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Abstract

In this thesis, we look at how diseases affect the workplace. We

are mainly interested in the productivity of the workplace during the

epidemic. We create a stochastic model which has a closed population

and a two-level contact structure. Through simulation, we are able

to analyze how the different parameters affect the productivity of the

workplace. We derive the so-called basic reproduction number R0 and

discuss how it relates to the size and duration of the epidemic.
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Abstract

In this thesis, we look at how diseases affect the workplace. We are mainly

interested in the productivity of the workplace during the epidemic. We cre-

ate a stochastic model which has a closed population and a two-level contact

structure. Through simulation, we are able to analyze how the different pa-

rameters affect the productivity of the workplace. We derive the so-called

basic reproduction number R0 and discuss how it relates to the size and

duration of the epidemic.
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Chapter 1

Introduction

The office is a place where virus and illness are common. It can result in

multiple days of paid sick leave for every infected individual as well as lower

productivity if the infected individuals show up to work while feeling a bit

under the weather. It is important to look at different ways to approach this

problem in terms of how it affects the employer from an economic perspec-

tive. To do this, we create an epidemic model and look at how the different

parameters of the model affect the productivity of the workplace. The epi-

demic models have a contact structure on two levels to try and capture the

work groups that are common in a workplace. We are looking at the so-called

reproduction number R0 and how this number is reflected in the simulations.
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Chapter 2

Model

2.1 Stochastic model

There are two main types of models: stochastic and deterministic. The model

discussed in this thesis is stochastic but it is important to understand the

advantages and insufficiencies of both types of models. In deterministic mod-

els, there is no element of randomness. The main advantage of deterministic

models is that since there is no randomness the results are easier to obtain

and interpret. Stochastic models, although harder to interpret the results,

do have some advantages. The element of randomness in stochastic models

gives a more realistic way of modeling the spread of disease.

The stochastic model describes the probability of disease transmission be-

tween two individuals instead of stating with certainty when transmissions

of the disease will happen. In the stochastic model, it is possible for models

with a so-called reproduction number larger than 1 to end before an epi-

demic would emerge. In the deterministic model, an epidemic would always
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occur if the reproduction number is larger than one and never occur if the

reproduction number is smaller than one. This difference makes stochastic

models more suitable for epidemics in smaller population or when there are

few initially infectious individuals. This is because it captures the random-

ness of the final size of the epidemic. This means that some properties of the

epidemic can only be analyzed in stochastic models.[1] A survey by Britton[2]

looks more closely at deterministic and stochastic models. The survey also

discusses when deterministic models are insufficient.

2.2 Model description

It is important to acknowledge that a mathematical model is always a sim-

plification of reality. A model no matter how complex will not be able to

accurately mirror reality. And with more complexity, it makes it harder to

analyze how each factor influences the spreading of the disease. For this

reason, we only include the parameters and characteristics that we want to

analyze the influence of. In this way, we can derive some useful information

from the analysis of the model.

In our model, we use discrete time intervals were all individuals contact

each other at the same rate. We define the population as closed. This means

that there are no outside effects that influence the population. It also means

that no new individuals enter the population and that no individuals in the

population leave. All individuals in the population are identical. This means

that individuals in a certain state behave the same.

The model only considers weekdays which means that weekends are not
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considered in any shape or form. The simplification of removing weekdays

makes it so that the probabilities that individuals change state does not

depend on the current time increment. Every time increment is defined as

one whole day.

The day starts with every infectious individual deciding whether they

stay home or go to work. Then every susceptible individual gets exposed to

the disease in one way or another given that some infectious individuals are

at work. Unrelated to the spread of the disease individuals that are at home

resting either remain home another day or recover and return to work the

next day and are immune.

To model the spread of disease in the workplace we divide the popula-

tion into workgroups. Susceptible individuals in a specific workgroup can get

infected on two different levels. The local level which means that the suscep-

tible individual. The local level where a susceptible individual can contact

the infectious individuals in the same workgroup, and the global level were

the susceptible individual can contact any of the infectious individuals in the

population.

We separate the infectious period into two different states. In the first

state the disease is not yet observed but the individual is still able to contact

susceptible individuals. In the second state the disease is observed, and the

individual decides to stays home from work the next day with a certain

probability.

The purpose of this separation is to compare how different employers

handle the diseases in the workplace. If an employer is very health conscious

and mindful of the spread of diseases the idea is that the amount of time that
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the disease is not yet observed would be shorter. The model also distinguishes

between workdays were the individual is susceptible or infectious in terms

of productivity since it is reasonable to assume that individuals are not as

productive when they are sick. If illness would not affect productivity, there

would not be any incentive to encourage or let employees stay home from

work. Lastly an infectious individual cannot be sick for more than five days.

Infectious individuals can however stay home and potentially recover in less

than five days. This means that the total number of days spent sick and at

home cannot exceed five. It is possible to recover from the disease while still

at work.

2.3 Defining the model

The model has five different states and individuals move between them in

discrete time. The five different states an individual can be in is: S if an

individual is at work and susceptible to infection, I1 if an individual is at work

and infectious but the disease is yet to be detected, I2 if an individual is at

work and infectious, Q if an individual is at home recovering from previously

being infected and R if an individual is recovered, back at work and immune

to reinfection.
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Figure 2.1: Different states of the model

Each day individuals move between the five states based on the outcome

of a Bernoulli trial where the probability depends on their current state as

well as the state of the population as a whole.

Infectious individuals contact a susceptible individual on the local level

with probability P (ΛL) and on the global level with probability P (ΛG). If a

susceptible individual gets infected they move to state I1,t. Infectious indi-

viduals in state I1,t spread the disease but since the disease has not yet been

observed the individual remains at work until they after a certain amount

of time D move to state I2,t. In our model, we have decided to let D be a

fixed period of time. First when the infectious individual has moved to state

I2,t they can decide to stay home from work and recover with probability γ

which removes them from the population and places them in the state Qt

(quarantine). Individuals in state Qt can then recover with probability δ

and return to work the next day. The disease can last a maximum of ρ = 5

days until they inevitably recover, whether the individual goes home or not.

This means that the individual can recover from the disease without any
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days of paid sick leave. Individuals who have recovered and return to work

are immune. An individual who has recovered can no longer switch state.

This means that the epidemic inevitably ends if St + Rt = N . The model

starts at time t = 0 with one infectious individual and the rest as susceptible

individuals. More precisely

S0 = N − 1, I1,0 = 1, I2,0 = 0, Q0 = 0, R0 = 0.

Since the population is closed it is always the case that

St + I1,t + I2,t +Qt +Rt = N

for all t ∈ N.

The population is divided into work groups i = 1, ..., g which consist of h

individuals. To differentiate between different work groups as well as time

increments we create the following notation. S
(i)
t denotes the number of

susceptible individuals in group i at time t. I
(i)
1,t and I

(i)
2,t the number of

infectious individuals in group i at time t. Q
(i)
t the number of individuals in

quarantine in group i at the time t. R
(i)
t the number of recovered individuals

in group i at the time t.
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It is always the case that

St =

g∑
i=1

S
(i)
t , I1,t =

g∑
i=1

I
(i)
1,t , I2,t =

g∑
i=1

I
(i)
2,t

Qt =

g∑
i=1

Q
(i)
t , Rt =

g∑
i=1

R
(i)
t .

2.4 Disease spread in the workplace

In this section, we are looking more closely at the probability of getting

infected. In this model, we have a household structure with infectious indi-

viduals making contact on two levels. The local level, the probability that

a susceptible individual gets infected by an infectious individual in the same

work group. The global level, the probability that a susceptible individual

gets infected by any infectious individual in the population. This means that

an infectious individual can infect individuals in their own work group on the

global as well as the local level. It is important to note that the two levels

of infection are independent of each other. To calculate the probability that

a certain individual gets infected we need to look at the probability that the

individual gets infected on any level. To do this we first need to look at the

probability of getting infected on each level separately.

10



Let λL denote the probability that an infectious individual contact a

certain susceptible individual on the local level. The probability of getting

infected on the local level is

P (ΛL)i = 1− (1− λL)I
(i)

.

Since λL is the probability of making contact with a single infectious indi-

vidual the probability (1−λL) is the probability of not making contact with

that specific infectious individual. The probability of not making contact

with any of the infectious individuals in the same group is (1− λL)I
(i)

. The

probability 1−(1−λL)I
(i)

is the complementary event to not getting infected

on the local level. With the same reasoning

P (ΛG) = 1− (1− λG)I

is the probability of getting infected on the global level. The probability

of getting infected on any level can be derived using basic probability theory

for two independent events. The probability that one of these events occur

is

P (ΛL ∪ ΛG)i = P (ΛL)i + P (ΛG)− P (ΛL ∩ ΛG)i

and since P (ΛL)i and P (ΛG) is independent it follows that the joint dis-

tribution P (ΛL ∩ ΛG)i = P (ΛL)i · P (ΛG).[3]
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Putting this together we get

P (ΛL ∪ ΛG)i = P (ΛL)i + P (ΛG)− P (ΛL)i · P (ΛG).

The probability of getting infected varies between the different work-

groups. In order to differentiate between them, we let P (ΛL ∪ ΛG)i be the

probability of getting infected on any level for a susceptible individual in

group i.

2.5 Summary of the model

At t = 0 there is N−1 susceptible individuals and m = 1 infectious individual

in state I1,t. Susceptible individuals can then get infected with a group-

specific probability P (ΛL ∪ ΛG)i. Ones infected the susceptible individual

moves to state I1,t were they stay for a predetermined number of days D

and then move to state I2,t. Once in state I2,t the infectious individual can

then stay home from work the next day with probability γ and move to state

Qt. Individuals in state Qt can then recover with probability δ and move to

state Rt were they have returned to work and are immune to infection. If an

individual has been sick for a total of ρ days the individual recovers, moving

from state I2,t or Qt to state Rt.

2.6 Reproduction number

When looking at an epidemic there are generally two end scenarios. Either

the disease dies out quickly with only a few infected individuals or a large
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part of the population gets infected. The reproduction number R0 plays a

central part when looking at the final size of the epidemic. In general R0 is

defined as the expected number of individuals infected by an infectious indi-

vidual in a mostly susceptible population. In our model, we have a two-level

contact structure. Because of this, we are interested in the average number

of global infections as well as the local sub-epidemics within groups. The

average number of global infections can be derived using branching process

approximation. We assume that the number of work groups g →∞ and de-

note the average infectious period of an infectious individual as τ . Let λ∗G/n

denote the rate at which an infectious individual contacts a given individ-

ual in the population on the global level. The initially infectious individual

on average contacts λ∗Gτ individuals who all with high probability belong to

different work groups. All these newly infected individuals will then start

sub-epidemics in their respective household. The size of these sub-epidemic

result in on average ML =
∑h

j=1 jP1,j were Pi,j is the probability that the

epidemic results in j infected individuals. We are interested in the average

number of groups as well as the sub-epidemics that they generate. We de-

fine the basic reproduction number as R0 = MLλ
∗
Gτ .[1, p. 56] Branching

process approximation of epidemics with two levels of mixing is looked at

more closely by Ball, Mollison and Scalia-Tomba.[4] In a research report by

Pellis, Ball and Trapman[5] they discuss another way of calculating R0. The

research report also gives an intuitive argument on how R0 is constructed.

For our model ML and, by extension R0, is hard to calculate numerically.

For this reason, we decided to simulate R0. The simulation of R0 is done in

chapter 3.1.
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Chapter 3

Simulations and results

3.1 Reproduction number

The basic reproduction number R0 is approximated by simulating the average

number of global contacts λ∗Gτ and the average size of the sub-epidemics

ML =
∑h

j=1 jP1,j separately. From these two simulations we can approximate

R0 = MLλ
∗
Gτ . We simulated R0 for the following parameter values: λL = 0.1,

λ∗G = 1, ρ = 5, D = 1, γ = 0.75 and group size h = 10. We approximate

R0 ≈ 9.7. This means that there is a positive probability that the epidemic

results in a major outbreak for these parameter values.
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3.2 Results

We are interested in how the epidemic affets the productivity of the workplace

as a whole. In order to take into account that infectious individuals are less

productive we value each day that a sick individual work as θ. θ is a value

between 0 and 1 which we have decided to be fixed. It is important to point

out that θ is arbitrary.

We want to look at how each parameter impacts the epidemic. To do this

we look at all parameters individually. We simulate the model where we let a

single parameter take all possible values in a given range. Lastly, we plot the

parameters different values against the lost productivity of the workplace.

When we analyze how a specific parameter affects the loss of productivity,

all other parameters remain constant. From Figure 3.1 we can tell that λG

has quite a large impact on the loss of productivity. This is true for values

lower or equal to 0.04. For values larger than 0.04 there is no visible effect

in terms of lost productivity. This can be because once λG ≥ 0.04 the whole

population gets infected quickly.
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Figure 3.1: 100 simulations have been run for each value of the parameter λG.

The values range from 0.01 to 1 in increments of 0.01. All other parameters

remain constant: λL = 0.1, D = 1, γ = 0.75, δ = 0.25, ρ = 5 and θ = 0.7.

Figure 3.2 shows a similar effect of λL as that of λG in Figure 3.1. λL

has quite a large impact on the loss of productivity. This is true for values

lower or equal to 0.3. Once λL ≥ 0.3 there is no visible effect in terms of lost

productivity. This can be because once λL ≥ 0.3 the whole population gets

infected quickly.
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Figure 3.2: 100 simulations have been run for each value of the parameter λL.

The values range from 0.01 to 1 in increments of 0.01. All other parameters

remain constant: λG = 0.01, D = 1, γ = 0.75, δ = 0.25, ρ = 5 and θ = 0.7.

Figure 3.3 shows a linear relation between the parameter δ and the loss

of productivity. δ is the probability that an individual in state Q return to

work. The parameter only affects the number of days spent at home and not

how the disease spreads. Because of this, the linear relation is expected.
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Figure 3.3: 100 simulations have been run for each value of the parameter δ

which is the probability that an individual in state Q recovers. The values

range from 0.01 to 1 in increments of 0.01. All other parameters remain

constant: λL = 0.1, λG = 0.01, D = 1, γ = 0.75, ρ = 5 and θ = 0.7.

Figure 3.4 shows that γ affects the loss of productivity in a rather unusual

way. γ is the probability that an infectious individual in state I2 stays home

from work the next day. The loss of productivity is highest for values between

0.25 and 0.75, and low for γ ≤ 0.25 or γ ≥ 0.75. For low values of γ, this

would mean that infectious individuals stay at work for the maximum amount

of ρ = 5 days. After five days they recover without taking any paid sick leave.

Very few individuals stay home from work to recover, which leads to the loss

of productivity being lower overall. For high values of γ, this would mean

that infectious individuals stay home from work early. This leads to fewer
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individuals being infected overall and the disease dying out quickly.

Figure 3.4: 100 simulations have been run for each value of the parameter γ

which is the probability that an individual in state I2 stays home from work.

The values range from 0.01 to 1 in increments of 0.01. All other parameters

remain constant: λL = 0.1, λG = 0.01, D = 1, δ = 0.25, ρ = 5 and θ = 0.7.

Figure 3.5 shows a non-linear relation between the number of days until

the disease is observed D and the loss of productivity. For D = 0 the loss of

productivity is significantly lower. The reason for this is that for D = 0 there

is a possibility that infectious individuals stay home from work without the

possibility of infecting anyone else. The loss of productivity is slightly lower

for D = 4 when compared to D ∈ {1, 2, 3}. This can be explained by the

fact that for D = 4 infectious individuals will not have the opportunity to

stay home from work. This means that the number of days of paid sick leave
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is low but the number of days that infectious individuals are still at work is

high.

Figure 3.5: 100 simulations have been run for each value of the parameter D

which is the amount of time until the disease is observed. The values range

from 0 and 4 in one day increments. All other parameters remain constant:

λL = 0.1, λG = 0.01, γ = 0.75, δ = 0.25, ρ = 5 and θ = 0.7.

From Figure 3.6 we see that the maximum amount of possible sick days

ρ, results in more productivity lost the larger the value of ρ. If ρ is larger

than 10 it does not result in further loss of productivity. This is because after

10 sick days almost all infectious individuals have recovered. Increasing the

roof on the maximum number of sick days beyond 10 does not impact the

productivity negatively.
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Figure 3.6: 100 simulations have been run for each value of the parameter ρ

which is the maximum number of days an individual can be sick. The values

range from 0.01 to 1 in increments of 0.01. All other parameters remain

constant: λL = 0.1, λG = 0.01, D = 1, γ = 0.75, δ = 0.25 and θ = 0.7.

Figure 3.7 shows a linear relation between θ and the loss of productivity.

θ is a multiplier on the productivity of infectious individuals. It does not

affect the epidemic in any way. Since it only acts as a multiplier on a part

of the workers the linear relation is expected.
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Figure 3.7: 100 simulations have been run for each value of the parameter

θ which is the productivity of an infectious individual. The values range

from 0.01 to 1 in increments of 0.01. All other parameters remain constant:

λL = 0.1, λG = 0.01, D = 1, γ = 0.75, δ = 0.25 and ρ = 5.
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Simulations have been done for two different sets of parameters. The

difference between the two sets of parameters is the value for parameter D.

In one of the sets we haveD = 1 and in the otherD = 2. All other parameters

are the same in both sets, λL = 0.1, λG = 0.01, γ = 0.75, δ = 0.25, ρ = 5

and θ = 0.7. Figure 3.8 shows that for D = 2 the epidemic is much larger.

The epidemic for D = 1 although smaller does last longer. This might seem

counter-intuitive. The reason is that if most of the population gets infected

early they will also recover early, hence the epidemic will die out faster.

This is looked at more thoroughly in a study by Lashari, Serafimović and

Trapman[6] on the duration of an SIR epidemic on a configurated model. In

the study, they show that a decrease in R0 might increase the duration of

the epidemic.
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Figure 3.8: 100 simulations have been run for D = 1 and D = 2. The average

number of individuals in each state is displayed for every state. All other

parameters remain constant: λL = 0.1, λG = 0.01, γ = 0.75, δ = 0.25, ρ = 5

and θ = 0.7.
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Chapter 4

Discussion and improvements

4.1 Discussion

The simulations of how the different parameters affect the productivity gave

some different results. The parameters λL, λG and ρ all affected the pro-

ductivity in a similar way. The parameters greatly increased the loss of

productivity as their value increases, but only until a certain point. After

that point there seems to be no further effect from the parameters on the

loss of productivity. The parameters γ and D both affect the productivity

in a non-linear way. The loss of productivity is lower for small and large

values. The loss of productivity is high for midrange values of the param-

eters. This is because when the value is small the disease dies out quickly

with few individuals infected. If the value is high the epidemic spreads to the

whole population quickly and then dies out quickly. If however, the value is

midrange it results in the epidemic being dragged out. The disease would

then stay around longer, which would result in more productivity lost. Fig-

25



ure 3.8 showed that the set of parameters with D = 2 resulted in a larger but

shorter epidemic. The reason is that if most of the population gets infected

early they will also recover early, hence the epidemic will die out faster. This

is further looked at in a study by Lashari, Serafimović and Trapman [6] where

they show that a decrease in R0 might increase the duration of the epidemic.

4.2 Improvements

In this thesis, we have simulated a simple epidemic model and looked at

how the spread of disease impacts the workplace in terms of productivity.

The model is as mentioned very simple. It has a closed population and only

handles discrete time increments that represent a whole work day. If one

would like to look at this type of thesis more thoroughly some suggestions

for improvement would be to have a population that is not closed so that

new employees can get hired and old ones quit. Another improvement would

be to look at continuous time and include something about the probability

of being sent home or leave during the day. Productivity and how sickness

affects it can also be looked into in more detail.
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