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Abstract

We study the statistical classification methods: Linear Discrimi-

nant Analysis and K-Nearest Neighbors. We also consider extensions
of these methods. The purpose of the study is to obtain a better under-
standing of when these methods are suitable for use. The performance
of classification methods is considerably affected by the characteris-
tics of the data. Understanding how different data attributes impact
the performance of these methods is therefore important for applying
them effectively to real-world classification problems. In this study we
examine the theoretical properties of the classifiers and evaluate their
performance statistically for three classification problems, using four
evaluation metrics. The classification problems were obtained from
the UCI Machine learning repository [10] and we used Accuracy, Log-
Loss, Precision and Recall as evaluation metrics. We found that Linear
Discriminant Analysis and its extensions are suitable when the sample
size is small, and that its assumption of normality is a condition for
optimality and not a prerequisite for it to perform well. K-Nearest
Neighbors was found to suffer from diminished performance when the
class distribution of the data was skewed, or when the number of in-
dependent variables was large. A weighted extension of K-Nearest
Neighbors was found to effectively alleviate the former problem.
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1 Introduction

Statistical classification is the problem of identifying to which of a set of classes
a new observation belongs, using a dataset where the class membership of each
observation is given. Methods for solving this problem are called classifiers or
classification methods. Many classification methods have been proposed with
widely differing approaches to solving the problem, some of these are reviewed
in section 4 in [1]. The broad selection of classification methods is motivated
by the fact that none of the classifiers outperforms all others for every classifi-
cation problem (dataset). This is implied by the No Free Lunch Theorems for
Optimization that are presented and proven in [2].

Unfortunately there is no universal rule of thumb or quick test that will reveal
the optimal classifier for a given classification problem. However, the
performance of a classifier is considerably impacted by the characteristics of
the underlying data, such as non-linearity and class-distribution [3]. If we can
understand how different data characteristics affect the performance of
different classifiers we can identify classification methods that are likely to
perform well for specific problems.

In this study we will compare two classification methods: Linear Discriminant
Analysis and K-Nearest Neighbors. Some extensions of these methods that
modify one or more of their characteristics will also be considered. The goal is
to obtain useful insight about the properties of these classifiers and the
differences between them. We hope that this insight can be used to help in the
process of evaluating the suitability of these methods for various classification
problems.

In section 2 we will define some fundamental concepts closely related to
statistical classification. In section 3 we provide a statistical framework that
will serve as the foundation for section 4, where we study the classifiers and
their theoretical attributes. In section 5 we compare the classification
performance of the methods on real-world datasets and analyze the results
using the theory from section 4. We discuss the main findings from section 5
and the limitations of the study in section 6. Lastly, we conclude the report in
section 7.
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2 Terminology and Key Concepts

In this section we will introduce some terminologies and a few basic concepts
that are relevant to the problem of statistical classification.

2.1 Bias-Variance trade-off

The bias-variance trade-off refers to the trade-off between a model that under-
fits the data and a model that overfits the data. Specifically, bias refers to the
systematic deviations of a model from the true relationship of the data. The
variance of a model refers to the amount by which the model parameter es-
timates change when they are estimated using a new dataset from the same
underlying population. The bias-variance trade-off is straightforward to illus-
trate mathematically in the regression setting where the response variable is
continuous.

Let Y in R be the response variable and X in Rp be the random vector of
independent variables. The true relationship between these variables is
described by Y = f(X) + ε where E[ε] = 0 and Var(ε) = σ2. Let f̂ denote an

estimate of f and let S denote the dataset used to fit f̂ . Given a new
observation x0 with value y0 the expected prediction error of f̂(x0) using the
squared-error loss function is,

EPE(x0) =ES [(f̂(x0)− y0)2]

=ES [f̂(x0)2]− 2ES [f̂(x0)]ES [y0] + ES [y20 ].
(1)

For a random variable X the variance is given by Var(X) = E[X2]− E[X]2.

For an estimator θ̂ of θ the bias is defined as, Bias(θ̂) = Ex|θ[θ̂]− θ, where x is
the observed data. The last term in equation (1) can now be rewritten as,

(ES [(f̂(x0)]− f(x0))2 + ES [(f̂(x0)− ES [f̂(x0)])2] + ES [(y0 − f(x0))2]

= Bias2(f̂(x0)) + Var(f̂(x0)) + σ2.
(2)

In equation (2) σ2 is the variance of the irreducible error ε, this term is

independent of the estimate f̂(x0). However, the two other terms, the bias and

the variance, are directly associated with f̂(x0). A model with high bias and
low variance underfits the data and a model with low bias and high variance
overfits the data. The goal is to find a model that balances the two to obtain
low bias and low variance, so that it minimizes the expected prediction error
(see also section 2.9 in [4]).

2.2 Training Data vs. Test Data

When evaluating the performance of a classifier we need to make sure that we
are not testing the performance on the same dataset that was used to fit/train
the classifier. This would favour classifiers with low bias with no penalty for
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high variance. To estimate the prediction error accurately we need to evaluate
the classifier on test data that was not used during training.

In general we only have access to one dataset, but a simple method for
obtaining test data is by splitting the dataset into a training set and a test set.
A classifier is then trained on the training set and evaluated using the test set.
A problem with this approach is that since we are only using a subset of the
original dataset to train the classifier we will likely overestimate the prediction
error. This is because a classifier trained with fewer observations will perform
worse in general. Another problem with this approach is that the estimated
prediction error may be a skewed estimate since it depends on which
observations were included in the training and test datasets. A more detailed
explanation of this approach and an illustration of these problems can be
found in section 5.1.1 in [1].

A different approach for obtaining test data that avoids these problems is the
k-fold cross-validation (section 7.10.1 in [4]). In this procedure the dataset is
divided into k equally sized portions called folds. In each iteration a fold is
chosen and the remaining k − 1 folds are used as training data. The classifier
is trained, and then it is tested on the chosen fold which acts as the test data.
This procedure is repeated until each fold has been chosen once.

In this study we will use the stratified 10-fold cross-validation for estimating
evaluation metrics for different classifiers. Stratified means that the folds are
chosen to have roughly the same class distribution. The 10 resulting estimates
will be averaged to give point estimates of the metrics. Stratified 10-fold
cross-validation was chosen because it provides good estimates for real-world
datasets as is shown in [5]. For the sake of conciseness we will simply refer to
the stratified 10-fold cross-validation as cross-validation in this report unless
specified otherwise.

2.3 Parametric classifiers vs. Non-Parametric classifiers

Parametric classifiers make explicit assumptions about the functional form of
the conditional probability of the classes given the predictors. With these as-
sumptions in place only the parameters of the assumed function need to be es-
timated to fit the classifier. Non-Parametric classifiers on the other hand make
no explicit assumptions about the functional form of the conditional probabil-
ity of the classes given the predictors. Instead these methods look to estimate
the conditional probability based solely on the provided data. A more detailed
discussion of this concept can be found in section 2.1.2 in [1].
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2.4 Error Rate

Let Y be the response variable, assuming values in the set of classes C. Let X
be the random vector of independent variables assuming values in Rp. The out-
comes of these variables are the training data points (xi, yi) where i = 1, ..., N .

The training error rate of a classifier f̂ estimating the true relationship
Y = f(X) is then given by,

Training Error Rate =
1

N

N∑
i=1

I(yi 6= f̂(xi)), (3)

where I(x) = 1 if x is true and I(x) = 0 if x is false. It is the proportion
of incorrect predictions that the classifier makes on the training data. As we
pointed out in section 2.2, we are generally interested in the value of performance
metrics on the test data and not the training data. The test error rate of a
classifier is defined analogously to the training error rate in equation (3), using
test data instead of the training data. A more detailed explanation of this topic
can be found in section 2.2.3 in [1].

3 Statistical Framework

In order to evaluate and compare statistical classification methods, we need a
common framework in which different methods can be put into context. In this
section we will outline that framework based on the theory detailed in section
2.4 in [4].

We start by defining the statistical classification problem. Let Y be the
response variable, assuming values in the set of classes C. Let X be the
random vector of independent variables assuming values in Rp. The goal in
statistical classification is that of finding a function f so that,

Y = f(X).

In words, our goal is to find the function (classifier) that makes the fewest
number of errors when predicting the output class Y given the corresponding
input vector X. We can frame this as an optimization problem in which the goal
is to minimize an objective function that quantifies the error of the classifier.
In general, we want all prediction errors to be penalized equally. A function L
meeting this specification can be defined as follows:

L(Y, f(X)) =

{
0 if Y = f(X),

1 otherwise.
(4)

We can now express the expected prediction error as,

EPE = EX,Y [L(Y, f(X))] =

∫
x

∑
y

L(y, f(x))P (X = x, Y = y) dx. (5)
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Using the definition of conditional probability equation (5) can be rewritten as,

EPE =

∫
x

P (X = x)
∑
y

L(y, f(x) )P (Y = y | X = x) dx

= EX
[
EY |X [L(y, f(x) ) | X = x ]

]
.

(6)

From equation (6) we can see that minimizing the expected prediction error is
equivalent to minimizing the conditional expected value of L(y, f(x)) given that
X = x. For a new observation x0 the function f that minimizes the expected
prediction error is now given by,

f(X = x0) = arg min
c∈C

EY |X [L(Y, c ) | X = x0] = arg min
c∈C

(
1− P (c | X = x0)

)
= arg max

c∈C
P (c | X = x0).

(7)

The result that we have obtained says that the function f that minimizes the
expected prediction error is the function that, given a new observation x0, clas-
sifies to the most probable class. This is called the Bayes classifier and we have
shown that it is the optimal classifier when all misclassifications are penalized
equally. The Bayes decision boundary is the border between the classes and it
is defined as the set of points for which equation (7) has no unique solution c.

In practice the conditional probability P (Y = y | X) is generally unknown.
Therefore it is impossible to apply the Bayes classifier, unless we are working
with data that has been sampled from a known distribution. As a result, most
statistical classification methods seek to estimate P (Y = y | X) in an attempt
to approximate the optimal Bayes classifier.

4 Statistical Classification Methods

4.1 Linear Discriminant Analysis

All of the theory in this section can be found in section 4.3 in [4] unless another
source is cited. Linear Discriminant Analysis (LDA) is the first statistical clas-
sification method that we will study. Let Y be the response variable, assuming
values in the set of classes C. Let X be the random vector of independent
variables assuming values in Rp. The outcomes of these variables are the data
points (xi, yi) where i = 1, ..., N . LDA is based on the following assumption,

X | Y = k ∼ N (µk, Σ) . (8)

Assumption (8) should really be thought of as two separate assumptions.
Firstly, it is assumed that the input vector of independent variables X has a
multivariate gaussian distribution that is different for each output class k.
Secondly, the assumption is made that all classes share a pooled covariance
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matrix. As we will see assumption (8) implies a functional form for the
conditional probability of the classes conditional on the predictors, making
LDA a parametric classifier.

LDA aims to assign a new observation x0 to the class k for which
P (Y = k | X = x0) is largest. Let πk denote P (Y = k). Bayes theorem states
that,

P (Y = k | X = x0) =
P (X = x0 | Y = k)πk∑K
j=1 P (X = x0 | Y = j)πj

.

Estimating P (X = x0 | Y = k) and πk gives us an estimate of
P (Y = k | X = x0) through this relationship.

Because of assumption (8), estimating P (X = x | Y = k) is reduced to
estimating the mean vectors µk for all classes k and estimating the pooled
covariance matrix Σ. Here x denotes the independent variables in the training
data. The prior probabilities πk also need to be estimated for all classes. Let
K denote the total number of classes and let D represent the set {i | yi = k}.
Furthermore let Nk be the number of observations with class k. Estimates of
these parameters are now given by,

µ̂k =
1

Nk

∑
D

xi, (9)

Σ̂ =
1

N −K

K∑
k=1

∑
D

(xi − µ̂k)(xi − µ̂k)T , (10)

π̂k =
Nk
N
. (11)

With (9) and (10) we can now compute an estimate for P (X = x | Y = k),

P̂ (X = x | Y = k) =
exp[− 1

2 (x− µ̂k)T Σ̂−1(x− µ̂k)]√
(2π)p det Σ̂

. (12)

An estimate for P (Y = k | X = x) can now be computed using Bayes theorem,

P̂ (Y = k | X = x) =
P̂ (X = x | Y = k) π̂k∑K
j=1 P̂ (X = x | Y = j) π̂j

=
π̂k exp[− 1

2 (x− µ̂k)T Σ̂−1(x− µ̂k)]∑K
j=1 π̂j exp[− 1

2 (x− µ̂j)T Σ̂−1(x− µ̂j)]
.

(13)

The LDA classifier uses equation (13) in the following way: given a new
observation x0 it classifies to the class k for which P̂ (Y = k | X = x0) is
maximized.
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We can simplify this optimization problem by ignoring the denominator in
(13) since it is shared by all classes. In this way we get,

P̂ (Y = k | X = x) ∝ π̂k exp[−1

2
(x− µ̂k)T Σ̂−1(x− µ̂k)]. (14)

We can also use the logarithm to simplify further since it is a monotonic function.
Taking the logarithm of both sides in (14) we get,

log(P̂ (Y = k | X = x)) = log(π̂k exp[−1

2
(x− µ̂k)T Σ̂−1(x− µ̂k)]) + C

= log(π̂k)− 1

2
(x− µ̂k)T Σ̂−1(x− µ̂k) + C

= log(π̂k)− 1

2
µ̂Tk Σ̂−1µ̂k + xT Σ̂−1µ̂k + C ′.

(15)

In the last derivation of (15) the term C ′ is a constant with respect to k. Since
we are only looking to include terms that depend on the class k, we can disregard
this term. The resulting function is called the linear discriminant function,

δ̂k(x) = log(π̂k)− 1

2
µ̂Tk Σ̂−1µ̂k + xT Σ̂−1µ̂k. (16)

The estimated LDA decision boundary between two classes k and j is now given
by the set {x : δ̂k(x) = δ̂j(x)}. The points x belonging to this set are the points
that solve the following equation,

δ̂k(x) = δ̂j(x)

=⇒ DBLDA : log
( π̂k
π̂j

)
+

1

2
(µ̂j

T Σ̂−1µ̂j − µ̂Tk Σ̂−1µ̂k) + xT (Σ̂−1µ̂k − Σ̂−1µ̂j) = 0.

(17)

Since equation (17) is linear in x, the decision boundary that LDA produces is
linear. An illustration of this is shown in Figure 1. It is important to note that
while assumption (8) implies a linear decision boundary, a linear decision
boundary between the classes does not imply that assumption (8) holds (see
also section 1.3 in [6]).

For a classification problem with K classes, the LDA classifier is fully defined
by the differences between the linear discriminant functions, δk(x)− δK(x),
between the first K − 1 classes. For each of these differences p+ 1 parameters
need to be estimated to define the classifier, where p is the number of
independent variables. As a result the LDA classifier has (K − 1)(p+ 1)
effective parameters.
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Figure 1: An example with three classes. Observations were drawn from three
bivariate gaussian distributions with class specific mean vectors and a common
covariance matrix. The solid black line is the LDA decision boundary and the
dotted black line is the optimal Bayes decision boundary.∗

4.1.1 Properties

Linear Discriminant Analysis makes strong assumptions about the distribution
of the data that are unlikely to be true for real data. By doing so, however, it
ensures that relatively few parameters have to be estimated to fit the model.
This makes it useful in many situations. For example when the sample size
is large and computational resources are limited. In other situations these as-
sumptions can cause the classifier to make systematic errors and underfit the
data.

Let us start by looking at situations in which LDA is appropriate in theory:

• When the Bayes decision boundary is linear or approximately linear.

• When the number of observations is low, the simplicity of LDA prevents
it from overfitting the data.

• When assumption (8) holds completely or approximately.

∗Reprinted/adapted by permission from [Springer Nature Customer Service Centre GmbH]:
[Springer [Introduction to Statistical Learning] by [Trevor Hastie, Gareth James, Robert Tib-
shirana, and Daniela Witten] [COPYRIGHT] (2013)
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• When the number of observations is high and computational resources are
limited, it might not be feasible to use methods with more parameters
because of computational limitations.

Some situations when LDA may not be appropriate or when other classifiers
may perform better in general are:

• When the Bayes decision boundary is non-linear.

• When many observations are available and more flexible methods are com-
putationally feasible.

• When assumption (8) is violated.

We have already seen that the assumptions of LDA result in a linear decision
boundary between the classes. This is not always a good approximation of the
Bayes decision boundary, which can be very irregular for real world problems.
Applying LDA for problems with a clearly non-linear class separation will
therefore result in a model with high bias. If the optimal decision boundary is
approximately linear LDA may perform quite well. In these situations it may
be preferred over more flexible classifiers which are more likely to overfit the
data.

In situations where the number of observations is low, the data may only be
able to reliably give a rough estimate of the decision boundary, since the
variance of such an estimate would be high. Using classifiers that have more
parameters and that support non-linear decision boundaries can easily lead to
overfitting in these cases. LDA can perform well in these situations. It offers a
simple estimate of the decision boundary that may be successful in
approximating the general relationship between the classes without capturing
idiosyncrasies in the data.

When the number of observations is high, more information about the shape
of the decision boundary can be reliably obtained. Since the decision
boundary is often non-linear for real world classification problems, other
classifiers generally perform better in these situations. However if
computational resources are limited, more flexible approaches might be too
computationally complex to be feasible. In these situations LDA can be
appropriate if the Bayes decision boundary is not too non-linear.

When assumption (8) holds approximately for a given problem, LDA will
perform very well. This is because LDA is asymptotically efficient under this
assumption [6]. This means that there is no other classifier that will perform
better asymptotically (as N →∞) if the assumption holds.
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4.1.2 Extensions

The primary limitation of LDA is that it produces a linear decision boundary.
As we pointed out in the previous section, this can be a poor approximation
for real-world classification problems. Several extensions of LDA have been
proposed with weaker assumptions to allow for non-linear decision boundaries.
Some of these are detailed in sections 12.4-12.7 in [4].

A natural extension of LDA arises when the assumption of a common
covariance matrix for all classes is relaxed and each class is allowed to have a
unique covariance matrix. Assumption (8) is then replaced by the following
assumption,

X | Y = k ∼ N (µk, Σk) . (18)

The consequence of this that the discriminant function from (16) changes to,

δ̂k(x) = −1

2
log |Σ̂k| −

1

2
(x− µ̂k)T Σ̂−1k (x− µ̂k) + log(π̂k). (19)

The equation for the estimated decision boundary between any two classes k
and j is now given by,

DBQDA :

log
( π̂k
π̂j

)
+

1

2

(
log

(
|Σ̂j |
|Σ̂k|

)
+ (x− µ̂j)T Σ̂−1j (x− µ̂j)− (x− µ̂k)T Σ̂−1k (x− µ̂k)

)
= 0

(20)

This is a quadratic function in x and so the decision boundary is quadratic. The
method that uses this decision boundary is unsurprisingly called Quadratic Dis-
criminant Analysis (QDA) and is the most direct extension of LDA. The QDA
classifier is fully defined by the differences between the quadratic discriminant
functions (equation (19)) for the first K−1 classes. For each of these differences
(p(p + 3)/2 + 1) parameters need to be estimated to define the classifier. As
a result the number of effective parameters for the QDA classifier are given by
(K − 1)(p(p+ 3)/2 + 1). The decision boundaries of LDA and QDA are shown
for a two-class problem in Figure 2.
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Figure 2: An example with two classes. Observations were drawn from two
bivariate gaussian distributions with class specific mean vectors and covariance
matrices. The dotted black line is the LDA decision boundary and the solid
green line is the QDA decision boundary. The optimal Bayes decision boundary
is the purple dashed line.†

If LDA seems to underfit the data for a given problem and QDA seems to
overfit, a compromise between the two methods can be obtained by defining
the covariance matrix for a given class as a weighted average between the LDA
covariance matrix, and the QDA covariance matrix. This approach is called
Regularized Discriminant Analysis (RDA); the covariance matrix is then given
by,

Σ̂k(α) = αΣ̂k + (1− α)Σ̂, 0 ≤ α ≤ 1. (21)

When α = 0 this method is equivalent to LDA and when α = 1 it is equivalent
to QDA. When choosing α, the goal is to minimize the test error rate of the
resulting classifier. In practice the test error rate is commonly estimated for
different values of α with cross-validation.

†Reprinted/adapted by permission from [Springer Nature Customer Service Centre GmbH]:
[Springer [Introduction to Statistical Learning] by [Trevor Hastie, Gareth James, Robert Tib-
shirana, and Daniela Witten] [COPYRIGHT] (2013)
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4.2 K-Nearest Neighbors

The second classification method we are going to study is the K-Nearest Neigh-
bors (KNN). Unlike LDA it does not make any explicit assumptions on the
distribution of the data, making it a non-parametric classifier. All of the theory
in this section can be found in section 13.3 in [4] unless another source is cited.

Given a new observation x0 the KNN classifier finds the k closest points to x0
and uses these to estimate P (Y = j | X = x0) locally for each class j,
according to the following rule,

P̂ (Y = j | X = x0) =
kj
k
. (22)

Here kj is the number of neighbors that belong to class j among the k neighbors.

It then classifies x0 to the class j for which P̂ (Y = j | X = x0) is the largest. If
there is a tie between classes the class is chosen among them at random. This
is called the majority voting scheme/rule, since it assigns the new observation
to the majority class among the neighbors.

One ambiguity in the above formulation of the KNN scheme is the measure of
distance used for determining the k closest points. Different measures can be
used, but the most commonly used measure is the Euclidean distance, as
evidenced by its usage on page 465 in [4] to define the KNN scheme. The
Euclidean distance dth between two observations xt = (xt1, ..., xtp) and
xh = (xh1, ..., xhp) is given by,

dth =

√√√√ p∑
i=1

(xti − xhi)2. (23)

The number of effective parameters for K-Nearest Neighbors is N/k where N
is the number of observations and k is the number of neighbors (page 15 in
[4]). This can be understood when considering the situation in which the neigh-
borhoods are not overlapping. Then there would be N/k neighborhoods and
for each of these, one parameter would have to be estimated, the neighborhood
mean. The number of neighbors k is the only explicit parameter of K-Nearest
Neighbors. Lower values of k yields a model with higher variance, since the
number of effective parameters increases as k decreases. For the same reason
higher values of k gives a model with greater bias. An illustration of this re-
lationship can be found on page 466 in [4]. The value of k that is optimal for
a given problem is usually determined by estimating the test error rate and
choosing the value of k for which the test error rate is minimized.
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4.2.1 Properties

Since K-Nearest Neighbors is a non-parametric classifier, it is very adaptable
compared to parametric methods like LDA that perform poorly if their assump-
tions about the data do not approximately coincide with reality. Furthermore
since KNN estimates P (Y = y | X) locally for each new observation, it can
support highly non-linear decision boundaries between the classes. However as
we will see there are situations where KNN will perform poorly and when other
methods will be more suitable.

Let us start by looking at some situations in which the KNN classifier is
appropriate in theory:

• When the Bayes decision boundary is non-linear and irregular and/or
when parametric methods cannot adequately approximate its shape.

• When the number of observations is high and KNN is computationally
feasible.

Here are some situations when KNN may not be appropriate or when other
classifiers may perform better in general:

• When the number of observations is low.

• When the number of observations is high but computational resources are
limited and cannot support KNN.

• When the class distribution is skewed.

• When the number of independent variables is high.

KNN is a memory-based classifier which means that it stores the training data
in memory and accesses it every time a new observation is to be classified. As
the training data grows in size this can become computationally unfeasible if
computer memory is limited. Because of this, KNN is most appropriate when
there are enough observations in the data to support a complex decision
boundary, but not so many that it becomes computationally difficult or
impossible to use. LDA does not suffer from this problem since it fits a model,
as a result only the estimated model parameters need to be stored for
classification of new observations.

KNN makes no explicit assumptions about the distribution of the data.
Therefore it can approximate complex and irregular decision boundaries
between the classes. When the number of observations is low this is an
undesirable trait in general. This is because, as we mentioned in section 4.1.1,
when the sample size is small the data can only support simple decision
boundaries between the classes. KNN will likely overfit the data in these
situations since it does not assume an approximate shape for the decision
boundary, and the data does not contain enough information about its true
shape.
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KNN has an interesting property that makes it inadvisable for classification
problems with a large number of independent variables. We will illustrate this
property with an example. Suppose we have a dataset with 50 people and we
want to classify their sex with one explanatory variable, the height of each
person. Using KNN we can classify the sex of a new person by considering the
k people in the dataset closest in height, and deciding the sex through a
majority vote. Now consider a situation where we have 20 explanatory
variables instead, such as height, weight, eye color, etc. The probability that a
new person will have similar characteristics to k others, among 50 people, and
across 20 variables, is much smaller than the probability that they are close in
height alone. Across 20 independent variables the concept of a nearest
neighbor becomes almost meaningless when there are 50 observations in the
dataset. In general the closest neighbors might be very far away in high
dimensions and might not be a good basis for estimating the local conditional
probability in (22). This problem is called the curse of dimensionality. A more
detailed illustration of the problem can be found in section 2.5 in [4].

Another problem with KNN is that if the class distribution is skewed in the
training data the majority voting scheme heavily favors the more prevalent
classes [7]. This is because KNN does not differentiate between points that are
closer and points that are farther away within neighborhoods. This is
especially problematic if k is large, since some points may be much closer to
the new observation than others within the neighborhood.

4.2.2 Extensions

Many extensions of the KNN classifier have been proposed, some of these are
detailed in section 13.4 in [4]. Most of them look to address the problems that
we outlined in the previous section. In essence there are two aspects that can
be modified in this classification method to obtain improved results: the
measure of distance and the voting rule. In the standard method that we have
described, Euclidean distance is used and the voting rule is majority vote
among the neighbors. In this section we will look at how changing the distance
measure and the voting rule affects the outcomes of this method.

As mentioned in the previous section, KNN with majority voting performs
poorly when the class distribution is skewed. By weighing the votes of each
neighbor based on its distance from the query point, we can alleviate this
problem in theory. A natural way of doing this is by using the inverse-distance
between the points as weights. Formally the weight of a point xi in the
neighborhood of a new observation x0 is then given by,

wi =
1

di0 + ε
. (24)

Where we have used the Euclidean distance as defined in (23), and where ε is
a small real-valued number that prevents division by zero in the case when
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di0 = 0. Modifications of KNN that are based on adding weights to the
neighbors are called weighted K-Nearest Neighbors (wKNN) methods. A
detailed review of different weighing schemes for KNN can be found in [8].

Another problem with the KNN method is the curse of dimensionality which
was explained in the previous section. Alleviating this problem is more
difficult, but the choice of distance measure can affect the performance of
KNN in higher dimensions. The Manhattan distance between two observations
xt = (xt1, ..., xtp) and xh = (xh1, ..., xhp) is defined as,

dth =

p∑
i=1

|xti − xhi|. (25)

In [9] it is shown that the Manhattan distance is more appropriate than the
Euclidean distance in higher dimensions. That is, it yields a KNN classifier
that does not suffer as much from the curse of dimensionality.
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5 Data Analysis

In this section we are going to evaluate the performance of the classification
methods we have presented so far on three real-world datasets. Specifically we
will include the following methods in the analysis:

• Linear Discriminant Analysis (LDA)

• Quadratic Discriminant Analysis (QDA)

• K-Nearest Neighbors (KNN)

• K-Nearest Neighbors with inverse-distance weights (wKNN)

We will use the Euclidean distance for both nearest neighbor approaches. The
three datasets we are going to use for the analysis have been downloaded from
the University of California Irvine Machine Learning Repository [10]. The
datasets have been chosen to be of different sizes to avoid bias towards any of
the methods. Furthermore, two of the datasets have binary response variables
and one has a categorical response variable with 7 levels.

5.1 Methodology

We will assess the classification performance of the methods using 4 evaluation
metrics: accuracy, precision, recall and log-loss. The definitions of the former
three can be found in [11]. We will use the log-loss (cross-entropy) as defined
on page 209 in [12]. In section 5.1.1 we define and discuss the accuracy and
the log-loss. In section 5.1.2 we do the same for the precision and recall. High
values are desirable for the the accuracy, precision and recall; lower values are
desirable for the log-loss. These metrics will be computed for each method in
the following way:

1. A Non-parametric Bootstrap of the dataset is performed with I
bootstrap samples.

2. Cross-validation is used to estimate the value of the evaluation metric for
each bootstrap sample.

3. A 95% bootstrap confidence interval for the metric is determined by
considering the I bootstrap estimates and using the 2.5 percentile as the
lower bound of the interval and the 97.5 percentile as the upper bound.

We will plot the point estimates of the metrics together with the 95%
confidence intervals for all methods in the same plot. We will use the visual
representation of the confidence intervals to determine if the differences
between the methods are statistically significant. If the confidence intervals of
two methods do not overlap, the difference between them is considered to be
statistically significant for that metric.
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For each classification problem, we will compute the number of effective
parameters for the methods. We will use this information as an indicator of
the complexity of the classifiers. Fewer effective parameters suggest that the
classifier is simpler and less flexible.

The value of k, the number of neighbors for the nearest neighbor approaches,
will be determined by using cross-validation on the datasets to evaluate the
test error rate for values of k between 1 and 100. The value of k for which the
test error rate is the lowest is then chosen. This procedure will be performed
separately for KNN and wKNN. The associated cross-validation curves for all
datasets can be found in the Appendix.

The number of bootstrap samples used for estimating the confidence intervals
will be determined independently for each dataset. The highest possible
number will be used given the constraints of the available computational
resources.

For the Breast Cancer dataset that we will analyze in section 5.2, we will use
the Royston H test for multivariate normality to check whether the
assumptions of LDA and QDA are satisfied. The details of this test can be
found in [13].

5.1.1 Accuracy and Log-Loss

The accuracy of a classifier f̂ for a given classification problem is defined as:

Accuracy = 1− Error Rate =
1

N

N∑
i=1

I(yi = f̂(xi)). (26)

It is the proportion of correct predictions made by the classifier. The accuracy
assumes values between 0 and 1. A classifier with an accuracy of 0 makes no
correct predictions, while a classifier with an accuracy of 1 makes no incorrect
predictions. We will use the accuracy as an evaluation metric since it has a
simple interpretation, and because it is natural indicator of the predictive
power of a classifier.

One shortcoming of the accuracy, however, is that it does not account for the
uncertainty associated with classification to a given class. For a binary
classification problem with classes A and B, suppose the correct label for a
given observation is class A. If classifier 1 correctly predicts class A, with an
associated probability of 0.51, and classifier 2 also correctly predicts class A,
but with probability 0.99, the resulting effect on the accuracy score will be the
same for both classifiers. This is because the accuracy only distinguishes
between correct and incorrect predictions. Classifier 2 clearly performs better
in this situation, however, since it predicts the label correctly with greater
certainty than classifier 1.
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To account for this uncertainty in prediction we will use the log-loss as a
complementary measure of predictive power alongside the accuracy. The
log-loss for a classification problem with N observations and K classes is
defined as:

Log-Loss = − 1

N

N∑
i=1

K∑
k=1

yik ln P̂ (Y = k | X = xi),

where yik =

{
1 if y = k for observation i,

0 otherwise.

(27)

The log-loss and the accuracy share the same denominator, N , the total
number of predictions/observations. The numerators are different however.
The numerator of (26) is simply a count of the number of correct predictions
made; the numerator of (27) is a weighted count of the correct predictions,
where the weights quantify the uncertainty associated with each classification.
Because of this the log-loss can be thought of as a more nuanced version of the
accuracy that provides information about the uncertainty associated with each
classification. It can be a particularly useful metric when the differences in
accuracy between methods is small or indistinguishable. The log-loss assumes
values between 0 and ∞. A lower value of the log-loss is desirable since it
indicates that a classifier is making correct predictions with a high degree of
certainty.

5.1.2 Precision and Recall

We will use the accuracy and the log-loss to evaluate the overall performance
of the classifiers for specific classification problems. It is also of interest to
evaluate the class-specific performance of the methods. In doing so we can
discover if the classifiers are biased in their predictions towards any of the
classes. We will use the precision and recall to evaluate class-specific
performance. Before we define these metrics we will define some terminologies
related to class-specific performance.

Suppose that we have a binary classification problem with classes A and B.

• A true positive is a correct classification to class A.

• A false positive is an incorrect classification to class A.

• A true negative is a correct classification to class B.

• A false negative is an incorrect classification to class B.
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The precision of a classifier for class A is defined as,

Precision =
True Positives

True Positives + False Positives
. (28)

It takes on values between 0 and 1 and is the ratio between the number of
correct predictions to class A and the total number of predictions to class A. A
high precision means that the false positive rate is low. This indicates that the
classifier rarely classifies to class A incorrectly.

The recall of a classifier for class A is defined as,

Recall =
True Positives

True Positives + False Negatives
. (29)

It assumes values between 0 and 1 and is the ratio between the number of
correct predictions to class A and the total number of observations belonging
to class A. A high recall means that the false negative rate is low. This
indicates that the classifier rarely misclassifies observations that belong to
class A.

In our analysis we will use the precision and recall in conjunction to evaluate
the distribution of the errors made by the classifiers. If the recall is
considerably lower than the precision, for example, we can conclude that the
classifier predicts false negatives more often than false positives. Similar values
of the precision and recall indicate that the classifier does not systematically
predict more false positives than false negatives or vice versa.

For the Forest Cover dataset that we will analyze in section 5.4, the response
variable is not binary. The precision and recall for one class in a multiclass
(more than 2 classes) problem do not provide comprehensive information
about the performance of a classifier for all classes. It is not obvious how the
precision and recall scores should be defined to provide valuable information
about the distribution of the predicted classes for a multiclass problem. We
could use the arithmetic mean of the class specific scores to summarize the
performance of a classifier. One problem with this, however, is that the scores
of more prevalent classes are not weighted more than less prevalent classes.
Since we are generally interested in minimizing the error rate of a classifier,
this is an undesirable property. Instead we will use micro-averaging of the
precision and recall scores across all classes [11]. With micro-averaging more
prevalent classes are weighted more heavily. For a classification problem with
K classes the micro-averaged precision is defined as,

Precisionµ =

∑K
i=1 True Positivesi∑K

i=1(True Positivesi + False Positivesi)
, (30)

and the micro-averaged recall is defined as,

Recallµ =

∑K
i=1 True Positivesi∑K

i=1(True Positivesi + False Negativesi)
. (31)
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5.1.3 Normalization

Because the nearest neighbor approaches use the distance between
observations as the basis for classification, the relative magnitude of the
independent variables has a considerable impact on the classification
performance of these methods (see also page 165 in [1]). Independent variables
on a larger scale will have a greater effect on the distance between the
observations. For instance, suppose we have two independent variables in a
dataset of countries: population size and life expectancy. Life expectancy will
assume values that are roughly in the range [0, 100] while population size will
assume values in the millions. In this situation, the nearest neighbor
approaches will fail to account for the difference in scale and will almost
exclusively use the population size to determine the closest neighbors. To solve
this problem we will normalize the data before applying the nearest neighbor
methods. Let xij denote the elements of the feature matrix, where i = 1, ..., N
are the observations and j = 1, ..., p are the independent variables. We will
replace the vectors xj = {x1j , ..., xNj} with the normalized vectors
x′j = {x′1j , ..., x′Nj} where,

x′j =
xj
||xj ||

. (32)

Here ||xj || is the Euclidean norm of the vector xj .

5.2 Breast Cancer Dataset

The first dataset we are going to analyze consists of 569 observations of
tumors from breast cancer patients. The data is labelled with information
about whether a tumor is malignant or benign. The class distribution is
skewed with 357 benign tumors and 212 malignant tumors. For each tumor a
digitized image of a fine needle aspirate (a sample of the cell nuclei) was
analyzed. Characteristics of the cell nuclei (area, radius, etc.) were recorded
for each tumor. Ten characteristics were recorded in total. For each of these,
the mean, standard error, and largest value was computed to account for the
variation between individual cell nuclei. As a result the dataset has 31
columns for each patient. One column specifying whether a tumor is
malignant or benign and 30 columns describing the characteristics of the
tumors cell nuclei and their spread. The classification problem is that of
classifying a given tumor as malignant or benign, based on the characteristics
of the tumor, as described by the 30 explanatory variables (all real-valued).

5.2.1 Results and Analysis

The number of bootstrap samples used with this dataset is 1000. Using
cross-validation, the estimated optimal values of k that will be used are 19 for
KNN and 23 for wKNN. The associated cross-validation curves can be found
in section 8.1 in the Appendix. The number of effective parameters for each
method are shown in Table 1. We see that QDA has considerably more
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effective parameters than the other methods for this classification problem.
This is because the number of effective parameters for QDA grows quickly
with the number of independent variables in the dataset, and this dataset
contains a large number of independent variables.

Method #Parameters
LDA 31
QDA 496
KNN 30

wKNN 25

Table 1: The number of effective parameters for each method with the Breast
Cancer Dataset.

For this dataset the Royston H test for multivariate normality was performed
on the independent variables corresponding to each class. This was done to
test whether the LDA and QDA assumptions of normality are satisfied for this
classification problem. Multivariate normality was rejected for both classes
with p-values of 6.41× 10−99 for the class malignant and 3.81× 10−124 for the
class benign. These result imply that the assumptions of LDA and QDA are
clearly violated for this classification problem.

Let us now look at the accuracy scores of the different methods for this
classification problem. The mean accuracy for each method and the associated
95% confidence intervals are shown in Figure 3.

From Figure 3 we can see that all methods achieve a high accuracy for this
problem, above 0.90. The only statistically significant difference between the
accuracy scores of the methods is that KNN has a lower accuracy than wKNN.
Since wKNN only differs from KNN in that it uses weights in the voting rule,
this must be the reason for the discrepancy. The motivation for wKNN over
KNN, as described in section 3.2.2, is that when the class distribution is
skewed, KNN is biased towards the more prevalent class when making a
classification. For this dataset there are 68.4% more observations in the class
benign compared to malignant. This skew in the class distribution explains
why wKNN achieves a higher accuracy than KNN for this classification
problem.

For a more nuanced evaluation of the predictive power of the methods we will
now look at the log-loss scores. In Figure 4 the mean log-loss scores are shown
for the methods along with 95% confidence intervals for the true values of the
log-loss.
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Figure 3: A plot of the mean accuracy (white dots) for each method across all
bootstrap samples for the Breast Cancer dataset. The capped black lines are
the 95% confidence intervals of the accuracy for each method.

From Figure 4 we can see that the only statistically significant difference
between the log-loss scores of the methods is that LDA has a lower log-loss
score than QDA and KNN. This indicates that when taking the uncertainty of
the classifications into account, LDA performs better than QDA and KNN.

A plausible explanation for the difference in the log-loss score between LDA
and QDA is that, since LDA has fewer parameters than QDA, it generalizes
well for this classification problem, while QDA overfits the data. This
explanation seems reasonable since QDA has considerably more effective
parameters than LDA. For the difference between LDA and KNN, the most
likely explanation seems to be that KNN suffers from the skewed class
distribution that was illustrated in Figure 3, where wKNN achieved a higher
accuracy than KNN.

All precision scores and recall scores were computed for the class malignant.
For this classification problem the differences between the precision scores of
the methods are not statistically significant. Let us look at the recall scores for
the methods. The recall score mean for each method along with 95%
confidence intervals for the true recall scores are shown in Figure 5.
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Figure 4: A plot of the mean log-loss (white dots) for each method across all
bootstrap samples for the Breast Cancer dataset. The capped black lines are
the 95% confidence intervals of the log-loss for each method.

The only statistically significant difference between the recall scores of the
methods is that QDA has a higher recall score than KNN. From our previous
analysis in this section, we know that KNN seems to suffer from the skewed
class distribution, so that it is biased towards classifying tumors as benign. In
this context, this bias translates to a high false negative rate. Therefore the
low recall score of KNN is to be expected.

5.3 Mushroom Dataset

The second dataset we are going to analyze consists of 8124 hypothetical
samples from 23 species of gilled mushrooms in the Agaricus and Lepiota
families. Each species is labelled as either poisonous or edible, 4208 of the
mushroom samples are edible and 3916 are poisonous. There are 22
explanatory variables that specify different characteristics of the mushrooms
such as their size, shape and color. All of these are categorical variables. The
classification problem is that of classifying a new sample as poisonous or edible
based on the characteristics of the sample as described by the explanatory
variables.
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Figure 5: A plot of the mean recall (white dots) for each method across all
bootstrap samples for the Breast Cancer dataset. The capped black lines are
the 95% confidence intervals of the recall for each method.

5.3.1 Results and Analysis

The number of bootstrap samples used with this dataset is 100. Using
cross-validation the estimated optimal value of k that will be used is 1 for both
KNN and wKNN. The associated cross-validation curves can be found in
section 8.2 in the Appendix. Since this means that both methods will classify
to the class of the closest neighbor, KNN and wKNN will be equivalent for this
classification problem. Since all of the variables in the dataset are categorical,
the LDA and QDA assumptions of normality are clearly violated for this
classification problem. The number of effective parameters for each method are
shown in Table 2. From Table 2 we see that the nearest neighbor approaches
have considerably more effective parameters for this classification problem than
LDA and QDA. Furthermore QDA has more effective parameters than LDA.

In Figure 6 the accuracy scores that the different methods achieved for this
classification problem are shown. We can see that all methods achieved a very
high accuracy for this classification problem, above 0.999 for all methods. For
QDA, KNN and wKNN, the upper bound of the 95% confidence interval for
the accuracy score is 1.0; for KNN and wKNN the lower bound is also 1.0.
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Method #Parameters
LDA 23
QDA 276
KNN 8124

wKNN 8124

Table 2: The number of effective parameters for each method with the Mush-
room dataset.

This means that the accuracy of the nearest neighbor methods can be said to
be optimal for this classification problem.

The only statistically significant difference between the accuracy scores of the
methods is that LDA has a slightly lower accuracy than KNN and wKNN.
Since the nearest neighbor approaches have considerably more parameters, it
seems LDA underfits the data slightly in comparison. A natural explanation
for this seems to be that the normality assumption of LDA, assumption (8), is
violated for this classification problem. However, since QDA does not perform
significantly worse than the nearest neighbor approaches in terms of accuracy
this explanation is unsatisfactory, given that the normality assumption of
QDA is also violated. A more plausible explanation for the slightly inferior
performance of LDA seems to be that the Bayes decision boundary for this
problem is non-linear. This is further supported by the fact that the nearest
neighbor methods had the lowest test error rate with 1 neighbor (k = 1). Since
this is the most flexible variation of these classifiers, it suggests that the Bayes
decision boundary is irregular and non-linear.
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Figure 6: A plot of the mean accuracy (white dots) for each method across all
bootstrap samples for the Mushroom dataset. The capped black lines are the
95% confidence intervals of the accuracy for each method.

Lets now see how the methods performed in terms of the log-loss score. In
Figure 7 the log-loss scores are summarized for each method. Like with the
accuracy score the only statistically significant difference between the log-loss
scores of the methods is that LDA performs worse than the nearest neighbor
methods. It is reasonable to conclude that the reasons for the difference
between log-loss scores are the same as for the difference in the accuracy
scores. This is because the log-loss can be thought of as a weighted version of
the accuracy score as we explained in section 5.1.1.
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Figure 7: A plot of the mean log-loss (white dots) for each method across all
bootstrap samples for the Mushroom dataset. The capped black lines are the
95% confidence intervals of the log-loss for each method.

All precision scores and recall scores were computed for the class poisonous. In
terms of precision, all methods obtained an optimal estimated precision of 1.0.
All lower and upper bounds for the 95% confidence intervals were also 1.0.
Thereby all methods seem to avoid false positives completely. For this
classification problem this means that the methods will not classify a new
mushroom as poisonous by mistake.

The recall scores for the methods are shown in Figure 8. We can see that all
methods have high recall scores, above 0.997. The only statistically significant
difference between the methods is that LDA has a slightly lower recall score
than KNN and wKNN. Since there is no difference in the precision score
between the methods, we conclude that the relative bias of LDA is in the
direction of classifying to the class edible.

30



Figure 8: A plot of the mean recall (white dots) for each method across all
bootstrap samples for the Mushroom dataset. The capped black lines are the
95% confidence intervals of the recall for each method.

5.4 Forest Cover Dataset

The third dataset we are going to analyze consists of 581 012 observations
where each observation represents a 30x30 meter forest area. The data is
labelled with the forest cover type in the area and there are 7 types in total.
For each observation 12 cartographic variables (Elevation, Slope, etc.) were
recorded. Two of these are categorical variables and the rest are real-valued.
The classification problem is that of predicting the forest cover type given the
cartographic variables for a new observation.

The two categorical variables, soil type and wilderness area, have 4 and 40
categories respectively. In this dataset each category is represented by a
dummy variable resulting in 44 additional columns for these two variables
alone. Thereby, the inclusion of these two variables increases the number of
independent variable columns in the dataset from 10 to 54.

Because LDA and QDA assume normality for the independent variables, the
inclusion of categorical variables that clearly violate this assumption will likely
be unfavourable to these methods. We have already evaluated the performance
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of these methods with the Mushroom dataset, which only had categorical
variables. To obtain a more diverse selection of classification problems we will
therefore modify the Forest Cover dataset by excluding the categorical
variables.

5.4.1 Results and Analysis

The number of bootstrap samples used with this dataset is 30. Using
cross-validation the estimated optimal value of k that will be used is 1 for both
KNN and wKNN. The associated cross-validation curves can be found in
section 8.3 in the Appendix. Like with the Mushroom dataset from section
5.3, this implies that KNN and wKNN will be equivalent for this classification
problem. The number of effective parameters for each method are shown in
Table 3. We can see that the nearest neighbor approaches have considerably
more effective parameters than LDA and QDA for this classification problem.

Method #Parameters
LDA 66
QDA 396
KNN 581012

wKNN 581012

Table 3: The number of effective parameters for each method with the Forest
Cover Dataset.

Since this is a multiclass problem we will use micro-averaging of the precision
and recall scores. For this classification problem the performance of the
different methods had the same ranking order across all metrics. The nearest
neighbor methods performed significantly better than the discriminant
analysis classifiers and LDA performed slightly better than QDA. An
illustration of this relationship can be seen in Figure 9, which shows the
accuracy scores of the methods and the associated 95% confidence intervals.

A reasonable explanation for the significant difference in performance between
the nearest neighbor approaches and the discriminant analysis classifiers is
that the latter underfit the data for this classification problem. This seems
plausible since the number of effective parameters for KNN and wKNN is
considerably higher than for the other methods. This could be because the
assumptions of normality that LDA and QDA are based upon are not good
approximations of the distribution of the data. It could also be because the
Bayes decision boundary for this problem is highly irregular so that the
decision boundaries of LDA and QDA fail to capture its shape. The latter
hypothesis is supported by the fact that the most flexible version of KNN and
wKNN (with 1 neighbor) minimized the estimated test error rate for this
classification problem.
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Figure 9: A plot of the mean accuracy (white dots) for each method across all
bootstrap samples for the Forest Cover dataset. The capped black lines are the
95% confidence intervals of the accuracy for each method.

Explaining the difference in performance between LDA and QDA is more
difficult. Since QDA is a more flexible classifier with more effective parameters
than LDA, we expect it to perform better for this classification problem, given
that the much more flexible nearest neighbor approaches perform well.
Therefore, the slight edge in performance that LDA achieves over QDA across
all metrics seems counter intuitive. A plausible explanation for this difference
is an open problem that will be addressed in future studies.
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6 Discussion

In this section we will summarize the main findings of the analysis from
section 5 for the three datasets that were included. We will also discuss our
methodology and its limitations.

For the Breast Cancer dataset we found that all classes had good predictive
power. We also observed that wKNN had better predictive power than KNN,
implying that KNN suffers from the skewed class distribution.

For the Mushroom dataset we found that all classes had very good predictive
power. We also observed that LDA had slightly lower predictive power than
the nearest neighbor approaches which, performed optimally for this
classification problem. QDA did not perform significantly worse than the
nearest neighbor methods which suggests that the assumption of normality
made by both LDA and QDA was not the reason for LDA underfitting the
data. Instead the linear decision boundary of LDA seems to be reason for its
relatively poor performance for this classification problem.

For the Forest Cover dataset we found a large discrepancy in performance
between the discriminant analysis approaches and the nearest neighbor
methods, the latter had significantly higher predictive power. These results
suggest that the Bayes decision boundary is irregular and non-linear for this
classification problem. Furthermore, LDA performed slightly better than QDA
across all metrics.

The results we have obtained imply some general guidelines for the
applicability of the studied classification methods:

• The assumptions of normality made by LDA and QDA should be viewed
as conditions for optimality as oppose to a strict requirements for using
these classifiers.

• When the class distribution is skewed KNN suffers significantly in terms
of predictive power. wKNN alleviates this problem effectively and should
be used instead of KNN in these situations.

In our analysis we focused primarily on the relative differences in performance
between the methods, as oppose to the absolute differences. The motivation
for this is that absolute differences in performance are only meaningful in the
context of specific classification problems. For instance, consider the
Mushroom dataset from section 5.3. We observed that there was a slight
difference in accuracy between the nearest neighbor methods and LDA. This
difference of roughly 0.05% could be meaningful if we are looking to use this
classifier at a large scale, and if the risks associated with misclassification are
considerable. For this problem in particular, the consequences of
misclassification could be that mushrooms are classified as edible when they
are poisonous, which is a very undesirable outcome. For a different
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classification problem this difference might be virtually meaningless. The
purpose of our study has been to gain insight into the properties of the
classification methods and the differences between them. Therefore we have
chosen to treat the datasets as generic classification problems, and to place an
emphasis on relative differences in our analysis.

We compared the performance of the classification methods using three
datasets. An attempt was made to diversify this selection, by using datasets of
different sizes and removing the categorical variables in the Forest Cover
dataset. Although these measures likely helped in reducing the bias of our
results, the limited number of datasets is a source of considerable bias. This
bias limits the extent to which our findings can be reliably generalized to a
variety of classification problems. Further study into the differences between
these classifiers, using a larger sample of datasets, would facilitate our
understanding.

The number of bootstrap samples used for computing the confidence intervals
of the evaluation metrics was limited by computational resources. Using fewer
bootstrap samples results in more biased estimates of the confidence intervals
[14]. It is possible that more accurate confidence intervals would have changed
some of the results of our analysis. For instance, some of the observed
differences in the evaluation metrics of the classifiers could have been deemed
statistically insignificant, if we had obtained different estimates of the
confidence intervals.

When comparing the performance of the classifiers, we considered the
possibility that the assumption of normality made by LDA and QDA did not
hold. With the Breast Cancer dataset we performed the Royston H test for
multivariate normality and found that the data violated this assumption.
With the Mushroom dataset we could assert that since its variables are
categorical it clearly violates the assumptions of LDA and QDA. We were
unable to determine whether these assumptions were met for the Forest Cover
dataset however. Because of computational limitations multivariate normality
testing was not possible for this dataset due to its large size.
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7 Conclusion

The objective of our study has been to gain a better understanding of the
classification methods Linear Discriminant Analysis (LDA) and K-Nearest
Neighbors (KNN), as well as extensions of these methods. The purpose of the
study has been to help potential users of these classifiers in evaluating their
applicability for different classification problems.

For each class, LDA and QDA assume a multivariate gaussian distribution for
the independent variables. This is a strong assumption that limits the
applicability of these methods in theory. However, our experimental results
suggest that even when this assumption does not hold, LDA and QDA can
perform well. In light of these results, we recommend that potential users of
these classifiers should not dismiss them entirely when this assumption is
violated.

The simplicity of the discriminant analysis methods makes them appropriate
when the sample size of the data is small. In these situations the data will not
contain enough information to support a complex decision boundary between
the classes. Even though the nearest neighbor classifiers may achieve lower
bias they will likely also suffer from higher variance under these circumstances.
We recommend that users consider LDA or QDA instead of the nearest
neighbor methods when the sample size is small.

K-Nearest Neighbors is a versatile classifier in general since it does not make
explicit assumptions about the distribution of the data. In theory, it performs
well when enough observations are available to support a complex decision
boundary. Our experimental results support this finding. For the Forest Cover
dataset the nearest neighbor methods outperformed LDA and QDA with a
large margin.

The predictive power of the nearest neighbor classifiers diminishes as the
number of independent variables increases. This limitation should be
considered when applying these classifiers. Another problem with K-Nearest
Neighbors is that when the majority voting scheme is used, it will be biased
towards the more prevalent class if the class distribution is skewed. This
tendency of KNN was supported by our experimental results and we found
that wKNN alleviates the problem effectively. Because of this, we recommend
potential users of KNN to examine the class distribution and, if it is not
roughly symmetrical, to use wKNN instead.
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8 Appendix

8.1 Breast Cancer Dataset

Figure 10: Cross-validation curves for KNN (top) and wKNN (bottom) for the
Breast Cancer dataset, showing the test error rate for values of k between 1 and
100.
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8.2 Mushroom Dataset

Figure 11: Cross-validation curves for KNN (top) and wKNN (bottom) for the
Mushroom dataset, showing the test error rate for values of k between 1 and
100. The characteristic U-shape of cross-validation curves is not seen in these
figures. This might have interesting implications that should be explored in
future studies.
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8.3 Forest Cover Dataset

Figure 12: Cross-validation curves for KNN (blue) and wKNN (orange) for the
Forest Cover dataset, showing the test error rate for values of k between 1
and 100. The characteristic U-shape of cross-validation curves is not seen in
this figure. This might have interesting implications that should be explored in
future studies.
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