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Abstract

In this thesis we examine how a so called SIQS epidemic spreads in a

kindergarten setting with a multitype structure. When using the SIQS

model we can model the flow of individuals between the subgroups as

Susceptible → Infectious → Quarantined → Susceptible. By doing

this we can examine how the diseases spread and how to combat them.

We also implement a system of forced withdrawal to examine how such

a method would affect the spread of the disease and the total number

of days in quarantine.

Every day a child spends in quarantine, or at home as in this case,

implies that a working adult has to take care of them. From an eco-

nomic point of view, which is the primary view of this thesis, it is

therefore important to minimize the total number of sick days during

an epidemic. Furthermore we also wish to examine how the optimal

number of days of forced withdrawal varies for epidemics with different

degrees of infectiousness.

By using a forced withdrawal model we come to the conclusion that

the spread and total number of days in quarantine can be reduced com-

pared to the reference SIQS model. The method which leads to the

minimization of quarantine days, and as a result the minimization of

economic loss, is one where the number of days of forced withdrawal

are large. By choosing a larger number of days of forced withdrawal

we are able to isolate all initially infected individuals such that they

can recover without infecting anyone else at the kindergarten. If the

number of days is large enough we can be relatively sure that all quar-

antined children will have recovered upon return, leading to an early

termination of the epidemic. Through simulation we are able to derive

the number of days of forced withdrawal which minimizes quarantine

days for a variety of diseases.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: anton.t.strahle@gmail.com. Supervisor: Pieter Trapman.



Glossary

Initially Quarantined: Denoted by η. The number of people in quarantine
after the initial stage of the epidemic.

Initial Stage: The period until the number of infectious individuals reaches
approximately zero (and the number of quarantined is η) in the case of a forced
withdrawal model.

Reignition: The epidemic does not terminate after the initial stage, instead
it could be seen as restarting with some new number of initially infected. The
“new” initially infected are the individuals that do not recover during the initial
quarantine period.

q: The number of days we let the children stay in quarantine in the forced
withdrawal model.

Optimal Value of q: The optimal value or q, sometimes referred to as qmin,
is the value of q which minimizes the total number of sick days.

ODE: Ordinary differential equation.

Local Infection: When an infectious individual infects someone within their
own group (a so called local individual)

Global Infection: When an infectious individual infects someone outside their
own group (a so called global individual)

External/Exterior Infection: When a susceptible individuals gets infected
by someone outside of the multitype structure.

Memorylessness: Memorylessness is a property of certain distributions in-
dicating that they are independent of the time elapsed. This means that the
probability of an event of interest occurring is the same at any trial. The geo-
metric distribution is an example of such a memoryless distribution.

Reproduction Number: A quantity, denoted by R0, used in epidemic mod-
elling to indicate the infectiousness of a disease. It can also be related to whether
or not a large outbreak can occur.

Early Termination: The epidemic terminates after the initial stage of the
epidemic, meaning that none of the initially quarantined return susceptible (or
in rare cases that some do return infectious but fail to spread the disease further).
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1 Introduction

An epidemic running rampant in a kindergarten could be seen as a problem
for everyone involved since it affects both the children, their parents and their
teachers. It is therefore of interest to examine different methods on how to most
effectively combat epidemics, minimizing sickness and time at home. From an
economic standpoint every day a child spends at home results in a working
adult having to take care of them which implies some kind of economic loss to
both their employer and to the society as a whole. There are of course also
the physical and psychological effects of illness and disease which serves as a
further incentive to minimize the number of infections and eventually rid the
kindergarten of the epidemic as fast as possible.

The main focus of this paper is the economic standpoint since it is more reason-
able to quantify economic loss rather than the physical and psychological well
being of an individual. Furthermore we could also see the economic loss as a
proxy for decrease in well being due to the clear relationship between the two.
As previously mentioned, every day a child is sick implies some kind of economic
loss. It is therefore crucial to minimize the amount of these days to minimize
the economic loss generated by the epidemic. Since it is difficult to determine
how much loss is incurred by a missed day we can instead choose to observe
the number of days of absence. This is due to the evident positive relationship
between absent days and economic loss.

The beginning of this paper includes an introduction to epidemic modelling
whilst also bringing up some specific concepts that are used throughout the
paper. After that we present the kindergarten setting in its entirety and start
implementing the different models we wish to examine based on the theory and
concepts introduced in the beginning.

Throughout the paper we attempt to introduce theoretical concepts and derive
them when possible. Due to the nature of our models this might be difficult and
we might have to rely on simulations or calculations under strict and unrealistic
assumptions. The main goal is however to combine both theory and simulation
and derive results from their respective outcomes.

2 Epidemic Modelling

In statistical infectious disease epidemiology we are generally concerned with
the mathematics behind how an epidemic spreads. The spread is usually seen
in how different subgroups of a population change in number over time. Con-
sider a disease such as the influenza and assume that no individuals have been
vaccinated priorly against it or gained partial immunity from it during a prior
outbreak. In the early stages of the epidemic the majority of the population is
susceptible to the disease, this subgroup of the population is henceforth denoted
by S. A smaller subgroup of the population is infected with the disease and
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can spread it to those that are susceptible. We denote this subgroup by I. Af-
ter being infectious for some random period of time an infected individual will
eventually recover from the influenza and thus enter the final subgroup named
recovered which is denoted by R. After an individual recovers they are in the
case of the influenza seen as immune to the disease and can not be infected
again for the remaining period of the epidemic. This type of epidemic model is
usually referred to as an SIR model which behaves as follows [2].

S → I → R
To observe the spread of a disease such as the influenza it is therefore important
to get an understanding of how the individuals move between each subgroup
over time.

We will now briefly introduce two different schools of epidemic modelling. The
first being compartmental modelling which uses ordinary differential equations
to explain the spread of infectious diseases. The other type of modelling, which
is more closely related to this thesis as a whole, is stochastic modelling which ex-
plains the spread of epidemics through random events. We choose to introduced
the compartmental model briefly to shed light on the fact that the methods we
use in this thesis are by no means the only ones available. The model is also
described to further introduce the subject of statistical epidemiology as a whole.
It also proves meaningful to have introduced the concept since it closely relates
to certain derivations later on in the paper.

Finally it should be noted that there is no universal framework when it comes
to representing time in epidemic modelling. When it comes to compartmental
models they generally follow a continuous time frame whilst stochastic models
have been developed in both discrete and continuous time.

2.1 Compartmental Modelling

A generalized case of the compartmental model that we examine was first in-
troduced in 1927 by Kermack and McKendrick in their paper A Contribution
to the Mathematical Theory of Epidemics [5] which details how the spread of
infectious diseases can be explained by a set of ordinary differential equations.
In the equations below we showcase how their general theory can be applied to
an SIR model whilst using different notations compared to the authors in an
effort to stay consistent throughout the paper.

Let β define the rate of infection (i.e the rate at which an infectious individual
infects a susceptible individual) and γ the rate of recovery (i.e the rate at which
and infectious individual recovers). We also let S(t), I(t) and R(t) denote the
number of susceptible, infected and recovered individuals at time t. In the model
developed by Kermack and McKendrick the demographics of the population
were not included which leads to the total population, N = S(t) + I(t) +R(t),
being constant over time.
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The ODE Kermack McKendrick model can be described by the following set of
differential equations.

S(t)

dt
= −βS(t)I(t)

I(t)

dt
= βS(t)I(t)− γI(t)

R(t)

dt
= γI(t)

The equations above can be solved given an initial state (S(0), I(0), R(0)) =
(a, b, 0) such that a + b = N given that no individuals start of as immune due
to for example vaccination.

2.2 Stochastic Modelling

When using stochastic modelling we let stochastic events determine how the
number of susceptible, infected and recovered individuals change over time
rather than having a constant flow of individuals between the different sub-
groups which occurs in the compartmental model. This type of model seems
inherently more intuitive since one could with some certainty assume that in-
fections do not happen at a constant rate but rather at random with some
probability. Furthermore the size of each subgroup is also integer valued com-
pared to the deterministic model where the sizes are real valued.

2.2.1 The Reed-Frost Model

The type of stochastic epidemic model that we are mainly observing in this
thesis is a so called Reed-Frost model. This type of model is often referred to
as a chain binomial model since the flow of individuals between subgroups of
the population can be explained by different conditioned binomial distributions.
Like the aforementioned compartmental model, the model developed by Reed
and Frost is also an SIR model, however it usually assumes discrete and not
continuous time [2] [1]. When moving from continuous to discrete time we
have to redefine our notations. Primarily t ∈ N compared to t ∈ R as in the
continuous case. We also let the number of susceptible individuals at time t,
S(t), denote the number of susceptible individuals at the start of the t:th step in
time. For the other subgroups, I(t), R(t) and Q(t) which will be introduced later
on, we make the same changes notation. Later on in the paper we introduce
some distributions Y (t), X(t), V (t) and Z(t) which indicate the number of
events occurring during the t:th step in time.

The probability for an individual to go from susceptible to infectious can be
explained as the probability that the individuals fails to avoid infection from
all other infectious individuals. As such each susceptible individual performs a
Bernoulli trial with some probability each step in time to determine if they were
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infected or not. From this the number of new infections during the t:th step
in time can be explained by a binomial distribution under the assumption that
infections happen independently of each other. This is an assumption that we
make throughout the paper due to mathematical convenience. Let Y (t) denote
the number of infections made during the t:th step in time conditioned on both
the number of infectious and susceptible individuals at the start of that step.

Y (t)|S(t), I(t) ∼ Bin
(
S(t), 1− (1− πI)I(t)

)
Here πI is the probability of infection and as such 1−(1−πI)I(t) is the probability
that a susceptible individual does not avoid getting infected by any of the I(t)
infectious.

In the SIR model we do not only have the transition from susceptible to infec-
tious but also that of infectious to recovered. Assuming that recoveries happen
independently with some probability πR and that the individual recovery times
are memoryless the number of recoveries during the t:th step in time can also be
described by a different binomial distribution. Let X(t) denote the number of
recoveries during the t:th step in time conditioned on the number of infectious
individuals at the start of that step.

X(t)|I(t) ∼ Bin (I(t), πR)

Using X(t) and Y (t) we can construct a system similar to the set of differential
equations for the compartmental model which shows the random flow of indi-
viduals between the groups over time. The equations below are conditioned on
the sizes of the subgroups during the start of the previous step in time, S(t), I(t)
and R(t).

S(t+ 1) = S(t)− Y (t)

I(t+ 1) = I(t) + Y (t)−X(t)

R(t+ 1) = R(t) +X(t)

For the sake of our model we only need to introduce the basic functionality of
the a Reed-Frost model since we only some of the basic properties in this thesis.
Additional information regarding the Reed-Frost model can be found in section
1.2 of [2] or in [1].

3 Modelling

After having introduced the different kinds of epidemic modelling with a focus
on the basic SIR model we now wish to examine and explain the models that
are used throughout the paper. We begin by explaining the core of the model
and then introduce the additional elements as we go forward.
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3.1 The SIS Model

The primary epidemic model of this paper is an SIS variant of the Reed-Frost
model in discrete time. The SIS model is slightly different compared to the
SIR model which we previously introduced. After an individual recovers from
infection they do not enter the subgroup recovered, which no longer exists, but
rather the subgroup of susceptible, meaning that they can be infected again.
The model behaves as follows.

S → I → S
The reasoning for implementing the model in discrete time relates back to the
scope of the paper which is to examine how quarantines affect epidemics in a
kindergarten setting. It seems intuitive that a child would enter and leave the
quarantine on a daily basis rather than in continuous time. It is not unreason-
able to assume that infections could be said to happen in discrete time since
a child will not get infected whilst at home. It is however difficult to make a
case for that recoveries happen in discrete time but for the sake of mathematical
convenience we still choose to see the model in discrete time where every jump
in time t− 1→ t indicates that one day has passed.

Since we have chosen to ignore the demographics of the population like Kermack
and McKendrick the total population, N = S(t) + I(t), is still constant through
time. If we still assume that all infections happen independently of one another,
during each day every susceptible individual performs a Bernoulli trial, with
some probability depending on the number of infected, to determine if they get
infected during the day or not.

As previously defined, πI is the probability that an infectious individual infects
a susceptible individual during a day. From the previous section on Reed-Frost
models we can redefine Y (t) since it now only depends on S(t) or I(t) due to
the constancy of the total population.

Y (t)|S(t) ∼ Bin
(
S(t), (1− πI)N−S(t)

)
We previously defined πR as the probability of recovery each day. The time
until recovery should for the sake of mathematical convenience be seen as a
geometric distribution due to its inherent memorylessness [2]. This might not
seem intuitive at all but is in some regard a necessary assumption to make due
to the memorylessness. Let I denote the time an infectious individual stays
infectious which we will henceforth call the infectious period.

I ∼ Geo(πR)

Since the probability for an individual to recover during each passing day is
πR due to the memorylessness of the geometric distribution we can redefine
the number of recoveries during the t:th day, X(t), which now only depends on
either S(t) or I(t).
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X(t)|S(t) ∼ Bin(N − S(t), πR)

The change in the number of susceptible and infectious individuals each day can
then be defined by the following equations conditioned on S(t) and I(t).

S(t+ 1) = S(t) +X(t)− Y (t)

I(t+ 1) = I(t)−X(t) + Y (t)

These equations can not be solved like the ordinary differential equations pre-
sented in the compartmental model due to the dependence on the outcome of
several conditional stochastic variables. We can however solve them in a sim-
ilar way to the differential equations by observing the expected values of the
stochastic variables, rather than the random outcomes. As such we can redefine
the equations as follows where we still condition on S(t) and I(t).

S(t+ 1) = S(t) + E[X(t)]− E[Y (t)]

I(t+ 1) = I(t)− E[X(t)] + E[Y (t)]

Instead of looking at the population as a whole we can examine how individuals
transition from one state to another. To do this we introduce the stochastic
process {Xj(t) : t ≥ 0} which indicates the state of individual j at time t such
that X3(5) = S indicates that individual 3 is susceptible at the start of the
5:th day. Define Ω as the state space of the process such that Ω = {S, I}.
Since the transition of an individual only depends on its current state, that is
P
(
Xj(t + 1) = S|Xj(t) = S

)
= P

(
Xj(t + 1) = S|Xj(t) = S, ...,Xj(0) = S

)
we have the the stochastic process is a Markov process in discrete time since it
satisfies the Markov property. From this we can establish the stochastic matrix
of the process.

Pj(t) =

(
(1− πI)I(t) 1− (1− πI)I(t)

πR 1− πR

)

In this paper we are not be using the idea of the individual Markov processes
to derive theoretical proofs. The idea of observing the states of the individuals
as a Markov process is however essential for the simulations we perform.

3.1.1 Reproduction Number of an SIS Model

An important quantity for all kinds of epidemic models is the basic reproduction
number which is usually denoted by R0. The reproduction number indicates if
there is a probability that a large outbreak may occur. It is defined by the
number of individuals an initial infected infects during their infectious period
given a large amount of available susceptible [2].
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Assuming that we have N −1 initial susceptible individuals and one infected we
let Z denote the number of individuals the infected individual infects during its
infectious period I. To determine the distribution of Z we need to calculate the
probability that a susceptible individual gets infected by the initial infected. To
do this we begin by calculating the probability that a susceptible does not get
infected during the initial infecteds infectious period conditioned on the length
of that period.

P(Not infected|I = 1) = 1− πI
P(Not infected|I = 2) = (1− πI)2

...

P(Not infected|I = n) = (1− πI)n

Through induction as can be shown that P(Not infected|I) = (1 − πI)I which
can be seen in section [10.1.2]. Using the law of total probability we can derive
the overall probability to not get infected during the initial stage of the epidemic.

P(Not infected) =

∞∑
i=1

(1− πI)iP(I = i)

=

∞∑
i=1

(1− πI)i(1− πR)i−1πR

= (1− πI)πR
∞∑
i=1

((1− πI)(1− πR))i−1

=
(1− πI)πR

πI + πR − πIπR

∞∑
i=1

(1− πI − πR + πIπR)i−1(πI + πR − πIπR)︸ ︷︷ ︸
=1

=
(1− πI)πR

πI + πR − πIπR
The second part of the equation above is equal to 1 since it is the probability
function of a geometric distribution with parameter πI + πR − πIπR summed
over its complete support [1,∞). From this we get that the probability that
the initial infected infects a susceptible is simply the complement to the above
probability.

P(Infected) = 1− P(Not Infected) = 1− (1− πI)πR
πI + πR − πIπR

Thus Z takes the distribution below.

Z ∼ Bin

(
N − 1, 1− (1− πI)πR

πI + πR − πIπR

)
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Since R0 = E[Z] we get the following.

R0 = E[Z] = (N − 1)

(
1− (1− πI)πR

πI + πR − πIπR

)
The probability of a large outbreak is 0 if (N − 1)

(
1− (1−πI)πR

πI+πR−πIπR

)
≤ 1. If

(N −1)
(

1− (1−πI)πR
πI+πR−πIπR

)
> 1 the probability is non-zero and a large outbreak

may occur [2].

3.2 The SIQS Model

After briefly introducing the SIS core of our model we now wish to introduce a
method which is generally used when trying to suppress an epidemic. In cases of
extremely contagious epidemics infectious individuals might be put into so called
quarantines. Whilst in the quarantine they are temporarily separated from the
susceptible population in the hopes that they will recover without infecting
anyone else. If the quarantine is successful they will recover without infecting
anyone else and thus terminating the epidemic. Define the new subgroup Q(t)
as the number of individuals in a quarantine at the start of the t:th day. The
new model which we are introducing is a so called SIQS model and behaves as
follows.

S → I → Q→ S
In this case an individual gets infected and then enters a quarantine after some
random period of time. The individual then spends some other random period
of time in the quarantine, unable to infect any of the remaining susceptible
individuals, until they recover. It is possible to include the possibility that an
infectious individual might recover before they are sent to quarantine. This
possibility will not be included in the thesis due to the effects it has on some
theoretical derivations. This was noted specifically in section [6.1.1] where the
inclusion of such a possibility made the derivation difficult.

Let πQ denote the probability to enter the quarantine while infectious. As with
the time until recovery for the recovery process in the SIS model we let the
time until an infectious individual is put in to quarantine follow a geometric
distribution. This is as previously mentioned due to mathematical convenience
and the nice properties of the geometric distribution. By implementing the
availability of a quarantine we have in some regard redefined the infectious
period I. Since an individual always return susceptible from the quarantine
their infectious period now essentially ends once they enter the quarantine.
Therefore I takes the following distribution.

I ∼ Geo(πQ)
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Since the individuals in quarantine are separated from the main population (in-
fected and susceptible) it seems intuitive that the probability that a specific
infectious individuals infects a specific susceptible should increase as Q(t) in-
creases. This is simply due to the fact that the number of individuals not in
quarantine, N−Q(t), is lower, meaning that there are fewer individuals to inter-
act with. As a result the probability of interactions and consequently infections
should increase. The inclusion of such a quarantine adjusted probability would
certainly make the model more realistic. The actual application of the quaran-
tine adjusted probability does however complicate the theoretical aspects of the
paper. Due to this we will not be incorporating the effect in our models.

Define Z(t) as the number of infected individuals that enters a quarantine during
the t:th day. Assuming that entries into the quarantine happen independently
of each other we can derive the distribution of Z(t) conditioned on I(t) in the
same way as we derived X(t).

Z(t)|I(t) ∼ Bin(I(t), πQ)

The time an individual spends in a quarantine follows another geometric distri-
bution as noted below. This follows directly from the previous definition of the
infectious period, I, mentioned in section [3.1].

Q ∼ Geo(πR)

As with the SIS model we can set up the system of equations of stochastic
variables with determine the change between the groups. To be able to do
this we do however need to define the number of individuals returning from
quarantine during the t:th day.

Let V (t) be the number of individuals returning from the quarantine during the
t:th day. Due to the independence of the recoveries and the memorylessness of
the recovery period whilst in quarantine, V (t) takes the following distribution.

V (t)|Q(t) ∼ Bin(Q(t), πR)

The equations below are conditioned on S(t), I(t) and Q(t).

S(t+ 1) = S(t)− Y (t) + V (t)

I(t+ 1) = I(t) + Y (t)− Z(t)

Q(t+ 1) = Q(t)− V (t) + Z(t)

As in the previous case in section [3.1] we can examine the expected values of
each stochastic event and as such get an understanding of how the disease would
spread in expectation.

If we once again look at the individual Markov chain, {Xj(t) : t ≥ 0}, of an
arbitrary individual j we get that the stochastic matrix looks as follows.
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Pj(t) =

 (1− πI)I(t) 1− (1− πI)I(t) 0

0 1− πQ πQ

πR 0 1− πR


Note that the state space of the Markov chain is now Ω = {S, I,Q}.

3.2.1 Reproduction Number of an SIQS Model

The reproduction number is not the same in an SIQS model as in a general SIS
model. When not accounting for a quarantine adjusted probability of infection
the only difference from from the SIS model is that the infectious period changes.
In the case of the SIS epidemic the probability to leave the infectious state was
πR, but as can be observed in the stochastic matrix Pj(t) above the probability
to leave is now πQ. This leads to a difference in R0, assuming that πQ 6= πR.
Performing the same calculations as in the section [3.1] we are left with the
following whilst still assuming one initial infected.

R0 = (N − 1)

(
1− (1− πI)πQ

πI + πQ − πIπQ

)

3.3 Multitype Epidemics

The last concept we wish to introduce before applying everything to our setting
is the idea of a multitype epidemic. A multitype epidemic is characterized
by dividing the total population into different types i = 1, ..., k. When doing
that we have to redefine the aforementioned subgroups of the population, S, I
and Q. Define Si(t), Ii(t) and Qi(t) as the number of susceptible, infected and
quarantined individuals of type i at the start of the t:th day. The reasoning
behind these different types is to refine the model further.

It is unlikely that every individual infects every other individual with the same
probability. It is however reasonable to assume that an individual might belong
to some group that they interact with more frequently. Due to the more fre-
quent interactions there is also higher probability to infect individuals within
an individuals own group compared to the rest of the population. This specific
type of multitype epidemic model is referred to as a household model [2].

As the name suggests a household model is usually used to model the spread
of disease with some kind of household structure. In theory however the house-
hold model is characterized by dividing the population into many small homo-
geneously mixing groups. The grouping of the population creates two levels
of mixing, within and between the groups [3]. This means that an individual
infects people within their group or household with some probability and the
rest of the population with another.

If we now assume that these small groups represent some kind of predefined
social structure we can get a more realistic understanding of the spread of an
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epidemic. In our case this structure is the distribution of children into the
different groups or classes at the kindergarten. It seems reasonable to assume
that since a child spends more time with the other children within their own
group than those in others. The probability to infect those within the same
group should therefore be higher compared to the probability to infect someone
in another group.

Define πL as the probability to infect a local individual (i.e someone within their
own group) and πG to infect a global individual (i.e someone outside their own
group). We also let ni and mi denote the number of susceptible and infected of
each type at t = 0 such that Ni = ni +mi.

S(t) =

k∑
i=1

Si(t) I(t) =

k∑
i=1

Ii(t) Q(t) =

k∑
i=1

Qi(t)

S(0) =

k∑
i=1

ni I(0) =

k∑
i=1

mi N =

k∑
i=1

Ni

Define Yi(t) as the number of new infected individuals of type i during the t:th
day. The probability to get infected has now changed compared to the previous
models and does not only depend on the number of total infected but rather on
the number of infected within each type. For a susceptible individual of type i
we can thus derive the following probability.

P(Not infected during t:th day|I1(t), ..., Ik(t)) = (1− πL)Ii(t)(1− πG)
∑
j 6=i Ij(t)

From this, whilst still assuming independence of infections, we get that Yi(t)
takes the following distribution.

Yi(t)|Si(t), I1(t), ..., Ik(t) ∼ Bin
(
Si(t), 1− (1− πL)Ii(t)(1− πG)

∑
j 6=i Ij(t)

)
We can derive Vi(t) and Zi(t) in the same way as V (t) and Z(t). Then we
get the following equations for conditioned on S1(t), ...Sk(t), I1(t), ..., Ik(t) and
Q1(t), ...Qk(t).

S1(t+ 1) = S1(t)− Y1(t) + V1(t)

I1(t+ 1) = I1(t) + Y1(t)− Z1(t)

Q1(t+ 1) = Q1(t)− V1(t) + Z1(t)

...

Sk(t+ 1) = Sk(t)− Yk(t) + Vk(t)

Ik(t+ 1) = Ik(t) + Yk(t)− Zk(t)

Qk(t+ 1) = Qk(t)− Vk(t) + Zk(t)

This can also be expressed on vector form as can in some regard be seen in
section [6.3.2] which makes it a bit nicer.
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3.3.1 Reproduction Number of a Multitype SIQS Model

According to Britton & Andersson [2] the reproduction number of a multitype
epidemic can be obtained from the dominant eigenvalue of a certain matrix
AK = (µij) i, j = 1, ..., k. Define µij as the expected number of individuals
of type j an initially infectious individual of type i infects during its infectious
period. To be able to determine the eigenvalues we first have to get an under-
standing of µij .

Throughout the paper we let mi = 1 and as such ni = Ni − 1 for all i =
1, ..., k, meaning that the total number of initially infected are k. The number
of individuals of type j an initially infected individual of type i infects during
its infectious period follows some distribution Zij . Thus µij = E(Zij). To
determine the distribution of Zij we need to calculate the probability that an
individual gets infected during the initial infecteds infectious period.

Let I be the infectious period of the initial susceptible of type i. As defined in
section [3.2], I takes the following distribution.

I ∼ Geo(πQ)

The probability that the initial infected individual of type i does not infect an
initial susceptible of type i can be derived as follows.

P(Not infected by initial infected|I = 1) = 1− πL
P(Not infected by initial infected|I = 2) = (1− πL)2

...

P(Not infected by initial infected|I = n) = (1− πL)n

Through induction we can derive that P(Not infected by initial infected|I) =
(1− πL)I as can be seen in section [10.1.3] using a more general probability of
infection. The probability that an individual gets infected is as such the com-
plement to that probability. The distribution of Zii is therefore the following.

Zii|I ∼ Bin
(
ni, 1− (1− πL)I

)
From this we can derive µii using the law of total expectation.

µii = E[E|Zii|I]] = E
[
ni (1− (1− πL))

I
]

= ni

(
1− E

[
(1− πL)

I
])

= ni

(
1−

∞∑
i=1

(1− πL)iP(I = i)

)

= ni

(
1−

∞∑
i=1

(1− πL)i(1− πQ)i−1πQ

)
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µii = E[E|Zii|I]] = ni

(
1− πQ(1− πL)

∞∑
i=1

((1− πL)(1− πQ))i−1

)

= ni

1− πQ(1− πL)

πL + πQ − πLπQ

∞∑
i=1

(1− πL)I(1− πQ)i−1πQ(πL + πQ − πLπQ)︸ ︷︷ ︸
1


= ni

(
1− πQ(1− πL)

πL + πQ − πLπQ

)
Based on the previous calculations we can derive µij for all possible i and j in
an analogous manner. The only quantity that would change is the probability
of infection, from πL to πG. We can thus express µij as follows.

µij =

ni
(

1− πQ(1−πL)
πL+πQ−πLπQ

)
i = j

ni

(
1− πQ(1−πG)

πG+πQ−πGπQ

)
else

Given µij we can construct the matrix AK and thus derive the reproduction
number. If we let λ1, ..., λk be the solutions to the following equation we get R0

as well.

|AK − Iλ| = 0 R0 = max(λ1, ..., λk)

It is very important to note that these theoretical results depend on having
sufficiently large populations which might not always be the case when applying
the model to a real life scenario [2]. In our multitype models this implies that
sufficiently large groups are needed and not sufficiently many groups.

4 Setting

The scope of this paper is to examine how the different quarantine methods af-
fect the total number of quarantine days in a kindergarten setting. As previously
mentioned the number of sick days can be related to some kind of economic loss
which we wish to minimize. In the case of our kindergarten setting the idea of
a quarantine translates to the child staying home until they recover and then
returning immediately. In theory this type of setting is well described by the
SIQS model which we introduced in section [3.2].

There are however still some issues we need to deal with. Primarily kinder-
gartens are not made of a homogeneously mixing population of children. Chil-
dren could be assumed to have different social groups and the kindergartens
could be assumed to be separating children into different groups or classes. To
solve the latter issue it seems applicable to introduce a household effect to our
SIQS model, which we introduced in section [3.3]. By doing this we include the
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effect of children being divided into separate groups, partially limiting which
individuals they contact and possibly infect.

To include the social structure of the children one would have to implement an
underlying social graph essentially describing how the children interact, within,
and between groups, which is not something we introduce in this paper due to
the theoretical complexity of such a model. In theory we implement our model
on a so called complete graph with weighted edges and differing weights between
global and local vertices. This is by no means ideal but for now we consider to
be sufficient for the questions we wish to answer.

Another issue with quarantines in a kindergarten setting is the fact that children
might not return as susceptible as they do in the ideal scenario in which the
theoretical SIQS epidemic takes place. It is possible that a child might return
from their time at home whilst still being infectious, most likely due to the
recklessness of their guardian.

Since we can not change or model for human behaviour we will attempt to
implement other types of quarantines, which directly forces children to stay at
home for a certain numbers of days before returning. We wish to observe how
such a forced withdrawal affects the spread of epidemics, but also how it affects
the total number of days in quarantine. The primary scope is to compare these
two types of models, primarily through simulations, to get an understanding of
how they perform against one another.

After having established the main framework which our models will operate in
we have to decide for how long we wish to observe our models. This is mainly
relevant to our simulations since varying the length of the observations will
drastically impact our results. Due to wanting to observe the total number of
sick days, or the proportion of sick days, we have to be able to account for
the fact that an epidemic might reach the endemic state. As a result we could
theoretically have an infinite number of sick days if let the number of days of
observation go to infinity. This would however not be the case if the epidemic
were to terminate early since the number of sick days would be finite if the
number of days of observation would go to infinity.

The length of our simulations does therefore have to be chosen in a way such
that we are able to notice the effect of an epidemic reaching the endemic stage.
Moreover we also want to choose a number of reasonable scale to reduce the
computations needed in our simulations. The length which we will henceforth
use is one calender year, or 365 days, since the value is large enough to account
for the effect of an endemic disease but also small enough to be manageable in
simulation. If this chosen value was different the results would surely differ.

5 SIQS

The first model we will examine is a multitype SIQS model in an ideal scenario.
In this case we assume that infectious children are sent home after some ran-
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domly distributed time I. This time can be seen as the period when the child
is infectious but shows no visible symptoms of the disease. Once a child is sent
home they stay at home, in the quarantine, until the day when they recover and
are then immediately sent back to kindergarten. This is the exact model which
we described previously in section [3.3] and we can therefore use the theoretical
results we derived.

This model is based on the idealistic assumption that children return from
the quarantine only when no longer infectious and exactly after recovery. It
is however of importance to observe how the epidemic spreads in such an ideal
scenario to showcase that an epidemic might turn endemic even under conditions
which should limit its spread. The SIQS model mainly serves as a reference
model to compare our other models to.

5.1 Theory

To start of we have to assign numeric values to the probabilities we defined
previously. The values in Table [1] below have no real substance behind them
and are chosen simply showcase the methods we have derived.

Table 1: SIQS Values

Notation Definition Value

πL Probability to infect locally 0.03

πG Probability to infect globally 0.003

πR Probability to recover 0.14

πQ Probability to be sent home 0.4

k Number of classes 20

ni Number of initially susceptible of group i 19

mi Number of initially infected of group i 1

We let ni = 19 and mi = 1 for all i meaning that we have Ni = 20 children in
each class where 19 start of as susceptible and 1 as infected. If we now substitute
in the values into the formula from section [3.3.1] we get the following matrix
AK .

AK = (µij) i, j = 1, ..., k

µij =

nj
(

1− πQ(1−πL)
πL+πQ−πLπQ

)
i = j

nj

(
1− πQ(1−πG)

πG+πQ−πGπQ

)
else
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AK =

19
(

1− 0.4(1−0.03)
0.03+0.4−0.012

)
i = j

19
(

1− 0.4(1−0.003)
0.003+0.4−0.0012

)
else

=

1.363 i = j

0.142 else

The matrix then looks as follows.

AK =


1.363 0.142 . . . 0.142

0.142
. . .

...
...

. . .
...

0.142 . . . . . . 1.363


From this matrix we can calculate the reproduction number when we do not
take the quarantine adjusted probability into account. This is done, as previ-
ously mentioned in section [3.3.1] by determining the dominant eigenvalue of
the positive matrix. This gives us that R0 = 4.061, which indicates that there
is indeed a probability for a large outbreak. Since we know that there exists
a probability for a large outbreak given our currently assigned probabilities we
wish to simulate this epidemic to see how it actually develops.

5.2 Simulation

Using the probabilities from the table in the previous section we can simulate
this multitype SIQS epidemic using R. After running the simulation we are left
with the results in Figure [1] in the Appendix. In the figure we see that a large
proportion of the population is in quarantine in the so called endemic state.
The endemic state in the case of SIQS model is the state to which the model
subgroups converge to as t→∞.(

S(t), I(t), Q(t)
)
→
(
S∗(t), I∗(t), Q∗(t)

)
as t→∞

We also note that the number of susceptible children present at the kindergarten
is below 50 percent which is not sustainable in the long run. In the case of an
infectious disease such as this one a kindergarten would have to implement
additional measures to combat the epidemic, since simply removing infectious
children until they recover does not seem to be giving the desired effect. This can
be done by for example introducing mandatory vaccinations or closing down the
kindergarten for some time and hoping that everyone recovers. The focus of this
paper is however to implement and compare the method of forced withdrawal
for a fixed number of days to see how the spread of the epidemic and the number
of total quarantine days are affected.
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6 Forced Withdrawal

In this section we discuss one method of how a kindergarten could go about
solving the issues presented in the previous section. In this case the time spent
in quarantine is not a random variable like before. Let Q = q where q ∈ N+

indicating that the number of days an individual spends in a quarantine is fixed
at q. In this case it could be argued that the theory from section [3.3] still holds
for R0 since the distribution of the time in quarantine is not accounted for in
the calculations. This is however based on the assumption that the infectious
period ends once an infectious individual enters the quarantine.

6.1 Theory

Compared to an SIQS model the forced withdrawal model is usually not a
Markov process. This is due to the fact that the process does usually not satisfy
the Markov property, since the probability to leave the quarantine at time t
depends on the state of process at time t − q. As such if q 6= 1 the Markov
property is not satisfied. An example of this can be seen below.

P
(
X(t) = S|X(t− 1) = Q,X(t− q) = Q

)
= 1− (1− πR)q

P
(
X(t) = S|X(t− 1) = Q,X(t− q) 6= Q

)
= 0

If the individual Markov process is in state Q at time t− 1 and was in state Q
at time t − q we know that the process will leave Q during the next day. The
process then enters state S with probability 1− (1−πR)q and I with (1−πR)q.
If the process is not in state Q at time t− q we know that process will not leave
state Q during the next day. As such the probability to enter state S is 0. Since
the probability to enter state S at time t does not only depend on the state
at time t − 1, but also the state at time t − q, it is evident that the Markov
property is not satisfied. This can be shown analogously with the probability
to enter state I whilst having been in quarantine.

6.1.1 Another Definition of R0

In the SIQS model we defined the infectious period, I, as the time until and
individual enters the quarantine. In this case, where we allow for the fact that
individuals might return infected this is in theory no longer the case. Let ξq
denote the random variable that indicates the number of times an initial infec-
tious individual is sent to quarantine. Since the time for recovery is memoryless
as previously mentioned the probability to not recover during the q days in
quarantine is therefore (1 − πR)q. The probability to recover is then the com-
plement of that probability. Since the recovery process and the infectious period
is memoryless the number of times an individual is sent into quarantine, ξq, is
also memoryless and can therefore be described by the following geometric dis-
tribution
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ξq ∼ Geo(1− (1− πR)q)

Let I ′ denote the infectious period in this case. Let I(1), ... be independent and
identically distributed I-variables.

I ′|ξq =

ξq∑
l=1

I(l)

E[I ′] = E[ξq]E[I]

=

(
(1− πR)q

1− (1− πR)q

)
1

πQ

The reason why we can define I(1), ... as independent is due to the memory-
lessness of I. Let Z ′ii|I ′ denote the number of individuals of type i and initial
infectious of type i infects during its new infectious period.

Z ′ii|I ′ ∼ Bin
(
ni, 1− (1− πL)I

′
)

Since we want to calculate the expected value of infections, µ′ii, we can do this
by using the definition of the probability generating function. We know that
the probability generating function is defined as ΠW (z) = E[zW ] where W is
some non-negative discrete random variable and z ∈ (0, 1]. By using the law of
total expectation once again we are left with the following expression for µ′ii.

µ′ii = E[E|Z ′ii|I ′]] = E
[
ni (1− (1− πL))

I′
]

= ni

1− E
[
(1− πL)I

′
]

︸ ︷︷ ︸
ΠI′ (1−πL)


Since πL is a probability we know that 1 − πL ∈ (0, 1] as long as πL 6= 1. To
continue we have to derive the probability generating function of I ′ to complete
our calculations. From the theorem in section [10.1.1] we know that the prob-
ability generating function of a stochastic sum of stochastic variables can be
expressed as follows where we let the sum be defined as SN =

∑N
i=1Xi.

ΠSN (z) = ΠN (ΠX1
(z))

For the theorem to hold we assume that X1, ...XN are independent and iden-
tically distributed non-negative discrete random variables and that they are all
independent of the non-negative discrete random variable N .

As such ΠI′(z) = Πξq (ΠI(z)). Since both I and ξq follow different geometric
distributions on the support {1, 2, 3, ...} we ought to define the probability gen-
erating function of such a distribution. If G ∼ Geo(p) then ΠG(z) = zp

1−z(1−p) .
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Using this we can calculate ΠI′(z) as follows.

ΠI′(z) = Πξq (ΠI(z))

=

zπQ
1−z(1−πQ) (1− (1− πR)q)

1− zπQ
1−z(1−πQ) (1− (1− (1− πR)q))

=

z(1−(1−πR)q)πQ
1−z(1−πQ)

1−z(1−πQ)−zπQ(1−(1−(1−πR)q))
1−z(1−πQ)

=
z(1− (1− πR)q)πQ

1− z(1− πQ)− zπQ(1− (1− (1− πR)q))

=
z(1− (1− πR)q)πQ

1− z(1− (1− (1− πR)q)πQ

Since z = 1− πL in our case we are left with the following expression of µ′ii.

µ′ii = ni

(
1− (1− πL)(1− (1− πR)q)πQ

1− (1− πL)(1− (1− (1− πR)q)πQ

)
We can derive µ′ij analogously for i 6= j such that the following holds.

µ′ij =

nj
(

1− (1−πL)(1−(1−πR)q)πQ
1−(1−πL)(1−(1−(1−πR)q)πQ

)
i = j

nj

(
1− (1−πG)(1−(1−πR)q)πQ

1−(1−πG)(1−(1−(1−πR)q)πQ

)
else

From this we can construct the matrix A′K and derive the alternative reproduc-
tion number, R′0 from its dominant eigenvalue. Using the values in Table [2]
below we derive R′0 as follows. It should be noted that as with the previous
introduction of actual probabilities for infection, recovery and others the chosen
value of q = 10 does not have any reasoning behind it and is simply chosen to
showcase the alternate definition.

Table 2: Forced Withdrawal Probabilities

Notation Definition Value

πL Probability to infect locally 0.03

πG Probability to infect globally 0.003

πR Probability to recover 0.14

πQ Probability to be sent home 0.4

q Time in quarantine 10
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µ′ij =

nj
(

1− (1−πL)πQ(1−(1−πR)q)
1−(1−πL)(1−πQ(1−(1−πR)q))

)
i = j

nj

(
1− (1−πG)πQ(1−(1−πR)q)

1−(1−πG)(1−πQ(1−(1−πR)q))

)
else

=

1.716 i = j

0.182 else

A′K =


1.716 0.182 . . . 0.182

0.182
. . .

...
...

. . .
...

0.182 . . . . . . 1.716


After computing the eigenvalues we get that R′0 = 5.174 which is a lot larger
compared to the other definition which left us with R0 = 4.061. This is however
to be expected due to increasing the average length of the infectious period in
the alternative definition.

6.2 Simulation

In the simulation we use the values from Table [2] in the previous section.
Performing this simulation in the same way as the previous one over one year
in R we are left with some very interesting results.

We see in Figure [2] in the Appendix that the number of children in quarantine
in the endemic state is actually lower than in the case of the SIQS model in
Figure [1]. This would be a vast improvement if it was not for the fact that
the number of infectious children still attending kindergarten is a lot higher,
which of course is not to be desired. We also see a higher spike in the number
of initially quarantined compared to the SIQS model. This is due to the fact
that individuals are forced to stay in the quarantine for 10 days whilst they can
return in less than that in the SIQS model. As such there is a 10 day period
in the initial stage of the epidemic where individuals will enter the quarantine
whilst none leave. Since individuals leave the quarantine daily in the SIQS
model the maximum number of initially quarantined individuals will be lower
since the expected time in quarantine is 1

πR
≈ 7.15 < 10.

When comparing Figure [1] and Figure [2] we have made improvements concern-
ing the economical aspect of an epidemic by reducing the number of quarantined
individuals in the endemic state. By doing this we have however created an un-
desirable situation where a majority of the children are sick whilst still attending
kindergarten. It is clear that this approach has not had the desired effects. Due
to this we wish to find a more optimal value of q which leads to a minimization
of the number of total sick days and hopefully a termination of the epidemic.
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6.2.1 Letting q vary

For the previous case where we let q = 10 we did not achieve the desired effects.
We now wish to simulate the epidemic presented in Table [2] whilst letting q
vary. This is done in a similar fashion to the previous simulations. In Figure [3]
in the Appendix we can observe the optimal value of q for two different methods
of taking the average, the mean and the median.

The reason why we choose to observe both methods is due to the sometimes
large differences between them. In the case of taking the mean a single larger
outbreak might change the results drastically whilst the median in some respect
ignores such extremities. If the probability of such an extremity were quite
large it does however seem unreasonable to ignore them completely and as such
we could argue for the usage of the mean instead. Since the results vary a lot
between a large and a small outbreak it does however seems unintuitive to use
the mean since the results will be somewhere in the middle of both extremities.
As for the median we simply observe the 50th percentile which tells us very
little. Due to this it seems reasonable to observe a higher quantile such that the
q which minimizes the proportion of sick days does so with in some percentage
of the cases.

Table 3: Optimal Values of q for Different Methods

Method Median 0.75 0.9 0.95 Mean

q 40 44 48 48 48

The lower values for the quantile methods are caused by the exclusion of the
worst outbreaks which are present in the usage of the mean. Using the quantile
method and a large sample of simulations one could choose q such that it satisfies
some probability of minimization. Going forward we mainly utilize the results
from the mean since we wish to account for the effects of larger outbreak, no
matter their probability of occurrence, whilst keeping the other methods in
mind.

In the case of the infectious disease which we have discussed throughout the
paper this far we notice that the q which minimizes the proportion of sick days
in mean during a year is 48 [3]. This is an extremely large value which in practice
means that once a child is sent home they have to stay at home for up to one
and a half months. Even though it could be argued that minimizing the total
number of sick days is for the greater good of the society as a whole, it seems
difficult to argue that children should be forced to stay at home for up to such
a long time. This becomes even more problematic when the children will spend
a majority of the time not being infectious. This would of course also imply
that the guardian or guardians of that child would miss almost a combined one
and a half months of work which would hardly be appreciated by them or their
employers.

However, the scope of this thesis is not to examine how the individuals would
react to the proposed solutions and as such the optimal number of days a child
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should stay at home is 48. The model also operates under unrealistic assump-
tions which makes the results inapplicable to a real world scenario.

This large number of days does not seem very reasonable at first. It can however
be explained by the logic of the reproduction number. If we assume that q is
somewhat large and that the epidemic is infectious enough then a vast majority
of initially infected and the susceptible they infect will be in quarantine at
roughly the same time. This can be seen in Figure [2] in the Appendix. This
is due to children being infected early and being sent into quarantine for a
long time. As such children will enter the quarantine whilst none return for
the first q + 1 days. Thus if the disease is infectious enough most children will
have gotten infected and been sent to the quarantine before the first individual
returns. For extremely infectious disease the expected number of individuals
sent to quarantine before time q + 1 should be close to N .

In this scenario there is now a case of infectious individuals recovering whilst at
home, if however at least one of them were to return and still be infected we are
left with a similar scenario as to that in the calculation of R0. The scenario being
a lot of susceptible individuals and some random number of infected which will
most likely result in the epidemic starting over or reigniting as we will henceforth
call such a restart.

The minimization of the proportion of sick days should therefore be achieved
by getting the disease to terminate as early as possible, rather than letting it
reignite one or multiple times. Even though this might seem intuitive it should
be taken into account that for the termination to occur for very infectious disease
q has to be very large. This will lead to a large influx of quarantined in the early
stages of the disease but none in the later stages due to the epidemic having
terminated.

6.3 Early Termination and Minimization of Sick Days

The reason why the optimal value of q was so large in the previous section can
then be described by observing the number of initially quarantined. Define η
as the maximum number of initially quarantined individuals. As can be seen
in Figure [4] in the Appendix all individuals are put into quarantine at approx-
imately the same time meaning that η ≈ N in this case. If almost the entire
population enters the quarantine for q days they are to return at approximately
the same time. If as previously mentioned one quarantined individual returns
and is still infectious the epidemic will very likely reignite due to the large num-
ber of recently recovered and returned susceptible. Since all η recoveries happen
independently have the following probability.

P(All η individuals recover) = (1− (1− πR)q)
η

(1)

We can see that for the probability of full recovery to be high, either q has to
be large or η must be small. In the current case where η ≈ N we have no other
option rather than increasing q which is what we were trying to show.
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Furthermore we define the distribution of the number of returning infectious of
the initial η quarantined as follows.

Vη|η ∼ Bin (η, (1− πR)q)

6.3.1 Simulated Values of η

Since η depends on outcomes of a large number of different conditional stochastic
events it is difficult to derive an explicit expression for it. We can however derive
an estimate for it by observing the results from a large number of simulations.
In Figure [1(a)] we observe the estimate of η, η̂ for a variety of diseases with
different R0 and their respective qmin. As one would assume the estimated
number of initially quarantined individuals grows as the infectiousness of the
disease increases.

As we saw in Figure [4] in the Appendix the number of initially quarantined is
approximately the entire population for the more infectious disease. As such we
can only minimize equation (1) by increasing q. Moreover we can now roughly
calculate the probability of an early termination for the disease which we have
been observing throughout the paper.

Previously we determined that qmin = 48 and recently that η̂ ≈ 395 for R0 ≈ 4.
By substituting these values into equation (1) we get the following probability
of an early termination.

P(All η individuals recover) =

395∏
j=1

1− (1− πR)48

= (1− (1− πR)48)395

= (1− (1− 0.14)48)395

= 0.75

We should also take into account that this can be seen as lower bound since even
if Vη|η = η̂ > 0 there is always some probability that the returning infectious
individuals fail to spread the disease further which leads to an early termination
anyway. That probability should however tend to zero for larger values of Vη|η
or very infectious disease.

6.3.2 Expected Value of η

We can calculate the expected value of η by setting up a system of equations as
we did for the SIS and SIQS model. Since we included a multitype structure we
do however need to introduce some new notations since it becomes quite tedious
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(a) Simulated Values of η (b) Expected Values of η

Figure 1: Comparison of η

to write up the equations for each subgroup.

S(t) =


S1(t)

...

Sk(t)

 I(t) =


I1(t)

...

Ik(t)

 Q(t) =


Q1(t)

...

Qk(t)



Furthermore we let N =


n1 +m1

...

nk +mk

 such that N = S(t) + I(t) + Q(t).

We also introduce the vectors Y(t) which holds all information regarding the
number of new infectious of each type, Z(t) denotes the number of individuals
sent to quarantine of each type.

Y(t) =


Y1(t)

...

Yk(t)

 Z(t) =


Z1(t)

...

Zk(t)


Since individuals leave the quarantine after q days we know that the number
of individuals returning from the quarantine at time t, V(t), is equal to the
number of individuals sent to quarantine, Z(t), at time time t − q. Since we
account for the fact that individuals can return infectious we do however have
to split up the the returning individuals into two groups. Let V(1)(t) denote the
vector of returning susceptible individuals of each type and V(2)(t) the vector of
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returning infectious. Under the assumption that Q = q we have the following.

V(t) =


V1(t)

...

Vk(t)



V(1)(t) =


V

(1)
1 (t)

...

V
(1)
k (t)

 V(2)(t) =


V

(2)
1 (t)

...

V
(2)
k (t)


We are yet to formally define Vi(t), V

(1)
i (t) and V

(2)
i (t) which we do as follows.

Vi(t)|Zi(t− q) =

Zi(t− q) t > q

0 else

V
(1)
i (t)|Vi(t) ∼ Bin

(
Vi(t), 1− (1− πR)q

)
V

(2)
i (t)|V (1)

i (t), Vi(t) = Vi(t)− V (1)
i (t)

The final expression is based on the fact that the number of returning individ-
uals is always the sum of the returning number of infectious and susceptible
individuals. Using the vectors which we have defined we can establish the fol-
lowing system of equations in which we can observe the mean of the number
of individuals of each type and each subgroup at time t. The equations are
conditioned on S(t), I(t) and Q(t).

S(t+ 1) = S(t)− E[Y(t)] + E[V(1)(t)]

I(t+ 1) = I(t) + E[Y(t)]− E[Z(t)] + E[V(2)(t)]

Q(t+ 1) = Q(t) + E[Z(t)]− E[V(1)(t)]− E[V(2)(t)]︸ ︷︷ ︸
E[V(t)]=E[Z(t−q)]

This system can be solved with some effort which therefore makes us able to
derive E[η]. It should be noted that in this system we no longer see individuals
as discrete units, meaning that we might have fractions of new infections during
a day. Since Q(t) increase monotonously for t < q the time at which Q(t) reaches
its peak should be at or in relative proximity to q. The function is monotonously
increasing since we have no individuals leaving Q(t) when t < q whilst fractions
of individuals continue to enter the state. We define E[η] as follows.

E[η] = max 1TQ(t)

Performing this calculation manually is extremely tedious and thus we resort
to performing it in R. After performing the calculations we are left with the
results in Figure [1(b)] to the right. By comparing Figure [1(a)] and Figure

29



[1(b)] we can see that the η we obtained from the mean of the simulations do
not differ noticeably from the expect for R0 = 1. This is due to the outcome
of a limited number of simulations which in this case seems to differ from the
expected value. The large deviation in the expected η is also more noticeable
for lower values of R0 since the probability of a small outbreak is a lot larger
than for higher values of R0.

After having derived the expected value of η we can continue by examining the
probability that the epidemic reignites. The distribution of returning infected
individuals, Vη, which conditioned on having E[η] initially quarantined, can be
expressed as follows.

Vη ∼ Bin(E[η], (1− πR)q) (2)

pVη (k) =

(
E[η]

k

)
((1− πR)q)k(1− (1− πR)q)(E[η]−k) (3)

From equation (3) above we can derive a lower bound for the probability that
the epidemic terminates after the initial stage for a certain value of q. This
probability will however be conditioned on η. If we assume η = E[η] then
we can derive such a lower bound for the probability of an early termination.
Furthermore we can also assume the worst case scenario, that η = N and from
this derive a value of q which satisfy the probability an early termination even
under the worst circumstances.

To be able get a better understanding of the probability of an early termina-
tion beyond a lower bound created under certain assumptions, we would have
to derive the probability that the epidemic terminates conditioned on Vη > 0,
which in turn has to be conditioned on E[η] to be calculated. Under the as-
sumption that every individual had the same distribution for the numbers of
individuals they would infect during their infectious period this could be done
using a branching processes. This is however not the case for our models since
we have a finite population where the number of infections during an individuals
infectious period depend on the number of susceptible individuals which vary
throughout the epidemic.

If we were to make some changes and further assumptions to account for this we
would be presented with the problem that the returning Vη infectious individuals
would return to different groups at different times which present further issues.
Due to this the true probability of termination after the initial stage of the
epidemic under the assumption that η = E[η] as well as others is very difficult
to derive.

A way to refine the lower bound could be to simply use brute force the prob-
ability that the process would terminate even though some individuals returns
whilst still infectious. For larger values of Vη it seems intuitive that the probabil-
ity of termination would tend to zero, if the disease is infectious enough and as
such we could most likely derive a second lower bound which should be closer to
the true value than the first. To do this we would still have to make assumptions
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regarding the time of return and the distribution of returning infected between
the groups. Due to the number of assumptions this would require we choose to
leave the lower bound of the probability as it is.

6.4 Varying q for Different Diseases

In the previous section we focused on the case of a very infectious disease where
R0 = 4.061. In this section we would like to simulate how q would vary if we
varied the infectiousness of the epidemic. To do this we would tweak to global,
and local probabilities of infection so that R0 changes and then observe which
q produces the lowest total proportion of sick days for the different diseases.

6.4.1 A Less Infectious Disease

In this case we let πL = 0.0073 and πG = 0.00073. From this we can calculate
R0 just as we did in section [5.1]. The dominant eigenvalue of the matrix
AK = (µij) is 1.01 which is the R0 of this less infectious disease.

Since the probability of a large outbreak is non-zero due to R0 > 1 we observe
the development of the epidemic through simulation. However, since R0 is
very close to one we can assume that the optimal value of q for a disease such
as this should be significantly smaller compared to the previous model. Since
R0 = 1.01 an initial infectious infects an expected total of 1.01 other individuals
under ideal circumstances during its infectious period when there are ni = 19
susceptible individuals of each group.

Since we do not adjust our probabilities of infection based on the individuals
currently in quarantine the occurrence of a reignition of the epidemic is most
likely zero. This is due to the fact that any returning infectious do not have
a large enough pool of susceptible individuals since some will be in quarantine
and thus the expected number of individuals returning infectious would infect is
less than one, meaning that the disease would terminate. If we however were to
account for the change in probability brought by putting children in quarantine
the results would surely differ.

Performing the same simulations in the same ways as for the previous disease
we end up with the optimal values of q presented in Table [4] below.

Table 4: Optimal Values of q for Different Methods

Method Median 0.75 0.9 0.95 Mean

q 23 27 29 38 29

As we expected the optimal values of q are significantly smaller for this disease
than its previous, more infectious, counterpart. In Figure [5] in the Appendix
we can observe the spread of the epidemic and it is very clear that the disease
is not infectious enough to spread beyond the initial stage. Once the number
of quarantined individuals grows there is not enough susceptible individuals to
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infect and as a result the number of infectious individuals drops to zero and the
epidemic terminates.

6.4.2 A More Infectious Disease

In this case we will examine an even more infectious disease compared to the
original one. We now let πL = 0.045 and πG = 0.0045 and perform the same
calculations as before.

This results in the dominant eigenvalue of AK = (µij), and the R0 for this
disease being 6.03. Due the extremely infectious nature of the disease even
a small number of available susceptible individuals would bring the expected
number of infections during an infectious period to a value above one. Thus the
disease will rarely terminate due to a lack of available susceptible individuals
like in the previous, less infectious, case. It is reasonable to assume that the
optimal value of q might be very similar to the value which we obtained in the
original epidemic from Table [1].

As can be seen in Figure [1(a)], η̂ ≈ N as in the case of the original disease. Thus
the epidemic would likely reignite if any of the initially quarantined individuals
were to return and still be infectious. This is the same argument as we made
in the original model. Since the value of πR has not changed the optimal q
should be very similar since we can not allow for any individual to return or
the epidemic will likely reignite. The only difference being that the probability
of a termination under the assumption that some initially quarantined return
infectious is lower for this disease compared to the original one. As such the
optimal value of q should be higher.

Performing the same simulations as last time we end up with the results pre-
sented in Figure [6] in the Appendix. As we can see the development looks
extremely similar to that of the original epidemic. The optimal values of q can
be chosen according to Table [5] below.

Table 5: Optimal Values of q for Different Methods

Method Median 0.75 0.9 0.95 Mean

q 43 45 52 53 57

6.4.3 For Other Values of R0

Lastly we can observe how q behaves when we let R0 vary between a vast number
of values. To begin with we need to make some assumptions of how our disease
spreads. As has been the case in the three previous diseases πL = 10πG. If we
assume that the probability of infection solely depends on how much individuals
interact it seems plausible to also assume that a child would interact a lot more
with children in their own group compared to those in others meaning that
there should some constant factor relating πL to πG. If we are finally to assume
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that this factor is equal to 10 meaning that an child spends 10 times as much
time with a arbitrary child in their own group compared to an arbitrary child
in another group. Limiting the diseases in this way allows us to easily calculate
R0 for all possible probabilities of infection.

µij =

19
(

1− 0.4(1−10πG)
10πG+0.4−0.4·10πG

)
i = j

19
(

1− 0.4(1−πG)
πG+0.4−0.4πG

)
else

=

19 10πG
6πG+0.4 i = j

19 πG
0.6πG+0.4 else

This would give us the following matrix.

AK = 19


10πG

6πG+0.4
πG

0.6πG+0.4 . . . πG
0.6πG+0.4

πG
6πG+0.4

. . .
...

...
. . .

...
πG

6πG+0.4 . . . . . . 10πG
6πG+0.4


The dominant eigenvalue of AK can after some tedious calculations and a lot
of matrix algebra be expressed on the following form. The matrix calculations
can be seen in [10.1.3].

R0 =
10πG

6πG + 0.4
+ 19

πG
0.6πG + 0.4

(4)

Solving (4) for πG we are left with one positive and one negative solution. Since
πG is a probability the solution which we are looking for is the positive.

πG =
−2755 + 33R0 +

√
7590025 + 46170R0 + 729R2

0

57000− 90R0
(5)

By using (5) we recalculate πG for different values of R0 and therefore sim-
ulate for a variety of different hypothetical epidemics with varying degrees of
infectiousness.

We could perform an enormous number of simulations for all different values
of R0 by increasing by very small increments. This would be extremely time
consuming, but would give us a graph indicating the optimal value of q given
an epidemic with a certain R0.

Due to the time constraints we can instead choose to observe how q changes for
larger increments giving us Figure [2]. In the figure we see very clearly that qmin

is dependant on the value of R0. When we reach the very infectious diseases
this increase seems to slow down. This is likely due to the fact that η ≈ N for
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all disease over a certain infectious threshold as can be seen in Figure [1(a)].
Furthermore the more infectious diseases are likely to reignite if one individual
returns from the initial quarantine without recovering.

Figure 2: Different qmin

To be able to minimize the total number of
sick days we must therefore allow for no in-
fectious individuals to return. Due to this
the main value that would affect q in these
cases would be the probability of recovery
since equation (1) can only be maximized by
either increasing q or decreasing πR for dis-
eases with η ≈ N . If we for example were to
increase the average recovery time the values
of qmin would increase, and vice versa.

The reason to why the values of qmin do not
increase monotonously with R0 in Figure [2]
is due to the number of simulations being
somewhat low. Therefore some stochastic
outcomes could shift the result significantly
leading to larger values of qmin for less infec-
tious disease compared to others. In theory the increase should however be seen
as monotonous.

7 Renewal Theory

It is possible to further refine the model by implementing the possibility of a
restart of the epidemic when there are no infectious individuals present. Since
we are dealing with SIS diseases it is not unlikely that such a disease would
reinfect the kindergarten some time after the initial infection. A child present
at the kindergarten could possibly be infected in a variety of different scenarios
or places outside of the kindergarten, and as such restart the spread in the
kindergarten.

To include this we can add the possibility of a general probability of an exterior
infection, meaning that there is always a probability of infection even though
there are no infectious individuals present at the kindergarten. By doing this
the epidemic would terminate and then start over once a susceptible individual
suffers an exterior infection. This could then be used in combination with
renewal theory to examine the average proportion of children in quarantine
each day during a longer period of time. It could also be of interest to observe
the long run number of infections per day in the model.

7.1 Renewal Reward Process

Consider that we have an external probability of infection πE . If we then assume
that the epidemic is truly terminated once the entire population have returned
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to being susceptible we can determine the distribution of the idle period. Due
to the independence of infections, which we also assume for the external in-
fections, we know that the probability that all N individuals avoid infection
during a day is (1 − πE)N which can be proved through induction in a similar
way to [10.1.2]. The length of the idle period which we denote D then takes the
following distribution.

D ∼ Geo
(
1− (1− πE)N

)
The length of a busy period, which we will denote by B, is a bit tougher to
calculate but it can be estimated using simulations. The cycle length, which we
denote as T , is thus D+B. Using the same simulations we can also estimate the
number of days in quarantine during each busy period, and as a result the total
number of quarantine days during each cycle. Note that a complete cycle is the
idle period combined with the busy period. By using a renewal reward process
we can then calculate the long run proportion of individuals in the quarantine
per day.

In the mentioned renewal reward process which we henceforth denote {R(t), t ≥
0} the total reward during a cycle, which we will denote R, is the total number of
days in quarantine during the cycle. Note however that all quarantine days occur
during the busy period. We let {N(t), t ≥ 0} denote the underlying renewal
process where a renewal occurs at time t when S(t) = N and S(t − 1) 6= N .
Using these notation we have the following where Ri ∼ R.

R(t) =

N(t)∑
i=1

Ri

The renewal reward process “hits stationarity” after the first renewal since we
have k starting infectious individuals at the beginning but only 1 after each
subsequent renewal. Since the starting conditions of each cycle vary between
the first and the subsequent cycles we only wish to observe the process from the
first renewal until the last renewal. The reason why we stop at the last renewal
is because the potentially last busy period will end early which means that its
length and number of quarantine days will be inaccurate.

We wish to examine the long run number and proportion of individuals in
quarantine during a single day. As such we use Theorem [10.1.4] from the
Appendix.

We henceforth denote E[R] by δ. Since we know that R(t)
t converges almost

surely to δ
µ we can estimate both quantities using simulation to get an approx-

imate result.

We know that µ = E[T ] = E[B] + E[D] = E[B] + 1
1−(1−πE)N

. The remaining

expected value, E[B], is difficult if not impossible to derive analytically and as
such it has to be approximated through simulation.

35



To showcase this method we choose to examine an epidemic with R0 = 1.5.
From this we can use equation (5) and get that πG ≈ 0.0011, πL = 0.011. We
also have to choose a suitable value for πE which we set to 0.000011. We use
the previous values for k,mi, ni which leads to N = 400. Using these values we
get that the average length of an idle period is 1

1−(1−0.00001)400 ≈ 228. A reason

that we choose πE to be so small is because we do not want it to have too large
of an impact on the spread during the busy period.

When introducing the possibility of an external infection the previously derived
theory regarding R0 has to be re-examined. In the case of a multitype epidemic
there now exists a new group which infects the other groups but can not be
infected itself. By introducing such a group the theory centred around that
R0 can be expressed as the dominant eigenvalue of AK fails due to the groups
definition.

It should also be noted that we can derive the long run number of infections per

busy period by simply dividing R(t)
t by q. We denote these number of infections

by ν = δ
q . Since q is constant the almost sure convergence presented above still

holds. Therefore the number of infections per day over an entire cycle converges
almost surely to δ

µq = ν
µ .

7.2 Simulation

Through some simulation where each value of q is simulated over 100000 days
we get the following estimates.

Table 6: Outcomes of Renewal Reward Process Simulations

q µ̂ D̂ B̂ δ̂ ν̂

21 1970.62 220.02 1750.59 229185.50 10913.60

26 530.37 244.94 285.43 32881.52 1264.674

31 324.96 210.53 114.43 10657.72 343.79

36 306.45 212.45 93.99 8065.22 224.03

41 312.79 226.27 86.53 7241.53 176.62

46 318.87 236.53 82.34 6827.69 148.43

51 316.81 228.86 87.95 7403.09 145.16

56 303.55 213.12 90.44 7688.85 137.30

61 313.08 215.06 98.03 8722.04 142.98

66 328.36 224.24 104.12 9338.35 141.49

71 341.52 233.01 108.51 10452.80 147.22

76 317.08 199.22 117.86 11017.10 144.96

We note that the smaller values of q have higher estimates for δ. This is due to
the increase in length of the busy period as can be seen in B̂. This does in turn
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occur due to the increasing probability of a reignition which lower values of q
bring. For values of q < 21 we observed no renewals in our simulations which is
likely a result of the aforementioned increase in the probability of a reignition.
For some lower values of q it is also not unlikely that individuals returning from
a quarantine will return to a kindergarten where the disease is still spreading
due to the low infectivity of the disease in question. We note from Figure [2]
that the optimal value of q for R0 = 1.5 is approximately 40. When including
the external probability of infection this q should increase slightly and that is
why δ̂ is the smallest for q:s around 40 to 50.

Using the estimates from Table [6] in combination with Theorem [10.1.4] we can
derive the long run number of children in quarantine per day and the number
of infections per day.

R(t)

t

a.s−→ δ

µ
≈ δ̂

µ̂
as t→∞

R(t)

tq

a.s−→ ν

µ
≈ ν̂

µ̂
as t→∞

Table 7: Long Run Estimations

q δ̂
µ̂

δ̂
µ̂N

ν̂
µ̂

21 116.30 0.291 5.54

26 62.00 0.155 2.38

31 32.80 0.082 1.06

36 26.32 0.066 0.73

41 23.15 0.06 0.56

46 21.55 0.058 0.47

51 23.37 0.058 0.45

56 25.33 0.063 0.45

61 27.85 0.070 0.45

66 28.44 0.071 0.43

71 30.60 0.076 0.43

76 34.75 0.086 0.46

From Table [7] we see a decrease in the number of infections per day as q
increases. This number stops decreasing at around q ≈ 46 since the epidemics
start behaving similarly. In these cases we can see as in Figure [8] that most busy
periods are brief, with some exceptions, and with to reignitions. Furthermore we
also note a decrease in the proportion of children in quarantine when increasing
q. At some value of q ≈ 46 however we seem to be getting similar outcomes
which as previously mentioned are shorter busy periods with no reignitions. As
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a result an increase in q in these cases would not reduce the number of infections
and only increase the number of days an already recovered children spend at
home.

8 Conclusion

Figure 3: Sick Days

Throughout this thesis we have examined
how we could reduce the number of total
days in quarantine and control the spread
of epidemics of varying infectiousness in a
kindergarten setting. When applying the ba-
sic SIQS model we found that the total num-
ber of sick days was very high and there-
fore came to the conclusion that some other
method would have to be implemented to
combat the disease.

In the case of the original disease the propor-
tion of sick days is approximately 0.53 as can
be seen in Figure [1] in the Appendix. To re-
duce this number we implemented a forced
withdrawal model where the quarantine time
was no longer stochastic but fixed. By doing
this we where able to reduce the proportion
of sick days significantly in the original disease as can be seen in Figure [3]
above. In the case of when we choose the optimal value of q we are even able
to reduce the proportion to approximately 0.145.

We where also able to find optimal values of q for a number of diseases with
varying infectiousness as can be seen in Figure [2]. The values which have
been called the optimal values of q or qmin are based on taking the mean of
the epidemic. Since the mean is heavily influenced by the larger deviations in
quarantine days that are present in larger outbreaks or extremely early termi-
nations it is interesting to also observe the median as we have done in Table [3],
[4] and [5]. From the tables we observed that the medians where always lower
compared to the mean, due to the influence of the larger outbreaks. We also
observed what happened when we took different quantiles of the simulation and
as such only ignored the largest deviations.

We are also able to obtain a lower bound for the probability of an early ter-
mination by using the expected value of η can be seen in Figure [1(b)] and
different values of q. The lower bound can be seen in Figure [7] in the Appendix
for different values of qmin and R0. Under the assumption that the number of
initially quarantined is approximately the entire population, that is for R0 ' 4,
the lower bound is simply (1) with η = N .

When comparing different disease the true probability of an early termination
will depend on the infectiousness since the probability of termination given some
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random number of returning infectious is smaller for more infectious diseases.
Using this lower bound we could choose a value of q in a scenario where we want
the probability of a large outbreak to be at least some value.

Furthermore, we also implemented the possibility of an external infection where
children could get infected outside of the kindergarten. We used this in combi-
nation with renewal theory to derive some interesting results in the long rung
which in some regard looked very similar to those from our other simulations.

Lastly it should be reiterated that the results and conclusions drawn in this
thesis are by no means relatable to a real world scenario since the assumptions
which our models are based on are unrealistic. As previously mentioned we
have not accounted for the adjusted probability of infection that would occur
when individuals leave for the quarantine. We have also made some unrealistic
assumptions regarding the distribution of the infectious, quarantine and recov-
ery period. It seems more probable that the the recovery period of a disease
should be a fixed value or some uniform distribution at that value instead of
being geometrically distributed.

We have also chosen to ignore certain implications of extended quarantine times
in regards to the setting. A child which spends longer time at home might infect
their family and as such creating a second household where the epidemic spreads.
The aim of this thesis was never to make any real life reflections but instead to
showcase different techniques to which a theoretical epidemic could be limited
under the assumptions presented.

9 Further Developments

The ideas in this thesis can be developed further in a variety of ways. An impor-
tant aspect which we have chosen to exclude is that kindergarten groups, and
certainly not kindergartens as a whole, might not fulfil the homogeneous mixing
present in the household model which we have assumed. It is actually highly
unlikely that a child in a class interacts with each other child the same way.
To deal with this issue one could implement an underlying, possible weighted,
social graph and letting the probabilities of infection depend on the edges in
said graph.

Throughout the thesis we have not chosen to adjust the probabilities of infection
based on the fact that some individuals stay in quarantine. In reality this is
not the case since if the number of individuals in a group of potential contacts
decrease the probability to interact, and thus infect, each individual should
increase. By including this adjustment the theoretical parts of this paper would
be very difficult do derive whilst the simulations would contribute with more
realistic results.

The lower bound which was calculated in section [6.3] and shown in Figure [7]
could most likely be improved by either using brute force calculations or the
introduction of other techniques. This would certainly shed more light on the
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difference between the simulated and theoretical results. In the simulated case
as previously mentioned the optimal value of q is calculated by observing a
large amount of simulations where one large outbreak might change the results
drastically. As such it would be very interesting to observe how a more precise
probability of an early termination could be used to justify different values of
q. It could for example be possible to recommend a lower number of days of
forced withdrawal until the probability of early termination reaches a certain
threshold.

We could also perform our simulations over different period lengths. As men-
tioned and seen previously the number of sick days peaks in the early stages
of our forced withdrawal model for the respective qmin of each disease. Since
the epidemics terminate after the initial stage the proportion of total sick days
decrease as we increase the number of days in our simulation. If we however
were to decrease the number of days in the simulation, the optimal value of q
would likely change. Since the results and the optimal values of q would differ
it could be of interest to observe different lengths of the simulations.

Lastly we could always increase the scale of our simulations in order to obtain
even more precise results.
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10 Appendix

10.1 Calculations

10.1.1 Probability Generating Function of a Random Sum

This theorem and proof can also be found in [4].

Let X1, X2, . . . be independent and identically distributed non-negative, discrete
random variables and let N be a non-negative discrete random variable which
is independent of X1, X2, . . .. Let S0 = 0 and Sn = X1 + X2 + . . . + Xn, for
n ≥ 1. Then the following holds.

ΠSN (z) = ΠN

(
ΠX(Z)

)
.

Proof.

ΠSN (z) = E[zSN ] =

∞∑
n=0

E[zSN |N = n] · P(N = n)

=

∞∑
n=0

E[zSn |N = n] · P(N = n)

=

∞∑
n=0

E[zSn ] · P(N = n)

=

∞∑
n=0

(
ΠX(z)

)n
· P(N = n) = ΠN

(
ΠX(z)

)
10.1.2 Probability to Avoid Infection

Using the definitions and notations introduced in this thesis the probability to
not be infected by an initial infected conditioned on their infectious period is
the following.

P(Not Infected|I) = (1− πI)I

Proof.

We prove this using induction. We know that the probability to not get infected
by an infectious individual during a jump in time is 1 − πI . To reduce the
notation let P (i) = P(Not Infected|I = i).

Base case.

P (n) holds for the base case where n = 1.

P (1) = 1− πI = (1− πI)1

41



Inductive step.

Assuming that P (n) holds P (n + 1) also holds due to the independence of the
attempted infections. The probability to no be infected during n + 1 jumps in
time is as such the probability to no be infected during the first n jumps in time
as well as not being infected during the last jump in time.

P (n)(1− πI) = (1− πI)n+1 = P (n+ 1)

10.1.3 Analytical Eigenvalue of AK

Let a = 10πG
6πG+0.4 and b = πG

0.6πG+0.4 then AK looks as follows.

AK =


a b . . . b

b
. . .

...
...

. . .
...

b . . . . . . a

 |AK − λIK | =

∣∣∣∣∣∣∣∣∣∣∣

a− λ b . . . b

b
. . .

...
...

. . .
...

b . . . . . . a− λ

∣∣∣∣∣∣∣∣∣∣∣
We now add all rows to the first row.∣∣∣∣∣∣∣∣∣∣∣

a− λ+ (k − 1)b a− λ+ (k − 1)b . . . a− λ+ (k − 1)b

b
. . .

...
...

. . .
...

b . . . . . . a− λ

∣∣∣∣∣∣∣∣∣∣∣
Then we subtract the first column from the other columns.∣∣∣∣∣∣∣∣∣∣∣

a− λ+ (k − 1)b 0 . . . 0

b a− λ− b
...

...
. . .

...

b . . . . . . a− λ− b

∣∣∣∣∣∣∣∣∣∣∣
Then we divide the 2nd until the kth column by a − λ − b and assuming that
λ 6= a− b.

(a− λ− b)k−1

∣∣∣∣∣∣∣∣∣∣∣

a− λ+ (k − 1)b 0 . . . 0

b 1
...

...
. . .

...

b . . . . . . 1

∣∣∣∣∣∣∣∣∣∣∣
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If we then compute the remaining determinant using Laplace expansion we get
the following.

|AK − λIK | = (a− λ− b)k−1(a− λ+ (k − 1)b)

= {Substituting a and b}

=

(
10πG

6πG + 0.4
− λ− πG

0.6πG + 0.4

)k−1(
10πG

6πG + 0.4
− λ+ (k − 1)

πG
0.6πG + 0.4

)
The reproduction number is then on the following form.

R0 = max

{
λ :

(
10πG

6πG + 0.4
− λ− πG

0.6πG + 0.4

)k−1(
10πG

6πG + 0.4
− λ+ (k − 1)

πG
0.6πG + 0.4

)
= 0

}

= max

{
λ :

(
10πG

6πG + 0.4
− λ− πG

0.6πG + 0.4

)
= 0 ∨

(
10πG

6πG + 0.4
− λ+ (k − 1)

πG
0.6πG + 0.4

)
= 0

}
= max

{
10πG

6πG + 0.4
− πG

0.6πG + 0.4
,

10πG
6πG + 0.4

+ (k − 1)
πG

0.6πG + 0.4

}
=

10πG
6πG + 0.4

+ (k − 1)
πG

0.6πG + 0.4

The final equality holds for all k ≥ 1 and πG ∈ [0, 1].

10.1.4 Convergence of a Renewal Reward Process

This proof can also be found in [6].

Let Ri ∼ R. If E[R] <∞ and E[T ] = µ <∞ then as t→∞.

R(t)

t

a.s−→ E[R]

µ

Proof.

R(t)

t
=

∑N(t)
i=1 Ri
t

=

∑N(t)
i=1 Ri
N(t)

N(t)

t

∑N(t)
i=1 Ri
N(t)

a.s−→ E[R] by the Strong Law of Large Numbers

N(t)

t

a.s−→ 1

µ
From Proposition 7.1 in [6]
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10.2 Figures

Figure 1: A multitype SIQS model with the mean of 100 simulations over 365
days for the probabilities defined in Table [1].

Figure 2: A multitype Forced Withdrawal model with the mean of 100 simu-
lations over 365 days for the probabilities defined in Table [2].
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Figure 3: The proportion of total days in quarantine for a Forced Withdrawal
model with the mean and median of 25 simulations over 365 days for q ∈ [1, 75]
with (πL, πG) = (0.03, 0.003).

Figure 4: The number of total days in quarantine for a Forced Withdrawal
model with the mean of 25 simulations over 365 days for q = 48 with (πL, πG) =
(0.03, 0.003).

45



Figure 5: The number of total days in quarantine for a Forced Withdrawal
model with the mean of 25 simulations over 365 days for q = 29 with (πL, πG) =
(0.0073, 0.00073).

Figure 6: The number of total days in quarantine for a Forced Withdrawal
model with the mean of 25 simulations over 365 days for q = 57 with (πL, πG) =
(0.045, 0.0045).
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Figure 7: A lower bound for the probability of an early termination for epi-
demics with varying infectiousness conditioned on η = E[η].

Figure 8: The length of each busy period for an epidemic with R0 = 1.5,
q = 46, πE = 0.000011 simulated over 100 000 days.
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