is according a fixed but
specified distribution and all infectious periods are identically distributed
and independent of one another as well.

Since throughout the infectious period of an infective individual each of
the other individuals are contacted according to a Poisson process with rate
γ/n the infective individual contact other individuals according to a Poisson
process with rate γ. This because a sum of independent Poisson processes
another Poisson process with rate the sum of the intensities.

Early phases of an epidemic outbreak, where most people are still suscep-
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tible, can be well described with a branching process where an individual
during her infectious period infects new individuals at the time points of a
Poisson process with rate γ.

3.3 The household model

Assuming homogeneous mixing in a population is often of great mathemat-
ical convenience, but is often far from the truth and sometimes too far.
Andersson and Britton (2000, p. 55) points out the importance of paying
attention to the small social structures in a society. These can for exam-
ple be households, workplaces and schools, in this thesis we look at school
classes. This is because children often play a major role in the spread of
infections diseases, much due to their more physical behavior, sometimes
lack of proper hygiene and less developed immune system.

Like Andersson and Britton do, we consider the population (of children) to
be divided into school classes of the same size. Within them diseases easily
get a foothold and due to the big mixing of people from different places
the disease can quickly spread across the society if adequate actions are not
taken.

During a day a child always meet his or her classmates and random people
from the society, this may for example be people on the public transport
system. The individuals a child meets from the society differ from day to
day and the probability that two random individuals from the society meet
again is considered to be low enough to be neglected. We define the following
rates for the spread of the disease from an infectious individual:

λL : Local(in class) infection rate

λG : Global(in society) infection rate

where most likely λL > λG due to the nature of the contacts. The rate of
which an infected individual contact a given individual in the society is λG/n
where n is the number of initially susceptible individuals in the population.
If the contacted individual is susceptible she immediately becomes infected.
This also means that an infectious individual make in-society contacts with
her classmates at that rate, but this rate can according to Andersson and
Britton (2000, p. 55) be neglected compared to the local rate λL for large n,
meaning that most individuals get the infection from someone in their close
surroundings. The local rate λL is the rate at which an infected individual
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contacts a given susceptible classmate, which unlike the global rate is not
scaled.

4 Computations

4.1 R0: The basic reproduction number

To understand and prevent outbreaks it is of great interest to find the average
number of new infectives caused by a typical infected in an early stage of
the epidemic. This is described by the basic reproduction number, denoted
by R0. According to the threshold limit theorem (described in section 4.2) a
large outbreak can not happen for R0 ≤ 1 (Andersson and Britton, 2000, p.
6), and infectious diseases which such values of R0 should therefore not be
of big concern. For R0 > 1 a large outbreak occurs with positive probability.

R0 in a way describes the harm caused by a typical individual. This is
information of great importance when deciding which actions should be
taken in early stages of an epidemic. R0 is of great importance when it
comes to understanding the development of the spread and is a way of
comparing infectious diseases with one another.

4.1.1 A base case: no quarantine

This section is not used, but we present it anyway since it gives insight in
the idea of this thesis. Also it might be of interest for further development.

Andersson and Britton (2000, p. 56) presents the following way for obtaining
R0 when having a household model:

R0 = E[M ]λE[L]

where E[M ] is the expected number of infected individuals in a school class
with one initially infected individual and λ is the global infection rate and
L is the length of the infectious period. The expression can be motivated in
the following way: an infectious individual infects in average λ individuals
from the society, these are from distinct households with high probability
due to the homogeneous mixing and a big enough population. Each of
these from the society newly infected start a ”subepidemic” in their own

9



school class comprising in average E[M ] individuals. Note that the number
of individuals considered infected from a single infectious individual is not
just the number of individuals who got infected from a contact with the
infectious individual in question. We also count the ”indirect infections”,
i.e. if an individual, say individual a, infect someone globally, who then
infect others locally, those local infected individuals are seen as infected by
the first individual, individual a.

In our model we chose to define the rate to be daily in order to follow the
impact of the number of days until diagnose. We therefore let λG be the
daily global rate and D the days between infection an diagnose. We assume
that the infection always is detected, implying that the individual becomes
diagnosed, at a time point prior to recovery and that detection happens
within a finite time, that is, D < ∞. We have that D is exponentially
distributed with parameter δ.

The child is of course still infectious for some more time after the detection
of the disease but we assume common sense of the parents, meaning that
they let the child stay home until recovery and thus the child does not
infect other children any more. Because of this and the fact that an infected
individual instantly becomes infectious D is also equal to the number of
days the individual infects her surroundings. Introducing R∗0 as the value
of R0 when no quarantine is used and using that λ = λGE[D] and that
E[D] = 1/δ we get

R∗0 = E[M ]λG/δ.

The expected value of infectives in a school class with one initially infected,
E[M ], gets rather complicated since we, unlike with the global contacts, can
not assume that two individuals do not meet again in a foreseeable future.
We get quite the opposite situation, individuals in the same class meet each
other at daily basis which leads to dependencies. This can be solved with
simulations, or very approximately with the final proportion technique from
section 4.2.1. Something that we however are not doing in this thesis.

4.1.2 R0 for a school class: R̃0

In this section we consider the R0 of a school class in the case where quar-
antine of all unvaccinated individuals in the school class is used to prevent
spread of the disease. Upon detection of an infectious individual in a school
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class all unvaccinated students in that class are preventively sent into quar-
antine. These students may already be infected but not yet diagnosed or
may still be susceptible.

Unlike in the previous section we can not say that a typical individual infects
λGE[D] individuals from the society. The variable D is not of interest here
since the time spans during which individuals are infecting other students
are not identically distributed. This because the detection may happen while
the individual is in quarantine and thus the individual then do not spread
the disease to others during D time units.

Instead, we here interest ourselves in the value of R0 for a typical affected
class, R̃0. For that we use the time to the first detection in a school class,
which we call T ∗.

We introduce some new notation:

I(t) = number of infected individuals at time t

A(t) =
∫ t
0 I(s)ds

We can look upon A(t) as the total infectivity up to time t, which you get
if you add up all infectious periods of the infectious individuals in a school
class up to time t. A(T ∗) then becomes the total infection up to the moment
of the first detection. A visualization of A(T ∗) is showed in Figrue 5.
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Figure 5: The total infectivity up to time T ∗ is the sum of the infectious
periods up to time T ∗, here for the case with 4 infected at the time of
detection. Their total infectivity A(T ∗) is visualized as one long infectious
period which length is the sum of each individual’s infectious period up to
time T ∗.

Recalling that each infected individual independently get detected after an
exponentially distributed time with rate δ we get the following important
result:

A(T ∗) ∼ Exp(δ)

Proof: Assume that we at time T ∗ have j infected individuals who conse-
quently got infected prior to T ∗. We know that j ≥ 1 since if we had the
opposite situation a detection would not have been possible, i.e. we would
have no T ∗. We denote the time between infection and diagnosis for the
ith infected individual by Di and the time point when the i:th infected in-
dividual got infected by ti. Note that ti < T ∗ for all i ≤ j due to our
assumption.

All Di are considered to be i.i.d. Exp(δ) variables. We recall the following
about the exponential distribution:

For the random variable D ∼ Exp(δ)
density function: fD(t) = δe−δt

distribution function: FD(t) = 1− e−δt ⇒ P (D > t) = e−δt

12



memoryless property: P (D > a+ b|D > b) = P (D > a)

minimum of independent exponential variables:

min{D1, D2, ..., Dn} ∼ Exp(δ1 + δ2 + ...+ δn)

We begin with using the fact that A(T ∗) can be interpreted as the lengths of
all infectious periods up to time T ∗, the time of the first detection. Therefore

P (A(T ∗) > a) = P ((T ∗ − t1) + (T ∗ − t2) + ...+ (T ∗ − tj) > a)

= P

(
jT ∗ −

j∑
i=1

ti > a

)

= P

(
T ∗ >

a+
∑j

i=1 ti
j

)
.

We make the substitution k =
a+

∑j
i=1 ti
j . Repeated conditioning leads us to

P

(
T ∗ >

a+
∑j

i=1 ti
j

)
= P (T ∗ > k)

= P (T ∗ /∈ [0, k])

= P (T ∗ /∈ (tj , k]|T ∗ > tj)P (T ∗ > tj)

= P (T ∗ /∈ (tj , k]|T ∗ > tj)P (T ∗ /∈ (tj−1, tj ]|T ∗ > tj−1)P (T ∗ > tj−1)

= P (T ∗ /∈ (tj , k]|T ∗ > tj) · ... · P (T ∗ /∈ (t1, t2]|T ∗ > t1)P (T ∗ > t1).

Note that P (T ∗ > t1) = 1 since the first detection can not happen before
the first infection. We then only need an expression for the conditional
probability that the first detection does not happen in a given interval,
constituting of the time between two succeeding time points of infections,
given that it has not happened yet.

The probability that a detection will not happen in an interval is the prob-
ability that neither of the infected in the interval get detected. Each of the
individuals has time to detection distributed as Exp(δ), for each of them the
memoryless property can be used which makes it unnecessary to know who
have been infected for the longest, them both have the same probability not
to get detected in the interval, given that we know neither of them has been
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detected yet. The memoryless property gives us that, given that we have
not been infected yet, the probability not to get infected in the interval is
the probability not to get infected in a time period the length of the interval,
no matter where on the timeline the interval is placed.

Now note that the scenario with none of them getting detected in the interval
is the same as the scenario where the one to get detected first does not
get detected in the interval. The independence of the detections of the
individuals makes us able to use that the distribution of the minimum of
exponentials is exponentially distributed with the sum of the rates. Hence

P (T ∗ /∈ (tj , k]|T ∗ > tj) · ... · P (T ∗ /∈ (t1, t2]|T ∗ > t1)P (T ∗ > t1)

= P (min{D1, ...Dj} > k − tj) · ... · P (min{D1, D2} > t3 − t2)P (D1 > t2 − t1)
= e−jδ(k−tj)e−(j−1)δ(tj−tj−1) · ... · e−2δ(t3−t2)e−δ(t2−t1)

= e−δ(jk−jtj+(j−1)tj−(j−1)tj−1+...+2t3−2t2+t2−t1))

= e−δ
(
jk−

∑j
i=1 ti

)
.

Recalling that k =
a+

∑j
i=1 ti
j we get

e−δ
(
jk−

∑j
i=1 ti

)
= e
−δ
(
j
a+

∑j
i=1

ti
j

−
∑j
i=1 ti

)
= e−δ(a)

= P (D > a)

and since D ∼ Exp(δ) so is A(T ∗)�

We have now proven that the total infectivity of a school class, from first
infection to first detection, is distributed as an exponential distribution with
rate δ. The interpretation of the total infectivity as the total lengths of all
infectious periods will prove useful now as we introduce the expression for
R0 for a school class when quarantine is issued at first detection.

As in Figure 5, we ”translate” the infectious periods up until time T ∗ of
all individuals to one long infectious period with length the sum of each
infectious individual’s infectious period up to time T ∗. We imagine this
long infectious period to belong to one individual who each day with rate
λG contact new individuals, of which the proportion (1− v) should be with
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susceptible individuals in early stages of the outbreak due to vaccination.
We, with the help of a branching process approximation, get the basic re-
production number for a school class to be

R̃0 = E[A(T ∗)]λG(1− v) = λG(1− v)/δ

where we in the last equality used that A(T ∗) ∼ Exp(δ).

To compute the total infectivity in a class when recovery may happen before
detection one might find a paper from 2015 by Ball et al. of interest.

4.2 Final size equation

When looking at epidemics in large populations the threshold limit theorem
can be applied, which divides epidemic outbreaks into minor and major
such. In the case of a small outbreak a small, barely noticeable, number of
individuals get infected before the disease dies out. When the outbreak is
a major one a deterministic proportion can be decided for the amount of
people having been infected by the disease before it stops. A major outbreak
is according to the theorem only possible when R0 > 1 (more about R0 can
be found in section 4.1). With the help of the threshold limit theorem, a
final size equation can be set up (Andersson and Britton 2000 p.6).

4.2.1 A macro perspective: Affected school classes

If we ”zoom out” and regard the classes as macro individuals we end up
with a homogeneously mixed population, that is with no internal structures.
This section is only about the final size counted in macro individuals (school
classes), for the final size of an outbreak inside a class we refer to section
4.2.2 and for a combination of the two, yielding the final size counted in
infected individuals in total we refer to section 4.2.3.

We do not need to go into the mechanism of quarantine when regarding
macro individuals, the time between the first infection and the first detection
in a class is to be interpreted as the infectious period of a macro individual
and when the unvaccinated individuals in the class enter the state of quar-
antine the macro individual is entering the state of removal. Consequently,
we now deal with a standard SIR (Susceptible, Infected, Removed) model,
which is described in section 2.2.
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In section 2.2 we mentioned that an infected individual contact others ac-
cording to a Poisson process with rate γ. Here we have λG corresponding
to γ. In section 4.1.2 we found that for a school class (here called macro
individual) R̃0 = λG(1− v)/δ.

To set up the final size equation we also need the variable τ̃ , which we set
to represent the proportion of macro individuals who have been infected at
some moment during the outbreak.

In order to not get infected you would need to avoid infection from all
infected individuals. Since there exists n/s macro individuals the probability
that a given infectious such infects you, as a susceptible macro individual, is
λG(1−v)/δ

n/s = sλG(1− v)/(nδ) and thus the probability of avoiding to get the

infection from that macro individual is 1− sλG(1− v)/(nδ). And if you are
to not ever catch the disease you need to avoid infection from every macro
individual who has ever been infected. Macro individuals contact each other
independently of one another and therefore the probability that you never
get infected is (1− sλG(1− v)/(nδ))τ̃n/s, which converges to e−τ̃λG(1−v)/δ as
n −→∞.

Asymptotically the proportion individuals who never got infected should be
equal to the probability of avoiding infection, and therefore the final size
equation is

1− τ̃ = e−τ̃λG(1−v)/δ.

We use numerical methods to find the solution to this equation, these leads
us to

τ̃ =
W (−λG(1− v)/δe−λG(1−v)/δ) + λG(1− v)/δ

λG(1− v)/δ

where W (·) is the product log function, also known as Lambert W function.

Corless et al. (1996) describes the Lambert W function as the function
W (z) satisfying W (z)eW (z) = z. Plugging in the proposed solution (2) into
the equation (1) we get
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1− τ̃ = e−τ̃λG(1−v)/δ ⇐⇒ 1− W (−λG(1− v)/δe−λG(1−v)/δ) + λG(1− v)/δ

λG(1− v)/δ

= e
−W (−λG(1−v)/δe−λG(1−v)/δ)+λG(1−v)/δ

λG(1−v)/δ ·λG(1−v)/δ

⇐⇒ −W (−λG(1− v)/δe−λG(1−v)/δ)

λG(1− v)/δ

= e−W (−λG(1−v)/δe−λG(1−v)/δ)−λG(1−v)/δ

⇐⇒ −W (−λG(1− v)/δe−λG(1−v)/δ)eW (−λG(1−v)/δe−λG(1−v)/δ)

λG(1− v)/δ

= e−λG(1−v)/δ

⇐⇒W (−λG(1− v)/δe−λG(1−v)/δ)eW (−λG(1−v)/δe−λG(1−v)/δ)

= −λG(1− v)/δe−λG(1−v)/δ

which is the same as the definition for the Lambert W function with z =
−λG(1− v)/δe−λG(1−v)/δ. It is thus the right solution.

The result is visually presented in Figure 6 for a range of λG(1−v)/δ between
1 and 6. We can see that for R̃0 = λG(1−v)/δ > 1 the proportion of infected
rapidly increases and already for λG(1−v)/δ ≈ 2.5 about 90% of the initially
susceptible macro population are to be infected.

4.2.2 A micro perspective: Affected individuals within a school
class

If we want to know the proportion of individuals who ever got the disease
we need to know the expected proportion of infected individuals in a school
class that have had an epidemic outbreak. Knowing that, we can multiply
with the proportion of school classes that are expected to get affected and
get the proportion of children expected to have caught the disease, which is
done in section 4.2.3.

However, computing the proportion of infected children in a class is not as
simple as computing the proportion of classes, as we did in the previous
section. In a school class we find great dependencies, the probability that
two individuals do not meet again is really small. On the contrary they are
to be situated close to each other for a couple of hours each day for more
than a hundred days a year.
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Figure 6: Final proportion of macro individuals who at some point get
infected (τ̃) as a function of λG(1− v)/δ (R̃0).

The close contacts affect both the number of people an infected individual
can infect and the probability for a susceptible to get infected and we get
a chain-binomial model close the the one described in Andersson and Brit-
ton(2000, p. 4-6), which generates expressions very complicated to compute.

If we however could assume that infections occur in a constant rate accord-
ing to a Poisson process and that we do not experience the depletion of
susceptible, something that might be possible in the cases with big school
classes, low infection rates, a low percentage vaccinated and a fast detection
rate, we could use a result from 2009 by Trapman and Bootsma. The paper
goes into the relation between queuing theory and epidemiology and derives
the distribution of the number of infectives at the moment of the first detec-
tion by establishing a link between continuous time branching processes and
the so-called M/G/1 queues with processor sharing, which is M/G/1 queue
where we have a processor instead of a clerk and therefore imagine that we
serve everyone simultaneously. Understanding the mechanism will however
not be of importance here, but for the interested it is well described in the
paper.

We however, on the contrary to what is done in the paper, do not approx-
imate our spread to take the form of a continuous time branching process
but rather a discrete one. This makes the time aspect incorrect, but the
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number of individuals in a generation should be the same.

To be able to assume that the infections inside a school class occur according
to the corresponding Poisson process in the paper we instead of the per-pair
rate λL use a per individual rate λ∗L.

Very approximately we, with the help of the main result of the paper, get
that

M ∼ Geo(p)

i.e P (M = k) = p(1− p)k−1

where p = δ/(δ+(1−π)λ∗L) and π is the smallest root of π = E[e−(δ+(1−π)λ∗L)L].

Recall that M denotes the size of the outbreak inside a school class, and since
we neglect the small probability of classes getting reinfected this also denotes
the final size of the outbreak inside a school class. λ∗L is the infection rate,
once someone is infected in a school class, we neglect the rate of infections
from the society, λG, since once an infectious individual is in the class it
is assumed to start a ”subepidemic” rather quickly. L is in the paper the
distribution of the infectious period, since we always assume a detection to
take place prior to a recovery we here have L =∞. Thus,

π = E[e−∞(δ+(1−π)λ∗L)] = e−∞(δ+(1−π)λ∗L) → 0

and we consequently have π = 0 and therefore p = δ/(δ + λ∗L). Since the
expected value of a geometric distribution is 1/p,

E[M ] = (δ + λ∗L)/δ.

This is very intuitive since for two exponential variables, say A and B, with
rates α and β we have that

P (A < B) =
α

α+ β
,

a proof can be found in Ross, 2014, p. 287. The geometric distribution can
therefore be interpreted as the number of times we get to do things before an
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event of interest happen, where p is the probability that an event of interest
happens. In our situation, the event of interest is the detection, and the
”number of times we get to do things” is the number of infections. This
means that we can use the geometric distribution to describe the amount of
infections that will happen before a detection.

Due to the intuitive nature of the distribution when having L = ∞, the
result from the paper is not necessarily needed to reach this conclusion,
however it is of big use in situations where a recovery prior to a detection
is allowed. Allowing it in this paper would nevertheless violate our result
in section 4.1.2 about the distribution of the total infectivity in a class. To
compute the total infectivity in a class when recovery may happen before
detection one might find a paper from 2015 by Ball et al. of interest.

4.2.3 A combined perspective: infected individuals in the popu-
lation

With the help of the previous sections 4.2.1 and 4.2.2 we here present the
expected proportion of individuals who ever get infected. We get this by
multiplying the proportion of school classes that would be affected with the
proportion of a school class that would be affected. However, due to the
approximate nature of the result from section 4.2.2, the affected individu-
als in a class, the result from this section must also be considered to be
approximate.

From section 4.2.1 we got that τ̃ , the proportion of infected school classes
is given by

τ̃ =
W (−λG(1− v)/δe−λG(1−v)/δ) + λG(1− v)/δ

λG(1− v)/δ
.

From section 4.2.2 we got that

E[M ] = (δ + λ∗L)/δ

for the expected number of affected individuals. As a proportion, which we
can denote by τ∗, we get
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τ∗ = E[M ]/(s(1− v)) =
δ + sλ∗L
δs(1− v)

where s(1− v) is the number of initially susceptible in the school class.

The proportion of initially susceptible infected individuals in the population,
τ , is therefore

τ = τ̃ τ∗ =
W (−λG(1− v)/δe−λG(1−v)/δ) + λG(1− v)/δ

λG(1− v)/δ
·
δ + λ∗L
δs(1− v)

.

5 Simulations

5.1 Method

The simulation can be produced in R in the following way:

Have the following variables, numbers used in this thesis within parenthesis:

pop : size of the population (10000)

m : number of initial infected (1)

v : proportion vaccinated (0, 0.4, 0.6, 0.8)

s : size of school classes (25)

rateG : global contact rate (1/2, 1, 2)

rateL : local contact rate (1/5, 1/10, 1/15, 1/20)

rateD : detection rate (1/7, 1/3)

time : time the simulation should go on for, counted in days (100)

(1) Create a data frame with one row for each individual and columns con-
taining the following information:

• Unique number of the individual (1, 2, ..., pop)

• Number of the school class the individuals can belong to (1, 2, ..., pop/s)

• The current state of the individual. We allow the individual to be in
S (for susceptible),R (for removed/recovered, implying immune) or a
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number, describing the time of infection. The case of the individual
being in a state which is a number thus implies that the individual is
infective and got infective at that time point.

• Whether the individual has ever been infected (True/False).

• An exponentially distributed number (with rate rateD) describing the
time from infection to detection, if the individual gets infected.

(2) Simulate who of the pop(1 − v) susceptible individuals who should be
among the m initial infected.

(3) Simulate the infections caused in a day. Do this by, for each infected
individual, simulating a binomially distributed number with size parameter
the number of susceptible in the class and probability parameter rateL.
This is the number of newly infected individuals within the class. Randomly
choose who to be infected among the susceptible and change their state to
the current time. Also choose, for each infected individual, rateS individuals
from the population who are contacted. These individuals get infected if
their state is S, if so change their state to the current time.

(4) For the infected individuals, check if the current time subtracted with
state number (time of infection) exceeds the individual’s time to detection.
If so, change the state of the individual and all individuals in the same class
to R. Increase the current time by 1 and repeat from step (3) while the
current time has not yet reached time and the number of susceptible or
infected is not 0.

5.2 Results

In Figure 7 we can see how the outbreak evolves for a very aggressive disease
when different percentages of the population are vaccinated. We can see that
the bigger percentages vaccinated the longer the outbreak will last. When
many are vaccinated in a class few are susceptible as a result. The depletion
of susceptible classmates then goes then very fast since there are very few
of them and the contact rate is per infective-susceptible pair and thus the
spread does never gain exponential speed. The high amount of vaccinated
however makes the depletion of susceptible individuals outside the school
class go slower since many contacts do not result in infections and we see
the outbreaks last for longer instead. The disease is too infectious for the
vaccinated population to put an end to the spread.
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In Figure 8 we have another situation where the time to detection is shorter.
Here we can see that for 80% vaccinated the disease has problems getting
a foot hold and dies out much quicker than when we have 40 and 60%
vaccinated. Note that this disease is even more infectious but it is expected
to be detected after 3 days instead of 7.

We also see that the graphs are a bit edgy at places, this has to do with
the fact that when a class with many infected get sent to quarantine many
infected disappear from the society at the same time. This effect gets even
bigger since we simulate in discrete time, meaning that many classes may
be sent to quarantine at the same time unit.

We compute the final proportion infected in case of a major outbreak for
both the proportion of all initially susceptible, which we denote τ as before,
and the proportion in the corresponding case when no quarantine is used,
denoted τ̂ . It is important to note that even if a major outbreak has a
positive probability whenever R0 > 1 different values of R0 yield different
probabilities of a big outbreak. We have given each situation 10 simulations
to see if an outbreak happens and see where the proportion converges. In
some situations we have not observed any outbreaks, which does not nec-
essarily mean that a big outbreak is impossible, it may just be unlikely to
happen and we may have observed a major outbreak if we had done a few
simulations more.

We have simulated for the population to consist of 0%, 40%, 60% and 80%
vaccinated individuals, the results can be found in Table 1,2,3 and 4. In
each table we have also investigated the size of the outbreaks for different
values of δ, λG and λL. The values δ = 1/7, λG = 2 and λL = 15 can all be
considered to be quite extreme, especially in combination. In a population
where neither quarantine nor vaccination is used these parameter values
together would mean that an individual is expected to infect close to 4
other individuals in only one day, and is not expected to get detected until 6
more days! This is a situation far from what is normal in real life. We have
even used 1/10 and 1/5 as values of λL, these might be unrealistic but we
use them to discover situations where the different percentages vaccinated
make a difference.

Reading from the tables we can see that using quarantine makes a big dif-
ference for all levels of vaccinated, even none. Many times pretty much the
whole susceptible population get infected when no quarantine is used and
when we douse quarantine we get the result down with at least two thirds.

When the detection rate δ is 1/7 the vaccinated population does not always
manage to stop the spread of the disease. For the 0%, 40% and 60% vac-
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Figure 7: Undetected infected individuals during the outbreak. δ = 1/7,
λG = 1 and λL = 1/15, a really infectious and long lasting disease. In
the bottom picture is the number of infected as a percentage of initially
susceptible individuals. When a big percentage of a population is vaccinated
the outbreak lasts for longer. When we deal with really serious diseases like
this one the amount of vaccinated, if it is not extremely high, does not stop
the spread of the disease, it just makes it take more time.
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Figure 8: Undetected infected individuals during the outbreak. δ = 1/5,
λG = 1 and λL = 1/10, a quite serious disease but not as bad as the one in
Figure 7. Here we can see that if we have 80% vaccinated we can stop the
spreading before it has affected many. In the bottom picture is the number
of infected as a percentage of initially susceptible individuals.
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cinated there is not much of a difference regarding the proportion infected
among the initially susceptible when we use λG = 1 and λL = 1/10 or 1/15.
For 80% vaccinated we see a considerable decrease, but still many become
infected. When λG = 1/2 however the spread quickly stops with only 40%
vaccinated.

When we have δ = 1/3 the disease does not get a foothold in the same way.
For an extremely infectious disease with λG = 2 and λL = 1/5 vaccination
of less than 80% of all individuals does not make much difference. However,
if λG = 1 and λL = 1/10 we see a strong effect of vaccination. For 40%
vaccinated we can expect 2% of the susceptible population to get infected
and for more than 60% vaccinated we have less than 1%.

δ λG λL τ τ̂

1/7 1 1/15 0.28 >0.99

1/7 1 1/10 0.33 >0.99

1/7 1/2 1/20 0.20 >0.99

1/7 1/2 1/10 0.26 >0.99

1/3 2 1/5 0.23 >0.99

1/3 1 1/10 0.10 >0.99

Table 1: Simulated final proportion of initially susceptible individuals
affected by the disease for 0% vaccinated.

δ λG λL τ τ̂

1/7 1 1/15 0.31 >0.99

1/7 1 1/10 0.36 >0.99

1/7 1/2 1/20 <0.1 0.98

1/7 1/2 1/10 0.01 0.99

1/3 2 1/5 0.2 >0.99

1/3 1 1/10 0.02 >0.99

Table 2: Simulated final proportion of initially susceptible individuals
affected by the disease for 40% vaccinated.

δ λG λL τ τ̂

1/7 1 1/15 0.27 0.98

1/7 1 1/10 0.36 >0.99

1/3 2 1/5 0.18 0.98

1/3 1 1/10 0.01 0.90
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Table 3: Simulated final proportion of initially susceptible individuals
affected by the disease for 60% vaccinated.

δ λG λL τ τ̂

1/7 1 1/15 0.20 0.86

1/7 1 1/10 0.25 0.88

1/3 2 1/5 0.03 0.81

Table 4: Simulated final proportion of initially susceptible individuals
affected by the disease for 80% vaccinated.

6 Conclusions

When we deal with really infective diseases, vaccination of 40%, 60% and
sometimes even 80% of the population is of little help for more than the
vaccinated. For very infective diseases those are not enough to stop the
disease since the infected makes so many contacts.

Diseases that can go undetected for long are of particular danger. If they
additionally are very infective most individuals in a school class may already
have caught the disease when a quarantine is issued, and then the quarantine
loses some of its effect. For those situations a high percentage must be
vaccinated. How high depends on the worst scenario one is willing to accept.
If the disease is a little less infectious the strategy works very well.

For diseases that can be detected fast the method with combined quarantine
and vaccination is very powerful. We have observed situations where no
quarantine is used and the disease has spread to more than 99% of the
susceptible population, and for the corresponding situation where quarantine
is used the disease has reached less than 10% of all susceptible. In the
case with δ = 1/3, λG = 1 and λL = 1/10 we observe that for every
20% vaccinated the proportion of infected susceptible seem to decrease with
roughly 50%, which is a very good effect.

To summarize we have seen that often an active response to infections, here
in the form of quarantine, may be more powerful and prevent the spread
more than an increased level of vaccination, if the proportion vaccinated is
already far from 1.
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7 Discussion

It is important to note that what is done in section 4.2.2 when the number
of infected upon detection was computed is really approximate, especially
since we assumed a constant rate of infection. What happens when an
outbreak starts in a class is rather a spread of exponential speed. For the
approximation to hold the infection rate must be very slow and the detection
rate quite fast so that a constant infection rate is reasonable. In this thesis
we on the contrary investigated very infectious diseases, inspired by measles.
This might also lead to another problem: an over depletion of susceptible.
If the results from this theses are to be applied these aspects should be
investigated closer.

The strength of this thesis is how it describes the spreading of a disease
among classes in a way that is independent of class sizes and local infection
rates. The simulations also give a good indication of the strength of the
strategy.

In a deeper study it might be of interest to generalize the results. This by
allowing there to be a different number of vaccinated in each class, different
class sizes, self-recovery and vaccines not working perfectly. That situation
could also be used for populations where the populations where people get
infected more or less easily because of other aspects.

Also, to really be able to see the strength of combined vaccination and
quarantine theoretically more work should be dedicated to section 4.1.1 to
work out an expression for R0 for the situation where quarantine is not
used. One should also try to express the constant infection rate λ∗L from
4.2.1 in order to be able to use the final size expression from section 4.2.2.
The conclusions about the effect of the combined vaccine and quarantine
strategy in this thesis are only based on simulations.

In this thesis we in a way have tried to see how few we can vaccinate and
still save many from infection by using quarantine. However we have no
interest in getting fewer people vaccinated. Herd immunity, vaccinating a
big enough proportion for R0 to equal 1 (Andersson and Britton, 2000, p.
188), is the best way to prevent the spread of a disease. It may also be
that it is cheaper, quarantines cost a lot; we need people to diagnose the
children and also we need parents to stay home from their jobs to take of
their children. For long lasting diseases this might have a high cost. The cost
aspect should be considered before the strategy in this thesis is considered
to better than something else. What we have investigated in this thesis is
rather an alternative for when it is problematic or not possible to vaccinate
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enough individuals to obtain herd immunity or what to do in situations
where it is too late to vaccinate people, like when an outbreak is already
ongoing.
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