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Abstract

This thesis analyses the epidemic of the highly infectious measles in
a large school children population under the premise that some schools
impose measles vaccination as an admission criteria. We develop a
model framework for which we can use to analyse the effects of such a
measure, and its extent, on important parameters of an epidemic such
as the basic reproduction number and the final outcome.

Based on the standard SIR (Susceptible, Infected, Removal) model
but with two levels of mixing, a school children population is divided
into classes of the same size and a proportion of these classes admit
ONLY vaccinated children, leaving the burden of unvaccinated chil-
dren to be shared by those classes that do not have this admission
criteria, according to some distribution. These classes, in turn, can
have varying numbers of unvaccinated students. Each student, regard-
less of vaccination status, makes contact with students who are in the
same class (local contacts) and also with those who are not in the same
class (global contacts), which give rise to the two levels of mixing. How-
ever, only an unvaccinated student who is contacted by an infectious
student can be infected and the infection is immediately. All infectious
students who recover (or die) from the virus attain lifetime immunity
and can never be infected again.

Results of our analysis show that, in general, not having vacci-
nation admission criteria or increasing the proportion of classes that
admit unvaccinated students helps to bring down the basic reproduc-
tion number and the proportion of ultimately infected. The extent of
this positive effect, however, is contingent on the level of vaccination
coverage, how virulent the strain of virus is and how often students
make global contacts.
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Sammanfattning

Det här examensarbetet analyserar en epidemi i en stor befolkning skol-
barn med det mycket infektiösa mässlingviruset, under förutsättningen att
vissa skolor inför mässlingsvaccination som antagningskrav. Vi utvecklar ett
modellramverk som kan användas för att analysera effekterna av en s̊adan
åtgärd, och dess omfattning, utifr̊an viktiga parametrar för en epidemi s̊asom
grundläggande reproduktionsnummer och antalet smittade.

Baserat p̊a standard SIR-modellen (mottaglig, infekterad, borttagen),
men med tv̊a niv̊aer av blandning, delas en skolbarnspopulation in i klasser
av samma storlek. Och en del av dessa klasser till̊ater ENDAST vaccinerade
barn, vilket lämnar bördan för ovaccinerade barn till de klasserna som inte
har detta antagningskrav, enligt en viss fördelning. Dessa klasser kan i sin
tur ha olika antal ovaccinerade studenter. Varje student, oavsett vaccina-
tionsstatus, tar kontakt med elever som är i samma klass (local kontakter)
och även de som inte är i samma klass (global kontakter), vilket ger up-
phov till tv̊a niv̊aer av blandning. Men bara en ovaccinerad student som
kontaktas av en smittsam student kan smittas och infektionen är omedel-
bar. Alla smittsamma studenter som återhämtar sig (eller dör) av viruset
uppn̊ar livstidsimmunitet och kan aldrig smittas igen.

Resultaten av v̊ar analys visar att inte ha detta antagningskrav eller öka
andelen klasser som till̊ater ovaccinerade studenter kan minska det grundläggande
reproduktionsantalet och andelen slutligen infekterade. Omf̊anget av dess
positiva effekt beror emellertid p̊a vaccinationstäckningsniv̊an, hur smittsam
den nuvarande virusstammen är och hur ofta elever tar globala kontakter.
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1 Introduction

Many potentially life-threatening infectious diseases, such as measles, po-
lio and tetanus, that have historically erupted into major epidemics and
killed many were brought under control, thanks to concerted vaccination
programmes. According to World Health Organization (WHO) [21] [22],
before widespread vaccination, measles, in particular, have had major out-
breaks approximately every 2 to 3 years and caused an estimated 2.6 million
deaths each year. Between 2000 and 2018, measles vaccination has prevented
an estimated 23.2 million deaths. However, in recent years, measles has seen
resurgence in some developed countries, such as France, Italy and the U.S..
The Center for Disease Control and Prevention in the U.S. [19] reported
that 2019 registered the greatest number of cases in the country since 1992
and most of the people infected were not vaccinated against measles. Why
do people not want to vaccinate themselves or their children against poten-
tially deadly viruses, such as measles, when there is one readily available?
Vaccine hesitancy.

Vaccine hesitancy is on the rise. According to an article published in
The Lancet Child & Adolescent Health [20], vaccine hesitancy is reported
in more than 90% of the countries in the world. In Europe, vaccination
coverage for measles is below 95% in many countries. There is a genuine
concern among health authorities that vaccine hesitancy is leading to loss
of herd-immunity, which was built up through mass immunisation.

In order to reverse the loss of herd-immunity, some countries, like Italy,
Germany and the U.S., have legislated vaccination and children can be re-
fused school placements if their parents have chosen voluntarily not to vacci-
nate them. Yet in other countries, like Sweden, vaccination is only strongly
encouraged but not compulsory. In the case where legislation is not in place
or where exemptions are liberally applied, schools may decide to take things
into their own hands and impose vaccination as a school admission require-
ment. This means that those schools that do not have the vaccination ad-
mission criteria will have a high proportion of unvaccinated students. How
will this affect the spread of a highly infectious disease, such as measles, in a
large population of school children? What is the probability of an outbreak?
What is the proportion of unvaccinated students who will be infected? Mod-
elling a measles outbreak in case of such a situation is the motivation of this
thesis.

Hence, this thesis attempts to answer the questions above by developing
a model framework to analyse a measles outbreak in a large population of
school children, under two scenarios. One, no schools impose vaccination
as an admission criteria and all schools take in unvaccinated children; two,
some schools have imposed vaccination as an admission criteria while the
rest do not, leading to all unvaccinated children distributed only amongst
the latter.
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There is a rich body of literature in mathematical modelling of the spread
of infectious diseases. One of the most cited literature is the deterministic
model proposed by Kermack and McKendrick [11]. In this model, the pop-
ulation is assumed to be homogeneous mixing. Another famous work is a
book written by Bailey [5], which includes his earlier work on the theory of
epidemics. Bailey’s work is also based on a homogeneous mixing population.
Nowadays, however, the focus is on models that incorporate heterogeneities.
Andersson and Britton [2] have written a set of comprehensive lecture notes
on stochastic epidemic models and their statistical analysis, which include
a very useful chapter on models that allow heterogeneity in the population.
Further, Ball, Mollison and Scalia-Tomba [7] have developed a comprehen-
sive model framework for epidemics with removal in populations that mix
at two levels. In addition, a paper written by Britton, Kypraios and O’Neil
[8] is also of interest as they construct a stochastic epidemic model with
three levels of mixing and apply their methods on a real measles outbreak
dataset. There is, in fact, a plethora of research work done on mathematical
modelling of infectious diseases from different perspectives and angles, some
of which are applied on the case of measles. This thesis finds a fresh angle
by specifically studying the case where a proportion of schools impose vacci-
nation as an admission criteria, as opposed to the current real-life situation
where either all schools have vaccination criteria or none has it.

In order to be as close to reality as possible and yet still keep the mathe-
matics tractable, we use a stochastic model that allows two levels of mixing
in the population. The model we choose to work with is a generalisation
of the standard SIR model with two levels of mixing put forth by Ball et
al [7]. The standard SIR model is a simple stochastic model for epidemics
where S.I.R stands for ”Susceptible”(S), ”Infectious”(I) and ”Removed”(R).
One of the assumptions of this model is that there is homogeneous mixing
in the population, that is, the social structure is flat. Ball et al [7] gener-
alises this model by allowing populations to mix at two levels, namely local
and global. It is also known as the household model. It is intuitive that the
rate at which individuals come into contact with one another locally will be
higher than the rate at which they make contact with individuals outside
their social settings. A local infection refers to the event of an infectious
individual infecting someone within the same household, while a global in-
fection refers to the event of an infectious individual infecting an individual
outside the household. A detailed description of the model and the assumed
social structure in the population will be provided in Section 3.

In Section 3, we delve into the theoretical aspects of how an epidemic
spreads like a branching process at the initial stages of an outbreak. We
also give detailed explanations of both the standard SIR model and the
household model.

Section 4 is dedicated to deriving expressions for the basic reproduction
number and the final outcome of an outbreak with two levels of mixing.
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More significantly, we take into consideration the proportion of classes that
admit unvaccinated students and see how this plays a role in these quantities.

In Section 5, we evaluate the expressions derived in Section 4 by varying
the main model parameter, which is the proportion of classes that admit
unvaccinated individuals, as well as other parameters such as the level of
vaccination coverage in the population and global contact rates.

We conclude our findings in Section 6 and discuss the limitations of this
thesis in Section 7.
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2 Definitions of main parameters and quantities

For convenience of reference, we collect the main parameters and quantities
in this thesis into a list here and provide their definitions.

• Basic reproduction number : average number of initially susceptible
individuals infected by an infectious individual

• Local epidemic: epidemic within a household

• Global epidemic: epidemic of all households, which is the same as one
involving the whole population

• Final outcome: proportion of initially susceptible individuals who are
ultimately infected in the global epidemic

• Local contact rate: contact rate between two given individuals within
the same household

• Global contact rate: contact rate between two given individuals be-
longing to different households

• Super individual: a household or in the context of this thesis, a class
of students

• N : population size

• λL: local contact rate

• λG/(N − 1): global contact rate

• R∗: basic reproduction number of an epidemic with two levels of mix-
ing.

• α: proportion of school classes that admit unvaccinated students

• γ: level of vaccination coverage

• τ : final outcome

8



3 Theoretical aspects

3.1 Branching process and epidemic

In the initial stages of an epidemic outbreak, it is reasonable to expect
that majority (if not the entire) of the population is susceptible to the
virus/disease and hence it is highly likely that the individuals whom the
initial infectious individuals make contact with have not been infected yet.
This motivates the branching process approximation of an epidemic in its
early stages.

Using Ross [18] as the main reference, we define the branching process.
Consider an initial population of a finite number of individuals with inde-
pendent and identically distributed life spans I. They form the ancestor
generation. During the life span of an ancestor individual, he produces off-
springs following a Poisson process at the rate of λ. We call his offsprings
the next generation and these offsprings, in turn, have also the same in-
dependent and identically distributed life spans and produces offsprings of
their own following the same Poisson process, thereby creating yet another
generation, and so on. We assume that all individuals make independent
decisions of how many offsprings they produce regardless of their life spans,
that is, all Poisson processes are independent of one another and also inde-
pendent of the life spans. See Figure 1 for an illustration of the branching
process.

Figure 1: Illustration of the branching process of a single ancestor

Relating the above to an epidemic process, consider a finite number of
initial infectious individuals in a large population of individuals where ma-
jority of them are susceptible to the virus/disease. These ancestor infectious
individuals have independent and identically distributed infectious periods
I. During their infectious periods, they produce the next generation of in-
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fectious individuals following a Poisson process at rate λ by making contact
with them. This new generation of infectious individuals, who inherit the
same infectious period distribution, then go on and produce the next gener-
ation of infectious individuals through the same Poisson process by making
contact with the rest of the susceptible individuals in the population, and
so on.

To illustrate, let Xn denote the number of infectious individuals in the
nth generation of the epidemic. It is easy to see that the branching process
gives us a Markov Chain of {Xn, n = 0, 1, 2, ...;Xn ∈ N}, since the number
of infectious individuals in a new generation depends only on the number of
infectious individuals in the previous one.

Suppose we have 1 initial infectious individual, i.e. X0 = 1, we want
to know what is the expected number of infectious individuals at the nth
generation, i.e. E[Xn]. We begin by first taking note that the the average
number of offsprings produced by an infectious individual is λ ∗ ι, where
E[I] = ι. This is the case since λ ∗ ι is the average number of infectious
individuals infected by an infectious individual during his infectious period,
given that the Poisson process of offspring reproduction and infectious period
are mutually independent. Hence

E[Xn] = E[E[Xn|Xn−1]]

= E[Xn−1 ∗ λ ∗ ι]
= λ ∗ ι ∗ E[Xn−1].

Given E[X0] = 1, we get

E[X1] = λ ∗ ι
E[X2] = λ ∗ ι ∗ E[X1] = (λ ∗ ι)2

.

.

.

E[Xn] = λ ∗ ιE[Xn−1] = (λ ∗ ι)n

So the average number of infectious individuals in the nth generation is
directly dependent on the average number of infectious individuals produced
by a given infectious individual and it is easy to see that (λ ∗ ι)n → 0 when
λ ∗ ι < 1. Let us call this quantity the reproduction number of an infectious
individual. In other words, the expected number of infectious individuals
will tend towards zero as n→∞ if the reproduction number of an infectious
individual is less than one.

We shall see how this reproduction number is tied to the probability that
the epidemic dies out or explodes.

Let τ denotes the probability that an epidemic started by one initial
infectious individual explodes into an outbreak, which means we have 1−τ as
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the probability that the number of infectious individuals in such an epidemic
diminishes to zero, that is, the epidemic dies out. In the case where λ∗ι < 1,
1 − τ = 1. We illustrate this by using the argument in Ross [18], Chapter
4.7, which essentially is derived using Markov’s Inequality [18][Proposition
2.6],

(λ ∗ ι)n = E[Xn] =

∞∑
j=1

jP (Xn = j)

≥
∞∑
j=1

1 ∗ P (Xn = j)

= P (Xn ≥ 1), j ≥ 1.

So if λ ∗ ι < 1, then E[Xn]→ 0, which implies P (Xn ≥ 1)→ 0. This, in
turn, implies P (Xn = 0) = 1− τ → 1. It can be shown that P (Xn = 0) = 1
even when λ ∗ ι = 1.

In the case where λ ∗ ι > 1, then the epidemic will either die out or
explode into an outbreak. Then the probability that the epidemic started
by the initial infectious individual dies out (i.e. the branching process of the
ancestor infectious individual goes extinct) is,

1− τ =

∞∑
j=0

P (Xn = 0|X1 = j) ∗ Pj

=
∞∑
j=0

(1− τ)j ∗ Pj ,

where j is the number of infectious individuals produced by him and Pj
denotes the probability that an infectious individual will infect j susceptible
individuals during his infectious period. In other words, Pj is the mixed
Poisson distribution of the number of infectious individuals produced by an
infectious individual. We can see that 1 − τ = 0 is always a solution to
the equation above. However, one can show that when λ ∗ ι > 1, besides
zero, the other 1 − τ value is the smallest positive solution that satisfy the
equation above. We refer interested readers to Jagers [10] for its proof.

Take note that P (Xn = 0|X1 = j) = (1−τ)j , which follows the argument
that the epidemic dies out if and only if all of the j branches started by
the j infectious individuals in the first generation eventually die out. By
the branching process analogy of an epidemic, every infectious individual
produces the next generation of infectious individuals independently of one
another and every infectious individual is the ancestor infectious individual
of the branch of infectious individuals started by him. And recall that
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we have (1 − τ) as the probability that an epidemic started by an initial
infectious individual dies out. Hence, we get P (Xn = 0|X1 = j) = (1− τ)j .

Rearranging the equation above, we get

P (large outbreak) = τ = 1−
∞∑
j=0

(1− τ)j ∗ Pj ,

given 1 initial infective. If there arem initial infectives, then the probabilities
that the epidemic will die out and explode are (1 − τ)m and 1 − (1 − τ)m,
respectively.

We use the random graph representation of an epidemic in Section 3.2.3
to show that τ is also the proportion of initially susceptible individuals who
are ultimately infected in the epidemic outbreak.

3.2 Epidemic models

In this section, we present detailed descriptions of the standard SIR model
and in particular, the household model. In addition, we analyse an epidemic
within the framework of random graph theory, and see how certain param-
eters of interest can be easily derived, especially with a constant infectious
period.

3.2.1 The Standard SIR Model

As mentioned in the introduction, a simple model that describes the spread
of an infectious disease is the standard SIR model. Using Andersson and
Britton [2] as the main reference, we provide a definition of this model.
Without loss of generality, consider an epidemic that begins in a population
consisting of 1 infectious individual and N−1 susceptible individuals. Every
infectious individual has independent and identically distributed infectious
period I that follows a certain distribution, with mean ι. It is assumed
that the population is closed, homogeneous as well as homogeneous mixing.
Under the assumption of homogeneous mixing, each infectious individual
independently makes contact with a given individual following a homoge-
neous Poisson process at a rate of λ/(N − 1). Also, since the population is
assumed to be homogeneous, they do not have varying susceptibility, and
so if a given individual is contacted by an infectious individual and he is
still susceptible, he becomes immediately infected and is able to infect other
remaining susceptible individuals. Once an infected individual passes his
infectious period (or die), he is assumed to attain lifetime immunity from
the virus, that is, considered to have ”recovered” and therefore, exit the epi-
demic. The epidemic ends when all infectious individuals have ”recovered”
and exited the epidemic.
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We can see that the basic reproduction number, which is the average
number of initially susceptible individuals infected by an infectious individ-
ual is

E[number of initially susceptible individuals infected by an infectious individual]

=E[number of contacts made by an infectious individual during his infectious period]

[independence between contact process and infectious period]

=
λ

N − 1
∗ (N − 1) ∗ ι = λ ∗ ι.

The standard SIR model, while mathematically convenient to model and
easy to understand, is quite distant from reality due to many of its underly-
ing assumptions. The model we discuss next is called the household model,
which is built upon the SIR model with violation to one of its assumptions,
that of homogeneous mixing in the population. This is also the model that
we use throughout the rest of this thesis.

3.2.2 The Household Model

As mentioned in the introduction and Section 3.2.1, the household model
allows two levels of mixing in the population, as opposed to homogeneous
mixing in the standard SIR model. In real-life, our society has a complex
social structure and the extent and speed of the spread of an infectious
diseases depend very much on it. People belong to various social groups, such
as families, schools, workplaces, hobby groups and so on, and individuals in
the same social group make contact with one another more often than with
individuals outside the social group. In the context of this thesis, it is
intuitive that students make more frequent contacts with their classmates
than with schoolmates as well as students from other schools.

Hence, an infectious student makes contact with other students in the
school children population following two independent homogeneous Poisson
processes:

• λL: local contact rate (per day), that is, the rate at which an infectious
student contacts a given classmate in a day;

• λG/(N − 1): global contact rate (per day), that is, the rate at which a
student contacts another student in the population of school children
that consists of N students, regardless of vaccination status. We ex-
press the global contact rate in this form in order to keep λG, the mean
number of global contacts, constant even as N →∞. While most liter-
ature on epidemic modelling regards λG/(N − 1) as the global contact
rate between a given infectious individual and a given susceptible in-
dividual and N as the number of initial susceptible individuals, we do
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not do so here because one of our investigation parameters is the level
of vaccination coverage in the school children population. Hence, by
defining λG and N our way, we are saying that the average number of
global contacts made by a given student is kept constant, even as the
population changes, but of these global contacts, how many of them
are unvaccinated is controlled by the level of vaccination coverage in
the population.

By the definition of global contact rate above, an infectious student’s
global contacts refer not only to students outside of his class, but
also his classmates. Following the rationale of Andersson and Britton
[2], however, the global contact rate of an infectious student with his
classmates is negligible, since it is intuitively much smaller than the
local contact rate. Hence, if an infectious student were to infect his
classmate, it is be due to local contact and not global contact. We
treat schoolmates as global contacts by assuming that students from
different classes rarely interact. Although this is rather unlikely in
reality, we do this for mathematical convenience.

We also assume that:

• infectious period I is fixed
According to WHO [22], a measles infectious individual is generally
infectious 4 days before and 4 days after onset of rashes, and is most
likely to infect others before the onset of rashes. A logical explanation
is that after onset of rashes, it becomes a clear sign of disease and
the infectious individual will highly likely avoid contact with other
individuals. In the context of this thesis, we assume students will stop
going to school once rashes develop and they will stay at home until
recovery, essentially giving an infectious student 4 days to infect other
students.

• the size of a class is the same across all schools in the population and
assumed to be 20 students. While the size of a class is kept fixed at
20, the number of unvaccinated students can vary between 0 to 20
and we take note that an epidemic does not involve those classes that
do not have any unvaccinated students, which follows from the next
assumption.

• vaccinated students have 100% protection from measles.

The approach in this thesis is to first look at the spread of measles within
a class of students through local contact amongst classmates. The infected
students then make global contact with students in other classes, thereby
creating local epidemics in other classes. And then we ”zoom out” and look
at the epidemic of school classes.

14



During the early stages of the epidemic, all of the global contacts made
by infectious students will highly likely belong to different classes when the
total number of school classes is large. Each of these global contacts will then
start an epidemic within his own class, he and his infected classmates then
pass on the virus to other classes in the same way. When we regard every
class as a super individual, the initial stages of the epidemic amongst the
super individuals can be approximated by the branching process described in
Section 3.1 and the epidemic between these individuals follows the standard
SIR model with homogeneous mixing. From now on, we will use super
individual and a class of students interchangably.

Let µ denote the average number of infected students in a class (including
the initial infectious student) and γ the proportion of school children who are
unvaccinated. These µ students then, on average, collectively make global
contact with µ ∗ λG ∗ γ unvaccinated students on a daily basis. Since the
infectious period is fixed at 4 days, this means that the basic reproduction
number of an infectious super individual is

R∗ = 4 ∗ µ ∗ λG ∗ γ.

By the branching process approximation of an epidemic that we have
presented in Section 3.1, a large outbreak is possible if and only if R∗ > 1.

3.2.3 Random graph interpretation of an epidemic

In order to relate to the context of this thesis, but without loss of generality,
we consider a population made up of a total of N unvaccinated and vacci-
nated individuals. Then, consider the standard SIR epidemic with one level
of mixing in such a population and a contact rate of λG/(N − 1) between
two individuals.

What we have here is the same as a household epidemic where the
household size is 1. We represent all the individuals in the population
by vertices of a graph. However, only Nγ of them are ”active”, in the
sense that they are part of the epidemic since those who are vaccinated
will never be infected. With a stochastic infectious period I, say a given
initially susceptible individual i becomes infected, then a given suscepti-
ble individual j will be infected by him with probability λGIi/(N − 1) ≈
1−exp[−λGIi/(N−1)], which follows from the first order Taylor approxima-
tion of exp[−λGIi/(N − 1)]. Now, let us represent this potential contagion
from i to j by a directed arrow, which means we draw an arrow from i to
j with probability 1− exp[−λGIi/(N − 1)]. Hence, as soon as an arrow has
been established, it means that i will contact j during his infectious period,
if the former ever gets infected, and if j is still susceptible, he will be in-
fected. By the same analogy, if an arrow is drawn from j to i, this means
that if j ever gets infected, then he will infect i during his infectious period.
We see that these arrows are not drawn independently due to the random
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variable I. But if I is constant, that is, infectious period is fixed at some
constant a, then the random graph representation becomes much simpler
and can be explained by the Bernoulli random graph G(Ñ , p). A simple
and easy to understand explanation of Bernoulli random graph is given in
Andersson and Britton [2], Section 7.2.

Essentially, this means that we can now draw an edge, not arrows,
between two vertices of the graph with the same probability p = 1 −
exp[−λGa/(N − 1)]. This is because the arrows can now be drawn inde-
pendently of each other and since both arrows have the same probability,
it suffices to have one undirected edge between the two vertices. Also, any
two vertices are said to belong to the same component if and only if there
exists a path of edges between them. It is easy to see that the standard SIR
epidemic with one level of mixing consisting of Nγ − 1 initial susceptible
individuals and 1 infectious individual will then have one component where
all the ultimately infected individuals are linked to the initial infectious in-
dividual by a path of edges between pairs of unvaccinated individuals. See
Figure 2 for an illustration of such a contact graph. This component is
made up of active vertices connected by solid edges, originating from the
large dark circle.
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Figure 2: Contact graph with one level of mixing. The black circles are
unvaccinated students while the white ones are. The large black circle is
the initial infectious individual. The solid edges denote contacts that were
activated, that is, virus transmission has occurred, while the dashed lines
denote potential contacts but were not activated because neither the initial
infectious individual nor those infected by him and his offsprings have edges
connected to them.

We can now apply a well-known result in random graph theory, encap-
sulated as Theorem 7.1 in Andersson and Britton [2], Section 7.2:

Consider the G(Ñ , p) random graph model. Assume p = β/Ñ , as Ñ → ∞.
If β ≤ 1, then a vertex chosen at random will belong to a component of
size O(1). On the other hand, if β > 1, then the relative size of the largest
component converges in probability to some constant C strictly between 0
and 1, as Ñ →∞. Also, a randomly chosen vertex will belong to this large
component with probability C and it will belong to a component of size O(1)
with probability 1− C.

Applying this theorem to the epidemic above and taking note that p =
1− exp[−λGa/(N − 1)] ≈ λGa/(N − 1), which again follows from first-order
approximation of exp[−λGa/(N−1)], and Ñ = Nγ, this gives us β ≈ λGaγ.
Recall earlier in Section 3.2.1 that λ ∗ ι is the basic reproduction number
in a standard SIR epidemic with independent and identically distributed
infectious periods I that has expectation ι. Replacing ι with the constant a
and taking into account that γ of the population is unvaccinated, the basic
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reproduction number becomes λGaγ, which means β is also the basic re-
production number. Then, following the theorem, if the basic reproduction
number λGaγ is greater than 1, the relative size of the largest component,
which is the proportion of initially susceptible individuals ultimately be-
coming infected, is the probability that a uniformly chosen susceptible will
belong to this component, which in turn, is the asymptotic probability of a
large outbreak.

We go back now to the epidemic with two levels of mixing. Assuming
that there is initially one infectious student, using the same notation as in
Section 3.1, let τ be the probability of a large outbreak started by this uni-
formly chosen unvaccinated student. See Figure 3 for a graphical illustration
of the epidemic. The configuration is exactly the same as Figure 2 except
now that the black circles are unvaccinated students being put into classes
of the same size demarcated by the grey circles. For example, the circle on
the right (middle) is a class with five unvaccinated students. Take note that
with two levels of mixing, there are two types of edges for virus transmission:
the blue ones denote transmission through local contact while the red ones
denote transmission through global contact.

Figure 3: Contact graph with two levels of mixing. The large black cir-
cle is the initial infectious student. The grey circles denote boundaries of
classes. Although class size is fixed, every class can have a different number
of unvaccinated students. Blue edges denote local contact; red edges denote
global contact.
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We see that even though there are two levels of mixing, the component
remains unchanged and is still made up of initially unvaccinated students
linked to the initial infectious student by their respective paths of edges.
Take note that there are now two different probabilities of infection tied to
the edges, with the red ones having probability of global infection while the
blue ones have probability of local infection.

However, we also see that the red edges, in fact, denote infectivity em-
anating from the class of the initial infectious student, which is analogous
to infectivity emanating from an infectious individual, and we recall that
the epidemic of the super individuals (i.e. classes of students) is assumed
to follow the standard SIR model. This means that, under the assumption
that we have a large school population and hence a large number of classes,
if the average number of initially susceptible classes infected by the initial
infectious class is greater than 1, then using the random graph interpre-
tation, the relative size of the largest component is the probability that a
uniformly chosen unvaccinated student belongs to it, which in turn, is the
asymptotic probability of a large outbreak τ . This average number of ini-
tially susceptible classes infected by the initial infectious class is precisely
R∗.

But computation of R∗ is a little more cumbersome since different classes
can have a different number of unvaccinated students, that is, we have to
take into consideration the size-biased distribution. In the next section, we
show how we derive expressions for R∗ and τ . We also see that with the
random graph interpretation, it becomes relatively easy to compute the risk
of infection, that is, the probability that a unvaccinated student who belongs
to a class with u unvaccinated students will become infected.
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4 Basic Reproduction Number and Final Outcome

This section is devoted to deriving expressions for the important quantities
of an epidemic, namely the basic reproduction number of an infectious super
individual R∗ and the proportion of initially unvaccinated students who are
ultimately infected in the global epidemic τ . As mentioned earlier, the
methods we use to derive these quantities give us a relatively easy way to
derive the risk of infection of a given unvaccinated student who belongs to
a class with u unvaccinated students, which can be useful to help identify
the maximum number of unvaccinated students a class should have given
an acceptable risk level.

4.1 Scenario I: No vaccination admission criteria

As mentioned in the introduction, due to some schools imposing vaccination
as an admission criteria, unvaccinated children can only be admitted to
schools that do not have this criteria. Let α denote the proportion of schools
that do not have the said admission criteria and γ is the proportion of
unvaccinated students in the population of school children. Assuming that
all schools have the same number of classes, α is also the proportion of
total school classes that do not have the admission criteria. Hence, these
classes will bear the burden of unvaccinated students according to some
distribution, which we discuss later in this section.

In this scenario, all schools admit both vaccinated and unvaccinated
children, which means we have α = 1.

In order to compute R∗, we need to know µ, which is the average number
of infected students in a class including the initial infectious student(s). To
begin, let Pn,mk denote the probability that k unvaccinated students (exclud-
ing the initial infectious student(s)) in a class with n initial unvaccinated
students and m initial infectious students will ultimately be infected, that
is, the Pn,mk is the distribution of the final size of the local epidemic.

The distribution of the final size of the local epidemic is, in general,
difficult to compute even for the simple Reed-Frost epidemic model, as shown
in Andersson and Britton [2], Section 1.2. Ball et al [7] give a version using
results derived by Lefèvre and Picard [12] who use Gontcharoff polynomials,
as well as a version by Addy, Longini and Haber [1] where the final size
probabilities can be determined recursively from a triangular system of linear
equations. Andersson and Britton [2] has also given a version that is similar
to Addy et al ’s, but uses the Wald’s identity for epidemics derived by Ball [6].
We decided to use the version derived by Andersson and Britton, whose proof
is relatively easy to follow and with a constant infectious period, becomes
very straightforward to solve. Encapsulated as Theorem 2.2 in Andersson
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and Britton [2], Section 2.4, we compute the Pn,mk s recursively as follows:

l∑
k=0

(
n− k
l − k

)
Pn,mk

E[exp{−4λL(n− l)}]k+m
=

(
n
l

)

⇐⇒
l∑

k=0

(
n− k
l − k

)
Pn,mk

exp{−4λL(n− l)}k+m
=

(
n
l

)
,

for 0 ≥ l ≥ n, 0 ≥ k ≥ n. The expression E[exp{−4λL(n − l)}] is the
Laplace transform of the constant infectious period of 4 days with argument
λL(n− l).

Recall that the number of unvaccinated students in such a class follows
a certain distribution, which we will now derive. Assume that the num-
ber of school classes is large (which is implied by the large school children
population), let su denote the asymptotic proportion of classes that have
u unvaccinated students. Since all classes are of the same size (recall that
each class has 20 students), this implies that su has the following asymptotic
distribution, that is, the probability that a randomly chosen class is of size
u is

su =

(
20
u

)
γu(1− γ)20−u

∑20
u=1

(
20
u

)
γu(1− γ)20−u

, 1 ≤ u ≤ 20,

where the probability of getting an unvaccinated student is the proportion
of unvaccinated students at large because all classes accept unvaccinated
students. We need to have a normalizing constant since the support set
starts from 1 and not 0. Let us denote it by c and we will soon see that this
normalizing constant does not contribute to the computations.

Now we initiate the epidemic with a uniformly chosen unvaccinated stu-
dent. By the law of large numbers, the probability that this student belongs
to a class with u unvaccinated students is

πu =
u ∗ su∑20
u=1 u ∗ su

.

Recall that su = 1
c

(
20
u

)
γu(1− γ)20−u, this gives the distribution of πu
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as

πu =

u ∗ 1
c

(
20
u

)
γu(1− γ)20−u

∑20
u=1 u ∗

1
c

(
20
u

)
γu(1− γ)20−u

=

u ∗
(

20
u

)
γu(1− γ)20−u

∑20
u=1 u ∗

(
20
u

)
γu(1− γ)20−u

[We can start the summation in the denominator from zero, since 0∗
(

20
u

)
γu(1−

γ)20−u does not contribute to the sum. But then this becomes the expecta-
tion of a binomial distribution with parameters 20 and γ!]

=
u ∗ 20!

(u!)(20−u)!γ
u(1− γ)20−u

20 ∗ γ

=
(20− 1)!

(u− 1)!(20− u)!
γu−1(1− γ)20−u

=

(
20− 1
u− 1

)
γu−1(1− γ)20−u, 0 ≤ u− 1 ≤ 20− 1.

It is easy to see that this is also the distribution of the number of unvac-
cinated students left in a class after one of them has been globally infected.
In other words, u − 1 is a realisation of the binomially distributed random
variable U − 1 that denotes the number of unvaccinated students left in a
class after one of them is newly infected from outside.

Combining this with the distribution of the final size of the local epi-
demic, we are now ready to give an expression for the average number of
infectious students in a local epidemic (i.e. including the initial infectious
student),

µ =

20−1∑
u−1=0

πu

(
1 +

u−1∑
k=0

k ∗ P u−1,1k

)
.

Before we give the final expression for R∗, recall that λG/(N − 1) is the
global contact rate between two given students, regardless of vaccination
status. Since γ is the proportion of unvaccinated student, then the global
contact rate between a given infectious student and a given unvaccinated
student is λG ∗ γ/(N − 1).

Finally, the basic reproduction number of a super individual, given 1
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initial infective, is

R∗ = 4 ∗ λG ∗ γ ∗
20−1∑
u−1=0

πu

(
1 +

u−1∑
k=0

k ∗ P u−1,1k

)
.

4.1.1 Probability of a large outbreak and final outcome of a global
epidemic

Using the same notation as the branching process approximation of an epi-
demic in Section 3.1, let τ denote the probability of a large outbreak when
there is initially one infectious class with one initial infectious student, that
is, τ is the probability of a large outbreak started by a uniformly chosen
unvaccinated student. Then

P (no large outbreak) = 1− τ.

Let Z denote the size of the first generation of susceptible super individ-
uals infected by the initial infectious super individual. It is easy to see that
this is the number of global infections emanating from the initial infectious
super individual (see Figure 3). This is the case because every infectious
student in this initially infectious class is assumed to make global contacts
that belong to distinct classes, based on the assumption that the number of
classes is large.

By the branching process approximation of an epidemic described in
Section 3.1, the epidemic dies out if and only if every branch of the first
generation of infectious super individuals dies out, that is,

1− τ =
∞∑
z=0

(1− τ)z ∗ P (Z = z),

where P (Z = z) is the distribution of the number of initially susceptible
super individuals infected by the initial infectious super individual.

To find the distribution of Z, we can condition on the final size of the local
epidemic of the initially infectious class plus the initial infectious student.
Let K denote the final size of the local epidemic. Now, since the number
of global contacts made by a given infectious student during his infectious
period of 4 days is Poisson distributed with mean 4 ∗ λG ∗ γ, then the total
number of global contacts made by the infectious students (including the
initial infectious student) in the initially infectious class is a sum of Poisson
random variables with mean 4 ∗ λG ∗ γ(1 +K), that is, we have

Z|K ∼ Po(4 ∗ λG ∗ γ(1 +K)).
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Applying this to the expression for τ , we get

1− τ =
∞∑
z=0

(1− τ)z ∗ P (Z = z)

= E[(1− τ)Z ]

= E
[
E[(1− τ)Z |K]

]
= E

[
exp{−4λGγ(1 +K)τ}

]
= E

[
E
[
exp{−4λGγ(1 +K)τ}|U

]]
[The inner expectation is the moment generating function of the non-negative,
integer-valued variable 1+K|U , with parameter −4λGγτ and U is the num-
ber of unvaccinated students in a class. Recall that U − 1 is the number of
unvaccinated students left in the class after one of them has been globally
infected.]

= E
[ U−1∑
k=0

e−4λGγ(1+k)τ ∗ PU−1,1k

]
=

20−1∑
u−1=0

πu ∗
( u−1∑
k=0

e−4λGγ(1+k)τ ∗ P u−1,1k

)
⇐⇒

τ = 1−
20−1∑
u−1=0

πu ∗
( u−1∑
k=0

e−4λGγ(1+k)τ ∗ P u−1,1k

)
.

There are a number of things we can observe here:

• E[Z] = R∗

We can see this by:

E[Z] = E
[
E[Z|K]

]
= E[4λGγ(1 +K)]

= 4λGγE
[
E[(1 +K)|U ]

]
= 4λGγE

[
1 +

U−1∑
k=0

k ∗ PU−1,1k

]
= 4λGγ

20−1∑
u−1=0

πu

(
1 +

u−1∑
k=0

k ∗ P u−1,1k

)
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• 1 − τ is the probability of a uniformly chosen unvaccinated student
completely escapes infection in the global epidemic.

Consider a class of u unvaccinated students with no initial infectious
student. From the global contact rate of λG

N−1 , the probability that a
given unvaccinated student in this class is infected globally by a given
infectious student is approximately 4λGγ

γN−1 (for a given γ), which gives

us 1 − 4λGγ
γN−1 = exp(−4λGγγN−1 ) as the probability that a given unvacci-

nated student escapes global infection from a given infectious student,
as N → ∞. Recall that the proportion of initially unvaccinated stu-
dents being infected in the global epidemic is τ , which means in order
for a given unvaccinated student to escape global infection, he needs
to escape infection from these τ(γN − 1) infected students. So the
probability that a given unvaccinated student escapes global infection
is

exp
[−4λGγ

γN − 1

]τ(γN−1)
= exp(−4λGγτ).

But this is not enough for him to completely escape infection because
if any of his potential contacts gets globally infected, then he will also
be infected. We use the random graph representation of an epidemic
in Figure 3 to illustrate this point. Let us focus on the grey circle
in the upper left corner. The unvaccinated student who was glob-
ally infected by the initial infectious student in another class causes
four other unvaccinated classmates to be infected because these five
students have local contact with one another. Conversely, if it had
been another student out of these five who was globally infected, the
outcome would have been the same. Hence, in order for a given unvac-
cinated student to completely escape infection, all of his unvaccinated
classmates whom he has contact with must also escape infection. This
number is precisely the outcome of the local epidemic k when one of
the u unvaccinated students has been globally infected. Hence, the
probability that a given unvaccinated student completely escapes in-
fection is exp(−4λGγτ)1+k. Averaging it out with the distribution of
the final size of the local epidemic and the size-biased distribution,
we arrive at the said probability for a uniformly chosen unvaccinated
student.

4.1.2 Risk of infection

The task at hand here is to compute the risk of infection of a given unvac-
cinated student who belongs to a class with u unvaccinated students, after
which we can compare it with the overall risk of infection τ or compare it
with the risk of infection of a given student who belongs to a class with a
different u.
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We denote a given unvaccinated student who belongs to a class with u
unvaccinated students as a type u student. Consider an epidemic started
by a given type u student and we are interested to know the probability of
a large outbreak started by him. Hence let τu denote the probability of a
large outbreak when there is initially one type u infectious student. So we
have

P(no large outbreak started by type u student) = 1− τu.

Analogous to the computation for τ in Section 4.1.1, let Zu denote the
size of the first generation of susceptible super individuals infected by the
initial infectious type u super individual. The epidemic dies out if and only
if every branch of this first generation of infectious super individuals dies
out. Recall that 1 − τ is the probability that a branch dies out, this gives
us the probability that the epidemic dies out, in the event it is started by a
type u student, as

1− τu =
∞∑

zu=0

(1− τ)zu ∗ P (Zu = zu).

To find the distribution of Zu, we condition again on the final size of
the local epidemic of the initially infectious type u class plus the initial
infectious student. Let Ku denote the final size of this local epidemic. So
now the conditional Poisson process of the total number of global contacts
made by this initial infectious type u class (or type u super individual) has
the following distribution:

Zu|Ku ∼ Po(4 ∗ λG ∗ γ(1 +Ku)).

Using the results in Section 4.1.1, it is easy to see that this gives us

1− τu =
∞∑

zu=0

(1− τ)zu ∗ P (Zu = zu)

= E
[

exp{−4λGγ(1 +Ku)τ}
]

=
u−1∑
ku=0

e−4λGγ(1+ku)τ ∗ P u−1,1ku

⇐⇒

τu = 1−
u−1∑
ku=0

e−4λGγ(1+ku)τ ∗ P u−1,1ku
.

Applying again the random graph interpretation of an epidemic, if the
basic reproduction number of a type u super individual is greater than 1,
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then τu is also the probability that a given type u student belongs to the
largest component, which then is equivalent to the probability of a type u
student becoming infected in the global epidemic.

It is now possible to quantify the risk of infection of an unvaccinated
student who belongs to a class with u unvaccinated students against the
overall risk of infection (or against τũ) by constructing the risk ratio

τu
τ
.

If it is more than 1, then the risk of infection is higher when one belongs
to a class with u unvaccinated students as compared to a uniformly chosen
unvaccinated student and the opposite if it is less than 1.

4.2 Scenario II: Vaccination admission criteria in place

In this scenario, we have α, which is the proportion of classes that admit
unvaccinated students, no longer equals to one. So α is any real number in
the open interval of (0, 1). In the case of α = 1, we simply have scenario I.

Applying all that we have learnt in scenario I, the asymptotic proportion
sαu of classes that have u unvaccinated students, given α, now becomes

sαu =

(
20
u

)(γ
α

)u(
1− γ

α

)s−u
, 1 ≤ u ≤ 20,

taking note that γ/α is the probability that a random student in this sub-
population of school classes is unvaccinated. Observe that γ < α, for oth-
erwise it means there are more unvaccinated students than the number of
classes that can accommodate them. In the case where γ = α, it means
every student in such a class is unvaccinated, that is, it is deterministic.

We also update the size-biased distribution as follows:

παu =

(
20− 1
u− 1

)(γ
α

)u−1(
1− γ

α

)20−u
.

The basic reproduction number of an infectious super individual, given
1 initial infective, is now

R∗ = 4 ∗ λG ∗ γ ∗
20−1∑
u−1=0

παu

(
1 +

u−1∑
k=0

k ∗ P u−1,1k

)
.

The expression for τ now becomes

τ = 1−
20−1∑
u−1=0

παu ∗
( u−1∑
k=0

e−4λGγτk ∗ P u−1,1k

)
.

Take note that the risk of infection remains unchanged since its computation
does not involve the size-biased distribution.
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5 Computations

In this section, we evaluate and show the results of the quantities of interest
in Section 4. They are computed using programming software R [17].

5.1 Methods

Bearing in mind that the main objective of this thesis is to compare the
effects between some schools impose vaccination as an admission criteria
and no schools impose such a criteria on a measles outbreak, α is our main
parameter of interest and we center our investigation around how α interacts
with other parameters that made up the expressions of the various quantities
of interest in Section 4. We use United Kingdom as a reference country for
our choice of proportion of unvaccinated children, since this is the most
prominent country in Europe to have lost its measles eradication status
[14].

• γ
In 2018 to 2019, 90.3% of children in UK have received their first dose
of the MMR (Measles, Mumps, Rubella) vaccine by 24 months of age
and 94.5% by 5 years old. But only 86.4% received their second dose
by the time they turned 5 years old [16]. So we find it reasonable to
focus our investigation on γ = 0.20 and γ = 0.05.

• α
This parameter controls the proportion of school classes that admit
unvaccinated children, which is an important parameter to investigate
in the context of this thesis. For every value of γ, we let α vary in
the interval [γ, 1] for some choices of λL and λG values and derive the
combinations of these parameters for which R∗ > 1. We are also going
to investigate α’s relationship with τ and τu. We use the uniroot

function in software R [17] to solve for τ .

• λL
The local contact rate between a given infectious student and a given
classmate is λL. This gives the probability of an unvaccinated student
getting infected locally as approximately

4 ∗ λL ∗ number of classmates in the class

number of classmates in the class
= 4λL,

which, in turn, is approximately 1 − exp(−4λL) following first-order
Taylor approximation of exp(−4λL).
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For a highly infectious disease like measles, we find it reasonable to in-
vestigate λL = (0.1, 0.175, 0.6), since this gives us the probability of in-
fection by an infectious classmate as 33%, 50%, and 90%, respectively.
We do this so that we have the possibility to analyse the situation
when a particular strain of measles is less virulent.

• λG
λG is chosen in such a way that if the whole school population is
unvaccinated (i.e. if γ = 1), R∗ is roughly in the range of 10 to 20.
This is to attain the basic reproduction number (R0) of measles, which
is often cited to be between 12 to 18 as reported by Anderson and
May [4] . On the other hand, Guerra et al [14] have written a paper
analysing the various published R0 estimates for measles and found
that the range of values are wider than 12 to 18. We understand that
R∗ and R0 are different quantities, but we use the latter as a reference
value. Interestingly, Lorenzo, Ball and Trapman [15] have written
a paper that shows how R0 for models with social structure can be
computed. Using their work, we could have computed estimates of R0

for measles in the case of a SIR epidemic with two levels of mixing,
but this is beyond the scope of this thesis. Take note that if γ = 1, it
implies that every class has ONLY unvaccinated students.

5.2 Results

We begin by investigating the three-prong relationship of R∗, α and γ. See
Figure 4. By trial and error, we derive three λG values such that R∗ is in
the range of 10 to 20 when γ = 1, that is, when the entire school population
is unvaccinated.

In general, with everything else being constant, R∗ decreases as α in-
creases, as shown across all subfigures in Figure 4. In Figure 4(a), the range
of R∗ drops from approximately between 7 to 14 to between 5 to 10. So
increasing the proportion of classes that admit unvaccinated students helps
to reduce R∗. We see this same positive effect in Figure 4(b) to Figure
4(d) as well, albeit to varying degrees. We also observe how the rate of
reduction changes as γ decreases. It progresses from approximately linear
when γ = 0.7 to clearly exponential when γ eventually reaches 0.05. This
implies that for higher levels of vaccination coverage, the positive effect of
an increasing α in bringing down R∗ loses steam faster than in the case of
a lower level of vaccination coverage. We see the tails of the green lines
flattens out as γ decreases. This is an effect of high vaccination coverage,
where the meagre number of unvaccinated students will quickly spread thin
amongst the school classes that admit unvaccinated students as α increases,
up to a point where the increase in the number of such classes barely has
an effect on R∗.
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We focus now on Figure 4(c) and Figure 4(d) since these two levels
vaccination coverage are of main interest in our analysis. In Figure 4(c), we
first remark the range of R∗ is now between 2 to 4, in case of a deterministic
size-biased distribution. When α = 1, this range is approximately between
0.5 to 1, which means when there is no vaccination admission criteria, there
will not be a large outbreak, regardless of how infectious the strain of measles
is. But in the event if α < 1, we see that there are certain values of α that
will cause R∗ to cross the threshold. Another observation is a larger λL
needs a larger α in order to keep its corresponding R∗ under threshold,
which is not surprising. To illustrate, when λG = 0.255, the only way to
keep R∗ below 1 is to have α = 1. On the other hand, for λG = 0.185, α
needs only to be in the range of 0.55 to 0.65 in order to keep R∗ under the
threshold. Figure 4(d) shows the case when the level of vaccination coverage
is at 95%, which is the level stipulated by WHO in order to stop measles
from spreading. Here, we see that R∗ is really close to zero for a wide range
of α even when both λL and λG are large. The only instance when R∗ crosses
the threshold (and even so, it is barely above 1) is when λG = 0.255 and the
size-biased distribution is deterministic, that is, when every class that admit
unvaccinated students has only unvaccinated students. Clearly, if the level
of vaccination coverage is as high as 95%, there is barely any remarkable
impact on R∗ if some classes impose vaccination admission criteria.

Then we observe that all three lines in every plot pivot from the same
point. This is due to the size-biased distribution being deterministic, that
is, γ/α = 1. In this case, π1 = π2 = ... = π19 = 0 except for π20 = 1. Hence

R∗ = 4 ∗ λG ∗ γ ∗ 1 ∗ (1 +
20−1∑
k=0

k ∗ P 20−1,1
k ),

and from the recursive formula for P u−1,1k , we can see (after some compu-

tations) that the distribution of P 20−1,1
k is concentrated at the end of the

outcome domain k = 20−1 even for small λL. Alternatively, we can see this
by approximating the probability that the final outcome of the local epidemic
is 18, given 1 initial infectious student, that is, 1 student survived the local
epidemic. The probability that just one student escape infection is approx-
imately exp(−4λL)19, since he has to escape infection from the initial infec-
tious student and 18 other classmates who were ultimately infected. Even for

λL = 0.1, this probability is approximately

(
19
1

)
∗exp(−4∗0.1)19 ≈ 0.00942,

which means the probability that this student does not escape infection is
1 − 0.00942 = 0.99058. But this is also the probability that all 19 of the
initial infectious student’s unvaccinated classmates are ultimately infected
in the local epidemic. This probability will be even higher for bigger λL.
Hence this explains why R∗ for all three values of λL are very close to one
another when γ/α is very close to 1.
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In Figure 4(b), the first thing we observe is R∗ drops to a lower range as
compared to Figure 4(a). With everything else kept unchanged except for
γ, this is surely the positive effect of vaccination and we see a continuous
drop in the range of R∗ as γ decreases as shown in Figure 4(c) and Figure
4(d). Another remarkable observation in Figure 4(a) is the three green lines
are very close to one another, which is a clear indication that regardless
of how infectious this strain of measles is, R∗ is essentially the same. We
can see this again from the expression for R∗. Now we have the presence
of the size-biased distribution. When γ is big, the size-biased distribution
”favours” classes with more unvaccinated students since γ/α is big. Further,
recall that we have earlier found out that the distribution of P u−1,1k for big
values of u is concentrated at the end of the outcome domain, for all λL.
This explains why R∗ is almost the same for all λL. Intuitively, when 70%
of the school population is unvaccinated, even in the case where there is
no vaccination admission criteria (i.e. γ = 1), this means that every class
has 0.7 ∗ 20 = 14 unvaccinated students and we know from the distribution
of P 14−1,1

k that all 14 of these unvaccinated students will almost surely be
infected, regardless of how infectious the strain of measles is. Next, we
see λL starts to make a difference in R∗ as γ decreases, as shown in how
the three lines progressively separate from one another from Figure 4(a) to
Figure 4(d). This tells us that when the level of vaccination coverage is low,
R∗ does not depend on how virulent the strain of measles is. On the other
extreme, when the level of vaccination coverage is high, it is very difficult
for the virus to take hold even if it is a virulent strain plus the constraint of
some classes impose admission criteria, as shown in Figure 4(d).
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(a) (b)

(c) (d)

Figure 4: Relationship between average number of global contacts, propor-
tion of schools that admit unvaccinated students and vaccination coverage.
The red dotted line is drawn at R∗ = 1. From (a) to (d), the level of vacci-
nation coverage in the population is 30%, 60%, 80% and 95%, respectively,
which are derived from 1− γ.

32



In Figure 5, we see the critical values of α and λG for which R∗ = 1, for
the same four levels of vaccination coverage as in Figure 4.

Clearly, these two parameters have a positive correlation. In other words,
the average number of global contacts increases as the proportion of classes
that admit unvaccinated students increases. The logical explanation is that
since the unvaccinated students are spread across a wider base as the number
of classes that admit them increases, thus allowing the average number of
global contacts to increase to get to R∗ = 1.

Our first observation is how little it takes for λG to be in order to make
R∗ exceed 1 when the level of vaccination coverage is low, as shown in the
first two plots. This means that in order to prevent a measles outbreak from
happening, we need to keep the average number of global contacts made per
day by a given student to below these values, which is quite unrealistic.

In each plot, we take note of how all three lines are merged when γ/α = 1,
which again is due to the size-biased distribution effect we have explained
above. Another remarkable observation is how the rate of change of λG
changes from approximately linear to logarithmic as γ decreases, which im-
plies that a positive unit change in α leads to a smaller change in λG as we
move to higher levels of vaccination coverage. This means that as the level of
vaccination coverage increases, an increase in the proportion of classes that
admit unvaccinated students has less of an effect on the average number
of global contacts allowed. This coincides with our observation in Figure 4
where the positive effect of an increasing α on R∗ flattens out as the level
of vaccination coverage increases. To illustrate, let us zoom into the middle
green line of γ = 0.05 in Figure 5, that is, when λL = 0.175. When α is
0.5, λG is approximately 2.1, which is a reasonable average number of global
contacts made by a student per day, say a neighbour whom he plays with
occasionally after school or a schoolmate who is in the same football club.
But this means that when the level of vaccination coverage is high, there
is room for some school classes to refuse admission of unvaccinated student
and not make R∗ exceed 1. On the other hand, when γ = 0.2, we see that
even when α is 1, the biggest that λG can be is only ≈ 0.36 for the smallest
λL.

We also observe that the three lines progressively separate as γ decreases,
which coincides with our observation in Figure 4. This implies that when
the level of vaccination coverage is low, all λL share a similar set of (λG, α)
critical values for which R∗ = 1.
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Figure 5: Critical values of α and λG for which R∗ = 1. Take note that each
α axis starts from its respective γ.
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Figure 6(a) to Figure 6(d) show the connection amongst τ , α, λG and
γ for the same levels of vaccination coverage as in the two figures above.
Here, we present the τ values for a set of three λG values that were chosen
such that its range is 1.5 times higher than the range of critical λG values
in Figure 5. We do so in order to make sure R∗ > 1 and we know there is a
positive probability of a large outbreak.

In general, increasing α has a positive effect of bringing down τ across
the board, albeit to varying degrees depending on both λG and γ.

We first look at Figure 6(a) and Figure 6(b), where the levels of vacci-
nation coverage is at 30% and 60% respectively. In Figure 6(a), it is clear
that even if there is no vaccination admission criteria (i.e. α = 1), we cannot
bring τ down to zero even with unrealistically low λG values, regardless of
the virality of the strain of measles. But we must bear in mind here that
if the school population is large, even a 1% reduction in τ can be big in
absolute numbers. The situation becomes quite different when the level of
vaccination coverage goes up to 60%, as shown in Figure 6(b). In the case
when λG = 0.12, we see that it is possible to bring τ down from 1 to ≈ 0.63
as α→ 1 for the most virulent strain of measles.

We focus now on Figures 6(c) and Figure 6(d). The effect of the virality
of the strain of virus becomes more apparent here. In the middle plot of
both figures, we see that for λL = 0.1, it is possible for τ = 0 even though
α is not one, implying that there is room for some school classes to impose
vaccination criteria and not cause an outbreak. However, it is important to
take note that this is valid only for the λG values used in the computation.
Given the same level of vaccination level but a different λG, the situation
becomes very different, as shown in the last plot of both figures.

Similar to Figure 4 and Figure 5, we observed that all three lines ”pivot”
from the same point, which again is due to the effect of a deterministic
size-biased distribution. Recall earlier that we have found out that in this
case, all of the students in those classes that admit unvaccinated students
are unvaccinated and the distribution of P 20−1,1

k is heavily concentrated

at P 20−1,1
19 , for all λL. Hence, all three λL values give almost identical

τ values when γ/α = 1. Also, the three lines more or less overlap one
another when the level of vaccination coverage is low, which coincides with
our observations of Figure 4 and Figure 5. This is not surprising since they
share a very similar set of R∗ and critical (λG, α) values. For each level
of γ, the lines begin to separate after α crosses a certain value, with the
separation becoming more apparent as γ decreases. Our interpretation is
that in the event there is a large outbreak (i.e. R∗ > 1), when the level
of vaccination coverage is low, the proportion of ultimately infected does
not really depend of the virality of the strain of measles. Conversely, when
the level of vaccination coverage is higher, a weaker strain of the virus will
result in a smaller τ in comparison to a more virulent strain, especially as
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α → 1. A logical explanation is that when there is a bigger proportion of
classes that admit unvaccinated students, there is a wider base to shoulder
the burden of unvaccinated students, which makes it relatively more difficult
for a weaker strain of virus to take hold.
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(a) (b)

(c) (d)

Figure 6: Relationship between τ and α at vaccination coverage 30%, 60%,
80% and 95% using λG values that are 1.5 times higher than the range of
critical values in Figure 5.
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Finally, we look at the results for risk of infection. The question that
we want to answer here is: How does the presence of vaccination admission
criteria affect the probability of a type u student becoming infected and
consequently the relative risk of infection? If we study the expression for
τu, we see that its dependence on α is embedded in τ . Hence, the effect of
α on τu is manifested through τ .

In order to make the analysis tractable, we center our investigation
around a set of selected parameter values. This is the setup of our in-
vestigation:

• choose two α values

We look at α = 0.7 and α = 1. Since we model the vaccination criteria
being imposed on an ad-hoc basis, we assume that only some schools
will go to this extent.

• focus on γ = 0.2 and γ = 0.05

We focus on these two values as we have earlier identified them as the
levels of vaccination coverage that are of main interest in this thesis.

• focus on λL = 0.1 and λL = 0.6

• choose a λG value such that there is a positive probability of a large
outbreak

With no specific preference, we choose to work with the last λG value
shown in Figure 6 that corresponds to the chosen γ value.

• compute τ and τu, for 1 ≤ u ≤ 20, for every α and present all risk of
infection relative to the τ value

Interested readers can derive risk ratios τu/τũ by computing τu/τ
τũ/τ

.

Results of our computations are shown in Table 1 and Table 2.

Across the board, for a larger α, the risk ratios are larger compared to those
when α is smaller, with the difference between the two risk ratios becoming
bigger as u becomes larger. This is an interesting observation because when
we derive all τu from the risk ratios and make horizontal comparisons, we
see that τu(smaller α) ≥ τu(bigger α) for all u. This is telling us that al-
though the probability of a type u student getting infected is lower (if not
the same) when the proportion of classes that admit unvaccinated students
is larger, this reduction (or non-reduction) is much smaller relative to the
overall reduction in probability of getting infected. In other words, while
everyone, in general, benefits from a larger proportion of classes that admit
unvaccinated students, this benefit is not shared equally amongst all types
of students. This coincides with an increasing trend in the risk ratios as
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u increases, which means that those unvaccinated students in classes with
more unvaccinated classmates are in a relatively worse position. Further, in
both tables, we see that the increase tapers off after reaching a certain u and
for some values of u, they have the same risk ratio. Since the denominator
is kept constant, this implies that some types of students share the same
risk of infection, that is, the probability of a type u student getting infected
is the same as a type u + 1 student, which means that this type u student
is actually not much worse off than type u + 1 student. This is especially
apparent for the bigger λL value such that when the strain of measles is
highly virulent, many types of students have more or less the same risk of
infection.
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γ = 0.2, λG = 0.55
λL = 0.1 λL = 0.6

Risk α = 0.7 α = 1 α = 0.7 α = 1
ratio τ = 0.71 τ = 0.43 τ = 0.89 τ = 0.76

τ1
τ 0.36 0.39 0.35 0.36
τ2
τ 0.46 0.48 0.58 0.60
τ3
τ 0.57 0.65 0.76 0.81
τ4
τ 0.70 0.81 0.88 0.96
τ5
τ 0.84 1.02 0.95 1.06
τ6
τ 0.97 1.23 1.01 1.13
τ7
τ 1.09 1.44 1.04 1.18
τ8
τ 1.18 1.62 1.06 1.22
τ9
τ 1.25 1.76 1.08 1.25
τ10
τ 1.29 1.88 1.10 1.26
τ11
τ 1.33 1.97 1.10 1.27
τ12
τ 1.35 2.04 1.11 1.28
τ13
τ 1.36 2.09 1.11 1.28
τ14
τ 1.38 2.13 1.11 1.30
τ15
τ 1.38 2.16 1.11 1.30
τ16
τ 1.39 2.18 1.11 1.30
τ17
τ 1.39 2.20 1.11 1.30
τ18
τ 1.39 2.23 1.11 1.30
τ19
τ 1.39 2.25 1.11 1.30
τ20
τ 1.39 2.25 1.11 1.30

Table 1: Risk ratios for 80% vaccination coverage and average number of
global contacts per day is 0.55.
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γ = 0.05, λG = 5.4
λL = 0.1 λL = 0.6

Risk α = 0.7 α = 1 α = 0.7 α = 1
ratio τ = 0.58 τ = 0.49 τ = 0.80 τ = 0.71

τ1
τ 0.79 0.83 0.71 0.74
τ2
τ 0.93 1.00 1.00 1.07
τ3
τ 1.08 1.18 1.15 1.25
τ4
τ 1.24 1.36 1.20 1.33
τ5
τ 1.37 1.55 1.22 1.36
τ6
τ 1.50 1.69 1.23 1.38
τ7
τ 1.56 1.81 1.23 1.39
τ8
τ 1.62 1.89 1.23 1.39
τ9
τ 1.65 1.93 1.23 1.39
τ10
τ 1.68 1.97 1.23 1.39
τ11
τ 1.68 2.00 1.23 1.39
τ12
τ 1.70 2.02 1.23 1.39
τ13
τ 1.70 2.02 1.23 1.39
τ14
τ 1.70 2.02 1.23 1.39
τ15
τ 1.70 2.02 1.23 1.39
τ16
τ 1.70 2.02 1.23 1.39
τ17
τ 1.70 2.02 1.23 1.39
τ18
τ 1.70 2.02 1.23 1.39
τ19
τ 1.70 2.02 1.23 1.39
τ20
τ 1.70 2.02 1.23 1.39

Table 2: Risk ratios for 95% vaccination coverage and average number of
global contacts per day is 5.4.
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6 Conclusion

It is clear from the results presented in Section 5.2 that not having vacci-
nation admission criteria or an increase in the proportion of classes that do
not have this admission criteria helps to bring down the basic reproduction
number of the epidemic of school classes and the proportion of initially un-
vaccinated who ultimately gets infected in the global epidemic. The extent
of this positive effect, however, is contingent on the level of vaccination cov-
erage, how virulent the strain of measles is and how often students contact
one another outside their classes.

In the case where the level of vaccination coverage is at 80%, increasing
α can help to bring the basic reproduction number down to below 1 for
those λG values used in the computation. On the other hand, at 60% and
below, the same act does not bring the basic reproduction number down to
below 1, given the same set of λG values. We have also seen that increasing
α helps to bring τ down across the board. But again, the extent of its
positive effect is not consistent. The positive effect of an increasing α on
reducing τ loses steam when vaccination coverage goes down and/or average
number of global contacts goes up. Further, although τu is smaller for
all u when α is larger, one’s relative risk of infection (compared with the
general probability of getting infected) becomes worse off for larger α. In
other words, a larger proportion of classes that admit unvaccinated students
benefits the unvaccinated students as a whole (and hence the society), but
not quite the case on an individual level. The reason being although now
one has a higher chance of escaping global infection, once infected (or once
one of the unvaccinated classmates gets infected), one is still going to get
the same outcome for the local epidemic. And it is worse for those in the
larger u classes, up to a certain point though, after which they are more or
less the same ”worse off”. What is apparent too is there is less room for α
to have an effect on τ and consequently relative risk of infection when the
strain of measles is highly virulent as well as when the level of vaccination
coverage is high.

Concluding, if some schools decide to impose vaccination as an admis-
sion criteria, the extent of its consequences is very much dependent on the
level of vaccination coverage, the virality of the strain of measles and how
often students make global contacts, which is arguably partly dependent on
how urbanised and densely populated the city/region is. The positive effect
of not having such an admission criteria is most apparent when vaccination
coverage is high. When vaccination coverage goes down, this positive ef-
fect is less apparent. However, we should also bear in mind we are talking
about proportion here. If the school population is large, a seemingly small
reduction in the proportion of ultimately infected may still be big in abso-
lute numbers. Hence, since not having such an admission criteria, in general,
helps to reduce the number of unvaccinated students who ultimately gets in-

42



fected, albeit to different extent depending on the underlying circumstances,
our recommendation is not to have such a criteria.

7 Limitations

In choosing to use the standard SIR model as the basis for our model, we
inevitably inherit its limitations. For one, the simplifying assumptions of a
closed and homogeneous population are far from real-life, which render the
expressions for various quantities of interest in our model only as good as
rough approximations. In particular, varying susceptibility (as opposed to
homogeneous susceptibility assumed in the SIR model) will affect the final
outcome of an epidemic. Interested readers can find out more in Andersson
and Britton [2], Section 6.4 as well as a research paper [3] by the same
authors. Further, we have chosen to work with a constant infectious period,
which also has its drawbacks. Meester and Trapman [13] have shown that
the final outcome will be overestimated with the assumption of a constant
infectious period. However, we can argue that an overestimation is certainly
more prudent than an underestimation, especially for a highly infectious and
potentially deadly virus like measles. Finally, we have simplified λG to the
average number of global contacts made by a given student. In fact, λG is a
function of many factors, such as social distance, social behaviour and the
inherent virality of the virus (i.e. is it airborne? Or spreads only by contact
with bodily fluids, etc.). Taking into account all these heterogeneities would
have yielded a model that is much closer to reality, but it would make the
mathematics less tractable.

Intuitively, one would think that having vaccination as an admission
criteria on an ad-hoc basis is not a good idea and what we have done here is
to confirm this intuition with scientific investigation. While it may already
be known to policy makers that such an act will worsen a measles outbreak,
this thesis can be used as a tool for them to further convince schools why
they are not allowed to do so.

One area of further research is whether or not parents who do not want
to vaccinate their children would choose to give up schools of their choice or
endure longer commute to schools than to vaccinate their children, should
there be schools that impose such an admission criteria. This may inadver-
tently help authorities pull up the level of vaccination coverage. We leave
this, however, to the sociologists as this is beyond the scope of mathematical
research.
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