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Abstract

Value at Risk (VaR) measures the maximal possible loss that may
occur under normal market conditions and is the most widely used
measure of risk in financial institutions and risk management prac-
tices today. In a statistical sense, VaR can be formulated as a quan-
tile of the lower tail of the return distribution, i.e. the loss tail, given
a certain confidence level and a time period. In this thesis we in-
troduce how conditional volatility for a log return time series can be
modelled by implementing the conditional heteroskedastic GARCH
models. The aim of this thesis is to compare the performances of the
GARCH models in estimating daily Value at Risk by making distri-
butional assumptions regarding the residuals of the GARCH models.
The performance of the models are evaluated using backtesting meth-
ods. We apply the ARMA(1,1)-GARCH(1,1) model on the OMXS30
index log return series with Normal and Student’s t distributed er-
ror terms. In order to forecast the one step ahead VaR we use the
ARMA(1,1)-GARCH(1,1) models in a rolling window estimation on
an out-of-sample window of one thousand observations. The backtest-
ing results reveal that the Student’s t distributed model outperforms
the Normal model in estimating daily VaR over the forecasting period.
However, rejecting the Normal model is not justified since the evalu-
ation tests disclose that both models are specified adequately enough
to predict the volatility process of our forecast period, and do not
underestimate the Value at Risk.
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1 Introduction

1.1 Background

In finance, volatility is related to the uncertainty of financial asset’s returns and is
used as a measure of risk. More specifically, the volatility is defined as the conditional
standard deviation of the underlying asset’s return (Tsay 2010, pp.109). To properly
model the volatility, it is important to understand its characteristics and how they
display in the financial asset’s return over time.

A well-known property of asset returns are volatility clusterings that are presented as
extended periods of high volatility followed by periods of low volatility (Mandelbrot
1963). The presence of volatility clusterings is a consequence of non-normality in the
return set resulting from the non-constant variance of the error terms. The clusterings
of fluctuations are an indication that observations in the return series that are close
to each other tend to be correlated in time. This violates the assumption of constant
error variance, also known as homoskedasticity. Since the series is correlated in time
and has non-constant error variance, it suffers from conditional heteroskedasticity.

In order to capture the behavior of conditional volatility the Autoregressive con-
ditional heteroskedastic model (ARCH) was introduced by Engle (1982) and was
the first model to allow for such changes in the error variance . The ARCH model
describes the conditional variance by regressing on its preceeding values of the error
terms. In 1986 the ARCH model was further extended by Bollerslev (1986) who
presented the Generalized ARCH model (GARCH) where he not only included the
previous values of the error terms, but also regressed on the previous values of the
conditional variance.

The models have been proven to successfully capture the characteristics of conditional
volatility and are widely used in financial activities for risk analysis as well as being a
guidance in financial decision makings. Typically in risk management, the volatility
models are used for financial forecasting aspects to predict the severity of returns,
the density or the quantiles of the returns (Engle et al. 2001).

A popular risk measure that is frequently applied in risk management practices is
Value at Risk (VaR). Value at Risk is commonly formulated as the worst possible
loss that will not be exceeded with a given high probability over a given time period
(McNeil et al. 2005, pp.37-38). In a statistical sense, VaR can be described as a
model that is built on the distribution of the profits and losses and is simply a
quantile of the loss tail, i.e. the lower tail of the return series at a given confidence
level and a time horizon (Jorion 2007).

The idea of VaR came up in the search for an improved risk measure after big financial
crises lead to several banks going bankrupt, which raised discussion and skepticism
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concerning the existing market risk practices. The concept of Value at Risk was
later developed by the researcher Till Guldimann from JP Morgan in the 1990s
(Dowd 1998) and has since then increasingly gained recognition. In recent years,
the enlarged price movements induced by globalization and emerging of financial
markets has further expanded the popularity and need of VaR, to the point where it
has become one of the most used measures of market risks in financial institutions
today.

In VaR framework there are some simplified assumptions made considering the
distribution of assets returns that are quite unrealistic (Christoffersen 2003, pp.50).
For instance, it is often assumed that financial asset returns are normally distributed.
Thus, ignoring the non-normal properties of returns series, as a consequence of the
conditional volatility. Since the normal distribution fails to capture the extreme
data points of a volatile series the assumption may in practice generate models
that underestimate VaR. As a result this could bring unreliable or inaccurate VaR
predictions.

Undoubtedly, the VaR models are only useful if they generate accurate predictions of
future risks. In order to determine the reliability and validity of the VaR forecasts,
the models should always be evaluated by backtesting methods. The backtesting
procedure is a statistical framework designed to verify that the estimates of VaR are
in line with the actual observed data of profits and losses (Jorion 2007).

1.2 Aim and Purpose

In this thesis the purpose is to study if distributional assumptions of the return series
have a significant effect on the predictive accuracy of VaR estimations. The idea is
to introduce how conditional volatility of a log return time series can be modelled for
a financial stock index, by implementing methods inspired by Tsay (2010). Concisely,
the ARMA(1,1)-GARCH(1,1) models are applied on an in-sample period for the
OMXS30 index where the parameters of the models are estimated with maximum
likelihood estimation. The residuals of the models are assumed to follow a Normal
and respectively a Student’s t distribution. The aim is to evaluate the performance of
the obtained volatility models in predicting one step ahead VaR on an out-of-sample
period of thousand observations with a 99% level of confidence. To determine the
accuracy of the VaR estimates the useful methods of backtesting are conducted.
The performance of the models are evaluated specifically by Christoffersen’s and
Kupiec’s coverage tests. It is in our interest to find out how, or even if, the different
distributions of the underlying models’ innovations significantly effect the backtest
results of the VaR models.
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1.3 Previous Research

There are countless collections of studies and papers considering proper volatility
modeling and forecasting of VaR. The initial sources of inspiration for this thesis are
among others: Angelidis, Benos, Degiannakis (2004); Christoffersen (2003); Mcneil,
Frey, Embrechts (2005); and Tsay (2002,2010).

Originally, Engle (1982) presented the ARCH model which was the first model to
take into account the properties of volatility in financial asset returns. Bollerslev
(1986) introduced the GARCH models which were proven to be superior of ARCH
since it required fewer parameters to properly describe the conditional volatility
(Tsay 2002). There are over one hundred variations of GARCH models presented
in Bollerslev (2008), yet there is still is no specific answer to which GARCH family
model that provides the best estimates of conditional volatility.

Mandelbrot (1963) released a paper where he demonstrated the departures of normal
properties in conditional volatility and suggests that high peaked (leptokurtic) distri-
butions would be a better fit. Angelidis et al. (2004) generates several combinations
of GARCH models with different specifications for the conditional mean process
AR(p) and compares the performance of the models with normal and non-normal
distributions in VaR estimation. The authors find that the experimented mean mod-
eling does not significantly affect the outcome of the VaR forecasts, and state that
no superior model is found. However, they conclude that the non-normal GARCH
models, especially the leptokurtic Student’s t distributed models outperforms the
normal models.

Some studies criticize the VaR framework for the lack of sub-additivity (Artzner
et al. 1997, 1999), meaning that the VaR of two merged portfolios should not
exceed the sum of the two separate VaRs (Tsay 2010). Despite this there still is
no better quantifying risk measure (Orhan et al. 2012). Jorion (2007) states that
VaR models that are rejected in the statistical tests of backtesting procedures should
be reexamined for untrue assumptions and inaccurate modeling and refers to the
backtesting methods as final “diagnostic check” (Christoffersen 2003), which is why
we choose to evaluate our models by using backtesting methods.

7



2 Theoretical Framework

This section consists of the essential concepts and theoretical aspects that are needed
to understand the analysis of this thesis. We introduce log returns and time series,
discuss the main idea of volatility and present the concept of Value at Risk.

2.1 Log Returns

In financial studies that involve stock prices it is commonly seen that the observations
that are analyzed are the logarithmic return series of the given asset, rather than the
actual stock prices. This is because the log returns of an asset are more manageable
and have better statistical behavior. For instance, when differencing the stock prices
of an asset, (as is done to obtain log returns), the minor fluctuations and variations
in the asset are reduced and become more consistent over time. The log return also
brings a scale-free assessment and the multi-period log returns are evidently the sum
of all the one-period log returns (Tsay 2010, pp.5).

We let Pt denote the price of an asset at time t. The simple one-period gross return
is then defined as

1 +Rt = Pt
Pt−1

⇔ Rt = Pt
Pt−1

− 1. (1)

The continuously compounded return, or the log return, rt is simply the natural
logarithm of the one-period gross return. The log return series rt is expressed as

rt = log(1 +Rt) = log( Pt
Pt−1

) = log(Pt)− log(Pt−1) = pt − pt−1. (2)

2.2 Time Series and Stationarity

Time series are formed when a variable is sequentially measured over time in a fixed
interval. The measurements could be daily, monthly or quarterly observations over a
certain time horizon, say one year. In this thesis our data sample consists of daily
observations of the closing prices for OMXS30 index from Jan 1st 2005 to Dec 29
2017, forming a time series of 3286 observations in total. Calculating the log return
of the given time series asset, it results in a sequence of random variables over time
also measured in a fixed interval. Thus, the log returns {rt}Tt=1 form a time series
where T is the number of daily observations.

For a linear log return series we express
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rt = µt + at (3)

where µt detones the mean of rt, at denotes the error term a sequence of independent
and identically distributed (i.i.d) random variables with mean zero and constant
variance σ2

a. That is, the residual series at is assumed to follow a white noise process.
The error term at is often referred to as the mean-corrected return since at = rt− µt.
Throughout this thesis, at will be referred to as the innovations or shocks of the log
return series.

The conditional mean and variance of the log return series, given the information set
F at time t-1 where Ft−1 consists of all linear functions of past returns (Tsay 2010,
pp.111), are introduced as

µt = E(rt|Ft−1), σ2
t = V ar(rt|Ft−1) = E[(rt − µt)2|Ft−1]. (4)

A lag operator l is a function that computes a lagged version of the time series
by shifting the time base by a number of observations l. For example, the lag-1
function of rt is rt−1. The time series rt is said to be weakly stationary if the mean
is constant, that is, if E(rt) = µ for all t and the covariance only depends on the lag
l such that Cov(rt, rt−l) = γl. In other words, the mean does not change over time
and the covariance between the return series rt and its lagged values rt−l are also
time invariant (Tsay 2002, pp.23).

2.3 Heteroskedasticity

When graphically examining financial time series data it can be seen that the series
fluctuates a lot over time. The series usually exhibits positive and negative shocks
that could result from different external factors such as political, environmental or
economically driven issues. This may trigger a non-constant variance in the error
terms of the log return series, so that the variance of the residuals at in Equation
3 changes over time. When a model suffers from this condition of variety in the
variance of the error terms it is assumed to be heteroskedastic, (Berry et al. 1985),
and tends to manifest non-normality.

Heteroskedasticity can occur in two different forms: conditional or unconditional
(Hayashi 2000). When time series exhibits unconditional heteroskedasticity the
variations in the data can usually be tied to certain cycles or variables, such as
seasonal variations or trends. In these types of time series, periods of low or high
variability can be predicted and identified. Conditional heteroskedasticity on the
other hand is not as easily predicted or recognized. In a conditional heteroskedastic
time series the observations that are close to each other tend to be correlated. The
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changes and correlations in the variance of the error terms results in conditional
volatility (Cowpertwait et al. 2009, pp.137). This means that the evolution of the
conditional variance is directly tied to the volatility process of the given asset return
(Tsay 2002, pp.17-18).

2.4 Volatility Clustering

When a market is volatile there are large price movements in both directions that
are hard to predict. Since there is only one observation per trading day, volatility
is not directly observable (Tsay 2010, pp.110-111). Despite this, one can properly
understand and predict the nature of volatility by studying how it behaves inasset
returns. When studying financial asset returns the special features of volatility
commonly revealed. Generally, the three most important properties of volatility are
that the volatile periods tend to cluster together, the volatility is mean reverting
and persistent. We will briefly explain and discuss these properties in order.

When studying graphics of the underlying asset return over a given time period it is
usually seen that the return series exhibits extended periods of low volatility and
other periods with high volatility. The periods with large fluctuations tend to cluster
together and vice versa. This phenomenon is known as volatility clustering and has
been an important consideration in the development of volatility models (Tsay 2002,
pp.80).

S&P500 daily returns
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Figure 1: Daily returns of S&P500 from Jan 1st 1990 to Dec 27th 1999. Source:
MASS package i R-studio.

We demonstrate the daily returns of The Standard And Poors 500 index in Figure
1 where the presence of volatility clusterings are clear. This property implies that
large changes tend to be followed by large changes and small changes tend to be
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followed by small changes and informs the financially involved that when the market
suffers a volatile shock, more volatility should be expected.

Mean reverting conditional volatility implies that in the long run, the conditional
variance should revert to its average, which is the unconditional variance. To give an
informal explanation of this property, the mean reversion of volatility lets us know
that a highly volatile market will eventually become calm again. The persistence of
volatility indicates that big price movements tend to endure for a while after that
first shock. How the conditional heteroskedastic models replicate these properties is
discussed later in section 3.2.2.

2.5 Value at Risk

Value at Risk is a measure of market risk that estimates the maximal loss that may
occur under normal market conditions, given a corresponding confidence level and a
time horizon (Jorion 2007). To exemplify, we consider an investor holding a stock
where the daily VaR may be 100 SEK at 99% level of confidence. The VaR then
indicates that there is a 1% chance that a loss greater than 100 SEK could occur
the next day under normal market conditions, or equivalent, the worst expected loss
will not exceed 100 SEK with 99% confidence over the next day. From a financial
point of view, VaR is treated as an estimate of loss associated to rare events under
normal market conditions, which is equivalent to VaR being defined as the minimal
loss under rare market conditions. Although the definitions seem to differ, both
interpretations will generate same measures of VaR, (Tsay 2010, pp.325-326).

Figure 2: Illustrating Value at Risk as a quantile of a normal density function at a
certain confidence level.

Statistically speaking, VaR can be described as the left tail or the “loss” quantile
of the distribution function of the profits and losses in underlying asset return over
a certain time period (Patton 2011, pp.17). We graphically illustrate the VaR as
a quantile of a normal density function in Figure 2. Since the VaR estimates are
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projected from the distribution model of the log return series, the observed volatility
in the series has an important impact on the outcome of the VaR estimates.

We define Value at Risk in terms of probabilities for the portfolio as in Christoffersen
2003, pp.48 where r is the observed return and α ∈ [0, 1] denotes the confidence
level between zero and one. Then the probability that VaR exceeds the return is
expressed as

Pr(r < −V aR) = α. (5)

To calculate the VaR in Equation 5 one can make an assumption regarding the
distribution of the underlying return set. Previous studies (Jorion 2007 and Mandel-
brot 1963) suggest that fat-tailed distributions are a better fit than normal. In this
thesis we use Normal and Student’s t distributed innovations to estimate the one
step ahead (daily) VaR on a 99% level of confidence for α = 0.01.

We assume that the returns are normally distributed with mean µ and standard
deviation σ where α the quantile of which VaR will be calculated. Then the V aRα
can be expressed by a function of the quantile distribution of profits and losses
calculated as (Christoffersen 2003, pp.49)

V aRα = µ− σΦ−1(α), (6)

where Φ denotes the cumulative distribution function for a standard normal distri-
bution and Φ−1(α) calculates quantile mass for α. This could of course be applied
for other distributional assumptions. For the standardized Student’s t distribution
we express the VaR as the quantile function

V aRα = µ− σt−1
v (α), (7)

where σ2 = v
v−2 when v > 2, so that σ is the standard deviation and v detones the

degrees of freedom, and t−1
v (α) denotes the α quantile of the standard t distribution

with v degrees of freedom (McNeil et al. 2005, pp.40).

2.5.1 Shortcomings of Value at Risk

Although VaR is the most popular and frequently used measure of risk the VaR
framework has some shortcomings to it that has in fact been criticized, originally by
Artzner et al. (1997, 1999). In this section we discuss some of these shortcomings.

As presented in previous section in Equation 6 and Equation 7, we see that the
VaR is the loss tail quantile of the underlying return distribution function. However,
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the VaR does not fully describe the lower tail behavior of the function (Tsay 2010,
pp.328). This means that VaR considers if an exceedance occurs yet fails to describe
the severity of that loss. The consequence of this could in practice mean that two
separate assets with the same VaR measure may experience different losses when an
exceedance is encountered.

Furthermore, Artzner et al. (1997, 1999) showed that the VaR model is not subject
to the sub-additivity property. The property states that the risk measure of two
merged portfolios should be no greater than the sum of the individual risk measures
of the two portfolios (Tsay 2010, pp.328), which reasonable risk measures are believed
to have.

Since the VaR is calculated on the predictive distribution of future returns the VaR
model is dependent on the distribution that it projects its estimations on (Tsay
2010, pp.328). Thus the VaR model also, to some extent, becomes subject to model
risk and parameter uncertainty. This means that if the risk management models
that are being used for estimating the VaR are miss specified or make assumptions
about the distribution that are unrealistic, then the financial institutions will incur
losses (McNeil et al. 2005, pp.40-41). In a properly specified model the predictive
distribution takes into account the parameter uncertainty, however it is difficult to
obtain the predictive distribution and most VaR methods ignore the effects of the
uncertainty (Tsay 2010, pp.328).

A common assumption in VaR framework is that the distribution of the underlying
asset return is normal. In reality, the conditional volatility in the return series is
heavy tailed and displays non-normal behavior. This assumption might lead to a
model that does not fully capture the extreme values so that the generated forecasts
of the model might underestimate the Value at Risk (Tsay 2010, pp.332). We note
that underestimating VaR is not the same as underestimating risk. A model that is
underestimating VaR means that the model does not resemble the properties of the
observations in the portfolio. This naturally generates a VaR that is too low, which
in turn leads to more exceedances in the backtesting.
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3 Time Series Models

This section provides the theoretical aspects and definitions regarding the time series
models that are used in the analysis of this thesis.

3.1 Autoregressive Moving Average (ARMA)

The autoregressive model (AR) is a model in which future predictions are estimated
by regressing on its past lagged values. The model explains the current value of a
return series expressed as a function of its previous values. The AR model with p
parameters, or AR(p) is given by

rt = φo +
p∑
i=1

φirt−i + at (8)

where at is a white noise series with zero mean and variance σ2
a, p is a non-negative

integer determining the order, that is, the number of lags to include in the AR model,
and rt−i (i = 1, ..., p) jointly determines the conditional expectation of rt given the
previous values, (Tsay 2010, pp.38).

The moving average (MA) model is also a model that regresses on its previous values
but instead includes the lagged error terms at−j and current error term. The MA(q)
model is described as

rt = µt +
q∑
j=1

θjat−j + at. (9)

Similar to the AR model, at−j is a white noise series with zero mean and variance
σ2
a and q is a non-negative integer determining the order of the MA model. Since

the MA model is a linear combination of a white noise sequence, the model is always
weakly stationary (Tsay 2002, pp.44).

Previous researchers has observed that it requires many parameters to adequately
describe the structure of the data when modeling with the AR(p) and MA(q) models
separatedly (Tsay 2002, pp.48). In order to surpass this problem and reduce the
number of required parameters, the ARMA model was introduced by Box, Jenkins
and Reinsel (1994). The ARMA model combines the AR(p) with MA(q), to handle
the impact of dependencies in the series. The equation for the conditional mean in
Equation 4 specified by the ARMA(p,q) model is expressed as
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µt = E(rt|Ft−1) = φo +
p∑
i=1

φirt−i −
q∑
j=1

θjat−j , (10)

where it is seen that the first part of the equation represents the AR(p) model and the
second represents the MA(q) model. In this thesis we later specify the ARMA(1,1)
model for our conditional mean which is directly given by

µt = E(rt|Ft−1) = φo + φ1rt−1 − θ1at−1. (11)

We chose the simplest order of the ARMA(1,1) model based on (Angelidis et al.
2004) who suggested that the order of the mean model does not significantly affect
the outcome of the VaR estimates.

3.2 Conditional Heteroskedastic models

3.2.1 Autoregressive Conditional Heteroskedasticity (ARCH)

The autoregressive conditional heteroskedastic model was introduced by Engle (1982).
The ARCH model was the first model to provide systematic framework for modeling
conditional volatility and has since then been widely used in financial institutions.

An informal explanation of what the ARCH model does is that it examines the data
and predicts what risky outcome we might expect in the short-term future. The
model does this by saying that when the market is volatile today we expect it to be
volatile tomorrow, but that this eventually goes away. Respectively, if the market
is calm today it is likely to be calm tomorrow, but it will eventually become more
volatile again.

Te ARCH model lets the conditional variance be described by a quadratic function
of its lagged error terms (Tsay 2010, pp.115-116). The concept of the model is that
the innovations at of the log return series are serially uncorrelated but dependent.

The ARCH model of order p, or the ARCH(p) model assumes the following,

at = σtεt, σ2
t = α0 +

p∑
i=1

αia
2
t−i, (12)

where εt are i.i.d random variables with zero mean and unit variance, α0 > 0, αi > 0
for i > 0. The structure of the model implies that if past values of the innovations
{a2

t−i} are large then the conditional variance σ2
t may be large itself, hence, imitating

the behavior of conditional volatility clusterings (McNeil et al. 2005, pp.139).
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In this thesis we aim to introduce how conditional volatility can be modelled and
used in estimating daily Value at Risk. However, we will not provide any empirical
results of any ARCH model because we believe that the purpose can be carried
out without the empirical results of ARCH model. The method of modeling an
ARCH model is very similar to modeling the GARCH model and we provide all the
necessary information regarding building and evaluating a volatility model in section
4 and 5.

3.2.1.1 Shortcomings of ARCH

Despite the fact that the ARCH model has many advantages, it is quite restrictive.
First, as seen by the structure of the model in Equation 12 it requires many param-
eters (or high orders p) to appropriately describe the volatility process. Secondly,
the predictions of the model are estimated by regressing on the squared previous
innovations {a2

t−i}. This means that the ARCH model suggests that positive and
negative shocks have the same effect on the conditional volatility (Tsay 2010, pp.119).
This is of course not true since stock prices should clearly react differently to positive
and negative shocks. The ARCH model can decently describe how the conditional
variance of an asset return operates, however, it does not explain the source or motive
of such behavior to occur in the first place.

3.2.2 Generalized Autoregressive Conditional Heteroskedasticity
(GARCH)

In 1986, Bollerslev presented an extension of the ARCH model, namely, the General-
ized ARCH model. The GARCH model is widely used in financial institutions for
estimating conditional volatility as well as being a guidance in financial decisions
makings concerning risk analysis and portfolio selection (Engle 2001). The GARCH
model not only depends on the past squared innovations of the log returns but also
includes the preceding values of the conditional variance {σ2

t−j}. We let at = rt − µt
denote the mean corrected innovation set at time t. Then at follows a GARCH(p,q)
model if

at = σtεt, σ2
t = α0 +

p∑
i=1

αia
2
t−i +

q∑
j=1

βjσ
2
t−j , (13)

where εt again is i.i.d. with zero mean and unit variance, α0 > 0, αi ≥ 0 and βj ≥ 0
(Tsay 2010, pp.131-132). We note that the GARCH model has the ARCH(p) model
in Equation 12 as a special case GARCH(0,p), when q = 0.

Similair to the ARCH model, the GARCH model fails to recognize the difference
between positive and negative shocks. Despite this it has been proven to be capable
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of successfully describing the volatility process of a return series even in its simplest
form (Engle 2001). It provides a better way of modeling the persistent volatility
since it requires less parameters, where the ARCH model would need high order p
to model persistent volatility. Thus, we chose to limit our analysis to implementing
the most commonly applied form of GARCH, that is, the GARCH(1,1) model. The
GARCH (1,1) model is defined by

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1 (14)

where α1 + β1 < 1, which is the criteria that need to be fulfilled for the conditional
volatility to be mean reverting (Engle 2001). Mean reverting volatility model, as
mentioned in section 2.4, implies that the long-run forecasts of volatility should
converge to its unconditional variance. This means that if we are using the GARCH
model to forecast the h:th step ahead observation rt+h where h → ∞, then the
current value rt would not have a great impact on the forecast (Engle et al. 2001).
The closer the coefficients α1 + β1 are to adding up to one, the more persistent the
volatility. That is, the closer α1 + β1 is to one, the changes in the variance will have
a more persistent effect to the model.

In this thesis we forecast one step ahead conditional volatility with the GARCH(1,1)
model and we express daily forecasts by

σ2
h+1 = α0 + α1a

2
h + β1σ

2
h (15)

where h is the forecast origin (Tsay 2010, pp.133).
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4 Method

In the oncoming sections we provide essential information on how we carry out the
analysis in this thesis. We explain the methods of in-sample and out-of-sample and
give detailed information on how the forecasting and backtesting procedures are
conducted. A brief explanation on how we build volatility models is also provided,
inspired by Tsay (2002,2010).

4.1 Software

The statistical software used in this thesis for the graphical and empirical analysis
is the open source program “R”. Open source software means that anyone has free
access to the program, as well as packages with built in codes that can be used for a
specific type of statistical issue. In this thesis we use the package “tseries” (Trapletti
2018) for processing the data, and the “rugarch” package (Ghalanos 2014) for the
model fitting and the backtesting forecast of Value at Risk. The official website for
R is “https://www.r-project.org/”, where R can be downloaded.

4.2 In-sample and Out-of-sample

Model selection should not only be based on the goodness-of-fit of the model to
the data, but also on the objective of the analysis. When forecasting is of interest,
the best fitted model does not necessarily generate more accurate forecasts (Tsay
2008). To overcome this problem, many to use the performance of the out-of-sample
forecasts as a guidance in the selection of a model. By out-of-sample, we mean that
the data that is used in model fitting is different from those that are used in the
forecasting evaluation.

Typically, one may choose to divide the total sample period into two sub-periods.
The first period is called the in-sample (or estimation sample) and the second period
is called the out-of-sample (or forecasting sample). The observations in the in-sample
period are used for estimating the parameters of the models and the obtained models
will generate forecasts of observations of the out-of-sample period. The out-of-sample
consists of observations that will be used for evaluating the predictive accuracy of
the in-sample models forecasts (Tsay 2008). The purpose of this is generally to
determine how well the model performs in a period where the observations were
not used to estimate the models’ parameters and is most commonly done in risk
management practices. Consider for example the series {r1, .., rT } where T is the
total number of observations in the sample. We divide the total sample by {r1, .., rn}
for the in-sample and {rn+1, .., rT } for the out-of-sample where n denotes the forecast
origin (Tsay 2008).
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Choosing the in-sample size for the estimation window is an important part of
generating good forecasts. If the in-sample size is to small then the generated
forecasts may not be accurate or reliable. On the other hand, if the sample size
is too large then the forecasted volatility might be smoothed out since it is mean
reverting, which would bring forecasts that do not represent the structure of the
volatility process. However, we determined the sample sizes based on Tsay (2008)
where he claims that a reasonable in-sample size n is n = 2T

3 .

In this thesis the gathered data consist of 3285 observations in total for the OMXS30
index from Jan 1st 2005 to Dec 29th 2017. The in-sample period that is used for
estimating our models are on the first 2285 observations, whereas the remaining
thousand observations will be the out-of-sample period used for evaluating the
corresponding thousand forecasts of the models.

4.3 Forecasting method

To generate forecasts we use a rolling window forecast method where the estimation
window moves forward one step at a time. First we let all observations between
time {1, .., n} produce a one step ahead forecast n̂+ 1, which is saved as the first
observation in the forecast vector with length 1000. The sample window then
jumps one step forward and now uses the observations {2, .., n+ 1} for generating
observation n̂+ 2, which is stored as the second element in the forecast vector. It
is vital to note that the included observation n + 1 used in the rolling window is
not the prediction from the first step but represents the real observed data from the
out-of-sample. The procedure continues to iterate until all thousand observations
of the out-of-sample period are forecasted, and the estimation sample size stays
constant at every iteration.

Some argue that the moving window forecast may remove important information
once it rolls past data points. However, this rolling forecast method is often operated
since it should capture the changes in the volatility more properly by including the
preceding observation for every forecast.

4.4 Backtesting

A VaR model is only useful if it provides accurate predictions of future risks. There-
fore, it is important to determine the reliability of the estimate which can conveniently
be done using backtesting methods. The backtesting procedure is a statistical frame-
work designed to verify if the VaR estimates are in line with the actual profits and
losses (Jorion 2007, pp.139).

An exceedance means that the actual returns are below the estimated VaRs, or
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equivalent, the observed loss return is greater than the estimated VaR. In this thesis
exceedance will also be referred to as an exception or failure.

Generally there are two important properties that should be satisfied for a proper
VaR model. Those are that the total exceedances, or failures, match the expected
exceedances given by the level of confidence, and that the exceedances occur inde-
pendently.

To put this in picture, we consider our case where we estimate 1000 daily VaRs with
a 99% level of confidence. The 99% confidence level implies that we expect a failure
to occur once every 100 days. Since we estimate a thousand VaR forecasts with
α = 0.01, the total amount of expected exceedances is 1000 ∗ 0.01 = 10.

In the backtesting, the actual observed returns in the out-of-sample are compared
with the predicted VaR estimates, and every exceedance is counted. The accumulated
exceedances are then compared with the expected exceedances to make sure that
the frequencies of the failures agree with the determined level of confidence. If
the total failures are lesser than the expected, then the model is considered to
overestimate the VaR, and if the actual failures are greater than the expected, the
model underestimates VaR. These types of tests are straightforward and do not
take into consideration for when the exceedances occurred and are known as tests of
unconditional coverage (Jorion 2007).

Moreover, there are tests of conditional coverage that take the time variation of the
exceedances into account. The conditional coverage tests examines if the exceedances
are evenly spread or if they cluster together. If the exceedances are clustered, the VaR
model has not been specified accurately enough to capture the changing volatility
and correlations of the data (Jorion 2007).

In this thesis we conduct the backtesting with two of the most popular evaluation
tests, namely, Kupiec’s unconditional coverage test and Christoffersen’s conditional
coverage test.

4.4.1 Kupiec’s Unconditional Coverage test

Let N denote the number of days where the loss is greater than the forecasted VaR
over T days calculated by N =

∑T
t=1 It. The indicator variable It counts every

exception by,

It+1 =
{

1, if rt+1 < −V aRαt+1,

0, if rt+1 > −V aRαt+1,
(16)

where rt+1 represents the actual return at time t+ 1 and −V aRαt+1 represents the
one step ahead forecast of VaR at time t+ 1.
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Kupiec (1995) argues that for a proper model the number of failures N should
follow a Binomial distribution N ∼ Bin(T, α), so that the expected failure frequency
is N

T = α. He introduces the likelihood ratio statistic LRUC where the expected
frequency of exceedances under the null hypothesis is,

LRUC = 2 ln
[
(1− N

T
)T−N (N

T
)N
]
− 2 ln

[
(1− α)T−NαN

]
∼ χ2(1) (17)

In our case the null hypothesis is rejected if the test statistic LRUC is greater than
6.635 on a 5% significance level. It is worth mentioning that the test does not
recognize if the failures were less or greater than the expected, so the test does not
give an answer to if the model overestimated or underestimated the VaR.

4.4.2 Christoffersen’s Conditional Coverage test

Christoffersen (1998) developed an extension to Kupiec’s unconditional coverage test
and argues that the independence of the failures must be taken to account. If the
exceedances are clustered together then the estimated model might not be specified
well enough so that the conditional volatility is not fully captured. According to
Christoffersen’s test this would mean that even if the number of failures hold the
expected, the model would still be rejected if the failures are not independent.

Let nij be the number of observations with value i followed by j, for i, j = 0, 1.
Further, let πij = nij∑

j
nij

be the probabilities

π01 = P(It+1 = 1|It = 0) = P(Exceedance tomorrow | No exceedance today)
π11 = P(It+1 = 1|It = 1) = P(Exceedance tomorrow | Exceedance today)

If failures It are independent, then the probabilities should be equal to the confidence
level, that is, π01 = π11 = α. The likelihood ratio statistic LRCC for Christoffersen’s
conditional coverage test is computed by,

LRCC = 2 ln[(1− π01)n00πn01
01 (1− π11)n10πn11

11 ]− 2 ln[(1− α)T−NαN ] ∼ χ2(2). (18)

The null hypothesis of correct exceedances and independence of failures is rejected if
LRCC is above the critical value 9.21 in our backtest.

4.5 Building a volatility model

The concept of volatility modeling is that the log return series rt is serially uncor-
related, but dependent (Tsay 2010, pp.111). To explain how this is possible, we
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remember that serial correlation measures the strength of the linear dependency
between a return series and its lagged values (see Appendix A for ACF and more on
serial correlation). However, the function does not capture the more complicated
behavior of dependency such as changing volatility, since it is non-linear. Thereby, a
serially uncorrelated but dependent return series means that the return series rt and
its lagged values rt−l are indeed correlated and thus dependent, but the dependency
is non-linear and cannot be described by a linear correlation function.

The first step of building model for the conditional volatility is to examine the
serial dependence to determine if the log return series is serially uncorrelated but
dependent. This will be done by graphical analysis of the ACF plots of our log
return series and complemented by Ljung-Box tests (see Appendix B for Ljung-Box).
For this property to be fulfilled the ACF plot of the log return should resemble a
white noise series (e.g show no correlation), whereas the ACF plot of the squared log
returns should show strong correlation. If the criteria is not fulfilled, we might need
to specify a mean equation (ARMA model) to extract any linear dependencies in the
log return series. Once the model for the conditional mean in 4 is fitted the linear
dependencies should be removed from the residuals but left in the squared residuals.
Checking for significant correlations in the squared residuals of the ARMA model
is sometimes refered to as “testing for ARCH effects”. The objective of building
the volatility model is essentially to construct a variance measure σ2

t that has the
property that the standardized squared returns r2

t

σ2
t
has no autocorrelation patterns.

We express the standardized residuals as

ãt = at
σt
. (19)

If there exists significant serial correlation in the ACF plot of the squared standardizes
residuals of the ARMA model it is suitable to use conditional heteroskedastic models
such as ARCH and GARCH. Once the GARCH models are fitted we test the GARCH
models standardized residuals to make sure that all conditional volatility is captured.
If the volatility is properly captured, the ACF plot of the innovations should follow
a white noise series.These steps of building a model for conditional volatility of asset
returns are inspired by Tsay (2010, pp.111-115).
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5 Data

5.1 Descriptive statistics

The data used in this thesis consists of the daily closing prices from the OMXS30
index. Tsay (2010) suggests that volatility tends to be higher for a single stock since
it is more sensitive to market news. We consciously choose the OMXS30 index so
that external factors such as false rumors, product releases or other stock specific
actions will not have a significant impact on the volatility process of our data. The
data is gathered from finance.yahoo.com with a sample period from Jan 1st 2005 to
Dec 29 2017 with a total of 3286 observations. For the continuously compounded
return series as in Equation 2, the sample size is 3285 since it naturally loses one
observation in the beginning. We illustrate the daily closing prices and the calculated
log returns in Figure 3.
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Figure 3: Time plot of OMXS30 daily closing prices (Upper), and the log return
series OMXS30 (Lower) from Jan 1st 2005 to Dec 29th 2017.

In Figure 3 (Upper) it is seen that the stock market crash of Sep 29 2008, around
the 1000th observation, has had a major influence on the closing prices. The closing
price decreases sharply but then continues to follow a positive trend. In Figure 3
(Lower) the log return series has its most volatile period during the financial crisis of
2008, in accordance with the upper plot in Figure 3. The log return plot also reveals
volatility clusterings which is seen by periods of high volatility followed by periods
of low volatility, as discussed in section 2.3.

For a normally distributed sample, the skewness is expected to be zero and the
kurtosis 3, where the zero skewness indicates symmetric distribution (see Appendix
C for more details about skewness and kurtosis). The Student’s t distribution is
symmetric just as the Normal distribution but with higher peak since it is heavy-
tailed. We provide the descriptive statistics for the log return series of OMXS30 in
Table 1. In Table 1 is can be seen that the skewness of the log return series is close
to zero which indicates that the symmetry seems to be fulfilled. However, the high
kurtosis in Table 1 reveals that the data is to heavy-tailed in order to fit the normal
assumption. The kurtosis implies that a high-peakes, or leptokurtic, distribution
would be a better fit than a normal distribution.

Mean 0.00027
Median 0.00060
Minimun -0.07513
Maximum 0.09865
Std.Dev 0.01444

Skewness 0.04270
Kurtosis 7.82603

Table 1: Descriptive statistics of the OMXS30 log return series from Jan 1st 2005 to
Dec 29th 2017.

To conlude this section we state that the volatility clusterings of the log return series
in Figure 3 and the descriptive statistics in Table 1 clearly indicate that the log
return series does not fit the normal assumption. Despite this we will build our
volatility models assuming both Normal and Stundent’s t distributed innovations.

5.2 Testing for ARCH-effect

To determine whether log return series in Equation 4 is serially uncorrelated but
dependent, we check for significant correlation in the squared log return series and
no correlation in the non-squared log return series. As explained in section 4.5, we
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test for ARCH-effect by examining the ACF plot of the log return series and the
squared log return series, shown in Figure 4. The pink dashed lines in the ACF plot
denotes the 95% confidence interval. If the number of significant lags that exceed
the confidence interval are more than 5% of the total lags, the series is said to be
correlated. Note that the zero lag is always strongly significant since it describes
the correlation function between the series with no lag, that is Cov(rt, rt), and is
therefore equal to one.

0 5 10 15 20 25 30

−
0.

1
0.

1
0.

3

Lag

A
C

F

Log return

0 5 10 15 20 25 30
−

0.
1

0.
1

0.
3

Lag

A
C

F

Squared log return

Figure 4: Autocorrelation function of the log returns (Right) and squared log returns
(Left), with the pink lines denotes the 95% confidence interval.

In Figure 4 the strong correlation in the squared returns confirms the presence of
conditional heteroskedasticity, i.e., the ARCH effect. Although the ACF of the
non-squared series exhibits relatively weaker correlation compared to the squared
returns, it is seen that the number of significant lags of the log returns seem to
be greater than 5% of total lags. This could indicate that the serial correlation is
non-zero and violate the assumption of serially uncorrelated return series.

The graphical analysis is complemented by performing a Ljung-Box test, where the
null hypothesis assumes no serial correlation up to the k:th lag in the return series,
whilst the alternative hypothesis assumes non-zero autocorrelation. The results are
summarized in Table 2.

OMXS30 Series Chi.squared statistic p-value
Log returns 58.831 0.000151
Squared log returns 2969.94 <2.2e-16

Table 2: Statistics of the Ljung-Box test for the log returns of OMXS30 up to the
35:th lag.

The null hypothesis of the Ljung-Box test is rejected for the squared log return,
indicating that the series is conditionally heteroskedastic which verifies the usage of
an ARCH model. The test also stipulates that correlation in the non-squared series
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is present, which means that the series does not hold the assumptions of the serially
uncorrelated log return series. To extract any serial correlation from the observed
return series we specify a model for the conditional mean in Equation 4 by building
an ARMA(1,1)-model, as in Equation 11.

As mentioned in section 4.5, we check the standardized residuals to ensure that the
linear dependencies are removed from the standardized residuals of the ARMA(1,1)
model. A Ljung-Box test is performed and the p-value for the test is 0.07881, so
the null hypothesis of zero correlation holds. The ACF plot of the residuals of
the ARMA(1,1) are provided in Appendix E. It is seen in Figure 8 in that the
significant lags in the residuals are reduced, which means that we managed to extract
the serial correlations. We can conclude that the fitted model has uncorrelated
residuals and clear evidence of strong correlation in the squared residuals, in other
words conditional volatility. Hence, the ARMA(1,1) model seems to have all desired
properties, which brings us in position to fit the and GARCH models to capture the
conditional heteroskedasticity of the error terms.
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6 Empirical Results and Analysis

6.1 GARCH estimation

As mentioned before we fit two models: an ARMA(1,1)-GARCH(1,1) model with
Normal innovations and one ARMA(1,1)-GARCH(1,1) model with Student’s t dis-
tributed innovations. We refer to the models as the Normal model and the Student’s
t model. In this section we present the obtained models and check how well the
criteria of the GARCH model hold. The main subjects that are analyzed are that
the residuals of the fitted models should follow a white noise series, the empirical
quantiles should match the theoretical quantiles of the assumed distribution and we
also present the parameters of the models. Note that the models are estimated on
the in-sample period for the OMX30 log return series (see section 4.2).

Fitting an ARMA(1,1)-GARCH(1,1) model we expect the residuals to resemble a
white noise series for the model to be adequate since it should have captured the
conditional volatility of the error terms. The Student’s t model and the Normal
model has very similar correlation plots which is why we choose to only present the
ACF plot of the standardized residuals and the squared standardized residuals of
the Normal model in Figure 5. In Figure 5 the standardized residual series seem
to imitate a white noise series. The squared standardized residuals in the left plot
in Figure 5 show one significant observation at lag 11, but this implication is not
strong enough for us to reject that the series is i.i.d. We support this statement
by using Figure 10 in Appendix E as a reference where we illustrate the outcome
of significant lags for a simulated white noise series with 10’000 standard normal
random variables.
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Figure 5: The ACF plot of the standardized residuals (Left) and the squared
standardized residuals (Right) for the ARMA(1,1)-GARCH(1,1) model with Normal
conditional distributed innovations. The pink dashed lines denote a 95% confidence
interval.
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We compare the serial correlations in Figure 5 with the ones in Figure 4 and we can
state that the models have successfully filtered out the dependencies in the squared
series. This is also confirmed by Ljung-Box test on the squared residuals that show a
p-value of 0.08827 for the Normal squared innovations and 0.1488 for the Student’s t
squared innovations. Thus, the null hypothesis is not rejected for both models which
means that there is no serial correlation in the variance of the error terms of the
Student’s t model and Normal model. This indicates that the standardized residuals
of the models contain no conditional heteroskedasticity so that the volatility seems
captured by the fitted models.

If the models are fitted accurately then the assumed distributions for the innovations
of the models should be in line with the empirical distribution of the innovations. In
Figure 6 we demonstrate the quantile-quantile plots for the standardized residuals
of the models, where the left figure represents the Normal model’s innovations and
the right figure represents the Student’s t model’s innovations. The Student’s t
innovations are plotted against a quantile from a standardized Student’s t distribution
with seven degrees of freedom, and the Normal innovations are compared to a standard
Normal distribution. The degrees of freedom were determined by testing different
numbers and choosing the one where the line fitted most observations.
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Figure 6: QQ-plots for the standardized model with Normal innovations compared
to standard Normal distribution (Left), and the for the model with Student’s t
innovations with 7 degrees of freedom (Right).

It is seen i Figure 6 (Left) that the lower tails are much heavier than those of a
standard Normal distribution. A closer look reveals the observations from the Normal
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quantile plot deviates from the line more than those for the Student’s t distribution,
yet the latter does not seem to capture the upper tails. Although none of the options
are optimal since the quantiles are not shown as a straight line, we assume that the
model with Student’s t distribution is be a better fit than the Normal distribution.

The parameters of the two obtained ARMA(1,1)-GARCH(1,1) models are calculated
with Maximum Likelihood Estimation (see Appendix D). The estimations are pre-
sented in Table 3 (Upper) for the Normal model and (Lower) for the Student’s t
model. In Table 3 it is seen that the estimated β1 (beta1) parameter for both models
is highly and has a higher value than other parameters. Since β1 is the coefficient in
front of σt−1, it indicates that including the past values of the conditional variance
provides an accurate estimation of the current conditional variance. In other words,
we interpret it as that yesterday’s volatility indeed has great impact on today’s
volatility.

The ARCH parameter α1 (alpha1) of the conditional squared residuals has its
estimate close to zero, but the parameter is significant. Thus, the previous shock
term a2

t−1 does not affect the volatility as much as one might have expected, despite
the clear evidence of correlation in the squared residuals of the ARMA(1,1) model. It
is seen that the only parameter that is non-significant is the constant omega, which
is common for financial time series.

Normal Estimates Std.Error t-value p-value
mu 0.000708 0.000152 4.6727 3e-06
ar1 0.819545 0.084528 9.6955 0
ma1 -0.866815 0.073667 -11.7667 0
omega 2e-06 1e-06 1.4449 0.148483
alpha1 0.083738 0.01513 5.5346 0
beta1 0.905592 0.016005 56.5804 0

Student’s t Estimates Std.Error t-value p-value
mu 0.000866 0.000141 6.15832 0
ar1 0.80376 0.100704 7.98145 0
ma1 -0.854198 0.088632 -9.63753 0
omega 2e-06 2e-06 0.94859 0.34283
alpha1 0.083737 0.020396 4.10549 4e-05
beta1 0.910084 0.020702 43.9607 0

Table 3: Maximum likelihood estimations of in-sample parameters of the ARMA(1,1)-
GARCH(1,1) model with Normal innovations (Upper) and Student’s t innovations
(Lower), for the OMX30 log return series.
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From Table 3 we observe that the α1 + β1 < 1 for both models, which means that
both models hold the assumption of mean reversion. The α1 + β1 are very close
to adding up to one which implies that the volatility is persistent, specially for the
Student’s t model.

The log likelihood value is 7660 for the Student’s t model and 7626 for the Normal
model. Hence, it suggests that the assumption of Student’s t distribution of the
ARMA(1,1)-GARCH(1,1) model is the better fit to the data.

So far, the Normal model and Student’s t model seem to be a proper fit for the data,
but according to Angelidis et al. (2004) and Tsay (2008), good or bad results of the
in-samples does not indicate good or bad out-of-sample results. Thus, before making
any statements about the models forecasting abilities, we evaluate the performance
of the models in estimating Value at Risk by conducting backtests.

6.2 Value at Risk Backtest

We use the ARMA(1,1)-GARCH(1,1) models in a rolling window approach (see
section 4.3) to forecast one thousand daily VaR estimates, with the level of confidence
α set for 99%. The outcome of the backtest forecasting are illustrated in Figure
7. The actual observations of the log returns are plotted in gray, the black line
represt the Value at risk level and the red marked observations are the numbers of
exceedances. The exceedances are the observations where the returns are lower than
the Value at Risk.

In Figure 7 it can be seen that the Normal and Student’s t VaR model have similar
alterations of the line and seem to follow the same trend. However, it is observed
that the position of the Normal VaR model lies on a higher level than the Student’s
t model, which naturally generates more exceedances. The expected exceedances
of the VaR models at a 99% level of confidence is 10, and the Normal VaR models
accumulates in total 14 exceedances, whereas the Student’s t model generated 11
ones. Thus, we have reasons to believe that the non-normal model outperforms the
normal and that the Normal VaR model underestimates the VaR. Underestimating
VaR, as mentioned earlier, means that the model estimates a VaR that is too low,
which generates more exceedances in the backtests. We also observed that some
of the exceedances in Figure 7 seem to be somewhat clustered, specifically those
around the time 2016. This could imply that the models do not fully capture the
conditional volatility of the data and that the exceedances therefore still might reveal
some correlations.
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Figure 7: Backtests of the ARMA(1,1)-GARCH(1,1) models’ rolling forecasts of
99% Value at Risk for the (a) Normal VaR model and (b) Student’s t VaR model.

We present the summarized results of the backtest coverage of the ARMA(1,1)-
GARCH(1,1) models estimations of daily VaR in Table 4. It reveals that the
likelihood ratio statistics LRuc and LRuc of the coverage tests are below the critical
value. Even though the exceedances are more than the expected the p-values also
prove that the null hypothesis is not rejected on the 5% level for the tests. These
results indicate that both VaR models hold the expected number of exceedances,
and that the exceedances occur independently. Even though we could observe that
some failures were clustered together, the Christoffersen’s test of independence holds:
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we cannot reject the hypothesis of independent failures.

VaR Backtest Normal Student’s t
Backtest Length: 1000 1000
Alpha: 0.01 0.01
Expected Exceed: 10 10
Actual VaR Exceed: 14 11
Unconditional Coverage (Kupiec)
Null-Hypothesis: Correct Exceedances
LR.uc Statistic: 1.437 0.098
LR.uc Critical: 6.635 6.635
LR.uc p-value: 0.231 0.754
Reject Null: NO NO

Conditional Coverage (Christoffersen)
Null-Hypothesis: Correct Exceedances & Independence of Failures
LR.cc Statistic: 1.835 0.343
LR.cc Critical: 9.21 9.21
LR.cc p-value: 0.399 0.842
Reject Null: NO NO

Table 4: Backtest statistics of Normal and Student’s t VaR model evaluated by
Kupiec’s and Christoffersen’s coverage tests.

It is clear that the Student’s t VaR model outperforms the Normal VaR model.
However, we cannot reject the Normal VaR model according to the backtests, since
it does not significantly underestimate VaR as we thought it would. Although the
Normal model is not rejected, we still state that the leptokurtic Student’s t model
is preferred for VaR framework. The results of the backtests however indicate that
both models generate accurate forecasts of VaR and are specified well enough to
cope with the changing volatility in our log return series. Thus, the fitted models of
the estimation sample are valid to use for predicting daily VaR in the out-of-sample
period.
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7 Discussion

This thesis analyzes the performance of GARCH(1,1) models in estimating a thousand
daily Value at Risk predictions where the confidence level is set for 99%. The
ARMA(1,1)-GARCH(1,1) model is fitted on an in-sample period of 2285 observations
for the OMXS30 index. We make a distributional assumption of regarding the
innovations of the models where we assume normal distribution and student’s t
distribution. We use the two ARMA(1,1)-GARCH(1,1) models to generate VaR
predictions with a rolling window forecast over the out-of-sample period. The
performances of the models are evaluated using backtesting methods, specifically,
Christoffersen’s conditional coverage test and Kupiec’s unconditional coverage test.
The tests reveal that the null hypothesis holds for both coverage tests. This implies
that the exceedances in the estimates occur independently, hence are not clustered
and the accumulated exceedances matches the expected exceedances given by the
level of confidence α = 0.01. According to the backtest results, the models are
specified well enough to adequately capture the volatility process of the forecast
period and generate accurate estimates of VaR.

There are many subjects in the construction of the backtesting procedure that may
have had a great impact on the obtained results. To begin with, the chosen length
of the in-sample period for the estimated models, as well as the length of the out-of-
sample period for the forecasts, may have generated different results if the samples
had different sizes.

Another important factor that significantly effects the outcome of the VaR estimates
is the actual type of observed data in the in-sample period. For example, if the
observed data is not so volatile then the estimated model may not be capable of
generating forecast of a highly volatile forecast period, and vice versa. In this thesis,
the in-sample is highly volatile because of the financial market crash of Sep 28th 2008,
and the out-of-sample period is rather calm but also exhibits a relatively weaker
volatility around observations 2600− 2800, Figure 3. The backtesting results implied
well performance of the models’ estimations of VaR. However, considering the highly
volatile data used for fitting the models, and the relatively calm volatility in the
forecast period, we interpret the backtest results with caution. As a complement
to overcome this problem one might use the estimated models for “stress testing”,
proposed by Christoffersen (2003). Stress testing the model means that we expose
the estimate model to extreme volatile data, to test the model’s performance under
extreme market conditions.

Type I error means rejecting a true null hypothesis, whereas type II means failing to
reject a false null hypothesis. According to Jorion (2007), the 1% Value at Risk level
might sometimes cause low power to the backtest since it does not generate enough
exceedances, which initially could induce type I and II errors in the coverage tests
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for borderline values. This may be the explanation for why the Normal VaR model
was not rejected in the coverage tests of the backtesting. This could of course be
judged by comparing different levels of VaR.

It is worth mentioning that Christoffersen’s conditional coverage test only considers
dependencies between two following exceedances, that is, today given yesterday.
Put in other words, the test only measures independencies in one step, but fails to
recognize longer period clustering, for instance, today given a week ago. Thus, a
complement to the applied coverage tests in this thesis would be the conditional
duration test suggested by Christoffersen and Pelletier (2003), that do take longer
step dependencies into account.

As mentioned in section 3.2.2 the GARCH model, as well as the ARCH model,
fails to distinguish between negative or positive shocks since the model includes
the squared values of past innovations and variance. Perhaps a better fit would
have been obtained if we extended the GARCH model to an EGARCH model by
including a third parameter that allows the volatility to react differently to positive
and negative shocks.

It is worth noting that the results from the conditional volatility modeling are in line
with Tsay (2002, 2010). The results of the backtesting seems promising. Although
the GARCH model with the Student’s t distributed innovations outperforms the
Normal model, we cannot state that the Normal model is not specified well enough
to be used for the estimation of VaR. However, we can suggest that according to
our results, it is more suitable to use a non-normal leptokurtic distribution for the
innovations that captures the high peak of extreme data points that asset returns
have.

Moreover, the distributional assumption appears to be a matter of trial and error. In
the analysis of the quantile plots (Figure 6) it was seen that the empirical quantiles did
not match neither of the assumed distributions for the innovations. In Angelidis et al.
(2004), who examined the Normal, Student’s t and GED distributions concluded that
no model was clearly superior but that the leptokurtic Student’s t model generated
the most adequate VaR predictions. In the backtesting in this thesis, the Student’s
t VaR model performed better than the Normal VaR model, yet we are unable to
reject the Normal VaR model. Hence, our results are in line with Angelidis et al.
(2004).

Having this said the conclusions we draw based on our results are: we cannot
state that the distributional assumptions have a significant effects to the predictive
accuracy of the VaR models predictions, and the backtesting method is rather fragile
in the sense that it is very dependent of the type of data in the in-sample and
out-of-sample, as well as the sizes of the sub-samples.
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8 Conclusion

The backtests of the models suggests that both models are able to properly imitate
and predict the volatility process of the OMXS30 index log return series. Despite
the results seen that the Student’s t VaR model outperforms the Normal VaR model,
however there are not enough evidence to prove that normal distributed innovations
are not legitimate enough to use in VaR framework. Therefore, we cannot state that
that there is a significant difference in the outcomes of the VaR estimate based on the
distributional assumptions. Nonetheless, we conclude that Student’s t distribution is
preferred when estimating daily VaR, since the high-peak allows for more extreme
values that log return series has, as a result of conditional volatility.

We find the method of backtesting rather fragile since the generated forecasts
are considerably affected by the volatility levels in the in-sample observations,
the estimation and forecast sample sizes, and the chosen evaluation tests. To
overcome these problems we suggest: stress testing the estimation sample, testing
the VaR estimates on several confidence levels, and using more evaluation tests in
the backtesting to give a proper perspective of the predictive accuracy of the models.
If researches are aware of all flaws associated with the evaluation of VaR estimates,
then the VaR can be very useful in risk managements.
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Appendix

A Autocorrelation function (ACF)

The correlation coefficient measures the strength of linear dependence between two
random variables X and Y defined by,

ρx,y = Cov(X,Y )√
V ar(X)V ar(Y )

= E[(X − µx)(Y − µy)]√
E(X − µx)2E(Y − µy)2

(20)

where µx and µy is the mean of X and Y, and the variances of the variables are
assumed to exist where the variables are uncorrelated if ρx,y = 0 (Tsay 2010 pp.30).
In time series studies the theory of correlation is generalized to autocorrelation. The
autocorrelation function is a measure of the correlation between observations in a
time series rt that are separated by l time units rt and rt−l. The lag operator l shifts
the series rt such that the lagged values rt−l are aligned with the return series rt
itself. Just as the correlation coefficient describes the similarity between two random
variables X and Y , the autocorrelation function determines the serial correlation
between the time series and its own lagged values. When observations in a time
series are serially correlated, it means that the series are linearly dependent and that
future values are affected by past values. We define the autocorrelation function
(henceforth ACF) by

ρl = Cov(rt, rt−l)√
V ar(rt)V ar(rt−l)

= Cov(rt, rt−l)
V ar(rt)

= γl
γ0
. (21)

Note that this equality holds because the series are assumed to be weakly stationary.
For a white noise process the autocorrelation is zero at all lags except for lag zero
where the autocorrelation is one.

B Ljung-Box

The Ljung-Box test is a tool much used in time series analysis to jointly test
autocorrelations of a log return time series rt. The null hypothesis and the alternative
hypothesis is formulated by

H0 : ρ1 = ρ2 = ... = ρm = 0
Ha : ρi 6= 0, for some i ∈ (1, ...,m).

The Ljung-Box test statistic is defined as
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Q(m) = N(N + 2)
∑m
l=1

ρ̂2
l

N−l

where N is the size of the series, ρl is the autocorrelation at lag l and m is the
number of lags which we are testing in our model. The null hypothesis is rejected if
Q(m) > χ2

α where χ2
α denotes the (1-α)th quantile of a chi-squared distribution with

m degrees of freedom (Tsay 2010, pp.32-33).

C Skewness and Kurtosis

Consider a random variable X. The skewness S(x) and kurtosis K(x) of X are given
by the normalized third and fourth central moments defines as (Tsay 2010, pp.9),

S(x) = E
[
X−µ3

x
σ3

x

]
, K(x) = E

[
X−µ4

x
σ4

x

]
The skewness measures the symmetry of X with respect to its mean which tells
the amount of departure from horizontal symmetry. The kurtosis measures the tail
thickness and describes how tall and sharp the peak is. For a Normally distributed
sample xi (i = 1, . . . , N), the skewness is 0 and the kurtosis is 3. The quantity
K(x)− 3 is called the excess kurtosis. If the kurtosis is larger than three the set is
leptokurtic, for which it is better to assume a Student’s t distribution.

D Maximum Likelihood Estimation (MLE)

In order to estimate the parameters of the obtained models we use Maximum
Likelihood Estimation (MLE). In this time series analysis the observations of the
log return series {rt}Tt=1 are not independent. By considering the observations
{r1, r2 . . . , rT } fixed, the joint probability density function can be expressed by
conditioning:

f(rt, rt−1, . . . , r1; θ) = f(rt|rt−1, . . . , r1; θ)× . . .× f(r2|r1; θ)× f(r1; θ).

Here θ detones vector that consists of the unknown parameters vector which in
our case is θ = (α0, α1, β1). The general likelihood function L(θ; rt) can then be
described by:

L(θ; rt) =
∏T
t=1 f(rt|rt−1, . . . , r1; θ).

Despite the formal definition of the likelihood function it is more common to use the
logarithmic likelihood function in practice, also known as the log-likelihood function:

l(θ; rt) = log
(∏T

t=1 f(rt|rt−1, . . . , r1; θ)
)

=
∑T
t=1 log f(rt|rt−1, . . . , r1; θ).

Since we are interested in the innovations series at rather than the actual log return
series rt we recapitulate that rt = µt + at = µt + σtεt since at = σtεt (Equation 3
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and Equation 13). Under the distributional assumption of standard normal εt in the
conditional log-likelihood function for a GARCH(p,q) model with normal innovations,
at = σtεt ∼ N(0, σ2

t ) can be approached. Since then, given the history up to time
t− 1, εt ∼ N(0, 1) we can express the density of εt by

f(εt|εt−1, . . . , ε0) = 1√
2π exp

(
− ε2t

2

)
.

and the density of at by

f(at|at−1, . . . , a0) = 1√
2πσ2

t

exp
(
− a2

t

2σ2
t

)
.

For the GARCH(p,q) model where the paramater vector θ is θ = (α0, α1, . . . , αp, β1, β2, . . . , βq),
we calculate the conditional log-likelihood function by

l(θ; at−1, . . . , a0) =
∑T
t=q+1 log f(at|at−1, . . . , a0)

=
∑T
t=q+1 log 1√

2πσ2
t

exp
(
− a2

t

2σ2
t

)
=
∑T
t=q+1

[
−1

2 log(2π)− 1
2 log(σ2

t )−
a2

t

2σ2
t

]
The MLE are obtained by deriving the conditional log-likelihood function with
respect to the parameters in θ and set the derivation functions equal to zero. Thereby
maximizing the log-likelihood functions to obtain the estimates of θ̂. For more details
and information of obtaining MLE of GARCH(p,q) models under the assumption of
Student’s t distrion we refer to Tsay (2010, pp.120-121).
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E Additional figures
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Figure 8: ACF plot of standardized residuals (Left) and the squared standardized
residuals (Right) of the ARMA(1,1)-model. The pink dashed lines denote a 95%
confidence interval.

0 5 10 15 20 25 30

−
0.

10
0.

00
0.

10

Lag

A
C

F

Residuals

0 5 10 15 20 25 30

−
0.

10
0.

00
0.

10

Lag

A
C

F

Squared residuals

Figure 9: The ACF plot of the standardized residuals (Left) and the squared
standardized residuals (Right) for the ARMA(1,1)-GARCH(1,1) model with
Student’s t conditional distributed innovations. The pink dashed lines denote a 95%
confidence interval.
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Figure 10: Illustrating the outcome of significant lags in a simulated white noise
series of 10’000 standard normal variables. The pink dashed lines denote a 95%
confidence interval.
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