
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Living with Trees
Predicting Swedish Apartment Prices with eXtreme
Gradient Boosting

Andreas Hörnqvist



Matematiska institutionen

Kandidatuppsats 2019:3
Matematisk statistik
Januari 2019

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm



Mathematical Statistics
Stockholm University
Bachelor Thesis 2019:3

http://www.math.su.se

Living with Trees
Predicting Swedish Apartment Prices with eXtreme

Gradient Boosting

Andreas Hörnqvist∗

January 2019

Abstract

The recent advent of statistical learning methods promises accu-

rate predictions and insights. The ideas of what would later be the

underpinnings of decision trees was first introduced in the nineteen-

fifties. Today the use of serial ensembles of decision trees deliver un-

paralleled performance on a wide range of learning problems. One

method that leverages such a procedure is eXtreme Gradient Boost-

ing. The fair market value of real estate property is usually determined

by a licensed appraiser, such as a real estate agent. While knowl-

edgable professionals appraisers are due to make subjective estimates

resulting in uncertain assessments. The purpose of this thesis is to

produce a model that rivals the predictive performance of appraisers

and provides both buyers and sellers objective price estimates. Apply-

ing eXtreme Gradient Boosting to a dataset containing records of sold

apartments in Sweden during 2013 to 2018 results in such a model.

Leveraging bespoke predictors and tuning meta-parameters a predic-

tive model that in fact outperforms appraisers estimates, in terms of

list prices, is achieved. The most important features for assessing the

market value is determined to be local price point, living area and

rent.
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1 Introduction

”The fair market value is the price at which a property would change hands
between a willing buyer and a willing seller, neither being under any com-
pulsion to buy or to sell and both having reasonable knowledge of relevant
facts.”

- United states vs. Cartwright, 411 U.S. 546, 551 (1973)

Determining the fair market value of tenant-owned Swedish apartments
(hereinafter referred to as apartments) is the responsibility of licensed ap-
praisers, often real estate agents. The task of appraisal is integral in prepa-
ration for putting an apartment on the market as it is the basis of the
advertised list price, Mäklarsamfundet (2017) [26]. Deliberately stating a
list price substantially below the fair market value is considered malpractice
and can result in the disqualification of the appraisers license.

While the actual market value of an apartment is determined in the
final purchase agreement between buyer and seller, the estimation of a fair
market value is of importance to to both parties as it is the baseline of price
negotiations.

There are different methods for establishing the fair market value of
apartments, among them the widely used ortsprismetoden. The outcome of
ortsprismetoden is however dependent on the appraisers subjective assess-
ment and consequently varies between practitioners.

A method for objective and accurate estimation of a fair market value
would benefit sellers by reducing the uncertainty caused by the appraisers
subjective assessment. Potential buyers would also be served by such a
model as price expectations influenced by list price would closer match the
final price.

The emergence of the field of statistical learning in combination with
easy access to large datasets provides a great opportunity to create powerful
predictive models. Devising such a model in an effort to predict apartment
prices, and thus fair market value, is the aim of this thesis.

1.1 Background

Booli is a company that provides its users information on housing in Sweden.
Among its services are an API which allows access to historical and current
data on the Swedish housing market. The dataset encompasses most of the
sold and listed housing objects from 2013 and forward, containing variables
like price, day of sale, location, etc.

Valuation using ortsprismetoden takes into account the delimited rele-
vant market, e.g. geographical area, similarities of objects, and temporal
distance, amongst other criteria, Persson (2005) [27]. With ortsprismetoden
in mind we make the observation that the Booli dataset contains a number
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of the features required for making estimates of market values. This allows
us to pursue a predictive model with some confidence.

To formulate a model using statistical learning methods it is helpful to
identify some characteristics of the model and data. The model should out-
put a continuous value, the predicted price. This is the dependent variable.
The dataset contains the outcome of the dependent variable, that is to say
that the data is labelled. Furthermore the method, and hence the model,
preferably leverages aspects of the data that are known to be important
for accurate predictions, e.g. geospatiality and temporality. We also know
that housing markets can demonstrate non-linear behavior, Muellbauer &
Murphy (2012) [25].

Given the above and using statistical learning nomenclature it can be
concluded the problem is that of supervised regression, and should in the
current case preferably be solved using a method that accounts for possible
non-linearity.

The field of statistical learning provides many candidate methods for
such a problem and in a practical setting one would often try, and combine,
several of them. However, given the constraints of an academic thesis I have
opted to choose one primary method, namely XGBoost. XGBoost have
been proven to outperform other methods on a wide variety of datasets,
Chen & Guestrin (2016) [5] and is thus a promising method for producing
the predictive model.

1.2 Aim

The aim of this thesis is to create a predictive model that rivals the pro-
ficiency of professional appraisers. This means creating a model that does
short term prediction on Swedish housing prices. Where short term reflects
estimation under current market conditions. The model should be accurate
enough to have practical use and the method used should be eXtreme gra-
dient boosting, applied to the Booli dataset. In summary, the aspiration of
this thesis is to answer if:

it is possible to achieve a satisfactory predictive model
for Swedish housing using Booli data and XGBoost?

1.3 Related Work

The intent of this section is to provide an overview of the research and
evolution of methodology culminating in XGBoost. The overview is meant
to be informal and many of the concepts and methods introduced may be
unfamiliar but will be further discussed in Chapter 2.

In order to comprehend the method of gradient boosting in general and
XGBoost in particular some background information will be necessary. We
will see that XGBoost, a special case of gradient boosting, builds on a variety
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of techniques, the most fundamental among them is decision trees, making
them a good place to start.

In decision tree learning, predictions are inferred from observed values of
a set of p predictor variables XT = X1, . . . , Xp and response y via a predic-
tive model Ŷ = f(X)+󰂃, where Ŷ are the predictions and 󰂃 is random noise.
The matching observations of y and X are usually referred to as a training
or instance data. The model is constructed by recursive binary splitting
where the dependent variable is successively split into two partitions given
some criteria for a predictor variable. The aim is for each partition to be
be as internally homogenous as possible while being different with regard
to the dependent variable. This procedure generates a tree like structure
where an observation can be sent down the tree from the initial root-node
(decision trees are grown upside-down) to a final leaf-node containing a pre-
dictive value. Figure 2 on page 17 depicts the outcome of such a procedure,
the left panel illustrates the partitions and the right panel the corresponding
tree-structure. Tree-based models will be discussed more in-depth in Section
2.4.

Tree growing or hierarchical splitting has its origin in analysis of survey
data according to Ritschard (2013) [30]. Belson (1959) [1] is often attributed
with being the first to suggest generating tree-like structures by segmenting
data. Belson proposed to develop relevant matching (i.e. representability)
criteria by way of predictive composites, that is by establishing the predictive
power of a range of possible predictor variables.

A few years after Belson’s paper the first regression tree algorithm was
published by Morgan & Sonquist (1963) [24]. The proposed algorithm was
dubbed Automatic Interaction Detection (AID). AID predicts a regression-
type (i.e. continuous) variable using a set of categorical predictors, which
generally only take on a few possible values. AID follows the binary split-
ting procedure described above until a certain threshold of improvement,
also referred to as a stopping criteria, is reached. The predicted value, or
leaf weight, returned in each leaf node is then the node sample mean. The
optimization procedure for finding leaf nodes and leaf weights are of partic-
ular interest and will be explored throughout Chapter 2.

Messenger & Mandel (1972) [23] broadened the AID approach to handle
categorical response variables using the method Theta Automatic Interac-
tion Detection (THAID). Like its predecessor THAID chooses splits based
on some loss function. In the context of statistical learning a loss function is
typically a measure of difference between estimated and actual values of in-
stance data. Several loss functions are suggested in the paper, among them
entropy φ(t) = −Σjp(j|t)log p(j|t) and the Gini index φ(t) = 1−Σjp

2(j|t),
where p(j|t) is the proportion of class j observations at node t. The choice
of loss function is integral for achieving satisfactory predictive performance
and will be formally introduced in Section 2.2.

Tree based models did not immediately gain traction in the statistics
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community however. Concerns about over-fitting were raised by Einhorn
(1972) [10] as were problems with variable masking, Doyle (1973) [9]. Over-
fitting occurs when a model corresponds too closely to a particular set of data
and thus may fail at predicting independent data. Over-fitting will be dis-
cussed thoroughly in Section 2.2.1. Variable masking is a phenomenon that
occurs when inferring importance of particular predictors. When masked,
predictors known to be important might not receive an appropriate impor-
tance rank. Masking and variable importance will be discussed in Section
2.3.

Despite some initial doubts more efficient techniques for carrying out
splits were proposed and with Breiman’s (1984) [3] paper interest was rein-
vigorated. Brieman’s proposed algorithm manages both classification and
regression problems, as evident by the name Classification And Regression
Trees (CART). CART uses the same splitting criteria as previous methods
but Brieman suggest the use of a cross-validated pruning scheme instead of a
stopping criteria. Pruning reduces the size of a tree by removing leaf-nodes
that do not improve predictive performance, thus reducing model complex-
ity and alleviating over-fitting. Cross-validation in turn is a method used for
estimating model performance. Cross-validation will be discussed in Section
2.2.2. Pruning solves many of the over-fitting problems of AID and THAID.
Among other improvements Brieman also devised a way to handle missing
data values in a node by performing surrogate splits. That is splits on alter-
nate variables other than that of the preferred split due to missing values.
The appropriate action when dealing with missing values will be discussed
in Section 2.7.2. CART are still prevalent today and are for example often
used in conjunction with XGBoost.

Can a set of weak learners create a single strong learner? This was the
question posed by Kearns & Valiant (1989) [16]. A learner in this context
is just a predictive model. When the response variable is categorical such a
learner is often referred to as a classifier, otherwise the learner is commonly
called a regressor. In the paper a weak learner is defined as a classifier
which only moderately correlates with the true classification, i.e. it is only
marginally better than random guessing. A single weak learner is usually
some variation of a learning model, e.g. CART. The question prompted
a swift reply by Schapire (1990) [31] where he made the case for turning
many weak learners into a strong learner and postulated the first boosting
algorithm. Schapire & Freund (1997) [13] later developed a way for the
method to adapt to the weak learners and thereby improving performance.
Due to its adaptive nature the algorithm was dubbed Adaboost, short for
adaptive boosting. They were later awarded the Gödel prize for their work
on Adaboost. Boosting in general is the practice of iteratively training weak
learners, usually on adjusted versions of the the instance data, and then
adding them together to create a strong learner with enhanced predictive
capabilities. Boosting will be discussed in Section 2.5.
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Inspired by the observation that boosting algorithms could be interpreted
as to perform optimization on a given loss function Brieman (1997) [4] de-
veloped the idea of gradient boosting. Following Briemans notion Friedman
(2001) [12] developed the first regression gradient boosting algorithm. Dur-
ing the same time Mason et. al (1999) [22] suggested the view of boosting
as iterative functional gradient descent and subsequently showed that Ad-
aboost among others were special cases of gradient boosting algorithms. In
Section 2.8 we will see that it is possible to mimic optimization by gradient
descent with boosting using CART as weak learners. The realization that
boosting can approximate gradient descent is the rationale for the naming
convention of gradient boosting.

The advancement in gradient boosting inspired a variety of variations,
among them XGBoost. XGBoost was created by Chen & Guestrin (2016)
[5] and has gained tremendous popularity since its introcuction. Some of
the algorithm’s success is due to ease of implementation, complexity control
and sparsity awareness, but the main appeal is state-of-the-art performance.
XGBoost is the main method used in this thesis and will be explored thor-
oughly in sections 2.9 and 2.10.

1.4 Delimitations

The main delimitation of this thesis is the exclusive use of the XGBoost
algorithm. There are many legitimate approaches but exploring more than
one in-depth would cause the scope of this thesis to grow much too large.

As we shall see later XGBoost operates using a so called loss function.
The loss function used in XGBoost can be any twice differentiable strictly
convex function. In this thesis however only the squared error loss will be
explored. The reason for the restriction to one loss function is the same as
above.

1.5 Ethics and Sustainability

There are many possible outsets for discussion on ethics regarding statistical
learning, ranging from dystopian killer machines to the societal implications
of statistical bias in algorithms. In fact the ethical implications of statistical
learning spans several fields and a multitude of topics. In this thesis however,
a brief discussion on algorithmic bias will have to suffice. Algorithmic bias
is a topic of special importance when constructing predictive models.

As learning algorithms become more ubiquitous the cause for scrutiniz-
ing algorithmic neutrality increases, Seaver (2013) [32]. Danks & London
(2017) [8] describe algorithmic bias as when an algorithm is not merely a
neutral transformer of data or extractor of information. The notion of bias
in their discussion only pertains to deviating from some standard, moral,
legal, statistical or other. In other words, the moral standard is one among
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others and bias in this context does not necessarily imply something bad
or immoral. Furthermore they provide a taxonomy for different kinds of
algorithmic bias, dividing it into: training data bias, algorithmic focus bias,
algorithmic processing bias, respectively, and lastly context bias. Training
data bias is introduced when the dataset provided to the algorithm devi-
ates from the standard in some way. This can lead to otherwise neutral
algorithms yielding biased models.

Algorithmic focus bias arises when competing standards are pitted against
each other, take for example a variable not legally permitted to be used. This
data might be excluded for privacy reason but had it been included it might
have influenced the final model, and thus the model would be biased to
either a legal standard or statistical standard.

Algorithmic processing bias appear when the algorithm itself is biased
in some way, for example by the use of statistically biased estimator. We
shall see that algorithmic processing bias is prevalent in statistical learning
and several sections of this thesis is concerned with its implications. Once
again it is worth noting that not all bias is related to morality, although
there certainly can be moral implications of processing bias.

Finally Algorithmic context bias stems from inappropriate use of algo-
rithms. Most autonomous systems are deployed for a special purpose, in
a special context. Employing such a model outside of its intended context
can result in bias, moral, legal or otherwise. A trivial example would be an
autonomous vehicle trained for driving in right-hand traffic being deployed
in Great Britain, where left-hand traffic is the custom.

Not all of these examples of algorithmic bias are by themselves trouble-
some but it is crucial to be aware of the underlying causes to be able to
identify the cases which might be.

1.6 Outline

The outline of the thesis is as follows: In section 2 a more rigorous treat-
ment of the statistical and mathematical methods used in the thesis will be
presented. Section 3 serves as an exposition on the Booli data set and how
it is used. Section 4 will be dedicated to modeling with XGBoost where
parameter tuning and feature selection will be discussed. In section 5 the
resulting model and its metrics will be presented. Section 6 will contain dis-
cussion on method, model and provide broader perspective. Lastly Section
7 will conclude the thesis.

2 Theory

The aim of this chapter is to provide exposition on central concepts and
ideas of Statistical Learning. Special attention will be given variations of
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tree based boosting.The intention is that a student in mathematical statis-
tics should find the thesis self contained with regards to the mathematical
theory used. The theoretical presentation will follow that of The Elements
of Statistical Learning, Hastie et al. (2017) [14] unless otherwise stated.

2.1 Statistical Learning

At its core statistical learning can be though of as learning from data. From
the perspective of applied mathematics and statistics however learning is
considered function approximation.

Given a training set of observations T = {xi, yi}, i = 1, . . . , N , the pairs
{xi, yi} of the training set are viewed as a point in some (P +1)-dimensional
space, P being the dimensionality of the set of predictor variables, or fea-
tures, X, where XT = (X1, ..., XP ), and xTi = (xi1, ..., xiP ). The other
component of the training set yi is the response measurement matching the
predictors xi. The domain of f(xi), the function to be approximated, is then
equal to that of X and is related to the data via a model yi = f(xi) + 󰂃i,
where 󰂃i is the random error with expectation E[󰂃i] = 0. Achieving learning
in this setting is consistent with obtaining a useful approximation f̂(xi).

Furthermore statistical learning problems can be roughly categorized
into two classes; supervised and unsupervised. In supervised learning the
aim is to predict the values Ŷ = f̂(X)+ 󰂃 given the response variable Y and
set of predictor variables X. In the case of unsupervised learning the goal is
infer the properties of the joint density Pr(X = x), given the N observations
(x1, x2..., xN ) of a random P -vector X without help of a supervisor Y . The
key difference from supervised learning being the lack of examples yi to learn
from.

Supervised learning problems are commonly divided into regression prob-
lems and classification problems. The term regression in this context refers
to the output, or response, Y taking values in R, whereas classification im-
plies that the output measure is qualitative and taking values in the finite
set G = (G1, ...,Gm), m being the number of possible classes in the response.
It is worth noting that the input measures XT = (X1, ..., XP ) can be a mix
of both quantitative and qualitative measures in both cases.

The problem presented in this thesis is a supervised regression problem
which is why the theoretic discussion will focus on issues related to such
problems.

2.2 Model Selection and Assesment

The notion of performance of a learning model is related to how well it
accomplishes prediction on independent test data. Evaluation of this per-
formance is critical for model selection and assessment both guiding the
ultimate choice of model.
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We make the following distinction between model selection and assess-
ment:

(a) Model selection
Evaluation of prediction performance to determine which of several
competing models to choose.

(b) Model assessment
Evaluation of prediction performance on new data given a chosen
model.

A common initial approach for both selection and assessment is to divide a
dataset into three parts: training, validation and test set. The purpose of the
training set is naturally to train the model. The validation set is meant to
allow for comparison between competing models. Finally the test set is used
to estimate the prediction error of the ultimate model using out-of-sample
data.

Despite there being difficulty in providing general rules for a split-ratio,
as it depends on signal to noise ratio and data abundance, there are hueristics
for partitioning the data. Often a 50%-70% partition is recommended for
the training set and 15%-25% respectively for validation and test set. In
Section 2.2.2 we shall see however that there are ways to performs model
assessment more efficiently than splitting the data three ways.

In order to either select or assess a model we need to first define the
metric on which we base our conclusions. Given the response variable Y ,
predictorsX and a loss function L(Y, f̂(X)) that measures the error between
the Y and a predictive model f̂(X)

ErrT = EX,Y [L(Y, f̂(X))|T ] (1)

is referred to as the test error. The test error (1) is the prediction error
over some independent test data with both X and Y drawn at random from
their joint distribution and fixed training set T . In practice it is difficult to
estimate the conditional error effectively given some T . Instead the expected
test error

Err = E[ErrT ] = E[L(Y, f̂(X))] (2)

is routinely used for evaluation of performance. As we shall see in the
following section the test error has different characteristics than the training
error

err =
1

N

N󰁛

i=1

L(yi, f̂(xi)), (3)

the average loss over some training set T .
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2.2.1 The Bias-Variance Trade-off

Given some function-approximation f̂(x0) evaluated at point x0 and the
squared error loss the following decomposition of the expected test mean
squared error (MSE), E[L(y0, f̂(x0))] = E[(y0 − f̂(x0))

2|X = x0] hold,

E[(y0 − f̂(x0))
2|X = x0] = V ar(f̂(x0)) + [Bias(f̂(x0))]

2 + V ar(󰂃). (4)

Here E[(y0 − f̂(x0))
2|X = x0] refers to the average test MSE obtained

if repeatedly estimating f using a large number of training sets, each f̂
evaluated at x0 from a test set.

The decomposition (4) allows some insights: The expected test MSE
can’t be lower than the variance of the random error 󰂃 and, which will show
very important, that in order to achieve a low expected test MSE the model
should have low variance as well as low bias. In this context bias and variance
depends on the chosen models flexibility. We can think of model flexibility
as ”curvy-ness”. Take for example a linear model in comparison to a high
degree polynomial, the linear model will have a difficult time capturing non-
linearity in the data while the polynomial might fit perfectly to the training
data. The linear model would be biased since the model is too simple to
capture relationships in the data. The polynomial meanwhile would have
high variance in the sense that the model would change considerably if data
in the training set T were altered. As a rule of thumb variance increases
and bias decreases when a more flexible model is used. Balancing these
properties is a key challenge in Statistical learning.

As discussed in the previous section we would like to calculate the ex-
pected test error (2). An impulse might be to try and estimate it from the
training data T . This would however be a foolish endeavor. As the model
f̂ becomes increasingly complex the fit to the training data would improve
as bias decreased. However, the variance and test error would increase as
well. This relationship is illustrated in Figure 1. In other words, a model
with zero training error (3) would perform poorly on new data as the model
would be overfit to the training data. In the next section a method for
estimating the test error will be discussed.

2.2.2 Cross-Validation

Cross-validation is a widely used method for directly estimating the expected
test error E[L(Y, f̂(X)]. The idea of K-fold cross-validation is to split the
available data into K folds of roughly equal size in accordance with the
indexing function k : {1, 2, ..., N} 󰀁→ {1, 2, ...,K} that indicates which obser-
vation {xi, yi}, i = 1, 2, ..., N is allocated in which fold k. The assignment
should be random. With the allocation done we fit a model using all but
one of the k folds, denoted f̂−k. The expected test error is then estimated
using the held out fold such that
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Figure 1: Prediction error of test set and training set as the model com-
plexity is varied. High bias and low variance to the left. Low bias and high
variance to the right.

Errk =
1

N

N󰁛

i=1

L(yki , f̂
−k(xki)), (5)

where {xki , yki} are the observations belonging to the kth fold. After repeat-
ing the process for all k folds we can calculate the cross-validation estimate
of the prediction error

CV (f̂) =
1

K

K󰁛

k=1

Errk. (6)

In summary the cross-validation score (6) is an estimate of the test error
and is commonly used for model selection. Before using cross-validation in
practice however there are some further things to consider.

The choice of k will affect the performance of the cross-validation score,
both in terms of computational efficiency and as a metric for model selection.
As for the computational demand it is obvious that choosing k = n will be
more computational intensive then choosing k ≪ n but there are other ad-
vantages as well. The most important one being related to the bias-variance
trade-off. Using n-fold cross validation would lead to an essentially unbiased
estimate of the test error, it would however also lead to higher variance than
training on k ≪ n. The reason being that the cross-validation score would
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be based on n almost identical training sets. It follows that the output from
the n fitted models would be highly correlated. Using k ≪ n means averag-
ing the output of models that are not as highly correlated. Recall the fact
that averaging highly correlated quantities results in estimates with larger
variance than the mean of quantities which are not as highly correlated. It
follows that cross-validation using k ≪ n folds usually results in estimates
with lower variance then using n = k. In summary there is a bias-variance
trade-off to consider when choosing the number of folds. In practice typical
choices of k is 5 or 10, which have been showed to neither suffer excessive
bias nor variance. Furthermore the cross-validation score is best suited for
selecting models not assessing them, a task better suited for the use of a
explicit test set.

2.2.3 Model Diagnostics

A widely used loss function when solving regression problems is the squared
error loss function

L(y, f(x)) = (y − f(x))2. (7)

The properties of the squared error loss will be discussed in depth later in
this chapter but for now we will explore how it relates to the cross-validation
score. Using the squared error loss in (5) yields the MSE for a given held
out fold k

MSEk =
1

N

N󰁛

i=1

(yki − f−k(xki))
2.

In general the MSE measures the average of the square of the residuals
and is the estimation of the expected test error (2). The MSE’s unit of
measurement is the square of the quantity being estimated. While the MSE
suffices mathematically as measure of predictive performance the root mean
squared error (RMSE)

RMSE =
√
MSE

is easier to interpret as its unit of measurement is the same as the quantity
being measured. RMSE will be used as the measure of predictive accuracy
throughout this thesis.

2.3 Feature Attribution

Interpretation of predictive models is important for several reasons. One
aspect is that of algorithmic bias as discussed in Section 1.5, in order to
explain a model and motivate its decisions it helps to understand its inner
workings. Another reason for model interpretation is that it can provide
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insights on how to improve the model and aid understanding of the process
that is being modeled.

2.3.1 Additive feature attribution methods

In the ideal case the best explanation of a model f is the model itself. Unfor-
tunately complex models such as ensembles, while improving in predictive
performance suffer in interpretability. One course of action in such cases
is to use a simpler explanation model g to explain f . Through the use of
Additive feature attribution methods a predictive model f ’s output can be
explained as sum of real values attributed to each input feature p. Note that
p just represents the feature, the instance data associated with p is referred
to as xp. Such an explanation model g is then defined as

g(z′) = φ0 +

P󰁛

p=1

φpz
′
p (8)

where z′ ∈ {0, 1}Pp=1, and P is the number of input features, and φp ∈ R.
The z′i variables represents a feature being observed, z

′
i = 1 or missing z′i = 0.

The sum of the effect of each feature φp then approximates the output f(xp)
of the original model. The mathematical motivation of additive feature
attribution methods are outside the scope of this thesis but the interested
reader will find a thorough discussion in Lundberg & Lee (2018) [21].

2.3.2 SHAP

It can be shown that popular techniques for determining the importance of
predictors are inconsistent and/or inaccurate. The theoretical justification
for this claim will be omitted in this thesis, see Lundberg et al (2018) [20]
for details. In the absence of a formal proof empirical inconsistencies will
be demonstrated In Section 2.3.

To overcome these inconsistencies Shapley additive explanation (SHAP)
values are proposed as consistent measures of attribution. SHAP values are
derived from game theory’s Shapley values. To compute Shapley values let
fS(xS) be a model trained on the set of features S with corresponding in-
stance data xS . Furthermore let fS∪{p}(xS∪{p}) be the model trained on the
features in S and the additional feature p, and instance data corresponding
to those features xS∪{p}. φp, p = 1, . . . , P is then the effect of each feature
according to

φp =
󰁛

S⊆P\{p}

|S|!(P − |S|− 1)!

P !

󰀅
fS∪{p}(xS∪{p})− fS(xS)

󰀆
(9)

where P is the set of all input features and S the set of features with non-
zero indexes in z′. To evaluate the effect of missing features we need to
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define a mapping hx between z′ and the original feature input space. With
such a mapping the effect of observing or not observing a feature can be
evaluated by fS(xS) = f(hx(z

′)) = E[f(x)|xS ] where E[f(x)|xS ] is the
expected value of the model conditioned on a subset S of the input features.
Combining this definition of fS(xS) with the Shapley values (9) we get SHAP
values. Using SHAP values in conjunction with (8) we can measure the
influence or attribution of a certain predictor on the model f . The intuition
behind Shapely values is that one wants to calculate the weighted marginal
contribution of a feature for all possible permutations of S. The marginal
contribution of a feature p is represented by fS∪{p}(xS∪{p})− fS(xS). |S|! is
the number of possible permutations prior to p’s addition, while (P−|S|−1)!
is the number of ways features added after p can be arranged. Finally
summing over all possible sets S not containing p,

󰁓
S⊆P\{p} and dividing

by all possible permutations of features P ! gets us the Shapley values.

2.4 Tree-based Methods

In Section 2.5 we will see that gradient boosting uses an ensemble of sta-
tistical learning models not limited to any given model. In most practical
applications however tree-based methods are more prolific as they are able to
capture non-linear links and interactions among predictors. For this reasons
such methods will be discussed in some detail below.

The basic idea of tree-based methods is to divide the domain of X into
j disjunct rectangles Rj , j = 1, . . . ,M where every split is parallel with an
axis. Then, using a simple model, calculate some constant cj to minimize
a given criterion for each partition. Tree-based methods are useful for both
classification and regression problems as reflected by the name of a popular
algorithm, CART, short for Classification And Regression Tree. In a regres-
sion setting, restricted to recursive binary splitting, the model produced by
CART can be represented by

f̂(X) =

J󰁛

j=1

γj1{(X1, ..., Xp) ∈ Rj} (10)

the details of which will be discussed in the following paragraphs.
The process of recursive binary splitting refers to splitting a given space

into two half-planes followed by splitting one of the resulting half-planes
into two and so on. The result of recursive binary splitting in some two-
dimensional space spanned by (X1, X2) is visualized in Figure 2. The par-
tition is the outcome of the following steps: first split the space at X1 = t1,
then split X1 < t1 at X2 = t2 and finally split the region X1 > t1 at
X1 = t3. The result is a partition into the four regions R1, ..., R4. The
panel to the right in Figure 2 contains the decision tree associated with the
partition and is an alternate way of representing (10). The diagram should
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Figure 2: Partitions and CART. The left panel shows a partition of a two-
dimensional space given recursive binary splitting, as used in CART. The
right panel shows the corresponding decision tree.

be interpreted as follows; given a set of predictor variables (X1, X2) with
observations {x1i, x2i}, i = 1, 2, ..., n first determine if x1i ≤ t1, this is called
the root node. If the statement is True then discern if x2i ≤ t2. If the
statement was False check to see if x1i ≤ t3. Depending on the outcome
map x1i, x2i to one of the regions Rj , j = 1, 2, ..., 4. The bottom-most nodes
of the tree is called leaf nodes.

The intuition behind growing a decision tree is that each region split
should result in two new regions that respectively are as homogenous as pos-
sible by some metric. Assume that we have found such a split. The objective
now is to find the cj that minimizes the criterion by which we measure homo-
geneity, that is, to minimize the training loss function l(y, f(x)). The choice
of training loss function depends on the problem at hand but in the case of
regression problems the residual sum of squares, RSS =

󰁓
(yi − f(xi))

2 is
common and is the empirical metric corresponding to the squared error loss
(7). The RSS will be the choice of training loss in this thesis.

Still using the two-dimensional example: given a partition Rm the func-
tion that minimizes the RSS is the mean of the yi associated with the x1i, x2i
in that region

γ̂j = ave(yi|xi ∈ Rj).

In practice the optimal splits, or binary partitions, are found using a greedy
algorithm. The algorithm is greedy in the sense that it chooses the parti-
tion that is optimal at the current step, compared to searching through all
possible splits at all possible steps.

Given the data (Y,X) where Y is the response with observations (y1, . . . , yn)
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and X a set of P predictor variables XT = (X1, . . . , XP ), with observations
xTi = (xi1, . . . , xiP ) consider a partitioning on variable ν and split point s.
The resulting half-planes would then be defined as

R1(ν, s) = {X|Xν ≤ s} and R2(ν, s) = {X|Xν > s}.

Seeking the splitting variable ν and point s that solve

min
ν,s

󰀵

󰀷min
γ1

󰁛

x1∈R1(ν,s)

(yi − γ1)
2 +min

γ2

󰁛

x1∈R2(ν,s)

(yi − γ2)
2

󰀶

󰀸 . (11)

we have that for any ν and s the inner minimization is solved by

γ̂1 = ave(yi|xi ∈ R1(ν, s)) and γ̂2 = ave(yi|xi ∈ R2(ν, s)). (12)

After the best split has been determined the data is partitioned into the
resulting regions and the process is then repeated on the new regions. The
end result of the procedure is the mapping xi 󰀁→ Rj 󰀁→ γj , where γj are
often referred to as the leaf weights.

A remaining question is how many splits should be performed. A large
tree, with many splits, might have large variance in the sense discussed
in section 2.2 whereas a small tree might not capture important structure
in the data and hence be biased. This is an important aspect of growing
decision trees and is usually solved using some cost-complexity function
that penalizes the model for being too flexible together with the concept of
pruning. It turns out however that in the setting of gradient boosting the
size of the trees grown will preferably be determined by cross-validation,
motivating the exclusion of the details of using pruning.

As mentioned previously the trees discussed above are CARTs, specif-
ically regression trees. This is the decision tree implementation used in
XGBoost and will thus be the only decision tree variation explored in this
thesis.

2.5 Boosting

Boosting is a technique that combines many weak learners into one strong
learner, where a weak learner is a predictor which performs barely better
than random guessing. The idea of boosting is to train weak learners on
modified versions of data in a serial fashion. Formally boosting is a way
of fitting an additive expansion in a set of elementary basis functions. An
example of a basis function could be a CART, as described in the previous
section.
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2.5.1 Forward Stagewise Additive Modeling

General basis function expansions take the form

f(x) =

M󰁛

m=1

βmb(x; θm), (13)

where βm are the expansion coefficients and b(x; θm) the basis functions
characterized by a set of parameters θ. In the case of trees for example,
θ parameterizes the split variables, split points s and leaf weights γm at
the regions Rm. Basis functions should be chosen depending on the current
problem, typically though basis functions are chosen to have low variance
but high bias. The only explicit basis function discussed in this thesis will
be trees.

Fitting a function of the form (13) to data is often computationally
infeasible, as it is a challenging combinatorial problem, but a model can be
approximated by sequentially adding new basis functions without adjusting
the parameters and coefficients of those previously calculated. One such
iteration would then be solved by minimizing some loss function L over the
training data T ,

min
β,θ

N󰁛

i=1

L(yi,βb(xi; θ)).

Performing several such iterations is the basic idea of Forward Stagewise
Additive Modeling (FSAM). The first step in FSAM is to initialize the model,
setting f0 = 0. Following the initialization: for each iteration m the optimal
basis function b(xi; θm) and coefficient βm, are solved for

(βm, θm) = arg min
β,θ

N󰁛

i=1

L(yi, fm−1(xi) + βb(xi; θ)). (14)

The coefficient and basis function βmb(x; θm) is then added to the current
expansion fm−1 which produces

fm(x) = fm−1(x) + βmb(x; θm, ).

The procedure is then repeated until some M is reached. Note that the
terms added before the current iteration m, f0, . . . , fm−1, are not modified.
The steps described above are the general form of boosting, summarized in
Algorithm 1.

2.5.2 Boosted Trees

We recall that (10) is a representation of a tree. For further ease of notation
we introduce the equivalent expression,

20



Algorithm 1 Forward Stagewise Additive Modeling

1: Input:
Data set D
A Loss function L
The number of Iterations M

2: Initialize f0 = 0
3: for m = 1 to M do

4: Compute: (βm, θm) = arg min
β,θ

N󰁓
i=1

L(yi, fm−1(xi) + βb(xi; θ))

5: Update: fm(x) = fm−1(x) + βmb(x; θm).
6: end for
7: return f̂(x) = fM (x)

T (x;Θ) =

J󰁛

j=1

γj1{x ∈ Rj} (15)

where Θ = {Rj , γj}Jj=1. Θ then contains information on all γj and Rj for
j = 1, 2, ..., J . Combining (13) and (15) we can express a function expansion
with decision trees as basis function as

fM (x) =

M󰁛

m=1

T (x;Θm) =

M󰁛

m=1

J󰁛

j=1

γj1{x ∈ Rj}. (16)

Calculating fM (x) can be done iteratively in accordance with Algorithm 1.
Initialization is done minimizing the loss function over the non-partitioned
original space

f0 = arg min
γ

N󰁛

i=1

L(yi, γ).

The expression of the optimization problem (14) using trees would be ex-
presses as

Θ̂m = arg min
Θm

N󰁛

i=1

L(yi, fm−1(xi) + T (xi;Θm)) (17)

which is to be solved over the set of regions and leaf weightsΘm = {Rjm , γjm}Jm1
for the next tree, given the previous trees represented by fm−1(x). Solving
for the constants γjm in a given region Rjm is usually a easy optimization
problem,

γ̂jm = arg min
γjm

󰁛

xi∈Rjm

L(yi, fm−1(xi) + γjm). (18)
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Algorithm 2 Boosted Trees

1: Input:
Data set D
A Loss function L
The number of Iterations M
The learning rate η

2: Initialize: f0 = arg min
γ

N󰁓
i=1

L(yi, γ)

3: for m = 1 to M do

4: Compute: Θ̂m = arg min
Θm

N󰁓
i=1

L(yi, fm−1(xi) + T (xi;Θm))

implying: γ̂jm = arg min
γjm

󰁓
xi∈Rjm

L(yi, fm−1(xi) + γjm)

5: Update: fm(x) = fm−1(x) + η
Jm󰁓
j=1

γjm1(x ∈ Rjm)

6: end for
7: return f̂(x) = fM (x)

In the last iterative step the model is updated

fm(x) = fm−1(x) + η

Jm󰁛

j=1

γjm1(x ∈ Rjm)

where 0 < η ≤ 1 is the learning rate, which will be discussed in Section 2.6.
Solving (17) usually implies optimizing (18) as well. There are however

occasions when it is necessary to approximate (17) with a more convenient
criterion for finding the Rj , in these cases the Rj are found using a better
suited L̃

Θ̇ = {Ṙj , γ̇j}Jj=1 = arg min
Θ

N󰁛

i=1

L̃(yi, T (xi;Θ))

Given the regions Ṙj , j = 1, 2, ..., J the much easier optimization problem
(18) can then be solved using the original loss function i.e. set Rjm = Ṙjm in
(18). Considering (17) and (18) as separate steps might also aid intuition in
later sections when comparing boosting with classical optimization methods.

To summarize the general boosted trees method is outlined in Algorithm
2.

2.5.3 The Squared Error Loss Function

A special case of FSAM arises when the loss function is chosen to be the
squared error loss L(y, f(x)) = (y − f(x))2, as is a common choice when
solving regression problems.
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L(yi, fm−1(xi) + βb(xi; γ)) = (yi − fm−1(xi)− βb(xi; γ))
2

= (rim − βb(xi; γ))
2,

(19)

where rim = yi−fm−1(xi) is the residual of the current model fm−1 and the
ith observation, often referred to as a pseudo residual, this means that the
basis model, and coefficient, βmb(xi; γm) that best fits the psuedo residuals
will be added to the expansion. The basis model is in that sense trained on
the psuedo residuals.

As a consequence of training on the psuedo residuals rim, squared error
loss gives observations with large absolute residuals | yi−f(xi) | big influence.
This can lead to poor performance in cases when outliers are present or the
distribution of Y is long-tailed. We will see however, that this can be a prize
worth paying due to some pleasant mathematical properties of the squared
error loss in conjunction with gradient boosting. It is also worth noting that
outliers and long-tailed distributions to some extent can be accounted for
with data transformations.

It was previously stated that the squared error loss had some pleasant
properties when used in conjunction with boosted tree models. We shall
now see the first reason why. Using the squared error loss (7), simplification
(19) and using trees as basis function, (17) simplifies to

Θ̂m = arg min
Θm

N󰁛

i=1

L(yi, fm−1(xi) + T (xi;Θm))

= arg min
Θm

N󰁛

i=1

(yi − fm−1(xi)− T (xi;Θm))2

= arg min
Θm

N󰁛

i=1

(rim − T (xi;Θm))2

(20)

The solution is simply the tree that best predicts the psuedo residuals at
the given iteration m. Equation (18) simplifies analogously to

γ̂jm = arg min
γjm

󰁛

xi∈Rjm

L(yi, fm−1(xi) + γjm)

= arg min
γjm

󰁛

xi∈Rjm

(yi − fm−1(xi)− γjm)
2

= arg min
γjm

󰁛

xi∈Rjm

(rim − γjm)
2

= r̄jm

(21)

where r̄m is the the mean of the psuedo residuals in each partition Rjm . This
is the same result as for a single tree minimizing over RSS, comparison with
Equation (11) and (12) is instructive.
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2.6 Hyper Parameters

In Section 2.5.2 we saw that the two main hyper parameters for boosted
trees are the number of iterations M and the learning rate η, both of which
are important for model performance. Furthermore M and η need to be
chosen in conjunction as they are not independent.

It was briefly mentioned that tree pruning was not necessary in the
context of boosting. This notion will be explored further in discussion of
the parameter max tree depth, Tmax.

2.6.1 The Number of Iterations M

Assuming a fixed η, an increase of the number of iterations will affect the
complexity of the boosting model. A larger M will allow the model to better
fit data and at some point increase variance. For this reason the number
of iterations is commonly determined by cross-validation and some early
stoppage criterion.

2.6.2 The Learning Rate η

The learning rate η, or shrinkage, is intended to alleviate overfitting by
shrinking the step taken in prediction space during boosting. A lower η will
require a larger number of iterations M , hence impacting computational
cost. A smaller learning rate have been shown to improve performance and
is recommended to bet set as small as computationally feasible, Ridgeway
(2006) [29]. Given a computationally affordable η the number of iterations
M can then be determined via cross-validation as suggested in Section 2.6.1.

2.6.3 Max Tree depth Tmax

First growing a large tree and then pruning it, as is the case for a single
decision tree is poor practice in boosting. The reason being that growing a
large tree to be pruned implies that the model is the last one in the expansion
(16). Recall that the expansion is an ensemble of individual trees. Pruning
each tree individually would imply that the tree represents the final model,
which clearly is not the case in boosting. The solution is to choose a common
tree depth Tmax for all M trees such that Jm = J ∀m. Furthermore the
number of splits J−1 can be interpreted as the order of interactions allowed
between independent variables. This implies that J should be chosen to
reflect the number of dominant interactions between them.

2.7 Other considerations

Two common practical considerations when construction learning models
concern how to deal with categorical predictors and missing values. The
following sections aim to provide some guidance.
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2.7.1 Categorical Predictors

There are mainly two ways to treat categorical input variables in tree based
models. Using grouped categories and independent categories.

When using grouped categories a predictor with q levels there are 2q−1−1
possible ways to divide the q categories into two groups. With such a large
number of possibilities it is very likely to find a good one, which leads to
overfitting.

In the case of independent categories the categorical predictors are en-
coded as q or q − 1 binary variables, referred to as one-hot encoding and
dummy-variable encoding respectively. Expanding somewhat on dummy
variable encoding the process can be described in the following way: given
a categorical predictor xi with C classes dummy encoding entails creat-

ing a new set of binary dummy variables x
(d)
i = x

(d)
i1

, . . . , x
(d)
iC−1

. Dummy
variable encoding omits one of the C classes which instead is implied by

x
(d)
i1

, . . . , x
(d)
iC−1

= 0. One-hot encoding is very similar but creates the binary

variables x
(o)
i = x

(o)
i1

, . . . , x
(o)
iC

.
Neither of the methods described above deals with categorical predic-

tors with many levels gracefully and such variables are best transformed or
avoided.

2.7.2 Missing Values

Missing predictor values are a common problem in real world data sets. In
general there are three approaches to missing values. Impute, discard or let
the algorithm deal with the missing values. The best approach for dealing
with missing data depends on the mechanism producing it. The missing data
mechanisms are missing completely at random (MCAR), missing at random
(MAR) and missing not at random (MNAR), Little & Rubin (2002, pp.
11-18) [18].

MCAR means that there is no dependency between the missing values
and other values, neither observed or missing. MAR on the other hand allows
a relationship between the mechanism behind the missing data and observed
data. MAR does however require independence between the propensity for
missing values and the missing values themselves.

Given a training set T with response y and predictor variables X, where
X contains missing values, the mechanisms can be expressed as follows. Let
Xobs denote the observed values in X, Z = (y,X) and Zobs = (y,Xobs).
Furthermore, let R be an indicator matrix the size of X with entries ij
having ones where xij is missing and zeroes otherwise. Data is said to be
MAR if

Pr(R|Z, θ) = Pr(R|Zobs, θ)
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where θ are any parameters of R’s distribution. If the distribution of R does
not depend on the missing or observed data

Pr(R|Z, θ) = Pr(R|θ)

then data are said to be MCAR. If the missing data mechanism is depen-
dent on the values themselves, e.g. the sickest people dropping out medical
studies, the data is said to be MNAR. Discarding or imputing data that is
MNAR is not recommended as it distorts the picture of the true popula-
tion. For the same reason it is preferably avoided to let an algorithm handle
MNAR data.

Determining whether or not data is MCAR often requires information
about how data has been collected or certain domain knowledge, and is not
always an easy task. However, dealing with missing values in categorical
predictors can be done by creating a new level for the missing values.

Tree-based methods are well suited to handle missing values, as long as
they are MCAR, and usually does so by creating surrogate variables. When
finding the optimal splits only the observations that are non-missing are
considered. After finding the best split a list of surrogate splits are formed.
The surrogate list contains the variables and split points that best mimics
the original split. The first surrogate mimics the original split the best, the
second surrogate the second best and so on. During prediction the model
leverages correlation among the predictors and uses surrogate variables to
send observations with missing values down the tree.

XGBoost deals with missing values, and sparsity, in a similar fashion.
Instead of learning the surrogate variables however, default direction at each
node is determined. There are two choices of default direction in each branch
and the optimal one are learnt from the data.

2.8 Gradient Boosted Trees

In this section we will see that the practice of tree boosting can be imple-
mented to mimic the well known numerical optimization procedure gradient
descent.

2.8.1 Gradient Descent

To understand the naming convention of gradient boosting trees some back-
ground in numerical optimization will be required.

Let f(x) be a function (perhaps multivariate) defined and differentiable
in the neighborhood of all points x in the domain of f . Then f(x) decreases

most rapidly in the direction of the negative gradient at point x, −∂f(x)
∂x =

−∇f(x). Given a point xm−1 it follows that, if

xm = xm−1 − ρm∇f(xm−1), (22)
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for some ρm ∈ R+, then f(xm) ≥ f(xm+1). ρm, the step length, can be
determined using line search

ρm = arg min
ρ

f(xm−1 − ρ∇f(xm−1)), (23)

The intuition behind gradient descent is that given a position xm−1 the neg-
ative gradient points in the direction the steepest descent in terms of some
function f(x). With the direction obtained it remains to determine the step
length ρm, too big a step might overshoot the target hence it is optimized
via line search (23). Given the step −ρm∇f(xm−1) the position xm−1 is
updated via (22) to xm. The Gradient descent Algorithm 3 follows from
performing these updates iteratively giving rise to a monotonic sequence
f(x0) ≥ f(x1) ≥ f(x2) ≥ ... converging to the local minima.

Algorithm 3 Gradient Descent

1: Input:
Data set D
A function to be optimized f
The number of Iterations M

2: Initialize x0
3: for m = 1 to M do
4: Compute: ∇f(xm−1)
5: Compute: ρm = arg min

ρ
f(xm − ρ∇f(xm))

6: Update: xm = xm−1 − ρm∇f(xm−1)
7: end for
8: return x̂ = xM

2.8.2 Gradient Boosted Trees

We now have the necessary background for showing that Algorithm 1, using
trees as basis function can be leveraged to perform an approximation of
gradient descent.

Assume we would like to perform gradient descent over a differentiable
loss function L(y, f(x)) given a training set T with the aim of performing
prediction. We would soon realize that calculating the gradient∇fL(yi, f(xi))
wouldn’t be feasible since it is only defined at the training data points xi
and the goal is to generalize to new data not in T . Instead we could opt to
approximate the (negative) gradient using a tree T (xi;Θm), using squared
error as measure of closeness we have

Θ̃m = arg min
Θ

N󰁛

i=1

(−∇fm−1L(yi, fm−1(xi))− T (xi;Θ))2 (24)
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which fits the tree T to the negative gradient values −∇fm−1L(yi, fm−1(xi))
at a given iteration m. Interpreting (24) as an approximation of the neg-
ative gradient and the implied optimization of γ̂jm in (18) as finding the
step size ρm in (23) is key to realizing that gradient boosted trees performs
(approximate) gradient descent.

The gradient tree boosting algorithm 4 is outlined below. Note there
is no analogy for the learning rate, η in Algorithm 3. Setting η = 1 in
Algorithm 4 makes comparison of the algorithms clearer.

Algorithm 4 Gradient Boosted Trees

1: Input:
Data set D
A Loss function L
The number of Iterations M
The learning rate η

2: Initialize f0 = arg min
γ

N󰁓
i=1

L(yi, γ)

3: for m = 1 to M do
4: Compute: gm = ∇fm−1L(yi, fm−1(xi))

5: Fit T to gim : Θ̃m = arg min
Θ

N󰁓
i=1

(−gm − T (xi;Θ))2

For j = 1, 2, ..., Jm Compute: γjm = arg min
γ

󰁓
xi∈Rjm

L(yi, fm−1(xi)+γ)

6: Update: fm(x) = fm−1(x) + η
Jm󰁓
j=1

γjm1(x ∈ Rjm).

7: end for
8: return f̂(x) = fM (x)

We illustrate the steps of Algorithm 4 using squared error (7) as loss
function and training set T . We start by initializing f0,

f0 = arg min
γ

N󰁛

i=1

L(yi, γ) = arg min
γ

N󰁛

i=1

(yi − γ)2 = ȳ

For a given iteration m, the gradient of the squared error loss function (7)
is

∂L(yi, fm−1(xi))

∂fm−1(xi)
=

∂

∂fm−1(xi)
(yi − f(xi))

2 ∝ fm−1(xi)− yi

which we recognize as the negative psuedo residuals −rim . Fitting a Tree T
to gim = −rim yields
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Θ̃m = arg min
Θ

N󰁛

i=1

(rim − T (xi;Θ))2 (25)

we note that the choice of squared error loss leads to same expression as in
standard least squares boosting, compare with (20). This is true for the pre-
dictions γjm as well and according to (21) we have γjm = r̄jm . Recognizing
that the tree structure

T (x; Θ̃) =

Jm󰁛

j=1

r̄jm1(x ∈ Rjm)

is analogous to the negative gradient and step size, together representing a
step in prediction space. At the end of each iteration the model is updated

fm(x) = fm−1(x) + η

Jm󰁛

j=1

r̄jm1(x ∈ Rjm)

and finally, after M iterations, the ensemble model is returned

f̂(x) = fM (x).

2.9 eXtreme Gradient Boosting

As mentioned in the first chapter XGBoost, developed by Chen & Guestrin
(2016) [5], is short for eXtreme Gradient Boosting and is similar to gradient
boosting. Both methods fits additive tree models, as discussed in Section
2.5, but differ in regularization techniques and how they find the optimal
tree structure and weights of the leaf-nodes. We will begin by determining
the boosting algorithm used in XGBoost.

2.9.1 Newton’s Method

In Section 2.8 we saw that Gradient boosted trees mimics the gradient de-
scent algorithm. It turns out that XGBoost also approximates a well known
optimization algorithm, namely Newtons method for optimization. Given a
twice differentiable function f to be optimized the idea of newtons method
is to approximate a second order function, around some point xm, and to
step to a local optimum of that approximation. By constructing a sequence
of such steps a stationary point of f is eventually reached. It should be
noted that convergence isn´t guarantied but further details on the method
is not within the scope of this thesis, the interested reader can find rigor-
ous discussion in Dahlquist & Björk (2012) [7]. In the one-dimensional case
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the second order approximation of f around xm follows from second order
Taylor expansion

f(x) = f(xm +∆xm) ≈ f(xm) + f ′(xm)∆x+
1

2
f ′′(xm)∆x2m. (26)

We proceed by finding the stationary point of (26)

arg min
∆x

󰀗
f ′(xm)∆x+

1

2
f ′′(xm)∆x2

󰀘

which yields

∆xm = − f ′(xm)

f ′′(xm)
. (27)

Equation (27) is often referred to as the Newton step. We note that both the
direction and size of the step is determined at once, in contrast to gradient
descent. Finally we update the position.

The one-dimensional algorithm of Newtons method for optimization is
summarized in Algorithm 5.

Algorithm 5 Newtons Method for Optimization

1: Input:
Data set D
A function to be optimized f
The number of Iterations M

2: Initialize x0
3: for m = 1 to M do
4: Compute: f ′(xm−1)
5: Compute: f ′′(xm−1)
6: Compute: ∆xm−1 = arg min

∆x

󰀅
f ′(xm)∆x+ 1

2f
′′(xm)∆x2

󰀆

7: Update: xm = xm−1 −∆xm−1.
8: end for
9: return x̂ = xM

The representation of Algorithm 5 might seem cumbersome to the fa-
miliar reader. This is by intent, the notation is chosen so as to simplify
generalization to tree boosting.

2.9.2 XGBoost

The following exposition on XGBoost is mainly based on Chen & Guestrin’s
(2016) [5] paper.

Given a twice differentiable, convex, Loss function L, and a training
dataset T the function to be minimized at iteration m during tree boosting
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can be expressed as

N󰁛

i=1

L(yi, fm(xi)) =

N󰁛

i=1

L(yi, fm−1(xi) + T (xi,Θ)). (28)

With a second order Taylor expansion around fm−1(xi) Equation (28) equals

N󰁛

i=1

󰀗
L(yi, fm−1(xi)) + gm(xi)T (xi,Θ) +

1

2
hm(xi)T (xi,Θ)2

󰀘

where gm(xi) = ∂L(yi,fm−1(xi))
∂fm−1(xi)

and hm(xi) = ∂2L(yi,fm−1(xi))
∂2fm−1(xi)

are the em-

pirical gradient and hessian, both solely based on the data points of T .
Removing the constant terms, with regard to Θ, yields the following expres-
sion

arg min
Θ

N󰁛

i=1

󰀗
gm(xi)T (xi,Θ) +

1

2
hm(xi)T (xi,Θ)2

󰀘
. (29)

Leveraging the disjoint nature of trees we rewrite the criterion to be mini-
mized (the sum in (29)) as

N󰁛

i=1

󰀵

󰀷gm(xi)

J󰁛

j=1

γjm1{x ∈ Rjm}+
1

2
hm(xi)

J󰁛

j=1

γjm1{x ∈ Rjm}2
󰀶

󰀸 =

J󰁛

j=1

󰁛

xi∈Rjm

󰀗
gm(xi)γjm +

1

2
hm(xi)γ

2
jm

󰀘 (30)

where xi ∈ Rjm denote the set of xi mapped to region Rjm . We simplify the
expression further usingGjm =

󰁓
xi∈Rjm

gm(xi) andHjm =
󰁓

xi∈Rjm
hm(xi),

(30) then equals

J󰁛

j=1

󰀗
Gjm(xi)γjm +

1

2
Hjm(xi)γ

2
jm

󰀘
. (31)

Given some fixed regions Rjm the leaf weights are then given by

γ̃jm = arg min
γjm

J󰁛

j=1

󰀗
Gjm(xi)γjm +

1

2
Hjm(xi)γ

2
jm

󰀘

= −Gjm

Hjm

, j = 1, 2, ..., J.

(32)
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Plugging (32) into (31) we get the best possible loss reduction for a given
tree structure

− 1

2

J󰁛

j=1

G2
jm

Hjm

. (33)

It is helpful to regard (33) as a measure of how good a tree structure T (xi,Θ)
is. Given such a measure we can go ahead and find an optimal tree struc-
ture. Using a greedy approach the improvement in structure, or the Gain,
when splitting a leaf node into two new nodes Left, L and Right, R can be
decomposed into

Gain =
1

2

󰀗
G2

L

HL
+

G2
R

HR
− (GL +GR)

2

(HL +HR)

󰀘
=

1

2

󰀥
G2

L

HL
+

G2
R

HR
−

G2
jm

Hjm

󰀦
(34)

where the first term represents the score on the new Left node, the second
the new Right node and the last term is the score of the original leaf node.

Algorithm 6 eXtreme Gradient Boosting

1: Input:
Data set D
A Loss function L
The number of Iterations M
The learning rate η

2: Initialize f0 = arg min
γ

N󰁓
i=1

L(yi, γ)

3: for m = 1 to M do
4: Compute: gm(xi) =

∂L(yi,fm−1(xi))
∂fm−1(xi)

5: Compute: hm(xi) =
∂2L(yi,fm−1(xi))

∂2fm−1(xi)

6: Determine T (xi, Θ̃m) by choosing splits that maximize

Gain =
1

2

󰀥
G2

L

HL
+

G2
R

HR
−

G2
jm

Hjm

󰀦

and leaf weights {γ̃jm}Jmj=1

γ̃jm = −Gjm

Hjm

7: Update: fm(x) = fm−1(x) + η
Jm󰁓
j=1

γ̃jm1(x ∈ R̃jm).

8: end for
9: return f̂(x) = fM (x)
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Summation of these steps yields the XGBoost algorithm, outlined in
Algorithm 6. Comparing Algorithm 5 and 6 we can draw the conclusion
that XGBoost approximates Newtons method for optimization.

2.9.3 The Squared Error Loss Function

For the squared error loss L(yi, fm(xi)) = (yi−f(xi))
2 the empirical gradient

and hessian are respectively gm(xi) = −2rim and hm(xi) = 2. Plugging this
into (29) yields

arg min
Θ

N󰁛

i=1

󰀅
−2rimT (xi,Θ) + T (xi,Θ)2

󰀆
. (35)

Completing the square in (35) and removing the constant results in the
following expression to be minimized

N󰁛

i=1

󰀅
(rim − T (xi,Θ))2 − r2im

󰀆
∝

N󰁛

i=1

(rim − T (xi,Θ))2,

which we recognize as the same function to be minimized in (25). In other
words, XGBoost performs gradient boosting when using the squared error
loss function.

2.10 XGBoost Parameters

In section 2.6 we saw that the number of iterations M , learning rate η
and maximum tree depth Tmax all are hyper parameters associated with
tree boosting. In the following sections we shall see that XGBoost offers a
variety of other regularization options.

2.10.1 Tree Parameters

We already saw that setting the maximum tree depth Tmax was a way of
affecting the shape of the tree. Besides the number of splits we can influence
the tree structure by determining a minimum leaf weight, hmin as well.

Every leaf node corresponds to a terminal region in the feature space.
The observations in these regions contains observation weight equaling the
hessian. To avoid overfitting a restriction of the minimum sum of observation
weight hmin can be set. If the sum of instance weight (the hessian) is less
than hmin the tree wont grow any bigger. In the case of squared error loss
1
2(yi − f(xi))

2 the hessian hi with regard to f(xi) is 1, it then follows that

hmin =
󰁓N

i=1 hi = N , the number of observations in the region. This shows
how restricting the hessian helps avoiding overfitting as fitting to a small
amount of observations would increase variance.
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2.10.2 Complexity penalizing parameters

XGBoost offers several options for complexity control. This is achieved by
introducing the objective function ω(Θ) = l(Θ) + Ω(Θ), the sum of the
training loss function and a regularization term. The regularization term is
defined as

Ω(Θ) = ΓJ +
1

2
λ

J󰁛

j=1

γ2j + α

J󰁛

j=1

|γj |.

where Γ,λ,α > 0.
In analogy with Equation (31) we derive the following expression of the

objective function at iteration m

ωm(Θ) =

Jm󰁛

j=1

󰀗
Gjmγjm +

1

2
(Hjm + λ)γ2jm + α|γjm |

󰀘
+ ΓJm. (36)

We find the leaf weight that minimizes the objective function by differenti-
ating with respect to γjm and setting the result to zero. given a fixed tree
structure, iteration m, and regularization term Ω(Θ) we have two cases de-
pending on if γj ≤ 0 or if γj > 0.

Case 1: γj ≤ 0

∂ω(Θ)

∂γj
= Gj + (Hj + λ)γj − α = 0

solving for γj yields

− (Gj − α)

(Hj + λ)
= γj ≤ 0 =⇒ Gj > 0 (37)

since L(Θ) is convex and Hj , under the current restrictions, is the second
derivative of the loss function. Furthermore we need Gj − α ≥ 0 for the
inequality of Equation (37) to hold. We can then write

Gj − α = sign(Gj)max(0, |Gj |− α)

The derivation for Case 2: γj > 0 is analogous.
The leaf weight that minimizes the objective function given a fixed tree

structure and regularization term is then

γ̈j = −Lα(Gj)

Hj + λ

where
Lα(Gj) = sign(Gj)max(0, |Gj |− α)
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Plugging this into Equation (36) for the cases Gj < −α, Gj > α and Gj = α
respectively we get the best possible regularized reduction for a given tree
structure

−1

2

Jm󰁛

j=1

Lα(Gjm)
2

Hjm + λ
+ ΓJm.

We can then express the regularized gain function at a given split as

Gain =
1

2

󰀗
Lα(GL)

2

HL + λ
+

Lα(GR)
2

HR + λ
− Lα(GL +GR)

2

(HL +HR) + λ

󰀘
− Γ (38)

A more in depth discussion of the regularization parameters follows below.
For ease of discussion all regularization parameters except the current one
will be assumed to be zero.

2.10.2.1 Gamma, Γ
Γ controls the number of leaf nodes in a tree by penalizing the Gain function
(34).

Gain =
1

2

󰀗
G2

L

HL
+

G2
R

HR
− (GL +GR)

2

(HL +HR)

󰀘
− Γ

This translates to smaller Gain for more potential splits, resulting in shal-
lower trees. The Γ parameter control the tree structure but not the leaf
weights themselves. Using Γ for complexity control can be viewed as an
adaptive option as compared to the hard constraint of Tmax for example.

2.10.2.2 l2 regularization, λ
λ, the l2 regularization parameter and the shrinkage parameter η have sim-
ilar effect. λ does in fact shrink the leaf weights as seen below

γ̈j = − Gj

Hj + λ
.

However, while η shrinks the leaf nodes by an equal amount the shrinkage
provided by λ will vary depending on the node.

Examining the Gain function it is also clear that λ influences the tree
structure.

Gain =
1

2

󰀗
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

(HL +HR) + λ

󰀘

It does so by impacting which splits are being made. The effect of λ is that
regions with small hessian (corresponding to few observations in the case of
the squared error loss) and thus higher variance will be penalized the most.

35



2.10.2.3 l1 regularization, α
α, the l1 regularization parameter performs a similar function as λ by shrink-
ing the leaf weights. l1 regularization however may shrink the weights to
zero analogous to lasso regression. When all other regularization parameters
but α is zero we find that

γ̈j = −Lα(Gj)

Hj

as Lα(Gj) = sign(Gj)max(0, |Gj | − α). A large α will make the model less
flexible as well as speed up calculations. Inspecting the Gain function

Gain =
1

2

󰀗
Lα(GL)

2

HL
+

Lα(GR)
2

HR
− Lα(GL +GR)

2

(HL +HR)

󰀘

we can se that l1 regularization influences tree structure as well as leaf
weights.

2.10.3 Randomization Parameters

Subsampling in combination with tree based ensemble methods have proven
successful. Subsampling is the basic idea behind both bagged trees and ran-
dom forests. The details of those methods are outside the scope of this thesis
but the principle behind them both is to reduce variance be decreasing cor-
relation between individual trees in the ensemble. Subsampling achieves
this by fitting trees to different subsets of the training data, thus generating
more diverse trees. An explicit advantage of randomization is that the in-
fluence of outliers are reduced as they are more rarely available when splits
are chosen and weights calculated.

(a) Row Subsampling, ζr
The fraction 0 < ζr ≤ 1 determines the subsample ratio of the training
instances. Subsampling occurs once every boosting iteration.

(b) Column Subsampling by Tree, ζct
The subsample ratio of input variables. Subsampling occurs once every
boosting iteration. ζct ∈ (0, 1].

(c) Column Subsampling by level, ζcl
Like with subsampling by tree, ζcl is the fraction of features to be
used, the difference lies in when the sampling occurs. In the case of
subsampling by level a new sample is drawn each time a new split
is made. Just as with both of the above parameters ζcl takes values
larger than zero but no larger than one.
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3 Data

The dataset was collected from Booli using their API and contains a lit-
tle more than 300,000 observations across 30 variables and reflects almost
four years of time. Booli uses web-scraping to collect the data themselves.
The homepages web-scraped are those of individual real estate agencies and
construction companies, who advertise the housing objects for sale.

The data pertain to the Swedish housing market and each observation
represents the transaction of an apartment. Most of the variables describe
the housing object e.g. list price, size, number of rooms and the like. Be-
sides information regarding the property the data contains geo-spatial and
temporal data, i.e. dates and location. A description of the variables can
be found in Table 1.

3.1 Exploratory Data Analysis

To gain some preliminary insights about the Booli data and the interaction
between the variables exploratory data analysis (EDA) will be performed.

One of the first proponents of EDA was Tukey (1962) [35] who was
of the inclination that data analysis shouldn’t only be inferential, in the
sample-to-population sense, but also a guide for considerations in observa-
tions, experimentation and analysis.

The objectives of EDA in statistical learning are similar to those us-
ing more traditional methods. Where suggestion of hypothesis, assessing
assumptions and selection of statistical tools are familiar objectives of data
analysis. Besides those objectives EDA is performed in conjunction with sta-
tistical learning to aid in feature engineering, a topic which will be discussed
more in depth in a later section.

3.1.1 Response Variable

The response variable is this thesis is soldPrice, the price paid for a given
apartment at a certain time. SoldPrice is numerical and measured in Swedish
Krona (SEK). To ease readability soldPrice will be referred to as sold price
or just price in instances where there is no ambiguity.

Table 2 contains the five number summary for sold price. Inspecting the
table we see that the most expensive apartment was sold for 57 million SEK
and the cheapest for only 15,000 SEK. More importantly sold price might
be characterized by an asymmetric distribution. This seems plausible given
the differences between quantiles, min and max. The box- and density-plot
of soldPrice in Figure 3 confirms this suspicion. We note the presence of
outliers above 30 million SEK. It is difficult to distinguish more features
of the data at this scale as the distribution are highly skewed. It may
well prove worthwhile to transform sold price when fitting the model as
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Table 1: Description of Variables

Variable Name Description

1 location.address.streetAddress Street address
2 location.position.latitude Coordinate: Latitude
3 location.position.longitude Coordinate: Longitude
4 location.namedAreas Local area name
5 location.region.municipalityName Municipality name
6 location.region.countyName County name
7 location.distance.ocean Distance to ocean
8 listPrice List price, SEK
9 rent Rent, SEK

10 floor Storey of building
11 livingArea Size of living area, m2

12 source.name Data provider, e.g. real estate agencys name
13 source.id Data provider ID
14 source.type Type of data provider
15 source.url Data provider URL
16 rooms Number of rooms
17 published Date when listed
18 constructionYear Year of construction
19 objectType Type of housing e.g. apartement
20 booliId Internal Booli ID
21 soldDate Date when sold
22 soldPrice Sold price, SEK
23 soldPriceSource How sold price was collected, e.g. bid history
24 url URL to Booli advertisment
25 plotArea Size of plot area, m2

26 additionalArea Size of additional area, m2

27 apartmentNumber Apartment number
28 isNewConstruction Indicator of new construction
29 location.address.city City name
30 location.position.isApproximate Indicator of approximate position
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Table 2: Summary of soldPrice
Min. 1st Qu. Median Mean 3rd Qu. Max.

15,000 1,200,000 1,995,000 2,338,789 2,975,000 57,000,000

tree based models using MSE loss tend to perform better on distributions
without heavy tails, as mentioned in Section 2.5.3.

Figure 3: Box and density plot of soldPrice. The left panel shows the boxplot
of sold price i million SEK. The panel to the right shows the corresponding
densityplot.

3.1.2 Interactions with Predictor Variables

In order to gain further intuition about the Booli data we explore some
of the interactions between the response and predictor variables. Leverag-
ing domain knowledge seems like a good place to start and ortprismetoden
provides initial guidance.

The aim is not to perform en exhaustive analysis, nor is it to declare sta-
tistical significance but rather to establish some rudimentary understanding
of the data.

3.1.2.1 Sold Date
One of the strongest assumptions about housing prices are that they change
over time. This assumption is central in ortsprismetoden as well. The
left panel of Figure 4 shows an correlogram of monthly average apartment
prices. The correlogram plots the autocorrelations versus time lags, each bar
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Figure 4: Correlogram and scatterplot of sold price over time.

representing autocorrelation at some lag. The dotted blue lines represent the
significance bounds for when the autocorrelation differ from zero. We can
clearly see that prices depend on previous values, even though correlations
seems to dissipate after about a year. We also note the spike at 12 months
lag, perhaps implying some seasonality effect. Over the course of two years
it is clear however that prices fluctuate. This notion is supported by the
panel to the right which shows changing apartment prices in Stockholm,
Södermalm between early 2013 until late 2018.

3.1.2.2 Location
As implied by the well known expression: ‘There are three things that matter
in property: location, location, location.’ geo-spatial influence on housing
prices are assumed to be strong. We assert to confirm this item of common
knowledge and plot Swedish apartment prices i Figure 5. Judging by the
figure this particular realtor catch-phrase seems to have merit. Most appar-
ent is the concentration of expensive apartments in metropolitan areas, in
particular Stockholm and Göteborg.

3.1.2.3 Living Area
Apartment prices are often assumed to scale linearly with the size of the
living area. We aim to investigate. To reduce the temporal and geospatial
influence we plot the relationship between Sold price and living area for a
single month, both for the whole country and a selected city. The results are
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Figure 5: Swedish apartment prices by location during 2017.

presented in figure 6. The strength of the linear dependence is not obvious
from the left panel which shows sold prices from all of Sweden. The plotted
points resemble a cone rather than a straight line. A typical shape for a het-
eroscedastic random variable. Heteroscedasticity would be expected when
plotting several subpopulations that are individually linearly dependent but
with different coefficients. The plot in the right panel supports this notion
as prices in the city of Solna is clearly linear with respect to living area. We
also note that this data appears to show heteroscedasticity, perhaps for the
same reason as above. There could of course be other reasons that variability
increases as living area does but further speculation is refrained from.

3.1.2.4 Number of Rooms
Small apartments are often said to sell at a premium compared to their
larger counterparts. This might sounds as opposing the idea of linearity
between price and living area and perhaps it is, we really haven’t investi-
gated thoroughly enough. There is however another possibility, perhaps the
number of rooms are what causes the premium. Looking at Figure 7 it does
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Figure 6: Swedish apartment prices versus living area in April 2017. The
left pane shows observations from all of Sweden whereas the right shows
data from the municipality of Solna.

indeed seem plausible that studios entail a higher price per square meter.
Somewhat surprisingly large apartments, with six or more rooms, also ex-
hibit a similar premium. For whatever reason the price per m2 by number
of rooms seem to have a nonlinear relationship.

3.2 Data Preparation

Creating a successful model using statistical learning depends on many fac-
tors. However, one of the single most important are the representation and
quality of the data according to Kotsiantis et al (2006) [17]. Data prepara-
tion includes dealing with missing values and outliers, transformation and
such. The product of the preparation will be the instance data by which the
model is trained.

In the following paragraphs the data preparation performed in this thesis
will be motivated.

3.2.1 Data Preprocessing

A first step of data preparation entails preprocessing. In the case of this
thesis this includes managing datatypes, missing values and outliers.
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Figure 7: Distributions for sold price per m2 by number of rooms.

3.2.1.1 Data Types
The Booli data set contains several variables containing character values.
These variables need to be redefined to appropriate datatypes for them to
make sense to the learning algorithm as well as aid feature engineering.
Examples of datatype transformations in the Booli dataset are ′character′ →
′date′ and ′character′ → ′factor′.

3.2.1.2 Missing Values
As discussed in Section 2.7.2 the task of managing missing values (NAs)
should begin by determining which kind of process that’s producing them.
Figure 8 visualizes the missing values of the Booli dataset. Some of the pre-
dictors almost only contain missing values! The missing values of those pre-
dictors are almost certainly not MCAR. While disheartening at first glance
there seems to be an easy explanation. A plausible explanation is that Boo-
lis data collecting web-scraping method encodes proper values when certain
information e.g. apartment number, is present and NAs otherwise. This
would also explain why some predictors only contain ones and NAs. Treat-
ing the categorical variables showing these signs are easy as it only takes
recoding the missing values as a new level ’unknown’. In the cases where
the predictor only takes the values 1 or NA the NAs are codes as 0. Among
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Figure 8: Visualization of missing values among the variables of the Booli
dataset.

the numeric predictors containing many (> 10%) missing values the solution
is similar, take for example plotArea. It seems very likely that most of the
apartments in Sweden do not have a plot, hence it is likely seldom specified
in real estate ads. In these cases the NAs are recoded as 0. The remaining
numerical predictors with many NAs are binned into discrete categories, e.g.
constructionYear is binned into decades.

The few observations still containing missing values after the above pro-
cess are discarded.

3.2.1.3 Outliers
As mentioned in Section 2.5.3 gradient boosting using the squared error loss
is susceptible to extreme values. This is especially true for outliers in the
response variable, but care should be given to the predictor variables as well.
Outliers and extreme values are often used synonymously, as is the case in
this thesis. There should however be a distinction between values arising
from erroneous recordings and values arising from fat tailed distributions.

There are few ways to deal with outliers when using XGBoost. Given
that a value of an observation is deemed erroneous one might remove them.
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This does however require a robust way of determining which observations
should be considered erroneous, an often subjective process which might
degrade performance should proper care not be taken. A second option is to
transform the data in ways that make the values less extreme. Another is to
use the regularization options presented in Section 2.10. The randomization
parameters are especially useful when dealing with extreme values. A last
option is to use a loss function more robust to extreme values, like the
absolute loss L(y, f(x)) = |y − f(x)|.

The approach to dealing with extreme values in this thesis will be a
combination of discarding erroneous values, transformations and parameter
tuning. Since the choice of squared-error loss is a delimitation of this thesis
it will not be substituted. Values removed for being considered erroneous
were observations with living area less then or equal to one.

3.2.2 Data Transformation

As mentioned in Section 3.2 the performance of statistical learning models is
severely influenced by proper transformation of the instance data. Despite
this fact specific recommendations on how to best transform input data is
scarce in statistical learning literature. Heaton (2016) [15] does however pro-
vide some guidance for tree based models specifically, suggesting logarithmic
transforms among others.

3.2.2.1 Encoding
While most tree based models do not require encoding of categorical vari-
ables into numerical ones, XGBoost does. For this reason we need to choose
a proper way of doing so. Grouping categorical predictors into indepen-
dent categories was summarily described in Section 2.7.1. When performing
linear regression we would have to choose dummy variable encoding. The
reason being that one-hot encoding would introduce multicollinearity. This
follows from the fact that one of the introduced binary variables would be a
linear combination of the others. This is not an issue with tree based models
however. Alas dummy variable encoding do have the advantage of saving
some memory and computational effort, which is why it is chosen in this
thesis.

Also mentioned in Section 2.7.1 were the problems associated with cate-
gorical variables with high cardinality, we will see that this is an issue with
the Booli data set in the following paragraph.

3.2.2.2 Feature Engineering
The practice of transforming instance data in order to improve prediction
performance in a statistical learning context is often referred to as feature en-
gineering. Unfortunately feature engineering is quite the informal topic with
loose recommendations, often citing domain knowledge and the specificities
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of the data and method. There is however a consensus about the importance
of feature engineering for improving prediction performance. One common,
albeit informal, advice is to create many engineered variables initially and
worry about variable selection later. This is a recommendation that will be
abided.

Applying XGBoost to the booli data set poses some specific challenges.
These challenges will each each be discussed and suggestions to alleviate
them proposed.

(a) Distribution of the Response
As we saw in Section 3.1.1 the empirical distribution of sold price is
positively skewed. Among other things this means that the response
contains values of large magnitude in comparison to the bulk of obser-
vations. In section 2.5.3 we determined that this could affect prediction
performance and that a good course of action was to transform the re-
sponse variable. Several transformations seem plausible, among them
the logarithmic transform and sold price per square meter of living
area.

(b) Temporal
There are two temporal predictors in the Booli dataset. Sold date, the
date the apartment was sold and published date, the date the adver-
tisement for the apartment was published. Variables of datatype date
poses a challenge as they are represented as running numbers format-
ted to represent years, months and days. The algorithm, XGBoost,
however won’t be aware of the implicit information. As a consequence
that information needs to be conveyed explicitly, through engineered
predictors representing, for example, month and year.

(c) Geospatial
Since tree based models does not have an inherent way of interpret-
ing geographic coordinates as location, or the difference between them
as distance, some proxy variable is desirable to enhance performance.
Such a feature is commonly zip codes. Zip codes are however a classic
example of a high cardinality categorical variable. Besides the chal-
lenge discussed in Section 2.7.1 it is rarely computationally desirable
to process thousands of predictor variables, as would often be the case
when dummy encoding nationwide zip codes. A common solution to
this problem is to engineer a feature that captures the significance of
the geographical area. In the particular case of the Booli dataset one
measure of importance might be the price per square meter of living
area, at a certain period of time.
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3.2.3 Partitioning

As we saw in Section 2.2.2 cross-validation estimates the expected test error
E[L(Y, f̂(X)]. This estimate is helpful for comparing models and tuning
meta-parameters, it is not however an appropriate estimate of the true pre-
diction error ErrT . Too few folds might impact the size of the training
instance in a way that leaves the model biased, overestimating the pre-
diction error. Too many folds might instead lead to large variance and
underestimation of the prediction error.

The solution is quite simple however. Since data is abundant we simply
partition the full dataset into a training set and a test set. We split the data
randomly into the training set, consisting of 85% of the original observations,
and the test set, containing the remaining 15%.

Besides these data sets a completely unseen set containing future obser-
vations will be downloaded when the model has been finalized.

4 Modeling

Using XGBoost to create a predictive model is a proposition that differs sub-
stantially from more traditional methods. The key challenge using XGBoost
is tuning the meta parameters (these include the regularization parameters)
of the algorithm. This isn’t to say that variable selection and other practices
aren’t of importance, but less so.

The aim of this chapter is to outline the process of tuning and diagnosing
an XGBoost model.

4.1 XGBoost implementation

The theoretical framework of XGBoost was discussed in Chapter 2. For
the practical implementation the open source package created by Chen &
Guestrin (2017) [5] is used. The distributed version is built on top of rabit
making it available to a number of platforms and languages. For this thesis
the R implementation of XGBoost is used.

4.2 Parameter Tuning

Academic literature is sparse on the subject of configuring XGBoost param-
eters, though some studies have been made Probst et al (2018) [28]. Luckily
the competitive machine learning scene provides some hueristics. These usu-
ally involve optimizing parameters with techniques like grid search, random
search Bergstra & Bengio (2012) [2] or occasionally Bayesian optimization
Snoek et al (2012) [33]. The approach in this thesis will be grid search as it
is the most common one. No matter the approach though, the same issue is
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faced, the parameter space. A conservative (some exotic XGBoost parame-
ters were disregarded in this thesis) count of tuning parameters in XGBoost
is nine. Using all nine parameters with, for example, six parameter values
each would result in over ten million combinations! The conclusion is that
an exhaustive approach isn’t viable.

In order to tune the meta parameters we will use hueristics gathered
from the likes of Hastie et al (2009) [14], Thakur (2016) [34] and Zhang
(2015) [36].

1. Default model
Define some set of default parameters using dataset and domain knowl-
edge. Compromise between accuracy and speed when determining the
learning rate η. A lower value of η often yields better tuning perfor-
mance but increases the number of optimal iterations, increasing the
computational demand for tuning. An initial range of iterations is
often suggested to be a few hundred trees. Given a fixed value of η
determine the optimal number of boosting iterations using 5 or 10-fold
cross-validation.

2. Grid search
The second step of the tuning process utilizes grid search. Grid search
is simply the XGBoost evaluation of the ordered n-tuples resulting
from the n-ary Cartesian product over the sets X1, . . . , Xn,

X1 × · · ·×Xn = {(x1, . . . , xn)|xi ∈ X, ∀i ∈ {1, . . . , n}}, (39)

each Xi i = 1, . . . , n, containing values for a hyper parameter. The
idea is to first optimize the randomization and tree shape parameters
and then determine the regularization parameters. Table 3 summarizes
common hueristcs for parameter ranges.

Table 3: Hyper Parameter Tuning
Hyper parameter Tuning approach Range

No. of Trees, M Initial tune ⇒ Fine tune {100, . . . , 1000}
Learning rate, η Initial tune ⇒ Fine tune (2, 10)/M
Max Tree depth Tmax Grid search {3, 5, 7, 9, 12}
Row subsampling, ζr Grid search {.5, .75, 1}
Col. Subsampling, ζct Grid search {4, 6, 8, 1}
Gamma, Γ Fixed 0
l1 regularization, α Grid search {0, .1, .5, 1}
l2 regularization, λ Grid search {(.01, .1), 1}
Min. leaf Weight, hmin Fixed ⇒ Fine tune {1, 3, 5, 7}

3. Fine tune
Using the best grid search parameters, the number of trees M and
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the learning rate η is tuned once again. This time however the goal
is accuracy, suggesting lower values of η and likely more iterations M .
Finally the minimum leaf weight hmin is fine tuned.

It should be emphasized that the approach described above by no means
is guaranteed to find optimal meta parameters. It has however proven suc-
cessful in many machine learning competitions, Zhang (2015) [36].

4.3 Feature selection

Feature selection is often an integral part of optimizing performance of tra-
ditional learning techniques, as in the case of linear regression for example.
We shall see however that this is of less importance when using XGBoost.

Minimizing (17) entails finding the optimal (in a greedy sense) predictor
variable by which to partition the prediction space. This means that feature
selection is done implicitly by the tree boosting algorithm. The same is
true for XGBoost in particular. Reducing the number of input variables are
actually often detrimental to model performance as correlated variables are
used when dealing with missing values, as discussed in Section 2.7.2.

4.3.1 Other Consideration

Even though the XGBoost algorithm handles feature selection gracefully
there are some remaining practical considerations regarding the Booli dataset.

(a) Perfect Correlation
The booli dataset contains some perfectly correlated variables, for ex-
ample source.name and source.id. One of these can safely be omitted
as no information is lost.

(b) Noisy Features
Some of the Booli dataset input variables are just random noise. Among
these are internal observation IDs and URLs. These will be excluded
as well.

(c) List Price
Relevant to the aim of this thesis is the feature List Price. List price
is an estimate of sold price done by a trained real estate agent. Using
this variable as a predictor would in a sense be ”cheating” as the aim
of this thesis is to create a data driven model. For this reason the list
price variable will be dropped.

5 Results

In this chapter the model based on the XGBoost algorithm, transformed
Booli data, and subsequent parameter tuning will be presented. The result-
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ing mathematical model is formally defined by the parameters of the tree
space Θ. However, a more practical representation is achieved by charac-
terizing the model by its associated meta parameters and predictive perfor-
mance.

5.1 Final model

In Section 3.2.2.2 feature engineering was proposed as way to resolve the
issue of the skewed distribution of the response variable, sold price. This
resulted in three possible approaches for creating an XGBoost model: us-
ing an unaltered version of sold price, the log of sold price and sold price
per square meter of living area. A model was trained and tuned for each
transformation, using the Booli data training set and the tuning scheme
suggested in Section 4.2.

Table 4: The values in the table are the RMSE of the price per m2 for each
models prediction vs. actual values, evaluated on the test set.

Model RMSE

Sold Price 4494
log(Sold Price) 4341
Sold Price per m2 2742

Evaluation of the respective model was done with respect to the predic-
tive performance, measured by RMSE for sold price per m2, on the Booli
data test set. The model trained on sold price per square meter of living
area had the best predictive capabilities when applied to the test set and
was the choice of final model. The performance of the different models are
summarized in Table 4.

5.1.1 Parameters

The parameters of the final model, the result of the tuning procedure de-
scribed in Section 4.2, are presented in Table 5. The regularization pa-
rameter Column Subsampling by level, ζcl was not tuned due to suggested
hueristics. ζcl has a default value of one.

5.2 Prediction

The predictive performance of the final XGBoost model when applied to the
test set and a set of future observations will be presented in this section. The
prediction measure is sold price per m2, in contrast to the original response
sold price. Sold price per m2 is chosen as metric as it is easier to interpret.
The diagnostic metric for the predictive power of the model is the RMSE
across all test observations.
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Table 5: Final Parameters
Parameter Value

No. of Trees, M 10,000
Learning rate, η 0.01
Max Tree depth Tmax 5
Row subsampling, ζr 1
Col. Subsampling, ζct 1
Gamma, Γ 0
l1 regularization, α 0
l2 regularization, λ 0
Min. leaf Weight, hmin 1

5.2.1 Test Set

The Booli data test set contains 59370 observations randomly selected from
the full booli dataset. Figure 10 depicts the relation between predicted and
actual prices. The calculated RMSE of the test set is 2742, (very) roughly
2000 SEK less than the competing models.

5.2.2 Future Observations

The dataset of future observations was downloaded once the final model had
been determined. The dataset contains the same variables as the original
Booli dataset but spans a different interval of time, namely 2018-09-11 to

Figure 9: Cross-validated test error for different learning rates when tuning
the (left) default model and (right) final model respectively.
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2018-09-25. The observations correspond to the apartments published for
sale in Sweden during the two weeks following the date the last apartment
was sold in the training set.

Using the observations of the future dataset mimics the intended usage of
the model more closely than the test set. This stands to reason as valuation
in most cases are done in advance of a sale, rather than afterwards. The
RMSE with regard to the future set is 4972. Performance will be further
discussed in Section 6.2.

6 Discussion

The aim of this chapter is to examine the results presented in the previ-
ous sections with regard to underlying theory, data and modeling approach.
Furthermore we will explore the model with the intent of unveiling its pre-
dictive behavior. Finally, drawing from insights gained during work with the
thesis, some particular fields of interest are suggested for future research.

6.1 Fitting

With grid-search and cross-validation being computationally demanding it is
important to strike a balance between test error and the number of boosting
iterations when choosing a default model.

The left panel of figure 9 depicts the cross-validated test error of the
default model (using sold price per m2 as response) for three choices of η. It
is clear that neither choice of learning rate results in excessive overfitting as
all three curves level off as the number of iterations increases. This opposes
the expectation of a u-shaped test-error curve discussed in Section 2.2.1,
such results however, are not uncommon in practical application using large
datasets and shrinkage, Hastie (2009, p. 371) [14]. The value of 0.1 is chosen
as learning rate for the default model as it yields the lowest cross-validated
test error.

Since overfitting does not appear to be an issue the use of regulariza-
tion and randomization meta-parameters might not necessarily improve the
model. This turned out to be the case with the Booli dataset and the final
model; only Max Tree depth, Tmax, learning rate, η and Number of Trees,
M was changed in comparison to the default model. The right panel of
Figure 9 shows the cross-validated test-error when tuning the final model.
As suggested by Friedman (2001) [12] smaller values of η seem to result in
better test error, however requiring a larger number of boosting iterations,
M . Capping the number of iterations to 10,000, due to computational re-
straints, lead to the final choice of 10,000 iterations and a learning rate of
0.01. Test-performance might have continued to improve with a larger num-
ber of trees but such improvement where deemed too marginal in contrast
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to computational demand. The reduction of cross-validated RMSE between
the default model and final model was 4%.

All engineered features were kept in the final model as they (marginally)
improved the cross-validated predictive performance of the model. This
might obscure the interpretation of the model as many the engineered fea-
tures are correlated and might interact. Sacrificing interpretability for pre-
dictive power is not ubiquitous, it is however in line with the purpose if this
thesis: creating a useful predictive model.

6.2 Performance

The aim of this thesis is to create a useful model with satisfactory predictive
performance. This is an admittedly vague criterion and as such will be
further discussed in this section.

Figure 10 depicts the final model predictions versus actual prices, based
on the test set. Observations being clustered closely around the diagonal
suggests that the model is doing a good job of predicting sales prices. The
implication of good is critical however. This is no trivial task and will often
depend on circumstance and ambition. In Chapter 1 the notion of fair
market value was discussed and it was concluded that it was part of the real
estate agents responsibility to perform such an appraisal. The Booli dataset
contains information on the professional opinion regarding an apartments
fair market value at a given time, the list price.

Comparing the models predictive performance to the accuracy of realtor
valuation will provide a notion of good that resonates with the purpose of
this thesis. Table 6 contains the RMSE of the model prediction and realtor
estimation respectively. Both measures have been computed for the test set
and future set. The model outperforms the professional appraisals under the
assumption that list prices correspond to estimates of fair market values.

6.3 Interpretation

As we saw in section 2.4 one of the advantages of single decision trees are
their inherent interpretability. This quality is lost however, when using en-
sembles of trees. This leads to the predicament of having to choose between

Table 6: The values in the table are the RMSE of the price per m2 for the
model prediction vs. actual values and the list price vs. actual values. Both
measures have been calculated for the test set and future set respectively.

Dataset Model Prediction List price

Test set 2742 6587
Future set 4972 5643
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Figure 10: The figure shows predicted versus actual apartment prices per
m2 for the test set. Observations closer to the diagonal blue line are more
accurate.

the superior predictive performance of ensembles and transparency of sim-
pler models. The situation is further complicated by the fact that common
approaches to model explanation is inconsistent as shown by Lundberg et
al. (2017) [20] and Fisher et al. (2018) [11].

6.3.1 Global Attribution

Attribution is the practice of assigning importance measures to the predictor
variables of a model. More specifically global attribution assigns features a
measure representing the global impact of predictors on the model.

Common measures of global feature importance when using XGBoost
are:

1. Weight
The number of times a feature is used to split the data across all tree
iterations.

2. Cover
The number of times a feature is used to partition the data across all
trees weighted by the number of training data points that goes through
those splits.
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Figure 11: Feature Importance displayed by relative importance. Each panel
shows a different measure of feature importance: (Left) weight, (Center) gain
and (Right) cover.

3. Gain
The average training loss reduction gained when using a feature for
splitting. The gain for a given split is defined in Equation (38).

Figure 11 depicts the 10 most important features by each of the above
measures. As we can see the feature importance depends on which measure is
used. This is troubling as there are many situations where the prediction an
algorithm makes needs to explained. There are several reasons the feature
importance metrics are unreliable. In the case of correlated variables in
boosting for example, when a specific link between a predictor and outcome
has been established the algorithm will only place importance on one of the
correlated features, XGBoost documentation (2016) [37]. Another example
of an unreliable metric is the Gain. Splits taking place near the root of three
are typically more important than splits taking place near the leaves. This
results in potential bias as the Gain method attributes more importance to
lower splits, see Lundberg & Lee (2018) [20] for details.

These results might seem discouraging but the SHAP method discussed
in Section 2.3 promises consistent results. Figure 12 displays global and local
SHAP measures. We note that the predictor trend.tier1.kvm (tt1.kvm) is
determined to have the highest global impact on prediction magnitude. This
is expected as tt1.kvm was constructed to represent the current local price
point of apartments. The second most important predictor by SHAP is
living area. We recall that the final model predicts sold price per m2 of
living area. We note that the first and second most important feature by
SHAP coincides with the Gain measure in Figure 11, the order of importance
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Figure 12: Feature importance displayed by SHAP Values. (Left) Average
impact on model output magnitude. (Right) Local attribution by SHAP for
a random subset of training observations. Red points denote larger predictor
values, blue indicates smaller. (Right) Location along the x-axis implies the
impact of given feature on the predicted value for a certain observation.

Figure 13: Partial dependence of sold price per m2 on the 3 predictors with
largest feature importance. The blue hash marks at the base of the plot are
deciles of the input variables. Prediction values (y-axis) in 1000 SEK.

do however differ further down the importance ranking.
With a firm idea of the most important predictors a reasonable ques-

tion is in which way those features affect the prediction. Figure 13 displays
partial dependence plots of the three most important predictors measured
by SHAP. The ticks at the bottom of each plot indicates the deciles of the
input data. Larger separation of the ticks mean lower instance data den-
sity which in turn implies less certainty about the curve shape. The partial
dependence curve represent the relationship between a feature and the re-
sponse accounting for the average effect of the other predictors, Friedman
(2001) [12]. The partial dependence of tt1.kvm on sold price (left panel)
is essentially monotonic increasing. It should be noted however that the
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Figure 14: Two dimensional Partial dependence of sold price on (left) living
area and rent and (right) tt1.kvm and rent.

y-axis is cropped and influence of tt1.kvm on sold price is less pronounced
than what it seems at a glance. This might appear suspect as it scored high
in all feature importance tests but it suggests that the weak main effect
is masked by strong interaction effects with other predictors. The partial
dependence curve of living area (right panel) shows a steep drop indicating
that less living area give rise to higher prices per m2. The effect of rent
on price per m2 (center panel) shows an irregular pattern, the relationship
is however essentially linear decreasing in the more well defined second to
nineth decile.

Beyond the individual importance of features on model output it is of
interest to understand the interactions between predictors. Figure 14 shows
some of these interactions. Exploring the two-way partial dependence of
tt1.kvm and rent on price per m2 we see a strong interaction effect on the
model output. Decreasing rent and increasing tt1.kvm results in higher
prices. The interactions between rent and living area produces some in-
teresting results for small apartments with low rent. There seem to be an
apparent premium on apartment prices associated with low values of size
and rent.

6.3.2 Local Attribution

In contrast to global attribution local attribution represents the individual-
ized impact of features for a single prediction. Figure 15 shows the individual
SHAP-contribution of features towards the prediction value for a random
test observation. The dominant feature appears to be living area which is
balanced by the local price point. The right panel of Figure 12 shows local
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attribution from a global perspective, each point represent an observation’s
feature value by color and that predictors individual contribution to the
model output be position along the x-axis. We note that this representation
appears consistent with Figure 13.

6.4 Future Work

While work with this thesis produced a usable model several shortcomings
and questions have arisen during the process. Some of these warrant further
research.

A field that would clearly benefit from further research is the effect of
feature engineering. There’s a consensus about it is importance yet the
theoretical justifications are few. The same can be said to for hyper pa-
rameter tuning XGBoost, while novel approaches and empirical results are
available the expected effects of parameter tuning lacks profound theoretical
grounding, at least from the exposure gained while researching this thesis.

Suggestions for research questions could be; how are temporal and geospa-
tial dependencies best modeled when using tree-based methods? Regarding
the lack of academic literature on parameter tuning a question posed could
be; which dataset characteristics lends themselves to tuning, and why? An-
other would be if it is possible to determine bounds for the effect of hyper
parameter tuning?

Figure 15: Contribution to prediction value per feature for a single observa-
tion. Features with small or zero contribution have been filtered out.
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7 Conclusion

The fair market value is the estimate of the market value of a property given
that both parties are knowledgeable, willing, and unpressured. The aim of
this thesis was to produce a model capable of outputting such a quantity.
Aiding the endeavor was XGBoost and the Booli dataset. Showing how
XGBoost approximates gradient descent while using the mean squared loss
function provided the foundation for the practical work of creating the pre-
dictive model. Adjusting meta parameters and creating bespoke predictors
helped improve the model which proved to produce useful estimates.

It has been shown that it is possible to create a predictive model using
XGBoost that outperforms professional appraisers and thus can be consid-
ered useful. While this only holds under the assumption that list prices
reflects the realtors actual estimation of market values the result is encour-
aging non the less.

While complicated by interactions and disparity between metrics the
three predictors with the largest influence on the fair market value was
determined to be the local price point, reflecting the price per m2 at a given
point in time, the living area and rent.

While accuracy and inference of important features might suggest a rel-
evant model a lot of work would remain before real world implementation
including a thorough investigation of algorithmic bias.

Finally the work on this thesis have revealed some gaps in the academic
literature regarding feature engineering and parameter tuning. Pursuing
those topics in the future would surely be a rewarding endeavor.
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