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Abstract

A financial time series is a set of variables observed at different
time points. A major concern of financial time series study is to eval-
uate the changes in the values of an underlining asset and to forecast
losses or gains in the future. One distinct characteristic of a financial
time series is that it contains a factor of uncertainty. Volatility is a
conditional standard variance for an underlying asset. In empirical
study, volatility is difficult to measure, and yet it is a key to building a
model for a financial time series. In this study, we will study two most
representative volatility models, namely the autoregressive conditional
heteroscedastic (ARCH) models, and the general autoregressive con-
ditional heteroscedastic (GARCH) models. These two models will be
fitted to Nasdaq Nordic indices, the Large Cap and the Small Cap -
two market segment indices with different dynamics. This study has
two main purposes. First, we want to see if these two models are ad-
equate to describe the two different data sets even though these data
sets have different dynamics. If that is not the case, we want to see
which model is more adequate to describe a certain data set. Sec-
ond, we want to see which model has better forecasting power. To
measure forecasting power, we will use backtesting based on value at
risk, a risk measure that gives a point estimate for a potential loss.
The study results show that the differences between the models are
not as distinctive as the differences between the data sets. For a same
index, both ARCH models and GARCH models show fairly similar
results. Backtesting results, however, show that the most distinctive
differences in forecasting power come from distribution assumption for
innovation of a model. When it comes to forecasting power, differences
between distribution assumption for innovation seem more distinctive
than differences between ARCH and GARCH models.
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E-mail: joki1322@student.su.se. Supervisor: Kristofer Lidensjö and Mathias Lindholm.
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1 Introduction

Financial time series analysis is aimed to observe and forecast value
evaluation over time. Return series show gains or losses from an underlying
asset over time. Volatility is a conditional standard deviation of an underlining
asset return series, and it plays an important role when we build models
for financial time series. Many models have been developed to capture the
dynamics of volatility. In this study two major volatility models will be
studied, namely autoregressive conditional heteroscedastic (ARCH) models,
and general ARCH (GARCH) models. These two models will be fitted to two
Nasdaq indices, the Large Cap and the Small Cap. We will check if fitted
models are adequate to describe each index, by studying their standardized
residuals. Most importantly, we will compare the power of forecasting of
these two models with backtesting based on value at risk measure.

2 Theory

2.1 Prices and asset returns

Let Pt be the price of an asset at time t. A one-period simple gross return
is

1 +Rt =
Pt

Pt−1
.

A one-period simple net return or simple return Rt is

Rt =
Pt

Pt−1
− 1 =

Pt − Pt−1
Pt−1

.

A log return rt is the natural logarithm of the simple gross return, and defined
as

rt = ln (1 +Rt) = ln
Pt

Pt−1
.

2.2 Autocorrelation

2.2.1 Stationarity and covariance

A time series {rt} is strictly stationary if the joint distribution of (rt1 , . . . , rtk)
is identical even when we make a shift in time, where k is an arbitrary positive
integer. A time series {rt} is weakly stationary if the mean of rt and the
covariance between rt and rt−l do not depend on t but depend only on l,
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where l is an arbitrary positive integer. The covariance γl = Cov(rt, rt−l) is
called the lag-l autocovariance of rt.

1

2.2.2 Autocorrelation function (ACF)

The correlation coefficient between two variables X and Y is defined as

ρx,y =
Cov(X, Y )√

Var(X)Var(Y )
.

When we have a return series rt, we want to study the linear dependence
between rt and its past values rt−l . The correlation coefficient between rt
and rt−l is called the lag-l autocorrelation of rt and is denoted by ρl. We
assume that our return series is stationary. For a stationary return series
Var(rt) = Var(rt−l). Then the lag-l autocorrelation is defined as

ρl =
Cov(rt, rt−l)√

Var(rt)Var(rt−l)
=

Cov(rt, rt−l)

Var(rt)
.

For a sample
{
xt, yt

}
, the correlation can be estimated by its sample

correlation coefficient

ρ̂x,y =

∑T
t=1(xt − x̄)(yt − ȳ)√∑T

t=1(xt − x̄)2
∑T

t=1(yt − ȳ)2

where x̄ =
∑T

t=1 xt/T and ȳ =
∑T

t=1 yt/T respectively.
The lag-l sample autocorrelation of rt is defined as

ρ̂l =

∑T
t=l+1(rt − r̄)(rt−l − r̄)∑T

t=1(rt − r̄)2
, 0 ≤ l < T − 1,

where r̄ denotes the sample mean for a return series
{
rt
}T
t=1

.2

2.2.3 Partial Autocorrelation Function (PACF)

The partial correlation function of a stationary time series is a function of
its ACF, and it is useful when determining the order of an AR model. We
can consider the AR models as follows.

rt = φ0,1 + φ1,1rt−1 + ε1t,

1Tsay, Chapter 2, p 30.
2Tsay, Chapter 2, p 30-31.
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rt = φ0,2 + φ1,2rt−1 + φ2,2rt−2 + ε2t,

rt = φ0,3 + φ1,3rt−1 + φ2,3rt−2 + φ3,3rt−3 + ε3t,

rt = φ0,4 + φ1,4rt−1 + φ2,4rt−2 + φ3,4rt−3 + φ3,4rt−3 + ε4t,

where φi,j are the coefficients of rt−i and {εjt} are the error term of an AR(j)

model. The lag-2 sample PACF φ̂2,2 shows the added contribution of rt−2 to
rt over the first equation, the AR(1) model. The lag-3 sample PACF shows
the added contribution of rt−3 to rt over an AR(2) model. For an AR(p)
model, the lag-p sample PACF is significantly different from zero, while φ̂j,j
are close to zero for all j > p. In other words, for an AR(p) series, the sample
PACF cuts off at lag p. 3

2.2.4 Ljung-Box test

The Ljung-Box test is to test jointly that several autocorrelations of rt
are zero. The null hypothesis is H0 : ρl = · · · = ρm = 0 and the alternative
hypothesis is ρi 6= 0 for at least one i ∈ {1, . . . ,m}. For an iid sequence {rt},
the test statistic Q(m) is asymptotically a chi-squared random variable with
m degrees of freedom.

The Ljung-Box test statistic is

Q(m) = T (T + 2)
m∑
l=1

ρ̂l
2

T − l
.

The decision rule is to reject H0 if p-value is less than a significance level.
4

2.3 Simple linear time series models

Simple linear time series models are aimed to capture the linear relationship
between rt and its past values. These models will not be used in this study,
but they are the basis for more advanced time series models. So it can be
worthwhile to understand these simple linear models before we move on to
ARCH and GARCH models.

3Tsay, Chapter 2, p 46-47.
4Tsay, Chapter 2, p 32-33.
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2.3.1 Simple AR models

An autoregressive model of order p, or AR(p), says that the past p values
jointly determine the conditional expectation of rt given the past data.5 If
we assume that µ = 0, a general AR(p) model can be written as

rt = θ0 + θ1rt−1 + · · ·+ θprt−p + at,

where at is called shock or innovation of an asset return at time t.

2.3.2 Simple MA models

If we assumed that µ = 0, we have an AR model with an infinite order as
below.

rt = φ0 + φ1rt−1 + φ2rt−2 + · · ·+ at.

This model has infinite many parameters. To make the number of parameters
finite, we put some constraints on the coefficients θi. An example is

rt = φ0 − θ1rt−1 − θ21rt−2 − θ31rt−3 − · · ·+ at (1)

This model can be rewritten as

rt + θ1rt−1 + θ21rt−2 + θ31rt−3 + · · · = φ0 + at (2)

We multiply (2) by θ1 and then subtract the result from (1). We get

rt = φ0(1− θ1) + at − θ1at−1 (3)

The equation (3) can be rewritten as

rt = c0 + at − θ1at−1 (4)

The equation (4) is a structure of an MA(1) model. An MA(q) model is

rt = c0 + at − θ1at−1 − · · · − θqat−q,

where q > 0. 6

5Tsay, Chapter 2, 38
6Tsay, Chapter 2, 58
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2.3.3 ARMA Models

The AR or MA models sometimes need many parameters to fit a data.
The autoregressive moving-average models, or ARMA models, combine AR
and MA models into a simpler form, and they usually have less numbers of
parameters. An ARMA(1,1) model can be written as

rt − φ1rt−1 = φ0 + at − θ1at−1.

The left side of the equation is the AR part and the right side of the equation
is the MA part. φ0 is a constant term.

A general ARMA(p, q) model can be written as

rt = φ0 +

p∑
i=1

φirt−i + at −
q∑
i=1

θiat−i,

where {at} is a white noise and p and q are nonnegative integers. 7

2.4 Volatility

2.4.1 Definition and characteristics

Volatility means the conditional standard deviation of the underlying asset
return. Stock volatility is not directly observable because there is only one
observation per day when we take, for instance, only starting prices or only
closing prices each banking day. Although volatility is not directly observable,
it displays some common characteristics. First, there are volatility clusters,
which means volatility usually is high for a certain period and low for another
period. Figure 2 shows the time plots of the log returns of the Large Cap and
the Small Cap. We can find that volatility is high for a period, and it is low
for another period. Second, volatility evolves in a continuous manner. It is
rare to observe volatility jumps. Third, volatility varies within some fixed
range.8

2.4.2 Volatility models

The log returns of an asset at time t, rt, is either serially uncorrelated or
shows minor lower order serial correlation. It is, however, a dependent series.
Volatility models are aimed to capture such dependency between the values
of a series. The model structure is

µt = E(rt | Ft−1), σ2
t = Var(rt | Ft−1) = E[(rt − µt)2 | Ft−1].

7Tsay, Chapter 2, p 64.
8Tsay, Chapter 3, p 111.
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The model for µt is called the mean equation and the model for σ2
t is the

volatility equation for rt. Here Ft−1 denotes the information available at time
t− 1. If we assume that rt follows a stationary ARMA(p, q) model, we can
build the model

rt = µt + at, µt =

p∑
i=i

φiyt−i −
q∑
i=1

θiat−i

We have a volatility equation as

σ2
t = Var(rt | Ft−1) = Var(at | Ft−1).

The evolution of σ2
t is the main concern for volatility models. Different

volatility models describe different ways under which σ2
t evolves over time.9

2.4.3 Model building

There are four steps in building a volatility model for an asset series. First,
a mean equation is to be built. Second, the residuals of the mean equations
are to be tested for potential ARCH effects. Third, if ARCH effects are
statistically significant, specify a volatility model. The mean and volatility
equations are to be jointly estimated. Fourth, the model is to be verified and,
if necessary, refined. 10

2.4.4 The ARCH effect

We can denote the residuals of the mean equation as at = rt − µt. The
series of squared residuals are used to test if conditional heteroscedasticity
exists. Such conditional heteroscedasticity is also called ARCH effects. The
Ljung-box test will be used to see if there are ARCH effects. The null
hypothesis is that the firs m lags of ACF of the a2t series are zero.11

2.5 ARCH models

In an ARCH model, the shock or innovation at of an asset return is a serially
uncorrelated but a dependent series. This dependency of the innovation at
can be written as a quadratic function of its past values. Assuming that an
asset return series has mean zero for all t, an ARCH model can be written as

at = σtεt, σ2
t = α0 + α1a

2
t−1 + · · ·+ αma

2
t−m,

9Tsay, Chapter 3, p 111-113.
10Tsay, Chapter 3, p 113
11Tsay, Chapter 3, p 114.
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where {εt} is a series of independent and identically distributed random
variables with mean zero and variance 1. Usually {εt} is assumed to follow
the standard normal or a standardized Student-t distribution. The coefficients
α0 > 0 and αi ≥ 0 for i > 0. The model structure shows that the large sum
of past squared shocks {a2t−i}mi=1 leads to a large conditional variance σ2

t for
the shock at.

12

2.5.1 The ARCH(1) model

We can study the ARCH(1) model carefully before we move on to the
ARCH models in general. Given that we already know at−1, the ARCH(1)
model is defined as

at = σtεt, σ2
t = α0 + α1a

2
t−1,

where α0 > 0 and α1 ≥ 0. We can get the mean and the variance of at. The
mean of at is zero because

E(at) = E[E(at|Ft−1)] = E[σtE(εt)] = 0

The variance of at is

Var(at) = E(a2t ) = E[E(a2t |Ft−1)] = E(α0 + α1a
2
t−1) = α0 + α1E(a2t−1).

For the variance of at to be positive we need to satisfy the requirement
0 ≤ α1 < 1.

Because {at} is a stationary series, we have E(at) = 0 and Var(at) =
Var(at−1) = E(a2t−1). Thus, we get Var(at) = α0 + α1Var(at) and Var(at) =
α0/(1− α1).

2.5.2 Order determination

If an ARCH effect is significant, the PACF of a2t can be used to determine
the order of an ARCH model. We have an ARCH(m) model as below.

at = σtεt, σ2
t = α0 + α1a

2
t−1 + · · ·+ αma

2
t−m

The equation for σ2
t has a structure of an autoregressive model of order m for

a2t . In that sense, a2t is linearly related to its past values in this model, and
that is why PACF of a2t can be used for order determination. 13

12Tsay, Chapter 3, p 116.
13Tsay, Chapter 3, p 119-120.
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2.5.3 Estimation under normality assumption

If εt is assumed to be normally distributed, the likelihood function of an
ARCH(m) is

f(a1, . . . , aT |α) = f(aT |FT−1)f(aT−1|FT−2) . . . f(am+1|Fm)f(a1, . . . , am|α)

=
T∏

t=m+1

1√
2πσ2

t

exp

(
−

a2t
2σ2

t

)
× f(a1, . . . , am|α),

where α = (α0, α1, . . . , αm)′, and f(a1, . . . , am|α) is the joint probability
density function of a1, . . . , am. We can write Am = (a1, . . . , am). When the
sample is large, we can use the conditional-likelihood function.

f(am+1, . . . , aT |α, Am) =
T∏

t=m+1

1√
2πσ2

t

exp

(
−

a2t
2σ2

t

)
Then we want to maximize the conditional likelihood function. For this
purpose we can maximize its logarithm because logarithm is easier to handle.
The conditional log-likelihood function is

l(am+1, . . . , aT |α, Am) =
T∑

t=m+1

[
−

1

2
ln (2π)−

1

2
ln (σ2

t )−
1

2

a2t
σ2
t

]
The term ln (2π) does not include any parameters, so the log-likelihood
function can be written as

l(am+1, . . . , aT |α, Am) = −
T∑

t=m+1

[
1

2
ln (σ2

t ) +
1

2

a2t
σ2
t

]
.

14

2.5.4 Estimation with t-innovation

Sometimes we may have a good reason to assume that {εt} follows a
heavy-tailed distribution such as a standardized Student-t distribution. Let
Xν denote a random variable which has a Student-t distribution with ν
degrees of freedom. Then we have Var(Xν) = ν/(ν − 2) for ν > 2, and
εt = Xν/

√
ν/(ν − 2). The probability density function of εt is

f(εt|ν) =
Γ[(ν + 1)/2]

Γ(ν/2)
√

(ν − 2)π

(
1 +

ε2t
ν − 2

)−(ν+1)/2

, ν > 2,

14Tsay, Chapter 3, p 120-121.
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where Γ(x) =
∫∞
0
yx−1e−ydy. Because at = σtεt, the conditional-likelihood

function of at is

f(am+1, . . . , aT |α, Am) =
T∏

t=m+1

Γ[(ν + 1)/2]

Γ(ν/2)
√

(ν − 2)π

1

σt

[
1 +

a2t
(ν − 2)σ2

t

]−(ν+1)/2

,

where ν > 2. The degrees of freedom of the t distribution can be also estimated
with the maximum likelihood method. The conditional log-likelihood function
is then

l(am+1, . . . , aT |α, Am) = −
T∑

t=m+1

[
ν + 1

2
ln

(
1 +

a2t
(ν − 2)σ2

t

)
+

1

2
ln (σ2

t )

]
.

15

2.5.5 Model validation

The standardized residuals of an ARCH model is defined as

ãt =
at

σ̂t
.

If an ARCH model is properly built, the standardized residuals follow an
independently and identically distributed series. The series ãt can be examined
in order to check whether the fitted ARCH model is adequate to describe
the data. The Ljung-box statistics of ãt is used to check the adequacy of the
mean equation. The Ljung-box statistics of ã2t is used to check the adequacy
of the volatility equation. Histograms and quantile-to-quantile plot of ãt can
be used to verify if the distribution assumption is valid. 16

2.5.6 Forecasting

Given that we know the values of {ah, . . . , ah+1−m}, the 1-step-ahead
forecast of σ2

h+1 is

σ2
h(1) = α0 + α1a

2
h + · · ·+ α2

h+1−m,

where h is the forecast origin.17

15Tsay, Chapter 3, p 121.
16Tsay, Chapter 3, p 122-123.
17Tsay, Chapter 3, p 123.
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2.6 GARCH models

The ARCH models usually require many parameters to capture the volatil-
ity process. To cope with this problem, Bollerslev (1986) designed the
generalized ARCH (GARCH) model.18 For a log return series rt, we have the
innovation at time t, at = rt − µt. The GARCH model is

at = σtεt, σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j,

where {εt} is a series of independent and identical variables with mean zero
and variance 1. Here εt is assumed to follow a standard normal distribution,
or standardized Student-t distribution. The αi and βj are called ARCH and
GARCH parameters, respectively.

2.6.1 The GARCH(1,1) model

Given that at−1 and σt−1 are known to us, the GARCH(1,1) model is

at = σtεt, σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1, 0 ≤ α1, β1 ≤ 1, |α1 + β1| < 1.

We can see that a large a2t−1 gives rise to a large σ2
t and a large σ2

t gives rise to
a large a2t . This feature is in agreement with volatility clustering in empirical
data.

The constraints are α0 > 0, βj ≥ 0, and
∑max(m,s)

i=1 (αi + βi) < 1.

2.6.2 Estimation

The modeling procedure of GARCH is analogous to that of ARCH models
(see Section 2.7.3 and 2.7.4 for parameter estimation). The conditional
maximum-likelihood method is used given that the starting values of the
volatility {σ2

t } are assumed to be known. The sample variance of at can be
used as a starting value of σ1.

19

2.6.3 Model validation

Model validation for a GARCH(1,1) model is analogous to that for ARCH
models (see Section 2.5.5). We check whether the standardized residuals are
independently and identically distributed. We can also check whether they
follow the distribution assumption that we made for model building, with
help of histograms and quantile-to-quantile plots. Ljung-box tests will be run
on the standardized residuals to check model adequacy.

18Bollerslev, Journal of Econometrics 31
19Tsay, Chapter 3, p 134.
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2.6.4 Forecasting

We have the forecast origin h. Given that we know ah and σh, 1-step-ahead
forecast of a GARCH(1,1) model is

σ2
h(1) = α0 + α1a

2
h + β1σ

2
h.

20

2.7 Backtesting

Our models will be validated with a backtesting method. One-step-ahead
estimate from a sample set of our data will be compared with the actual value.
We continue to roll our sub-sample, or ”window” forward and continue this
process of comparison. Value at risk will be used for measurement for our
backtesting.

2.7.1 Value at risk

Value at risk is a risk measure to estimate potential financial loss. Let
4V (l) denote the change in the value of the underlying asset from time t to
time t + l, and we denote the associated loss function by L(l). We denote
the cumulative distribution function of L(l) by Gl(x). Then we can write the
value at risk of a financial position over the time period l with tail probability
p as

p = Pr[L(l) ≥ VaR] = 1− Pr[L(l) < VaR]

The qth quantile of Gl(x) is

xq = inf{x|Gl(x) ≥ q},

where inf is the smallest real number x for Gl(x) ≤ xq. If L(l) is a continuous
random variable, q = Pr[L(l) ≤ xq]. If the cumulative distribution function
of Gl(x) is known, value at risk is the (1− p)th quantile of the cumulative
distribution function of the loss function. 21 For a normal distribution, if the
tail probability is 5% VaR = 1.65σt+1 or VaR = −1.65σt+1 for next day, 22

depending on your financial position.23 For a Student’s t distribution, we
scale a quantile, by multiplying

√
(ν − 2)/ν to a quantile to create variance

1.

20Tsay, Chapter 3, p 133.
21Tsay, Chapter 7, p 327.
22In this paper, -1.64485 is used for a quantile.
23Tsay, Chapter 7, p 327-329.
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2.7.2 Violation-based tests for value at risk

Let VaRt
p denote the p-th quantile of the conditional loss distribution

GLt+1|Lt at time t. The event {Lt+1 > VaRt
p} is called a VaR violation.

The event indicator is defined as It+1 = I{Lt+1>VaRt
p}. For a continuous loss

distribution, we have

E[It+1|Lt] = P[Lt+1 > VaRt
p|Lt] = 1− p.

The indicator variable It+1 is a Bernoullie variable with probability 1− p.
The sum of the violation indicators over a certain time period forms

binomially distributed random variables as below.

m∑
t=1

It+1 ∼ B(m, 1− p),

where m is the number of total sequences, or the time points for a time series.
We estimate VaRt

p based on information available up to t− 1, and denote

the estimate as V̂aR
t

p. We compare the actual realized value at time t + 1
with our VaR estimate at time t. The violation indicator variable can be
written as

Ît+1 = I{Lt+1>V̂aR
t

p}

Under the null hypothesis that our estimation method is accurate, the
sum of violations should form a B(m, 1 − p) distribution. This hypothesis
will be tested with a binomial test. The statistic for a two-sided score test is

Zm =

∑m
t+1 Ît+1 −m(1− p)√

mp(1− p)

The null hypothesis of Bernoulli behavior at the 5% level is rejected if the
p-value is less than a significance level.24

3 Methodology

3.1 Large Cap and Small Cap indices

All companies listed in the Nasdaq belong to one of the three segments,
namely the Large Cap, the Mid Cap and the Small Cap segment. The Large
Cap segment has companies with a market value over one billion Euros. The

24McNeil, Frey and Embrechts, Chapter 9, p 352-353.
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Mid Cap segment includes companies with a market value less than one billion
and above 150 million Euros. Companies with a market value below 150
million Euros belong to the Small Cap segment.25

As the market values for each segment differ from one another, one can
assume that the dynamics of each segment can be different from one another.
For that reason, we want to study the Large Cap and the Small Cap indices
more closely. We want to study if a same volatility model works differently
on these two indices, or it works more or less the same regardless of which
segment the index is from.

We take the Large Cap and the Small Cap indices that span from Jan 1,
2003 to Dec 31, 2018. Each segment index has 4081 prices. The time plots
of closing prices are shown in Figure 1. Both of the prices seem to follow a
similar pattern over the time span.

Figure 2 shows the log returns of both indices. The log returns of the
Large Cap move between -0.08 and 0.08, while the log returns of the Small
Cap move between a smaller range, between -0.05 and 0.05.

Descriptive statistics for the log returns of the Large Cap and the Small
Cap is summarized in Table 1. The means of both log returns are close to
zero. The log return series of the Small Cap has a smaller unconditional
variance.

Large Cap Small Cap

Mean 0.000227 0.000360
Variance 0.000168 0.000054

Standard deviation 0.012944 0.007348

Table 1: Descriptive statistics for the log returns

3.2 ACF and PACF

ACF plots are useful to check serial correlations and dependency of data.
The sample PACF of the squared residuals are useful to determine an order
for an ARCH model. We plot the ACF of the log returns, of the squared log
returns and of the absolute value of the log returns. We also plot the sample
PACF of the squared log returns.
Figure 3 shows these plots for the log returns of the Large Cap. The ACF
plot for the series shows no significant signs of serial correlations, except for

25”Rules for the Construction and Maintenance of the NASDAQ OMX ALL-share,
Benchmark and Sector Indexes”, version 2.4, March 2018, NASDAQ Copenhagen A/S,
NASDAQ Helsinki Ltd, NASDAQ Iceland hf., NASDAQ Stockholm AB
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Figure 1: Closing prices of (a) the Large Cap and (b) the Small Cap from
2003 to 2018
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Figure 2: The log returns of (a) the Large cap and (b) the Small cap from
2003 to 2018
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Figure 3: Sample ACF and PACF of the log returns of the Large Cap from
2003 to 2018

lag 5. The ACF plots for the squared and the absolute value of the log returns
of the Large Cap show serial dependency. The sample PACF suggests lag 5
for an ARCH model.
Figure 4 shows the sample ACF plots and the PACF plot of the log returns
of the Small Cap. Figure 4 suggests that the data has serial correlations up
to lag 4, it cuts off, and it appears again, repeating this pattern for a while.
The ACF of the squared log returns, and that of the absolute value of the
log returns show dependency between the values. The sample PACF of the
Small Cap suggests lag 2 for an ARCH model.

In summary, the Large Cap does not show any clear signs of serial correla-
tion, while it shows strong dependency. The Small Cap shows stronger signs
of serial correlation and weaker dependency than the Large Cap data. This
observation indicates that the Large Cap is more suitable data for building
volatility models than the Small Cap data is.
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Figure 4: Sample ACF and PACF of the log returns of the Small Cap from
2003 to 2018
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Data p-value 95% confidence interval
Large Cap 0.2625 [-0.0001701865, 0.0006243995]
Small Cap 0.001759 [0.0001345516, 0.0005856323]

Table 2: T-test for mean zero

Data Residuals, {a} Lag P-value

Large Cap {a} 8 0.0012
Large Cap {a2} 8 <2.2e-16
Small Cap {a} 8 <2.2e-16
Small Cap {a2} 8 <2.2e-16

Table 3: Ljung-Box tests on the squared residuals

3.3 Mean equation

We want to check the means of both log returns. We run t-tests for the
null hypothesis of mean zero. Table 2 shows the test results. For the Large
Cap, the p-value is high, and a 95% confidence interval covers zero. For the
Small Cap, the p-value is lower than 0.2% and a 95% confidence interval does
not cover zero. However, both the lower and the upper limit of the confidence
interval are very close to zero. In this paper we will assume mean zero even
for the Small Cap data, because the mean is close enough to zero, and we
want to focus on volatility modeling.

3.4 Ljung-Box tests

The ACF plots already indicate that serial correlations exist, especially
for the Small Cap. We run Ljung-box tests on the residuals and the squared
residuals to more closely check if there exist serial correlations and ARCH
effects. In our case, the means are assumed to be zero so the log returns series
are equal to the residuals.

Table 3 shows the results of the Ljung-Box tests on the residuals. The lag
for the test is chosen by m ≈ ln(n).26 This gives us m = 8 for our case. The
p-value for the residuals of the Large Cap is 0.0012, and that for the squared
residuals is close to zero. The p-values for the residuals and the squared
residuals of the Small Cap are close to zero. The null hypothesis of no serial
correlation is rejected for both data sets. The test results show that serial
correlation exists for both data sets, and there are strong ARCH effects in
both data sets.

26Tsay, Chapter 2, p 33.
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Distribution Normality assumption t-innovation
Parameter Estimate p-value Estimate p-value
α0 4.464e-05 <2e-16 4.367e-05 <2e-16
α1 8.233e-02 7.36e-05 9.226e-02 4.58e-05
α2 1.860e-01 2.22e-16 1.923e-01 2.73e-12
α3 1.704e-01 1.09e-13 1.773e-01 3.15e-10
α4 1.460e-01 3.00e-12 1.452e-01 7.94e-09
α5 1.609e-01 3.11e-15 1.662e-01 1.11e-10

Table 4: Parameters of ARCH(5) fitted to the log returns of the Large Cap

3.5 Model building

3.5.1 Fitting ARCH models

The PACFs suggest lag 5 for the Large Cap and lag 2 for the Small Cap.
We will fit an ARCH model with same order to both data sets because we
want to see if a same model works differently depending on the data. We
thus choose lag 5 for ARCH models. Another reason for choosing lag 5 over
lag 2 is that we already fixed the order of GARCH models as (1,1), so we
want to build an ARCH model with a substantially higher order so that we
have a better chance to see differences between these two models.

The parameters are estimated with the conditional maximum likelihood
method as shown in section 2.7.3 and section 2.7.4. Table 4 shows the
parameter estimates for the ARCH(5) models fitted to the log returns of
the Large Cap, under normality assumption and with t-innovation. All six
parameter estimates are statistically significant. Table 5 shows the parameter
estimates for the ARCH(5) models fitted to the log returns of the Small Cap
under normality assumption and with t-innovation. All six parameters are
significantly different from zero.

3.5.2 Fitting GARCH(1,1) models

We continue to assume mean zero for both log returns.. The parameters
are estimated with the conditional maximum likelihood method. Table 6
shows parameter estimates for a GARCH(1,1) model fitted to the Large
Cap log returns. All parameters are statistically significant under normality
assumption and with t-innovation as well. Table 7 shows parameter estimates
for a GARCH(1,1) model fitted to the Small Cap log returns. The p-values for
all parameters are close to zero. All parameters are statistically significant.
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Model ARCH(5) fitted to the Small Cap

Distribution Normal t-innovation
Parameter Estimate p-value Estimate p-value
α0 1.567e-05 <2e-16 1.702e-05 <2e-16
α1 2.484e-01 <2e-16 2.181e-01 4.44e-13
α2 1.610e-01 5.48e-13 1.608e-01 3.20e-19
α3 1.107e-01 1.00e-08 1.198e-01 2.09e-06
α4 1.054e-01 8.96e-07 8.027e-02 0.00103
α5 1.050e-01 1.67e-08 1.033e-01 4.32e-06

Table 5: Parameters of ARCH(5) fitted to the log returns of the the Small
Cap

Model GARCH(1,1) fitted to the Large Cap

Distribution Normal t-innovation
Parameter Estimate p-value Estimate p-value
α0 1.617e-06 1.8e-06 1.413e-06 0.000157
α1 8.311e-02 <2e-16 8.269e-02 <2e-16
β1 9.067e-01 <2e-16 9.097e-01 <2e-16

Table 6: Parameters of GARCH(1,1) fitted to the log returns of the Large
Cap

Model GARCH(1,1) fitted to the Small Cap

Distribution Normal t-innovation
Parameter Estimate p-value Estimate p-value
α0 2.773e-06 6.24e-12 3.130e-06 3.78e-09
α1 1.802e-01 <2e-16 1.708e-01 <2e-16
β1 7.699e-01 <2e-16 7.677e-01 <2e-16

Table 7: Parameters of GARCH(1,1) fitted to the log returns of the Small
Cap
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3.6 Model validation

3.6.1 ARCH Models

Figure 5 shows the ACF plots of the standardized residuals from the
ARCH(5) models. The ACF plots suggest no serial correlations for the
ARCH(5) models fitted to the log returns of the Large Cap. That means
both of the ARCH(5) models fitted to the the log returns of the Large Cap,
the one under normality assumption and the other one with t-innovation, are
adequate. The plots, however, indicate that the ARCH(5) models fitted to
the log returns of the Small Cap still have serial correlations.

The Ljung-Box tests were run to check model adequacy. Ljung-box tests
on the standardized residuals check adequacy of the mean equation, while
Ljung-box tests on the squared standardized residuals check adequacy of
the variance equation. Table 8 shows the results of Ljung-Box tests on the
standardized residuals from the ARCH(5) models. For the Large Cap log
returns, the p-values of the Ljung-Box tests on the standardized residuals are
high, but the p-values of the Ljung-box tests on the squared standardized
residuals are close to zero. For the Small Cap log returns, the result is the
opposite. The p-values of the Ljung-Box tests on the standardized residuals
are close to zero, while the p-values of the Ljung-box tests on the squared
standardized residuals are high. In summary, the assumption of mean zero is
adequate for the Large Cap data, but not adequate for the Small Cap data.
The variance equation from our ARCH(5) model is adequate to describe
the Small Cap log returns, but not adequate to describe the Large Cap log
returns.

The distribution assumption was checked with histograms and quantile-to-
quantile plots. Figure 6 shows histograms of the standardized residuals of the
ARCH(5) models under normality assumption and with t innovation, fitted
to the Large Cap and the Small Cap log returns. The blue line is the normal
distribution curve. It is not quite clear to see whether the data follows the
normal distribution or not, so we can check QQ plots instead.

Figure 7 show QQ plots of the standardized residuals from the ARCH
models. The plots indicate that the standardized residuals of both the Large
Cap and the Small Cap log returns do not follow the normal quantile line.
They seem to fit the Student t-distribution better. The degrees of freedom
are estimated with the maximum likelihood method (see Section 2.5.4) and
listed in Table 10.
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Figure 5: The sample ACF plots of the standardized residuals from the
ARCH(5) models fitted to (a) the Large Cap log returns under normality
assumption, (b) the Large Cap log returns with t-innovation, (c) the Small
Cap log returns under normality assumption, and (d) the Small Cap log
returns with t-innovation.

Data Test (ã) Test statistic p-value for normality p-value for t-innovation

Large Cap LB ã Q(10) 0.102019 0.1084049
Large Cap LB ã Q(15) 0.09553013 0.1005285
Large Cap LB ã Q(20) 0.05226862 0.05401963
Large Cap LB ã2 Q(10) 1.619799e-05 1.427092e-05
Large Cap LB ã2 Q(15) 3.391398e-12 1.236011e-11
Large Cap LB ã2 Q(20) 2.651213e-12 1.355549e-11

Small Cap LB ã Q(10) <2.2e-16 <2.2e-16
Small Cap LB ã Q(15) <2.2e-16 <2.2e-16
Small Cap LB ã Q(20) <2.2e-16 <2.2e-16
Small Cap LB ã2 Q(10) 0.3905513 0.3695459
Small Cap LB ã2 Q(15) 0.07442856 0.0368284
Small Cap LB ã2 Q(20) 0.006822326 0.001153529

Table 8: Model validation for ARCH(5) models (LB: Ljung-Box test, and ã:
the standardized residuals).
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Figure 6: Histograms of the standardized residuals from the ARCH models
fitted to (a) the Large Cap log returns under normality assumption, (b) the
Large Cap log returns with t-innovation, (c) the Small Cap log returns under
normality assumption, and (d) the Small Cap log returns with t-innovation.
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Figure 7: QQ plots for the standardized residuals from the ARCH models
fitted to (a) the Large Cap log returns under normality assumption, (b) the
Large Cap log returns with t-innovation, (c) the Small Cap log returns under
normality assumption, and (d) the Small Cap log returns with t-innovation.
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Figure 8: The Sample ACF plots of the standardized residuals from the
GARCH models fitted to (a) the Large Cap log returns under normality
assumption, (b) the Large Cap log returns with t-innovation, (c) the Small
Cap log returns under normality assumption, and (d) the Small Cap log
returns with t-innovation.

3.6.2 GARCH Validation

Figure 8 shows ACF plots of the standardized residuals from the GARCH(1,1)
models. The plots show that serial correlations are nearly non-existent for
the GARCH models fitted to the Large Cap log returns, whether the model
was built under normality assumption or with t-innovation. Meanwhile, the
ACF plots of the standardized residuals from the GARCH(1,1) fitted to the
Small Cap log returns show significant signs of serial correlations.

Table 9 shows the results from Ljung-box tests on the standardized
residuals from the GARCH models. According to the test results, the mean
equation of the GARCH(1,1) fitted to the Large Cap log returns is adequate
and the variance equation of this model is also adequate for lag 10. For
the Small Cap data, the mean equation does not seem adequate, while the
variance equation seems adequate.

Distribution assumption for innovation is to be checked with histograms
and quantile-to-quantile plots. Figure 9 shows the histograms of the stan-
dardized residuals from the GARCH(1,1) models. It is, however, not easy to
see whether the standardized residuals follow the normal distribution or not.
Figure 10 shows quantile-to-quantile plots of the standardized residuals of the
GARCH(1,1) models against normal quantiles and t-distribution quantiles.
The degrees of freedom for t-distribution are estimated with the maximum
likelihood method (see Section 2.5.4) and listed in Table 10. According to
the QQ plots, Student t-distribution seems more adequate.

28



Figure 9: Histograms of the standardized residuals from the GARCH models
fitted to (a) the Large Cap log returns under normality assumption, (b) the
Large Cap log returns with t-innovation, (c) the Small Cap log returns under
normality assumption, and (d) the Small Cap log returns with t-innovation
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Figure 10: QQ plots of the standardized residuals from the GARCH models
fitted to (a) the Large Cap log returns under normality assumption, (b) the
Large Cap log returns with t-innovation, (c) the Small Cap log returns under
normality assumption, and (d) the Small Cap log returns with t-innovation.
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Data Test (ã) Test statistic p-value for normality p-value for t-innovation

Large Cap LB ã Q(10) 0.1854053 0.1887777
Large Cap LB ã Q(15) 0.2142331 0.2211507
Large Cap LB ã Q(20) 0.09977573 0.1014339
Large Cap LB ã2 Q(10) 0.7370318 0.7371919
Large Cap LB ã2 Q(15) 0.001194696 0.001420884
Large Cap LB ã2 Q(20) 0.0005675862 0.0005493208

Small Cap LB ã Q(10) <2.2e-16 <2.2e-16
Small Cap LB ã Q(15) <2.2e-16 <2.2e-16
Small Cap LB ã Q(20) <2.2e-16 <2.2e-16
Small Cap LB ã2 Q(10) 0.5535422 0.4990226
Small Cap LB ã2 Q(15) 0.4870336 0.3988024
Small Cap LB ã2 Q(20) 0.3513989 0.2717797

Table 9: Model validation for GARCH(1,1) models (LB: Ljung-Box test, and
ã: the standardized residuals).

3.7 Backtesting

Now we run backtesting to see how the forecasting power of our models
work on different data sets. The backtesting procedure is as follows.

1. A window is to be chosen from a data set from t = 1 to t = m, where
m is smaller than the total number of observations, say T .

2. A model is fitted to this window and the parameters are to be estimated.

3. Based on the parameter estimates, 1-step-ahead forecast of volatility is
made.

4. The value at risk at time t = m + 1 is calculated with this volatility
estimate, and a quantile.

5. The estimated value at risk for time t = m + 1 is compared with the
realized log return at time t = m+ 1.

6. If the realized log return is lower than the estimated value at risk, the
event is recognized as a violation.

7. The steps from 3 to 6 is repeated n times until we reach the point where
m+ n = T .

8. The sum of the violations is supposed to follows a binomial distribution
with probability 1 − α. The binomial test will be run to check if the
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Data Model d.f quantile scaled quantile

Large Cap ARCH 6.433 -1.92001 -1.59384
Large Cap GARCH 8.522 -1.88411 -1.64826
Small Cap ARCH 6.232 -1.93039 -1.59076
Small Cap GARCH 6.503 -1.91659 -1.59486

Table 10: The 5% quantiles for ARCH and GARCH models with t-innovation
(d.f: degrees of freedom).

model estimates risk properly. (In this study, α for the binomial test is
set for 95%.)

We use two different lengths for a window, 1 year and 2 years. For value
at risk calculation, 5% quantile will be used. For models under the normality
assumption, the 5% quantile is -1.64485. For models with t-innovation, scaled
5% quantiles will be used. These scaled quantiles are listed in Table 10.

Table 11 shows the backtesting results for the ARCH(5) models. For the
Large Cap log returns, 1-year window with t innovation has the highest p-
value, 0.4807. Other models seem to overestimate the risk with the probability
ranging from 5.75% to 6.38%. We compare 1-year window tests with 2-
year window tests. Tests with a 2-year window test always has a slightly
lower probability, except for the model fitted to the Large Cap log returns
with t-innovation. Next, we compare if there is any difference between the
distribution assumption. We take 2-year window tests for comparison. The
models with t-innovation give more conservative results than the models
under normality assumption.

Table 12 shows the backtesting results for GARCH(1,1) models. The
backtesting with a 2-year window on the GARCH model fitted to the Large
Cap with t innovation is statistically significant at 5% level. Probabilities
for other models are higher than 5%. We first compare 1-year window test
results and 2-year window test results. For the Large Cap log returns, the
probabilities from 2-year window tests are slightly lower than the probabilities
from 1-year window tests. For the Small Cap log returns, the result is the
opposite. The probabilities go slightly up when the window length increases
from 1 to 2 years, even though the differences are fairly small. Next, we
compare if there is any difference between distribution assumptions. We take
2-year window results for comparison. For the Large Cap log returns, the
models under normality assumption show higher probabilities. They tend to
give more conservative estimates. For the Small Cap log returns, the models
with t innovation give more conservative estimates.

Next we want to check if there is any difference between ARCH and
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Data Distribution Window Violations Trials Probability p-value

Large Cap Normal 1 year 231 3824 0.06040795 0.004242
Large Cap Normal 2 years 205 3568 0.05745516 0.04565

Large Cap t-innovation 1 year 181 3824 0.04733264 0.4807
Large Cap t-innovation 2 years 217 3568 0.06081839 0.003934

Small Cap Normal 1 year 225 3824 0.05883891 0.01427
Small Cap Normal 2 years 208 3568 0.05829596 0.0258

Small Cap t-innovation 1 year 244 3824 0.06380753 0.0001517
Small Cap t-innovation 2 years 225 3856 0.06306054 0.0005381

Table 11: Backtesting results for the ARCH models

Data Distribution Window Violations Trials Probability p-value

Large Cap Normal 1 year 229 3824 0.05988494 0.006016
Large Cap Normal 2 years 210 3568 0.0588565 0.01719

Large Cap t-innovation 1 year 221 3824 0.05779289 0.02858
Large Cap t-innovation 2 years 203 3568 0.05689462 0.05984

Small Cap Normal 1 year 225 3824 0.05883891 0.01427
Small Cap Normal 2 years 212 3568 0.05941704 0.01121

Small Cap t-innovation 1 year 235 3824 0.06145397 0.001596
Small Cap t-innovation 2 years 223 3568 0.0625 0.0009415

Table 12: Backtesting results for the GARCH(1,1) models

GARCH models. We take 1-year window tests on the Large Cap log returns
with t innovation, because they have fairly high p values for both models.
The ARCH model gives a probability of 4.73%, while the GARCH model
gives a probability of 5.78%. The GARCH model gives more conservative
results.

Figure 11 shows each data set with value at risk estimates. For the Large
Cap log returns, the value at risk estimates from the GARCH model (orange)
seem to lie above those estimates from the ARCH model (green) in most
points. For the Small Cap log returns, there seem no clear differences between
the value at risk estimates from the ARCH model (blue) and the value at risk
estimates from the GARCH model (red).

4 Conclusion

4.1 Results of the study

Table 13 summarizes the overall results of this study.
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Figure 11: Log returns with VaR estimations. (a) the Large Cap log returns
with VaR estimations from ARCH (green) and VaR estimations from GARCH
(orange), and (b) the Small Cap log returns with VaR estimations from ARCH
and VaR estimations from GARCH (red).
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For the Large Cap, the ACF plots show no clear signs of autocorrelations
for both ARCH and GARCH models. The mean equation, or mean zero for
our case, is adequate for both models. The variance equation, however, seems
inadequate to describe the data, according to the Ljung-box test results. For
distribution assumption, QQ plots show that Student’s t distribution may be
more adequate than the normal distribution. Backtesting results show that
the models with t-innovation produce more accurate forecasts, both for the
ARCH and the GARCH model.

For the Small Cap, the ACF plots show clear signs of autocorrelation, both
for the ARCH and the GARCH models. The mean equation seems inadequate
for both models, according to the Ljung-Box tests on the standardized resid-
uals. The variance equations seem adequate to describe the data, whether
it is the ARCH or the GARCH models. QQ plots suggest that Student’s
t distribution assumption is more adequate than normality assumption for
shocks. Backtesting results show, however, that the models under normality
assumption produce more reliable forecasts. The binomial test results for
both of the models under normality assumption are statistically significant
at 1% significance level. The binomial test results for the models with t
innovation are not statistically significant. They give conservative results,
6.38% for the ARCH model and 6.15% for the GARCH model.

In summary, the differences between the data sets are more distinctive
than the differences between the models. For a same data set, both the ARCH
and the GARCH models show similar test results. For a same model, the
adequacy of the model is different depending on the data.

However, that is not the case with backtesting. The distribution assump-
tion makes more difference in forecasting power than the model itself. For
the Large Cap data, the models with t innovation produce more accurate
forecasts, whether it is an ARCH model or a GARCH model. For the Small
Cap, the models under normality assumption produce more accurate forecasts,
with their probabilities closer to 5%, regardless of the model.

4.2 Suggestions for further studies

The main differences between the Large Cap and the Small Cap log returns
were assumptions about mean zero and no significant autocorrelations. The
mean of the Small Cap index was slightly over zero. The ACF plots showed
clear signs of autocorrelations for the Small Cap log returns. One can address
these issues and try to remove these problems before building any volatility
models.

The ACF plots and the Ljung-box tests on the standardized residuals did
not seem to agree with each other. The ACF plots show that both of the
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ARCH(5) GARCH(1,1)

Data Test Normality t-innovation Normality t-innovation

Large
Cap

ACF of ã Adequate Adequate Adequate Adequate
LB on ã H0 not rejected H0 not rejected H0 not rejected H0 not rejected
LB on ã2 H0 rejected H0 rejected H0 rejected H0 rejected

QQ plot of ã Worse fit Better fit Worse fit Better fit
Backtesting 6.04% 4.73% 5.99% 5.78%

Small
Cap

ACF of ã Inadequate Inadequate Inadequate Inadequate
LB on ã H0 rejected H0 rejected H0 rejected H0 rejected
LB on ã2 H0 not rejected* H0 not rejected** H0 not rejected H0 not rejected

QQ plot of ã Worse fit Better fit Worse fit Better fit
Backtesting 5.88% 6.38% 5.88% 6.15%

Table 13: Results of the study (ã: standardized residuals, LB: Ljung-Box test,
and JB: Jarque-Bera test. *: H0 not rejected for Q(10) and Q(15). **: H0

not rejected for Q(10)).

models were adequate for the Large Cap. The Ljung-box tests, however, raise
doubts about the variance equations for the Large Cap data. For the Small
Cap, the ACF plots showed signs of autocorrelation, but the Ljung-box tests
on the squared standardized residuals suggested that the models are adequate
to describe the data nonetheless. It can be worthwhile to study where this
discrepancy comes from.

For backtesting, an arbitrary length was chosen for window as 1 year or
2 years. The results show that there is little difference between the window
of 1 year and the window of 2 years. For further studies, different lengths of
windows can be chosen and tested to see if there are any significant differences
in forecasting power, depending on the choice of a window length.

When we measured value at risk violations, we simply counted the numbers
of violations. If one is interested in the patterns of these violations, one can
study the intervals between violations. If one is interested in degrees of
violations, one can measure the distances between VaR estimates and the
realized values when violations occur.
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