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Abstract

In this thesis we will compare the abilities of the ARIMA and Lo-
cal Level model classes to predict future values of the Bitcoin/USD
exchange rate. In particular we will compare how these two models
approach non-stationary time series, i.e. when the means and covari-
ances of the series are assumed to be time dependent. We will also
discuss how the Bitcoin price relates to the concept of market efficiency
and the random walk hypothesis.
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1 Introduction

Any person who wants to plan for his or her future inevitably will face the
question: ”How similar will the future be to the past?” Although relevant
for many fields, this question is particularly urgent in the world of finance,
where the nature of financial investments raises the need for its actors to be
able to make qualified predictions of the future. Time series analysis meth-
ods have been developed as a tool to help us in trying to answer this question.

During this thesis we will study how time series modeling can be used to
forecast future US-dollar log prices of the digital cryptocurrency Bitcoin. In
particular we will compare two time series models which differ significantly
in their approach to modeling the non-stationary tendencies of the Bitcoin
series, meaning that the series have time dependent mean values.

We will first show how the Bitcoin log prices can be modeled using the classic
Autoregressive Integrated Moving Average (ARIMA) model, where
the problem of a time dependent mean is solved using so called differencing.
This model will thereafter be compared against the Local Level model,
where the time dependent mean instead is modeled explicitly. This will also
give us the opportunity to utilize a renowned technique from the field of
signal processing, known as the Kalman filter.

Through our study we will see that the two model classes not only differ
in their ways to technically deal with the problem of non-stationarity, but
also in their philosophical approach to how future values can be forecasted.
We will see how the ARIMA model focuses on using historical patterns to
predict future values, whereas the Local Level model uses a more ”memo-
ryless” approach.
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Figure 1: Examples of a stationary and non-stationary time series
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When the forecasting abilities of these two models are put to test on the
Bitcoin data set and evaluated using MSE, RMSE and MAE measures, we
will see how the Local Level model gives a slightly better forecasting per-
formance compared to the ARIMA model. We will however see that the
Kalman filter in this situation will make our Local Level model to behave
similarly to a random walk and that if our selected ARIMA(3,1,2) model
is exchanged with an ARIMA(0,1,0), i.e a random walk model, the fitted
Local Level and ARIMA models will show equivalent forecasting results.

Finally, we will see how splitting our given series into two parts and re-
peating our comparison, results in an even smaller difference between our
models. Doing this we will also show how values past 2014-11-11 behave
in accordance to the random walk hypothesis and discuss what conse-
quences this might have on the forecasting abilities of our models.
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2 The ARIMA Model

In this section we first describe the concepts leading up to our first model
candidate: the ARIMA model. We then describe the necessary steps for
model fitting and show how the model can be used to forecast future values.
Unless otherwise stated, the following subsections are based on (Tsay, 2005,
Chapter 2).

2.1 Autoregressive Moving Average Models (ARMA)

Let yt be an observed value at time point t and p, q be nonnegative integers.
An ARMA(p, q) model can then be written as:

yt = φ0 +

p∑
i=1

φiyt−i + zt −
q∑
i=1

θizt−i, (1)

where {zt} is a sequence of independent and identically distributed random
variables with finite variance and mean, referred to as a white noise series.
Throughout this thesis we will additionally assume zt to be normally dis-
tributed with E[zt] = 0 and Var(zt) = σ2

a. The series {zt} is in this case
referred to as a Gaussian white noise series. The ARMA model describes
the current value of yt as a linear combination of its previous values and
noise terms zt, also known as shocks. The ARMA(p, q) model can in turn be
thought of as a combination of a pure autoregressive model (AR) of order
p, on the form

yt = φ0 +

p∑
i=1

φiyt−i + zt

and a moving average model (MA) of order q, written as

yt = zt −
q∑
i=1

θizt−i.

This means that the ARMA class covers all AR(p)- and MA(q) models
together with their combinations. The parameters φ0, . . . φp, θ1, . . . , θq are
typically estimated using maximum likelihood estimation according to
(Box, Jenkins, & Reinsel, 2008, Chapter 7).
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2.2 Stationarity/Non-stationarity

We here proceed to introduce the concept of stationarity. This is a central
concept in time series modeling and will prove to be an important part for
our future forecasting process.

A time series is said to be strictly stationary if the joint distribution of
(yt1 , ...., ytk) is identical to the distribution of (yt1+t, ...., ytk+t) for all t. Here
k is an arbitrary positive integer and (t1, . . . , tk) are k positive integers. The
joint distribution of (yt1 , ...., ytk) is then said to be time invariant. As this
condition often is considered too strict, a weaker definition of stationarity
can instead be used. A time series is said to be weakly stationary if for all t:

• E(yt) = µ, where µ is a constant and

• Cov(yt, yt−l)= γl, only depending on l.

For our previously introduced ARMA model described in Eq. (1) it can
be shown that a sufficient criterion for the model to be weakly stationary
(see (Tsay, 2005, pp. 38-46)) is that all of the solutions to the so called
characteristic equation.

1− φ1x− φ2x
2 − · · · − φpxp, (2)

should be less than one in absolute value. Under the assumption of weak
stationarity the mean of the ARMA(p, q) model can be calculated in the
following way:

E[yt] = E[φ0 +

p∑
i=1

φiyt−i + zt −
q∑
i=1

θizt−i]

= φ0 + E[

p∑
i=1

φiyt−i] = φ0 +

p∑
i=1

φi E[yt],

(3)

where the assumption of weak stationarity is used in the last equality. Note
that we in this calculation also use that E[zt] = 0 since we assume {zt} to
be a Gaussian white noise series. This implies:

E[yt] =
φ0

1− φ1 − · · · − φp
,

i.e. the mean of the series is a constant depending on the model parameters.

7



2.3 Forecasting

One of the main applications of time series modeling is to forecast future
values. For our ARMA model this corresponds to calculating the n-step
ahead forecast at horizon h defined as

ŷh(n) = E[yh+n|Fh].

Here Fh represents the available information at time h, including previous
observations, shocks and model parameter values. In this thesis we will
restrict ourselves to only using the 1-step ahead forecast, which for the
ARMA(p, q) model can be written as:

ŷh(1) = E[φ0 +

p∑
i=1

φiyh+1−i + zh −
q∑
i=1

θizh+1−i|Fh]

= φ0 +

p∑
i=1

φiyh+1−i −
q∑
i=1

θizh+1−i,

(4)

using that E[ai] = 0 for i > h. This result can in turn be used to define the
1-step forecast error:

eh(1) = yh+1 − ŷh(1).

Using Eq. (4) we get for the ARMA model eh(1) = zt, which later on will
be useful when evaluating our fitted models.

2.4 Unit Root Non-stationarity

In Section 2.2 we could see how the calculation of the mean of the ARMA
model was obtained using the assumption of weak stationarity, correspond-
ing to the solutions of the characteristic equation (Eq. (2)) all being less
than one in absolute value. We now consider the situation when at least one
of the solutions are equal to one. The model is then referred to as being unit
root non-stationary, for which the calculations in Eq. (3) no longer applies
since the mean now is time dependent. To show how this problem can be
solved we introduce the back shift operator B, which is defined such that

Byt = yt−1.

It turns out that by applying B on the full series {yt} the unit root can
in some situations be differenced away, with the resulting series now being
stationary. This process is called differencing and may have to be iterated if
more than one unit root exists in the model. To illustrate a situation where
the back shift operator can be successfully used we consider the so called
random walk model on the form:

yt = yt−1 + zt, zt ∼ N(0, σ2). (5)
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This model can in turn be seen as an ARMA(1,0) model with φ0 = 0, and
φ1 = 1. Using our results from Section 2.2 we see that this model is unit
non-stationary. This implicates that the calculations of the model mean
E[yt] collapses into:

E[yt] = E[yt−1],

since we no longer can use any assumptions of stationarity to simplify this
further. To solve this problem we apply the back shift operator on Eq. (5)
in the following way:

(1−B)yt = yt − yt−1 = zt.

We have here successfully differenced away the unit root term yt−1 with the
resulting series now being clearly weakly stationary since both

E[∆yt] = E[yt − yt−1] = E[zt] = 0,

Cov(∆yt,∆yt−l) = Cov(zt, zt−l) = 0

are independent of t. Differencing constitutes the main component of the
ARIMA model which will be defined in the next section.

2.5 Autoregressive Integrated Moving Average Models (ARIMA)

Using our results from the previous sections we are now ready to define the
first model candidate for our upcoming model comparison. Using the back
shift operator B and the ARMA(p, q) model, the ARIMA(p, d, q) model can
be defined in the following way:

Definition: We say that {yt} is an ARIMA(p, d, q) process if

y∗t = (1−B)dyt (6)

follows an ARMA(p, q) process. Note that forecasting with the ARIMA
model is done by first calculating the corresponding ARMA forecast accord-
ing to Section 2.3 and then use Eq. (6) to express this forecast in terms
of the original series {yt}. For instance, the 1-step forecast ŷh(1) for an
ARIMA(p, 1, q) model can be calculated in the following way:

ŷh(1) = E[yh+1|Fh] = E[(yh+1 − yh) + yh|Fh]

= E[y∗h+1 + yh|Fh] = ŷ∗h(1) + yh,

where ŷ∗h(1) is the 1-step forecast of the corresponding ARMA(p, q) model.
Also note that

eh(1) = yh+1 − ŷh(1) = yh+1 − (ŷ∗h(1) + yh)

= y∗h+1 − ŷ∗h(1) = zt,

according to our results from Section 2.3. This means that the 1-step forecast
errors for the ARIMA(p, 1, q) model are the same as for an ARMA(p, q)
model.
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3 The Local Level Model

In the previous sections we have shown how the ARIMA model uses differ-
encing in order to model non-stationary time series. Following the deriva-
tions and notation of (Durbin & Koopman, 2012, Chapter 2) we will now
present a different method for handling non-stationarity by considering the
Local Level model, defined in the following way:

yt = αt + εt, εt ∼ N(0, σ2
ε), (7)

αt+1 = αt + ηt, ηt ∼ N(0, σ2
η). (8)

We here view Eq. (7) to be an observed process with observed value yt and
Eq. (8) to be an unobserved random walk with unobserved state αt. If we
consider αt to be the mean of the model, the Local Level model is clearly
non-stationary since αt is time dependent. In the following sections we will
describe how we, given an observed value yt, can use Kalman filtering to
recover αt and remove the noise terms εt and ηt. We will then show how
this can be used to forecast future values of our series.

3.1 Linear State Space Models

In order to introduce the Kalman filter we first need to introduce Linear
State Space Models as described by (Durbin & Koopman, 2012, pp. 43-44).
Let yt be a p×1 vector of observations and αt be an unobserved m×1 vector
called the state vector. The general linear Gaussian state space model can
then be written in the following way:

yt = Ztαt + εt, εt ∼ N(0, Ht) (9)

αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt), t = 1, . . . n (10)

where the dimensions of the components are presented in Table 1 below. Re-
turning to our Local Level model presentation in Eq. (7)-(8) we can observe
how this model constitutes the most simple case of the linear state space
model, with all p,m, r, Zt, Tt and Rt equal to one, Ht = σ2

ε and Qt = σ2
η.

Similarly to the previous section we view the state vector αt to be the ob-
ject of our primary interest and which we want to be distinguished from the
observation vector yt.

Vector Matrix

yt p× 1 Zt p×m
αt m× 1 Tt m×m
εt p× 1 Ht p× p
ηt r × 1 Rt m× r

Qt r × r

Table 1: Vector and matrix dimensions for the general linear state space model
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3.2 The Kalman Filter

This section introduces the Kalman filter together with its main algorithm,
referred to as the Kalman recursions. Following (Durbin & Koopman,
2012, pp. 82-85) we here give a brief introduction to the recursions and how
they relate to the forecasting of future values. As the derivation of the recur-
sions is very heavy on notation and includes rather tedious calculations, the
interested reader is referred to the appendix for a more complete derivation.

As previously mentioned, the main purpose of the Kalman filter is, given a
vector of observations yt and a linear state space form as described in Sec-
tion 3.1, to calculate the state vector αt. The basic idea behind this filtering
process is to consider the conditional distribution of αt given our previ-
ous observations Yt = (yt, yt−1, . . . , y1). Using the assumptions of the linear
state space model in Eq. (9)-(10) we can then assume αt|Yt and αt|Yt−1

to be normally distributed with covariance matrices Pt and Pt|t respec-
tively. Our problem then reduces to the estimation of E[αt|Yt−1] = at and
E[αt|Yt] = at|t. Using these we can then use the observation equation

yt = Ztαt + εt, εt ∼ N(0, Ht)

from Section 3.1 to calculate E[αt+1|Yt] = at+1, which then represents the
corresponding 1-step forecast of the model. This outlines the main purpose
of the Kalman filter which somewhat loosely can be summarized into the
following steps:

1. Use the distribution of αt|Yt−1 from the previous step and calculate
the forecast error vt = yt − E[yt|Yt−1],

2. Use the fact that vt|Yt−1 also is normally distributed to form the joint
normal distribution of αt and vt given Yt−1,

3. Using rules for conditionally normal random variables, condition on vt
and calculate E[αt|Yt] = at|t and Var(αt|Yt) = Pt|t,

4. Use the results from step 3 together with the observation equation to
calculate E[αt+1|Yt] = at+1 and Var(αt+1|Yt) = Pt+1.
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The results from this can be summarized by the Kalman recursions, here
defined as:

vt = yt − Ztat, Ft = ZtPtZ
T
t +Ht,

at|t = at + PtZ
T
t F
−1
t vt, Pt|t = Pt − PtZTt F−1

t ZtPt,

at+1 = Ttat +Ktvt, Pt+1 = TtPt(Tt −KtZt)
T +RtQtR

T
t ,

where Kt = TtPtZ
T
t F
−1
t is referred to as the Kalman gain. Returning to our

Local Level model the corresponding Kalman recursions can for this model
be written as:

vt = yt − at, Ft = Pt + σ2
ε ,

at|t = at +Ktvt, Pt|t = Pt(1−Kt), (11)

at+1 = at +Ktvt, Pt+1 = Pt(1−Kt) + σ2
η,

where here Kt = Pt/Ft (Durbin & Koopman, 2012, pp. 11-13). We can from
Eq. (11) observe how the 1-step forecast at+1 of the model can be thought
of as a combination of the previous prediction at and a proportion Kt of
how far off this prediction was from the actual observed value yt.

As we have seen, the Kalman recursions have been derived under a normal
distribution assumption. It can however be shown that the Kalman filter is
considered to be a minimum variance linear unbiased estimate (MVLUE)
even if the normal assumption does not hold (Durbin & Koopman, 2012,
pp. 78-80), meaning that the filter has the smallest variance among all pos-
sible linear unbiased estimators.

3.3 Steady State Solution

An important property with the Kalman filter is that Pt will converge to
a constant matrix P̄ , which according to (Durbin & Koopman, 2012, pp.
37-38) for the Local Level model is given as the solution to the equation

P̄ = P̄
(

1− P̄

P̄ + σ2
ε

)
+ σ2

η

If we let x = P̄ /σ2
ε and q = σ2

η/σ
2
ε the equation can be reduced to the

quadratic equation
x2 − xq − q = 0,

with the corresponding solution

x =
(q +

√
q2 + 4q)

2
.

Recalling the Kalman recursions for the Local Level model in Eq. (11) this
result implicates that as Pt approaches P̄ the magnitude of the Kalman gain
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Kt eventually will be solely determined by the observation noise variance σ2
ε .

We will in our coming case study see how the calculation and analysis of
P̄ constitutes as a central part of the model training process, later to be
described in Section 5.4.2.

3.4 Filter Initialization

As a result of the iterative nature of the Kalman Recursions (Section 3.2)
the behavior of the algorithm in Eq. (11) is dependent on the initial values
of a1 and P1. When these values are unknown, as often is the case, we can
following (Durbin & Koopman, 2012, pp. 32) make use of so called diffuse
initialization, which for the Local Level model means that we first let a1 be
an arbitrary value and then let the state variance P1 tend to infinity. Using
Eq. (11) we can see that after the first step of the Kalman filter we receive:

a2 = a1 +
P1

P1 + σ2
ε

(y1 − a1)→ y1,

P2 =
P1

P1 + σ2
ε

σ2
ε + σ2

η → σ2
ε + σ2

η,

as P1 tends to infinity. We can after this proceed with the recursions as
described in Section 3.2, now using the converged values of a2 and P2. An-
other alternative for initializing the Kalman filter for the Local Level model
is to estimate α1 by maximum likelihood theory (Durbin & Koopman, 2012,
pp. 34). Note that we in this thesis will restrict ourselves to only using
diffuse initialization.

3.5 Parameter Estimation

Recalling Eq. (11) we note that the Kalman recursions for the Local Level
model include the noise variances σ2

ε , σ
2
η, which hence need to be estimated

before the filter can be used on our data. This can according to (Durbin &
Koopman, 2012, pp. 34-35) be done using maximum likelihood estimation
using the following expression for the log likelihood:

l(σ2
ε , σ

2
η; y) = −n

2
log(2π)− 1

2

n∑
t=1

(
logFt +

v2
t

Ft

)
, (12)

where n is the sample size and vt = yt − at, Ft = Pt + σ2
ε are calculated

using the Kalman recursions. However this again requires the initial states
a1 and P1 to be known.
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Following (Durbin & Koopman, 2012, pp. 35-36) a modified version of Eq.
(12), using the diffuse initialization technique described in the previous sec-
tion, can be written:

l(σ2
ε , σ

2
η; y)diffuse = lim

P1→∞

(
l(σ2

ε , σ
2
η; y) +

1

2
logP1

)
= −1

2
lim

P1→∞

(
log

F1

P1
+
v2

1

F1

)
− n

2
log(2π)− 1

2

n∑
t=2

(
logFt +

v2
t

Ft

)
= −n

2
log(2π)− 1

2

n∑
t=2

(
logFt +

v2
t

Ft

)
.

This is true since F1/P1 → 1 and v2
1/F1 → 0 as P1 tends to infinity. This

function can then be maximized numerically to provide us with estimations
of σ2

ε and σ2
η.
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4 Model Selection & Diagnostics

In the following subsections we will introduce some tools that later on will
be helpful for our coming model fitting and evaluation.

4.1 Augmented Dickey Fuller Test

We here present the Augmented Dickey-Fuller (ADF) test according to
(Tsay, 2005, pp. 77). The test can be used to help us determine wether
a time series can be considered stationary or not. Testing stationarity using
the ADF-test corresponds to testing the existence of a unit root in an AR(p)
process. This in turn corresponds to testing H0 : β = 1, against Ha : β < 1
using the regression

yt = ct + βyt−1 +

p−1∑
i=1

φi∆yt−i + et,

where ct is a deterministic function of t, et is an error term and ∆yj =
yj − yj−1. Using least-squares estimation of β the hypothesis test can be
carried out using the t-statistic

ADF =
β̂ − 1

std(β̂)
,

where β̂ denotes the least squares estimate of β.

4.2 Autocorrelation Function and the Ljung-Box Test

An important tool for model selection and diagnostics is the autocorrelation
function (ACF) defined under the assumption of weak stationarity as

ρl =
Cov(yt, yt−l)√

Var(yt) Var(yt−l)
=

Cov(yt, yt−l)

Var(yt)
=
γl
γ0
,

(Tsay, 2005, pp. 31-32). The ACF function in turn constitutes the main
component of the Ljung-Box Portmanteau test which is used to jointly
test if multiple autocorrelations of yt are zero. The Ljung-Box Portmanteau
statistic is according to (Tsay, 2005, pp. 32-33) defined as

Q(m) = N(N + 2)
m∑
l=1

ρ̂2
l

N − l
,

where N is the number of observations. The statistic can then be used to test
H0 : ρ1 = · · · = ρm = 0 against Ha : ρi 6= 0 for some i ∈ {1, . . . ,m}. It can
be shown, under the assumption that {yt} are independent and identically
distributed, that Q(m) follows a chi-squared distribution with m degrees of
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freedom. This means that H0 is rejected if Q(m) > χ2
α for some appropriate

quantile α. For the value of m (Tsay, 2005, pp. 33) suggests the choice of
m ≈ ln(N).

4.3 AIC, BIC & AICC

When comparing many models from the same model class the AICC, AIC
and BIC criteria can be used as a measure to help us find a parsimonious
model. The idea behind these criteria is to reward models with good fits and
at the same time penalize complex, higher order models. Following (Held &
Sabanés Bové, 2014, pp. 224-230), let θ denote our model parameter vector
of dimension k and l(θ̂ML) the maximized log likelihood function at the
maximum likelihood estimate θ̂ML of θ. Using this we first define the well
known Akaike’s information criterion as follows:

AIC = −2l(θ̂ML) + 2k (13)

We then define the most common alternative to the AIC, called the Bayesian
information criterion, in the following way:

BIC = −2l(θ̂ML) + 2k log(N),

whereN denotes the sample size. When fitting ARMA(p, q) models (Brockwell,
Davis, & Calder, 2002, pp. 173) also suggests the use of a modified version
of the AIC called the AICC which is defined as:

AICC = −2l(θ̂ML) +
2(p+ q + 1)N

(N − p− q − 2)
,

where here k = dim(θ) = p + q + 1 and N again denoting the sample size.
Returning to Eq. (13) we can observe that the AICC penalizes large order
models harder than the AIC. This will according to (Brockwell et al., 2002)
counteract the overfitting tendencies of the AIC. We can also see that both
penalty factors are asymptotically equivalent as N tends to infinity.

4.4 Model Comparison Measures: MSE, RMSE & MAE

In the previous section we discussed how AICC, AIC and BIC can be used
for model comparisons within the same model class. Since we in our coming
case study want to compare fitted models from different model classes we
need to introduce a set of new more ”neutral” measures, which do not make
any explicit judgements about the number of model parameters and instead
primarily focus on the error terms of the fitted models. For this purpose we
need to borrow some concepts and vocabulary from the field of statistical
learning in order to formulate a procedure to compare our models.

16



Following (Friedman, Hastie, & Tibshirani, 2001, Chapter 7), the model
comparison process can be conducted by first splitting our given data set
into a training and test set. The training set will here represent our his-
torical, known values for which we fit (train) our model, and the test set
represents future unknown values for which we test the forecasting ability
of our trained models.

Furthermore, let Y be our response variable, X a vector of explanatory
variables and f̂(X) a prediction model estimated from our training set T .
The prediction performance for each model can then be assessed by applying
each models to the test set and select the model that gives us the lowest
expected prediction error defined as:

Err = E[L(Y, f̂(X))] = E
[

E[L(Y, f̂(X))|T ]
]
, (14)

for some loss function L. Since we are working with continuous data we will
for our coming model comparison use the following loss functions:

LMSE(Y, f̂(X)) = (Y − f̂(X))2, LMAE(Y, f̂(X)) = |Y − f̂(X)|, (15)

If we the then estimate the expected prediction error by:

1

N

N∑
i=1

L(yi, f̂(xi)), (16)

using the Law of Large numbers and inserting our loss functions from Eq.
(15) in Equation (16) above, we then receive the following estimated ex-
pected prediction error measures

MSE =
1

N

N∑
t=1

(yi − f̂(xi))
2, MAE =

1

N

N∑
i=1

|yi − f̂(xi)|, (17)

known as the estimated mean square error and mean absolute error respec-
tively. Taking the square root of the mean squared error also gives us the
unit corrected

RMSE =
√

MSE,

known as root mean square error, now having the same unit as yi which can
be convenient when interpreting our results. For our time series purposes
we will henceforth let f̂(xt) = E[yt|Ft−1] according to our 1-step forecast
definition in Section 2.3, which yields

MSE =
1

N

N∑
t=1

(yt − E[yt|Ft−1])2, MAE =
1

N

N∑
t=1

|yt − E[yt|Ft−1]|,

here instead indexing over time t.
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5 Case Study

5.1 Data Description

Our model comparison will be based upon a data set containing the daily
closing US-dollar (USD) prices of the digital cryptocurrency Bitcoin (BTC)
during the period 2010-07-16 to 2019-01-25. Since its introduction in 2008
by acronym Satoshi Nakamoto, Bitcoin has served as a symbol for the digi-
talization of the modern society and has been a recurrent controversial topic
in the public economic debate.

Bitcoin is an entirely decentralized virtual currency based on a peer-to-peer
system. Individual coins are created through a so called mining process
in which participants of the system compete to solve a mathematical prob-
lem while at the same time processing bitcoin transactions. According to
(Antonopoulos, 2017, pp. 2) the Bitcoin technology can be summarized into
the following four parts:

• A decentralized peer-to-peer network (the bitcoin protocol),

• A public transaction ledger (the blockchain),

• A set of rules for independent transaction validation and
currency issuance (consensus rules),

• A mechanism for reaching global decentralized consensus
on the valid blockchain (Proof-of-Work).

One important property of the Bitcoin protocol is that the mining function
is regulated across the network in a way such that one new coin is created
on average every 10 minutes. At the same time, the rate at which new coins
are created is also regulated such that the total number of coins will reach
a maximum of 21 million by the year 2140.

Besides being a representation of a brand new class of financial assets that
are digital cryptocurrencies, one thing that makes the Bitcoin price a par-
ticular object of interest for mathematical modeling is its explosive histor-
ical development in combination with its drastically fluctuations. This can
clearly be seen in Figure 2a where the Bitcoin price is plotted against time.
We can here observe how the price ranges from an initial value of 0.04951 in
2010-07-16 to a maximum value of staggering 19345.49 USD in 2017-12-16.
In combination with a standard deviation of 2972.353 USD from a mean
value of 1565.745, it is clear that understanding the behavior of the Bitcoin
price is an intriguing problem for any investor.
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To compensate for the very large range and standard deviation of the price
series we will throughout this case study instead conduct our analysis by
taking the logarithm of the price series, as is also common practice in the
financial literature (Campbell et al., 1997, pp. 11). The result of this can
be seen in Figure 2b which now depicts a more controlled, bounded series.
Another observation that can be made from both our plots in Figure 2 is
that prices before year 2014 seems to behave differently compared to prices
after year 2014. These observations will prove to be useful later during our
modeling process.

We also note that the two price series are clearly non-stationary, with time
dependent mean values. This can also be seen by studying the correspond-
ing ACF-plot of the log price series depicted in Figure 3a, which clearly
shows the slowly decaying behavior which according to (Brockwell et al.,
2002, pp. 187-188) is characteristic for a non-stationary series.

5.2 The Random Walk Hypothesis

Before applying our model candidates on the Bitcoin data set introduced in
the previous section, we first need to introduce the concept of the random
walk hypothesis. The hypothesis states that stock prices evolve in accor-
dance with a random walk and constitutes a central concept in the finance
literature. The random walk hypothesis can in turn be seen as a variant
of the concept of market efficiency, where a capital market is said to be
efficient if it reflects all relevant information in determining security prices
(Campbell et al., 1997, pp. 20). This concept is commonly paraphrased as
that there under market efficiency is impossible to ”beat” the market since
all securities are priced correctly.
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Figure 3
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(b) ACF plot corresponding of the BTC
log returns

If we let pt denote the price of a financial asset at time t, (Campbell et al.,
1997) then states that the simplest version of the random walk hypothesis
is the case when the dynamics of {pt} are given by:

pt = µ+ pt−1 + εt, εt ∼ IID(0, σ2), (18)

where µ is the expected price change called drift, and IID(0, σ2) denotes εt
being independently and identically distributed random variables with mean
0 and variance σ2. Since this version of the hypothesis often is considered
unrealistic for financial asset prices over longer time spans, the assumptions
of i.i.d. distributed increments is usually relaxed, leading to what Campbell
refers to as the random walk 3 model or RW3. This version of the random
walk hypothesis instead assumes that the increments are dependent but
uncorrelated. Specifically, the model assumes that

Cov(εt, εt−k) = 0, for all k, Cov(ε2
t , ε

2
t−k) 6= 0, for some k.

One important property with the random walk model is that we when calcu-
lating the corresponding 1-step forecast as described in Section 2.3 receive:

p̂h(1) = E[ph+1|Fh] = E[ph + εh|Fh] = ph,

meaning that the forecast of the next value of the series is just its current
value. This property makes the random walk model to be considered un-
forecastable. Because of this, testing the plausibility of the random walk
hypothesis for our Bitcoin log price series is crucial in order to determine if
applications of our Local Level and ARIMA candidates on this data are to
be considered meaningful.
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To do this we first observe that by applying the back shift operator B on
Eq. (18) we receive:

∆pt = (1−B)pt = εt ⇒

Cov(εt, εt−k) = Cov(∆pt,∆pt−k).

This means that testing autocorrelation between the noise terms εt corre-
sponds to testing autocorrelations for the differenced log price series {∆pt},
in the finance literature referred to as the log return series (Campbell et
al., 1997, pp. 11).

Testing autocorrelations for the differenced series can then easily be car-
ried out using the the Ljung-Box test from Section 4.2, which for our data
gives a significant result. The implication of this is that we can reject the
corresponding null hypothesis of zero autocorrelation, which in turn provides
evidence against the RW3. Another indication of this can also be observed
in Figure 3b, where the ACF-plot of the log returns shows signs of significant
correlations at lag 2,4,5, and 6. We can from this conclude that RW3 does
not seem to hold for the full data set, opening up the possibility for that
application of our ARIMA and Local Level models for this data could be
useful.

5.3 Software

Before carrying out our model fitting and testing process we here briefly
mention our use of computer software for this thesis. Our modeling is made
entirely in the R-language. For the ARIMA modeling part we have, besides
the basic packages, also included the use of the ”Arima”- and ”auto.arima”-
functions from the ’forecast’ package developed by (Hyndman, Khandakar,
et al., 2007). We have also used the adf-function from the package ’tseries’.
The code for the Kalman filtering is written by the author using R base func-
tions and is tested to give similar results as the dlm-package when applied
to the Bitcoin data.
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5.4 Model Fitting

We are now ready to train our Local Level and ARIMA models on the
Bitcoin data set. For this purpose we use the procedure as described in
Section 4.4 by first splitting our given data set into a training and test set.
We will here use a 70/30% split where the training set will consist of the 2180
first observations and test set will consist of the remaining 935 observations.
Note that the order between the observations are maintained throughout
this splitting process.

5.4.1 ARIMA

The goal of this section is to fit an appropriate ARIMA model to our data
set. This is done using (Tsay, 2005, Chapter 2) with the purpose of finding
a model that best will predict future data. Recall from Section 2.5 that
{yt} follows an ARIMA(p, d, q) process if the d times differenced series {y∗t }
follows an ARMA(p, q) process, i.e.

y∗t = (1−B)dyt = φ0 +

p∑
i=1

φiy
∗
t−i + zt −

q∑
i=1

θizt−i.

Our model selection process will be done using the following three steps:

1. Determining d, i.e the number of differencing needed to make the re-
sulting model weakly stationary.

2. For 0 ≤ p, q ≤ M , fit all ARIMA(p, d, q) models using ML-estimation
and select the model with the lowest AICC value.

3. Conducting residual diagnostics for the selected model using the 1-step
forecast errors from our selected model.

For step 1 we apply the Augmented Dickey Fuller test as described in Sec-
tion 4.1 using the R adf.test function. Application of the test gives us a
significant result for d = 1 but a nonsignificant result for d = 2, resulting in
the selection of d = 1 as our differencing term.

We then proceed to step 2 and determine the p and q-values of the model.
For this we use the R auto.arima function which for a max order M = 5
gives that p = 3 and q = 2 produces the model with the lowest AICC value.
Repeating the process instead using the AIC and BIC criteria also results
in the selection of p = 3 and q = 2, meaning that our model selection is
independent of the choice of information criterion.
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We finally proceed to the last step of our model selection process by control-
ling the model assumptions. We know from Section 2.1 that if our model
holds for our data the series {zt} should resemble a Gaussian white noise
series. Since zt can be estimated with

et(1) = yt+1 − ŷt(1)

as shown in Section 2.5, the model assumptions can be tested using residual
series {et(1)}. We first test the assumption of uncorrelated residuals by an
application of the Ljung-Box test described in Section 4.2. Application of
the test here gives us a non-significant result, meaning that we henceforth
believe that the residuals are serially uncorrelated. Inspection of the corre-
sponding QQ-plot (Figure 7 in the appendix) however shows signs of a more
heavy tailed distribution than a normal distribution. Although making it
implausible for the shocks zt to be normally distributed, this result should
not have a significant effect on our model’s forecasting ability, since the main
focus of our study is on prediction rather than description.

After this we can now consider the ARIMA model selection process com-
pleted, resulting in the selection of an ARIMA(3,1,2) model on the fol-
lowing form:

y∗t = yt − yt−1

= 0.8666y∗t−1 − 0.7040y∗t−2 + 0.1989y∗t−3 + zt − 0.8333zt−1 + 0.4973zt−2.

5.4.2 Local Level Model

We now turn to the fitting of the Local Level model. Recall from Section 3
that this model can be written

yt = αt + εt, εt ∼ N(0, σ2
ε)

αt+1 = αt + ηt, ηt ∼ N(0, σ2
η).

Once again the fitting process can be decomposed into three steps, which
for the Local Level model are as follows:

1. Estimate σ2
ε and σ2

η using ML-estimation through a first application
of the Kalman filter on the training set.

2. Using the results from step 1, make another application of the Kalman
filter on the training set and from this extract the last filtered state at
and state variance Pt.

3. Using the forecast errors from step 2, conduct model diagnostics.
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We first carry out the requested ML-estimation in step 1 using a first ap-
plication of the Kalman filter according to Section 3.5. This results in the
following variance estimations:

σ̂2
ε = 0.000001607844, σ̂2

η = 0.00587909. (19)

From this result we can observe that the variance belonging to the observa-
tion noise is very close to zero. Returning to our description of the Local
Level model in Eq. (7) this means that εt will be close to a constant, which
in turn will have a significant effect on the behavior of the filtering process.
This can be seen by recalling the Kalman Recursions from Section 3.2, which
for the Local Level model could be written:

vt = yt − at Ft = Pt + σ2
ε

at|t = at +Ktvt Pt|t = Pt(1−Kt)

at+1 = at +Ktvt Pt+1 = Pt(1−Kt) + σ2
η,

where Kt = Pt
Ft

= Pt
Pt+σ2

ε
. If we now let σ2

ε tend to zero it follows that Kt

will tend to one and as a result of this:

Pt+1 → σ2
η, at+1 → at + vt = yt (20)

as σ2
ε → 0. This means that for a small value of σ2

ε the influence of vt on at+1

will be maximized and the state variance Pt will be solely determined by
σ2
η. This implies that the 1-step forecast of the Local Level model collapses

into the 1-step forecast belonging to the random walk model described in
Section 5.2. Although hypothesis testing of our calculated σ2

ε in Eq. (19)
indicates that we cannot reject that the true parameter is equal to zero,
we will however proceed with the parameter included in the model, again
considering the predictive objective of our study.

Using our variance estimates in Eq. (19) we then proceed to the second
step of the training process and make another application of the Kalman
filter on our training set. By extracting the resulting values for Kt and Pt
we note that both Kt and Pt here have converged for t ≥ 3, which is a clear
consequence of our small σ̂2

ε value. With a converged value of 0.005880697
we also note that Pt is very close to our estimation of σ2

η in Eq. (19), which
is an expected result. We can also observe how the converged value of Kt

will give us the following 1-step forecast:

at+1 = at +Ktvt

= at + 0.9997267(yt − at) = 0.9997267yt + 0.0002733at.

This means that the dominating part of our prediction will be based on our
current observation but including a small adjustment with respect to our
previous prediction at.

24



Figure 4
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(a) Residual ACF-plot for the trained
Local Level model
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cal Level model

Moving on to model diagnostics we follow (Durbin & Koopman, 2012,
pp. 38) and test wether the standardized residuals

et =
vt√
Ft

can be considered to be normally distributed and serially uncorrelated. We
first test the autocorrelation using another Ljung-Box test. In contrast to
our ARIMA fitting we here receive a significant result, implying that the
null hypothesis of uncorrelated standardized residuals here can be rejected.
This can also be confirmed by inspecting the ACF-plot of the standardized
residuals in Figure 4a, which shows signs of significant correlations at lag
2,4,5,6 and 7. We can also observe another sign of model misspecification
by inspecting the QQ-plot of the residuals in Figure 4b. Similarly to our
ARIMA model candidate the plot shows clear signs of a more heavy tailed
distribution than a N(0,1) distribution, making assumptions of normal dis-
tributed residuals implausible.

Since our model diagnostics collectively speaks against that our training
data could have been generated by a Local Level model as described by Eq.
(7)-(8), we now have to ask ourselves what implications will this have for
our future possibilities to use this model for forecasting? Fortunately we
can here recall from Section 3.2 that the Kalman filter is considered to be
MVLUE even though the error terms are not normally distributed. This
together with our earlier argument that our main focus of our study here is
on prediction rather than description means that we can move on with our
model to the forecasting part of our case study.
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5.5 Model Comparison

Using the results from Section 5.4.1 and 5.4.2 we are now ready to test
which of the models that best will forecast future values of the Bitcoin log
price series. We therefore apply our trained ARIMA(3,1,2) and Local Level
models on the test set and for each data point in this set calculate the cor-
responding 1-step ahead forecasts as described in Section 2.3 and 3.2. Using
these forecasts we then calculate the corresponding 1-step forecast errors and
form the test quantities MSE, RMSE and MAE as described in Section
4.4. Since we in Section 5.4.2 observed that our trained Local Level model
showed behavior similar to a random walk we here choose to also include a
random walk model in our comparison.

The results are summarized in Table 1, where we firstly can observe how
the performance of the Local Level model seems to be slightly better than
the ARIMA(3, 1, 2) model, regardless of the choice of loss function. Not sur-
prisingly, we can also observe that the results from the Local Level model is
practically identical to the results of the random walk model. Since the ran-
dom walk model is contained within the ARIMA class as an ARIMA(0,1,0)
model we can from this conclude that our ARIMA training process seems
to have resulted in an overfitted model.

Recalling our training process in Section 5.4.2, where we could observe our
Local Level model to show signs of misspecification in contrast to the signif-
icantly better specified ARIMA model, we next wish to control if the choice
of proportion between the training and test set has any effect on our results
before making any definitive statements about the ARIMA(3,1,2) model.
We therefore repeat the training and testing process when varying the pro-
portions between the training and test set.

The results from the above process can be observed in Figure 5 where we
can see how the Local Level model performs better than the ARIMA(3,1,2)
model for up to a 40/60% proportion between the training and test set. We
can however observe how the results from the two models are equivalent for
test set proportions higher than 60%. Finally, we can in Figure 5 observe
how the ARIMA model seems to break down as the test set proportion ap-
proaches 100% while the Local Level model remains stable throughout all

Model MSE RMSE MAE

ARIMA(3,1,2) 0.001966050 0.04434017 0.02995355
Local Level 0.001830771 0.04278751 0.02861004

Random walk 0.001830523 0.04278461 0.02859944

Table 2: Test error measures for the fitted Local Level, ARIMA and random walk models
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Figure 5: RMSE and MAE comparison between the Local Level model (blue) and
ARIMA(3,1,2) model (red) for varying proportion sizes between the test and training
set.

train/test set proportions. Although test set proportions approaching 100%
are not very useful in practice, this result does however illustrate how the
fast convergence of our trained Local Level model discussed in Section 5.4.2,
here makes it perform reasonably well on smaller training sets.

Repeating this process with the ARIMA(3,1,2) model replaced by the (0,1,0)
model results in the corresponding RMSE and MAE comparison plots now
showing no visible difference between the Local Level and ARIMA model
(See Figure 8 in the appendix). From this we can conclude that in terms
of ARIMA modeling there seems to be no benefits for using a more com-
plex model than a random walk when forecasting future values of the Bit-
coin/USD log price series.

Before considering our model comparison to be completed we first want
to address the sudden and radical increase in RMSE that can be observed
in the middle of the left plot in Figure 5. It seems that for train/test
set proportions over 42.5/57.5%, corresponding to a split point around the
date 2014-03-01, our models seem to perform much worse. This observation
brings us back to our initial data analysis in Section 5.1, where we in Figure
2 noted that the price series showed different behaviors for values before
year 2014, compared to values after 2014.

It turns out that splitting our series at the date 2014-11-11 and then repeat-
ing the model fitting and forecasting process on the resulting two sub-series,
the differences between our two models decrease significantly and also re-
sult in less overfitted ARIMA fittings. The results from the corresponding
forecast evaluation can be found in Table 3-4 in appendix and show how
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Figure 6: Splitting of the Bitcoin log price series and the resulting fitted ARIMA models
for each sub-series

the error measures for the sub-series with values after 2014-11-11 denoted
by S2, are very similar to the corresponding values for the full series shown
in Table 2, whereas the error measures for the sub-series with values up to
2014-11-11 denoted by S1 are considerably higher in comparison.

Another important consequence of the above splitting process is that our
ARIMA fitting for S2 this time also results in a random walk. Using this
result we return to our discussion in Section 5.2 where we showed how in-
spections of the autocorrelations of the log return series for the full data
set provided clear evidence against the random walk hypothesis (RW3). As
both our Local Level and ARIMA model fitting for log prices after 2014-11-
11 has resulted in some variation of a random walk we now have a reason to
reevaluate our assumptions about the RW3. We therefore generate another
Ljung-Box test for each of our two differenced sub-series, testing the null
hypothesis of zero autocorrelation. As these tests now give us a significant
result for S2 but still a non-significant result for S1 we therefore believe the
random walk hypothesis to be true for S2 but not for S1. The same con-
clusions can also be reached by inspecting the corresponding ACF-plots in
Figure 9 shown in appendix.

5.6 Conclusion

We can from this point declare the model comparison process to be com-
pleted, resulting in the following conclusions:

• The forecast performance of the Local Level model is slightly better
than the ARIMA(3,1,2) when fitted to the full Bitcoin data set.

• The differences in performance between the models are very small if
we instead consider the split data set with values before and after
2014-11-11 respectively.

• None of our fitted models outperforms a random walk.

• The random walk hypothesis seems to hold true for data past 2014-
11-11 but not for data prior to this.
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6 Discussion

The objective of this thesis has been to compare how Local Level and
ARIMA models can be used to forecast future Bitcoin prices. For this pur-
pose we have showed how these models can be fitted on a training set with
daily closing log prices between 2010-07-16 and 2019-01-25. We were able to
observe how this process resulted in the selection of an ARIMA(3,1,2) model
and a Local Level model closely resembling a random walk. Applying these
trained models on a test set and evaluating the corresponding 1-step fore-
casts we could then see a slightly stronger forecasting performance from the
Local Level model compared to the ARIMA(3,1,2) model.

We could thereafter discover that, by splitting the original data at date
2014-11-11 and repeating the comparison process, the differences between
the models would decrease significantly. Here we could also observe, for log
prices past 2014-11-11, how the ARIMA and Local Level model fitting both
resulted in a well specified random walk, hereby confirming the random walk
hypothesis for this sub-series. Conversely, for values prior to 2014-11-11 we
concluded that, although a model predicting data better than a random
walk could not be found, significant autocorrelation of the log returns here
provides evidence against the hypothesis. In conclusion, our case study
shows that when considering the full data, set the Local Level model gives
a slightly better performance than the corresponding ARIMA model, but
equivalent results when instead considering the split data set.

Further, from an economic point of view our results show how Bitcoin for log
prices after 2014-11-11 has come to adapt the behavior of a regular financial
asset. This means that for the future development of the series the random
walk hypothesis can be assumed to hold true, with future values as a re-
sult being considered unforecastable. Focusing on our modeling process, we
conclude that the most noticeable difference between our Local Level and
ARIMA modeling is how the Local Level model continuously interpreted
the series as a random walk, whereas the ARIMA fitting tended to overlook
the corresponding (0,1,0) model in favor of more complex models. Since we
also could observe that none of our considered models would outperform a
random walk in terms of forecasting, we can from this conclude that our
ARIMA modeling constantly suffered from the risk of overfitting when in-
formation criteria was used for validation. It is possible that using different
validation methods for the ARIMA model could have resulted in a better
predictive model. We will here however instead provide a simpler, intuitive
argument for why the risk of overfitting is inevitable when applying ARIMA
models on financial problems similar to the one we have studied:
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Belonging to a more complex model class the ARIMA model is able to use
historical data in a more involved way, enabling it to detect more intricate
patterns while using reasonably few parameters. However, unless we have
good reasons to believe that future data actually will follow the same model
as previous data, these historical patterns discovered by the ARIMA model
may be more or less irrelevant when extrapolating into the future. During
our case study we noted that fitting the ARIMA on a split data set would
result in two radically different models, which in turn makes it implausible
that the full data set could be seen as generated from the same model. In
contrast, the Local Level model did not suffer from the problem of overfit-
ting and also appear to have handled the ambivalence regarding the random
walk hypothesis in a more accurate way.

One central component of this thesis has been to compare how our models
approach non-stationary time series. Our results here indicate that, when
1-step forecast is used, explicitly modeling the time dependent mean using
the Local Level model give similar result to the ARIMA’s approach of in-
stead considering a d times differenced series. Given this result, the simpler
form of the Local Level model here shows a clear advantage in terms of in-
terpretability, compared to the considerably more complex ARIMA model.
We can from this see how this becomes especially relevant in situations when
the differenced series do not have a specific interpretation such as the log
returns, which may result in ARIMA models that are significantly harder
to interpret.

Finally, we can see that the results from our case study opens up for a
number of options for further research. Using our split data set as a starting
point a natural continuation of the analysis for the part of the data where
the random walk hypothesis seem to hold would be to proceed with volatility
modeling by considering ARCH or GARCH effects according to (Tsay, 2005,
Chapter 3). This would also serve as a suitable opportunity to investigate
the possible t-distribution of the ARIMA and Local Level model residuals
that we observed during our model fitting process. For the other data set we
could instead consider the addition of exogenous variables to our models to
see if we in that way can capture some of the behavior of the period before
the series start to behave like a random walk.
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7 Appendix

7.1 Derivation of the Kalman Filter

We here provide a more extensive derivation of the Kalman filter, resulting
in the Kalman Recursions introduced in Section 3.2. In order to do this we
first need to introduce the following Lemma:

Lemma 1

Let X and Y be jointly normally distributed variables with

E

(
X
Y

)
=

(
µX
µY

)
, Var

(
X
Y

)
=

[
ΣXX ΣXY

ΣT
XY ΣY Y

]
,

where ΣY Y is a nonsingular matrix. The conditional distribution of X|Y is
then normal with

E(X|Y ) = µX + ΣXY Σ−1
Y Y (Y − µY ),

V ar(X|Y ) = ΣXX − ΣXY Σ−1
Y Y ΣT

XY .

Proof: see (Durbin & Koopman, 2012, pp. 77-78).

Derivation of the Kalman filter

Using Lemma 1 we here provide a derivation of the Kalman filter analogously
with (Durbin & Koopman, 2012, pp. 82-85). Recall that the general linear
Gaussian state space model is given by

yt = Ztαt + εt, εt ∼ N(0, Ht)

αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt), t = 1, . . . n (21)

Let Yt−1 be the set of past observations y1 . . . , yt−1 for t = 2, 3... If we then
assume that the initial state α1 ∼ N(a1, P1), where a1, P1 are known we
then proceed inductively to derive the conditional distribution of αt given
Yt and from this extract

at|t = E[αt|Yt], Pt|t = Var(αt|Yt)

called the filtered state and variance. Using this together with Eq. (21) we
can then calculate

at+1 = E[αt+1|Yt], Pt+1 = Var(αt+1|Yt)

which completes the induction step. The main idea behind deriving the
distribution of αt|Yt−1 is to incorporate the one step forecast errors vt defined
as

vt = yt − E[yt|Yt−1].
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Using Eq. (21) this expression can be written as:

vt = yt − E[Ztαt + εt|Yt−1] = yt − Ztat.

Rewriting this equality we get yt = vt + Ztat which means that if we know
vt and Yt−1 we can calculate yt and Yt = (yt, yt−1, ...). Consequently:

p(αt|Yt) = p(αt|Yt−1, vt) =
p(αt, vt|Yt−1)

p(vt|Yt−1)
,

using Bayes formula. Since it can be shown that both αt|Yt−1 and vt|Yt−1 are
normally distributed it follows that they also are jointly normally distributed
and that we can apply Lemma 1. This yields:

at|t = E[αt|Yt−1] + Cov(αt, vt|Yt−1) Var(vt|Yt−1)−1(vt − E[vt|Yt−1)]) (22)

Pt|t = Var(αt|Yt−1)− Cov(αt, vt|Yt−1) Var(vt|Yt−1)−1 Cov(αt, vt|Yt−1)T

Thus, it only remains to calculate the unknown means and variances:

E[vt|Yt−1] = E[yt − Ztat|Yt−1]

= E[Ztat + εt − Ztat|Yt−1] = 0,

Cov(αt, vt|Yt−1) = E[αt(Ztαt + εt − Ztat)T |Yt−1]

= E[αt(αt − at)TZTt |Yt−1] = PtZ
T
t ,

Var(vt|Yt−1) = Var(Ztαt + εt − Ztat|Yt−1) = ZtPtZ
T
t +Ht.

If we set this last expression for Var(vt|Yt−1) equal to Ft and insert the above
identities back into Eq. (22) we arrive at

at|t = at + PtZ
T
t F
−1vt (23)

Pt|t = Pt − PtZTt F−1
t ZtPt. (24)

To complete the induction step, observe that

at+1 = E[Ttαt +Rtηt|Yt] = Tt E(αt|Yt) = Ttat|t,

Pt+1 = Var(Ttαt +Rtηt|Yt)
= Tt Var(αt|Yt)T Tt +RtQtR

T
t = TtPt|tT

T
t +RtQtR

T
t .

Letting Kt = TtPtZ
T
t F
−1
t and substituting the above results into Eq. (23)-

(24) finally yields

at+1 = Ttat|t = Ttat +Ktvt,

Pt+1 = TtPt|tT
T
t +RtQtR

T
t = TtPt(Tt −KtZt) +RtQtR

T
t .

This completes the induction step and we have now derived the Kalman
Recursions:

vt = yt − Ztat, Ft = ZtPtZ
T
t +Ht

at|t = at + PtZ
T
t F
−1
t vt, Pt|t = Pt − PtZTt F−1

t ZtPt

at+1 = Ttat +Ktvt, Pt+1 = TtPt(Tt −KtZt)
T +RtQtR

T
t .
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7.2 Additional Figures and Tables

Model MSE RMSE MAE

ARIMA(2,1,1) 0.01203462 0.1097024 0.04393368
Local Level 0.01192288 0.1091920 0.04416067

Random walk 0.01192285 0.1091918 0.04415827

Table 3: Test error measures for the fitted Local Level, ARIMA and random walk models
for values before 2014-11-11

Model MSE RMSE MAE

ARIMA(0,1,0) 0.002193875 0.04683882 0.03279620
Local Level 0.002204582 0.04695298 0.03288663

Table 4: Test error measures for the fitted Local Level, ARIMA and random walk models
for values after 2014-11-11
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Figure 7: Residual QQ-plot from the fitted ARIMA(3,1,2) model
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Figure 8: RMSE and MAE comparison between the Local Level model (blue) and
ARIMA(0,1,0) model (red) for varying proportion sizes between the test and training
set
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Figure 9: ACF plots of the log returns prior (left) and after (right) to 2014-11-11
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