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Abstract

This thesis is about to forecast the spread between the two stocks

traded in pairs with 1- and 2-step-ahead in two different ways: directly

forecast the spread series using an univariate AR model; and indirect-

lyforecast the spread series through the forecasting of the prices of

the associated stocks using a multivariate VAR yielded ECM model.

The fore-casting process follows a time series cross-validation proce-

dure and the Naive forecasting approach is used as a benchmark. The

results indicate that none of the AR or VAR yielded ECM model is

outperform the Naive approach, however the ECM model is in overall

more accurate than the simple AR model.
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1 Introduction

Pairs trading is a trading strategy that constructed with a market-neutral port-
folio which only involves two highly correlated stocks or other securities. Such
market-neutral portfolio gives a return which is uncorrelated with the market
return. That is, the return provided by the portfolio has its own performance
regardless how market changes. Let pt denote the price at time t and the return
rt is defined as:

rt =
pt − pt−1

pt−1

In this study we will focus on the statistical arbitrage pairs trading which has
an idea based on the relative pricing and the arbitrage pricing theory (APT).

The APT is a multi-factor asset pricing model for which that the expected return
of a financial asset can be modeled by a linear combination of the expected
risk-free rate and several macroeconomic risk-captured variables. This implies
that the expected return of two securities should be the same at each specified
time frame if these two securities are exposing to the same risk factors and
are having exactly the same sensitivity to the factors. If the expected returns
differ, it is likely that one of the security is over-priced and the other one under-
priced. When such differ appears, investors may gain profits by putting on a
long position in the under-priced security and a short position in the other one in
some predetermined ratio with an expectation on that the mispricing will correct
itself and revert back in the future. The degree of mutual mispricing, or the
scaled price difference is called the spread. ”The greater the spread, the higher
the magnitude of mispricing and greater the profit potential” (Vidyamurthy
2004, p. 74).

This study is about this spread between the two chosen stocks in pairs trading.
The main purpose is to forecast this price gap in order to construct some trad-
ing strategies in the future if possible. The forecasting is implemented in two
different approaches with two different but related data sets, one is to directly
forecast this spread based on already observed data, and the other one is to
forecast the prices of the chosen stocks and thereon calculate the associated
spread. Two time series models, an univariate AR model and a multivariate
VAR yielded ECM model are used and compared in terms of the forecasting
accuracy.

To fully understand the study, an introduction about some helpful background
theories within the univariate as well as multivariate time series analysis and the
study related models - AR, VAR and VAR yielded ECM are given in advance in
section 2 and 3. Thereafter some useful tests and tools in the time series analysis
and forecast are presented in section 4. The main study is in the section 5.
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2 Univariate Time Series Model

In this section, we introduce first some basic and important concepts related to
the univariate time series analysis, and thereafter the model that is used in the
study.

2.1 Stationarity

The stationarity is the central concept within the time series analysis. An
univariate time series xt is said to be strictly stationary if the jointly distribution
of {xt1 , . . . , xtn} is invariant regardless how time indexes shift. That is, for any
k, the jointly distribution of {xt1 , . . . , xtn} and {xt1+k, . . . , xtn+k} is the same.
This strong condition is hard to verify empirically, hence a weaker version is
often assumed. An univariate time series xt is said to be weakly stationary if
both the mean of xt and the covariance between xt and xt−l, for any arbitrary
integer l, do not depending on time (Tsay 2010, p. 30). That is:

E[xt] = µ

Cov(xt, xt−l) = γl

Note that the variance of a weakly stationary time series, i.e. V ar(xt) =
Cov(xt, xt) = γ0, is a time invariant constant. The covariance γl is often called
the lag-l autocovariance.

Any further mention of stationary is refer to weakly stationary assumptions.

2.2 Autocorrelation Function, ACF

The autocorrelation is simply the correlation between the time series xt and its
past values xt−l, for any arbitrary non-negative integer l. Under the assumption
of weakly stationary, the so called lag-l autocorrelation is defined as (Tsay 2010,
p. 31):

ρl =
Cov(xt, xt−l)√
V ar(xt)V ar(xt−l)

=
γl
γ0

A stationary time series xt is not serially correlated if and only if ρl = 0 for all
l > 0.

Sample Autocorrelation Fuction

The lag-l sample ACF can be estimated by:

ρ̂l =

∑T
t=l+1(xt − x̄)(xt−l − x̄)∑T

t=1(xt − x̄)2
, 0 ≤ l ≤ T − 1 (2.1)

where x̄ = 1
T

∑T
t=1 xt is the sample mean.
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2.3 White noise

A white noise is a series of independent and identically distributed (i.i.d.) ran-
dom variables with finite mean and variance. The ACFs of the white noise
series is close to zero duo to the independent characteristics. If the white noise
is normally distributed with mean zero and variance σ2, i.e. ∼ N(0, σ2), then
the series is called as Gaussian white noise.

2.4 Simple Autoregressive Model, AR

The autoregressive (AR) model presents a linear combination between the cur-
rent value of an variable and its own previous values. An autoregressive model
of order p, short as AR(p) model, is defined as (Tsay 2010, p. 37-46):

xt = φ0 + φ1xt−1 + · · ·+ φpxt−p + at (2.2)

where p is a positive integer, φ0 is the constant term/intercept, φ1, ..., φp are
the parameters of the model and at is a white noise series with zero mean and
variance σ2

a. An AR(p) model is simply saying that the current value of the
variable is determined jointly by a linear combination of the latest p previous
values and a white noise series. Under the stationary assumptions, the expected
value of xt and xt−l is the same and as well as the variance of xt and xt−l for
any positive integer l. With these two conditions one can obtain the mean value
and the variance of the stationary AR(p) model as:

E[xt] =
φ0

1− φ1 − · · · − φp
= µ (2.3)

V ar(xt) =
σ2
a

1− φ21 − · · · − φ2p
(2.4)

implying that φ1 + · · ·+ φp < 1 and φ21 + · · ·+ φ2p < 1. Using φ0 = µ(1− φ1 −
· · · − φp) and Cov(at, xt−l) = 0, the ACFs of xt can be written as:

ρl = φ1ρl−1 + · · ·+ φpρl−p for l > 0

Use a so called back-shift operator B such that Bρl = ρl−1 one can obtain the
following property:

(1− φ1B − · · · − φpBp)ρl = 0 for l > 0

The equation (1− φ1B − · · · − φpBp) = 0 is called the p-order difference equa-
tion or the characteristic equation for the AR(p) model and the inverse of the
solutions to this equation are called characteristic roots. It can be shown that
an stationary AR(p) model satisfies that the absolute value of the characteristic
roots are less than 1 and the ACFs of xt have a exponential decays.

With the back-shift operator B and the characteristic roots ω, the AR(p) model
can be rewritten into the form as:

(1− ω1B)(1− ω2B) · · · (1− ωpB) = φ0 + at (2.5)

7



Forecasting for AR

Forecast of a time series is equivalent to compute the expected value of the
variable at a future time point of interest with conditional on all the collected
available information at current time.

Suppose we are at time h and interested in the forecast value at time h+ l (both
h and l are arbitrary positive integers), where the h is called as forecasting origin
and l the forecasting horizon. Consider an AR(p) model, the value of xh+l is:

xh+l = φ0 +

p∑
i=1

φixh+l−i + ah+l

the l-step-ahead forecasting of xh+l, denote as x̂h(l), is equivalent to the ex-
pected value of the xh+l given all the available information at time h which
denote as Fh (Tsay 2010, p. 54-56):

x̂h(l) = E[xh+l|Fh] = φ0 +

p∑
i=1

φix̂h(l − i)

Note that x̂h(l − i) on the right hand is the same as xh+l−i for any integer
l − i ≤ 0. This multiple forecast can be computed recursively through x̂h(1),
x̂h(2) until the interested step. The associated forecasting error is:

eh(l) = xh+l − x̂h(l)

It can be shown that for a stationary AR(p) model, x̂h(l) converges to the un-
conditional expected value E[xt] = φ0

1−φ1−···−φp
, and the variance of the forecast

errors, V ar(eh(l)) converges to the sample variance V ar(xt) =
σ2
a

1−φ2
1−···−φ2

p
as

l→∞ (Tsay 2010, p. 56). These limitations on the forecasting mean and vari-
ance makes a stationary AR(p) model predictable. Such property refers to the
mean-reverting in finance literature.

2.5 Unit-root Nonstationary and Random Walk

In general, a price series is normally tend to be nonstationary, namely has time
dependent mean and/or variance due to the absence of the fixed price level.
Such nonstationary series xt is called as unit-root nonstationary time series and
is usually following a random walk process such defined as (Tsay 2010, p. 71-73):

xt = xt−1 + at (2.6)

where at is a white noise series with mean zero and variance σ2
a. The expression

is simply saying that with conditional on previous value xt−1 and a white noise
series, the probability for the current value of xt to go up or down is the same.
This simple random walk model can be seen as a special case of an AR(1) model
with constant φ0 equals zero and parameter φ1 equals one.
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A random walk process is not mean-reverting, this can be shown through a
long-term forecast. Given a random walk process xt, the l-step-ahead forecast
and the corresponding variance of forecast error are:

x̂h(l) = xh

V ar (eh(l)) = lσ2
a

which implies that the forecast value is always the same as the value at the origin
and the variance of the forecast error goes to infinity as forecasting horizon goes
to infinity. Thus a random walk process is not predictable and need to be
transformed into stationary in order to do forecast.

Differencing and Integrating

A common way to overcome with the non-stationarity is to construct a series
that express the changing in the original series with a specified time interval,
such operation is called differencing (Tsay 2010, p. 76). For instance, consider
an unit-root nonstationary random walk series xt in Eq. 2.6, the corresponding
first differenced series is then the one time-unit changing of the xt, i.e:

∆xt = xt − xt−1 = at

The mean and variance of the white noise series at is time invariant and hence
is stationary.

Series that can be transformed into stationary through d times differencing is
said to be integrated of order d, denote as I(d).

3 Multivariate Time Series Model

Same as the univariate time series section, we begin with some related concepts
within multivariate time series analysis and thereafter introduce the models that
are involved in this study. Since the time series analysis in this study is only
regarding two or less times series, all further introduction about the multivariate
times series are restricted to the bivariate version.

3.1 Stationarity

The stationarity for a multivariate time series is straightforward. A weakly
stationary bivariate time series xxxt satisfies following assumptions (Tsay 2010,
p. 390-391):

µµµ = E[xxxt]

ΓΓΓ0 = E[(xxxt −µµµ)(xxxt −µµµ)T ]

where µµµ is the mean vector, and ΓΓΓ0 is the 2 × 2 symmetric cross-covariance
matrix of xxxt. Note that the matrix and vector variables are denote in bold. The
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diagonal elements in ΓΓΓ0 are the variances of x1t and x2t respectively, and the
off-diagonal elements are the covariance between x1t and x2t. Analogously, the
lag-l cross-covariance matrix is defined as:

ΓΓΓl = E[(xxxt −µµµ)(xxxt−l −µµµ)T ]

Let Γij(l) denote the ij:th element in ΓΓΓl, and note that Γ12(l) is the covariance
between x1t and x2,t−l and Γ21(l) is the covariance between x2t and x1,t−l,
which measures different relationships. Thus the lag-l cross-covariance matrix
is asymmetric.

3.2 Cross-Correlation Matrix, CCM

The multivariate version of autocorrelation is called cross-correlation and the
so called lag-l cross-correlation matrix is defined as (Tsay 2010, p. 391-392):

ρρρl = DDD−1ΓΓΓlDDD
−1

where DDD is a diagonal matrix for which diagonal elements equal to the square
root of the diagonal elements in ΓΓΓ0, that is, the standard deviation of the com-
ponents in xxxt,. Let ρij(l) denote the ij:th element in ρρρl, which is the correlation
coefficient between xit and xj,t−l, can be written as:

ρij(l) =
Γij(l)√

Γii(0)Γjj(0)
=
Cov(xit, xj,t−l)

sd(xit)sd(xjt)

where Γij(l) is the ij:th element in ΓΓΓl. For the same reason as ΓΓΓl, the lag-l cross-
correlation matrix ρρρl is asymmetric. The diagonal elements in ρρρl are actually
the lag-l autocorrelation coefficients of the components in xtxtxt.

Sample Cross-Correlation Matrix

The lag-l sample cross-correlation matrix can be estimated through the lag-l
sample cross-covariance matrix defined as follows (Tsay 2010, p. 392-393):

Γ̂̂Γ̂Γl =
1

T

T∑
t=l+1

(xxxt − x̄̄x̄x)(xxxt−l − x̄̄x̄x)T , l ≥ 0 (3.1)

where x̄̄x̄x = 1
T

∑T
t=1 xxxt is the sample mean vector. Let D̂̂D̂D denote the sample

standard deviation of the components in xxxt, the lag-l sample CCM is:

ρ̂̂ρ̂ρl = D̂̂D̂D−1Γ̂̂Γ̂ΓlD̂̂D̂D
−1, l ≥ 0 (3.2)

3.3 Vector Autoregressive Models, VAR

The vector autoregressive (VAR) model is useful in modeling several time series
jointly. Similar to the simple autoregressive model, the VAR model is just a
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multi-dimensional version of the simple AR model. Consider a 2 time series x1t
and x2t, the VAR model of order 1, shortly VAR(1) model of the two series is
(Tsay 2010, p. 399-405):[

x1t
x2t

]
=

[
φ10
φ20

]
+

[
Φ11 Φ12

Φ21 Φ22

] [
x1,t−1

x2,t−1

]
+

[
a1t
a2t

]
which can be conveniently written as:

xxxt = φφφ0 + ΦΦΦ1xxxt−1 + aaat (3.3)

where φφφ0 is a vector of the constant terms/intercepts, ΦΦΦ1 is the parameter matrix
and aaat is a vector of serially uncorrelated random white noise with mean zero
and a 2×2 symmetric covariance matrix ΣΣΣ. The diagonal elements in ΣΣΣ-matrix
measure the components’ variance and the off-diagonal elements measure the
concurrent covariance relationship between the components x1t and x2t. The
elements in ΦΦΦ1-matrix give the dynamic linear relationship within and between
the components. For instance, Φ11 measures the linear dependence of x1t and
x1,t−1 which can be seen as the φ1 parameter in the univariate AR model and
Φ12 measures the linear dependence of x1t and x2,t−1. The same with Φ22 and
Φ21, but note that Φ21 measures the linear relationship between x2t and x1,t−1

which is different from Φ12. Hence ΦΦΦ1-matrix is not symmetric.

More generally, a VAR(p) model is as follows:

xxxt = φ0φ0φ0 + ΦΦΦ1xxxt−1 + · · ·+ ΦΦΦpxxxt−p + aaat (3.4)

where φφφ0 and aaat are the same as in Eq. 3.3, and ΦΦΦ1, ...,ΦΦΦp are the parameter
matrix of the model. Using back-shift operator, the model can be rewritten
into:

(III −ΦΦΦ1B − · · · −ΦΦΦpB
p)xxxt = φφφ0 + aaat

where III is a 2× 2 identity matrix in bivariate case.

A weakly stationary VAR(p) model satisfies:

• E[xxxt] = E[xxxt−l], for any l > 0.

• E[xxxt] = (III −ΦΦΦ1 − · · · −ΦΦΦp)
−1φφφ0, where III is a 2× 2 identity matrix in the

case of bivariate time series.

• Cov(aaat,xxxt) = ΣΣΣ, which is the cov-matrix of aaat.

• Cov(aaat,xxxt−l) = 0 for any l > 0.

• ΓΓΓl = ΦΦΦ1ΓΓΓl−1 + · · ·+ ΦΦΦpΓΓΓl−p, for any l > 0.

• ρρρl = ΥΥΥ1ρρρl−1 + · · ·+ ΥΥΥpρρρl−p, for any l > 0, where ΥΥΥi = DDD−1/2ΦΦΦiDDD
1/2 and

DDD is the diagonal matrix of the standard deviations of xxxt.

• All zeros of the determinant |III −ΦΦΦ1B − · · · −ΦΦΦpB
p| are located outside

the unit circle.
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Forecasting for VAR

The forecasting of VAR model can be derived analogously as the forecasting of
AR model (Tsay 2010, p. 409).

Consider an VAR(p) model, the value of xxxh+l is:

xxxh+l = φ0φ0φ0 +

p∑
i=1

ΦΦΦixxxh+l−i + aaah+l

The l-step-ahead forecast for xxxh+l, conditional on Fh is then:

x̂xxh(l) = φ0φ0φ0 +

p∑
i=1

ΦΦΦix̂xxh(l − i)

the value of x̂xxh(l − i) is equal to the xxxh+l−i for any integer l − i ≤ 0. And the
associated forecasting error is:

eeeh(l) = xxxh+l − x̂xxh(l)

The forecasting for VAR has the same property as the forecasting for AR, that
the long-term point forecasting will approaches the unconditional mean of the
seires. In other words, a mean-reverting will arise for large l.

3.4 Cointegration

As mentioned earlier that most price series are unit-root nonstationary as well
as the stock prices for which is the study object in this thesis. An interesting
phenomenon called cointegration arises when modelling two unit-root nonsta-
tionary time series jointly and is the key characteristics involving pairs trading.
The term cointegration was coined by two econometricians Engle & Granger
(1987) and they had given a definition of cointegration as follow:

DEFINITION(cointegration): The components of the vector xxxt said to be co-
integrated of order (d,b), denoted xxxt ∼ CI(d, b), if (i) all components of xxxt are
I(d); (ii) there exists a vector βββ(6= 0) so that wwwt = βββTxxxt ∼ I(d− b), 0 < b ≤ d.
The vector βββ is called the cointegrating vector.

In other words, consider two unit-root nonstationary time series x1t and x2t,

both are integrated of order 1. If there exist a certain vector βββ =
[
1 −β1

]T
,

such that the series wt = x1t − β1x2t is stationary, i.e. I(0), then x1t and x2t is
said to be cointegrated.

The stationary linear combination x1t − β1x2t refers to the spread for which
is interested in pairs trading. A presence of the time invariant mean and vari-
ance in the spread implies that the components series in the system will adjust
themselves to restore this mean if a deviation ever appears. This is the mean-
reverting characteristics that requires for the spread between the two stocks in
pairs trading. Additionally, a comovement is always appeared between the two
cointegrated series (Vidyamurthy 2004, p. 75-76).
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3.5 Error Correction Model, ECM

Since there exits 2 unit-root nonstationary time series, while the number of
stationary series is only 1 in the cointegration system in bivariate case, therefore
the implementation of differencing on each components to achieve stationarity
will leads to over-differencing (Tsay 2010, p. 431). To overcome with this over-
differencing, an error correction representation is introduced.

3.5.1 Error Correction Model for VAR

Consider a 2-dimensional time series xxxt with a VAR(p) model in Eq. 3.4 and
let ∆xxxt = xxxt−xxxt−1 be the differenced series. Using back-shift operator one can
write that ΦΦΦ(B) = III −ΦΦΦ1B−· · ·−ΦΦΦpB

p and the error correction model for the
bivariate VAR(p) process is (Tsay 2010, p. 432-434):

∆xxxt = µµµt + ΠΠΠxxxt−1 + ΦΦΦ∗
1∆xxxt−1 + · · ·+ ΦΦΦ∗

p−1∆xxxt−p+1 + aaat (3.5)

where ΠΠΠ = −ΦΦΦ(1), and ΦΦΦ∗
j = −

∑p
i=j+1 ΦΦΦi (detailed derivation see appendix C).

µµµt is the 2-dimensional deterministic vector and can be written as µµµt = µµµ0+µµµ1t.
The role of this deterministic vector will be described in section 3.5.2. We use
ECMvar to denote this conversion model of VAR.

The rank of ΠΠΠ is the number of cointegrating vectors. If the rank of ΠΠΠ is zero
implies that xxxt is not cointegrated, and if ΠΠΠ has full rank implies that no unit-
roots are consisted in xxxt and ECM becomes meaningless. Therefore the rank
of ΠΠΠ can be used to determine the existence of cointegration. In the bivariate
case, if the rank of ΠΠΠ is 1, then the Eq. 3.5 can be rewritten as:

∆xxxt = µµµt +αααβββTxxxt−1 + ΦΦΦ∗
1∆xxxt−1 + · · ·+ ΦΦΦ∗

p−1∆xxxt−p+1 + aaat (3.6)

where both ααα and βββ are (2× 1)-matrix and with rank 1, such that αααβββT = ΠΠΠ.

Note that the βββ-matrix need to has a form as
[
1 −β1

]T
in order to give a

stationary series wt = βββTxxxt = x1t − β1x2t. This wt is the spread series as we
have already discussed in section 3.4.

3.5.2 Deterministic Function of ECMVar

The deterministic function µµµt = µµµ0 +µµµ1t tells if there exist any time trend/drift
in a time series. It has the same structure as a simple linear regression. µµµ0 is the
constant/intercept term. µµµ1t can be seen as the time dependent slope. If there
exist a time trend, then the time series will have values distributed surround
this slope.

There are five specific deterministic trend cases considered by Johansen (1995,
p. 80-84) and are summarized by Tsay (2010, p. 434-435) as follows:

1. µµµt = 0:

∆xxxt = αααβββTxxxt−1 + ΦΦΦ∗
1∆xxxt−1 + · · ·+ ΦΦΦ∗

p−1∆xxxt−p+1 + aaat
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Components of xxxt are I(1) but has no trends, wt has no intercept.

2. µµµt = µµµ0 = αααc0:

∆xxxt = ααα(βββTxxxt−1 + ccc0) + ΦΦΦ∗
1∆xxxt−1 + · · ·+ ΦΦΦ∗

p−1∆xxxt−p+1 + aaat

where c0 is a non-zero constant in the bivariate case. Components of xxxt
are I(1) but has no trends, and wt has an intercept at −c0.

3. µµµt = µµµ0 (non-zero):

Components of xxxt are I(1) and has linear trends, and wt have an intercept.

4. µµµt = µµµ0 +αααc1t:

∆xxxt = µµµ0 +ααα(c1t+ βββTxxxt−1) + ΦΦΦ∗
1∆xxxt−1 + · · ·+ ΦΦΦ∗

p−1∆xxxt−p+1 + aaat

where c1 is a non-zero constant in the bivariate case. Both components of
xxxt and wt have linear trends.

5. µµµt = µµµ0 +µµµ1t:

Components of xxxt are I(1) and has quadratic trends, wt has a linear trend.

The first and fifth case are very rare and not common in empirical work. The
first case may presents some log-price series and is therefore only used when all
components in xxxt have zero mean.

3.5.3 Forecasting for ECMVar

The ECMVar model can be used to obtain the forecasting of xxxt through the
forecast of the differenced series ∆xxxt. The advantage with ECMvar forecast
is that it imposes the cointegration relationships among the series during the
prediction process (Tsay 2010, p. 437).

Consider a ECMvar model with order p− 1, where p is the corresponding order
of the VAR model. With a forecasting origin h and a forecasting horizon l, we
obtain:

∆xxxh+l = µµµh+l +αααβββTxxxh+l−1 +

p−1∑
i=1

ΦΦΦ∗
i∆xxxh+l−i + aaah+l

∆x̂xxh(l) = µµµh+l +αααβββTxxxh+l−1 +

p−1∑
i=1

ΦΦΦ∗
i∆x̂xxh(l − i)

where ∆x̂xxh(l − i) = ∆xxxh+l−i for any integer l − i ≤ 0. The associated forecast
error is then:

∆eeeh(l) = ∆xxxh+l −∆x̂xxh(l)
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4 Model Selection, Examination and Evaluation

There are many things that need to be concerned when construct a model.
Did the series satisfy the assumptions? Which order should be chosen? How
to evaluate the model? And etc. In this section we introduce several useful
approaches to determine the stationarity, cointegration, order of the model and
the accuracy of the prediction.

4.1 Augmented Dicky-Fuller Test, ADF

There are several ways to determine the stationarity of an univariate time se-
ries, here we introduce the augmented Dicky-Fuller test which determine the
stationarity by testing the presence of unit-root in the time series.

Consider an AR(p) model in form of Eq. 2.2, the ADF-test is to conduct a t-
test on the least square estimated parameter γ̂ which provided by the equation
(Tsay 2010, p. 77):

xt = ct + βxt−1 +

p−1∑
i=1

φi∆xt−i + at

where ct is the deterministic function which can be written as ct = c0 + c1t,
∆xt = xt − xt−1 is the first differenced series of xt. If the coefficient for the
xt−1 term equals 1 then an unit-root is appeared and the series xt is then said
to be nonstationary. The test hypothesis is then H0 : β = 1 versus H1 : β < 1
and the corresponding t-statistic is:

ADF-test =
β̂ − 1

std(β̂)

The null hypothesis is rejected if the test statistic exceeds the critical value at
an appropriate level.

4.2 Johansen’s Cointegration Test

As mentioned in section 3.5.1 that the rank of ΠΠΠ is the number of cointegrating
vectors, thus one can examine the rank of ΠΠΠ to determine the existence of coin-
tegration. This is the approach taken by Johansen (1988, 1995). There are two
type of Johansen’s cointegration test on VAR model:

Trace

Consider the hypothesis

H0 : Rank(ΠΠΠ) = m versus Ha : Rank(ΠΠΠ) > m
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The associated likelihood ratio (LR) statistic:

LRtr(m) = −(T − p)
k∑

i=m+1

ln(1− λ̂i)

where T is the sample size, p is the order of the model, k is the dimension of
the time series and λ̂i is the corresponding eigenvalues of the ΠΠΠ-matrix.

Maximum eigenvalue

Consider the hypothesis

H0 : Rank(ΠΠΠ) = m versus Ha : Rank(ΠΠΠ) = m+ 1

The associated LR statistic:

LRmax(m) = −(T − p)ln(1− λ̂m+1)

where T , p and γ̂i defines the same as in trace test.

Both trace and max-eigenvalue test start with m = 0 until m = k − 1 where
k is the dimension of the ΠΠΠ-matrix. At each m the null-hypothesis is rejected
if the test statistic exceeds the critical value at an appropriate level, implying
that the number of cointegrating vectors is larger than the current m. Because
of the presence of unit-root, both LRtr(m) and LRmax(m) statistics are not chi-
square distributed but a function of standard Brownian motions which makes
the critical values nonstandard. Thus the corresponding critical values must be
evaluated via simulation (Tsay 2010, p. 436-437). Osterwald-Lenum (1992) had
proposed a suggestion of the critical values at 1% and 5% levels. MacKinnon,
Haug & Michelis (1999) had based on these proposed a more complete and
accurate critical p-values.

4.3 Portmanteau Test

All fitted model must be examined for adequacy. An adequate model has resid-
uals behave like white noise series and all AFCs/CCMs of the residuals is close
to zero. The model checking is conducted trough the Portmanteau test in terms
of testing if the autocorrelations or the cross-correlation matrices in the first m
lags of the times series is jointly equal to zero.

Univariate

The test hypothesis is simply H0 : ρ0 = · · · = ρm = 0 versus H1 : ρi 6= 0, for
0 ≤ i ≤ m. The Portmanteau statistic proposed by Ljung & Box (1978), also
known as the Ljung-Box test statistic is (Tsay 2010, p. 32-33):

Q(m) = T (T + 2)

m∑
l=1

ρ̂2l
T − l

(4.1)
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where T is the number of observations, m is the interested lag and ρ̂l is the sam-
ple autocorrelation in Eq. 2.1. The Q(m) statistic is asymptotically chi-square
distributed with m degrees of freedom. However when testing the residuals, the
test statistic is then asymptotically chi-square distributed with m − q degrees
of freedom, where q is the number of AR coefficients/parameters used in the
model (Tsay 2010, p. 50-51):

Q(m) ∼ χ2(m− q)

If the Ljung-Box test statistic exceeds the critical value at an appropriate level,
the null hypothesis is rejected and the model is conclude to be inadequate.

Multivariate

The multivariate Portmanteau test has the same test hypothesis as in univariate,
H0 : ρρρ0 = · · · = ρρρm = 0 versus H1 : ρρρi 6= 0, for 0 ≤ i ≤ m. Thus the statistic
is to test the existence of auto- and cross-correlations in the first m lags of the
vector time series. The statistic is (Tsay 2010, p. 397-398):

Qk(m) = T 2
m∑
l=1

1

T − l
tr(Γ̂̂Γ̂ΓTl Γ̂̂Γ̂Γ−1

0 Γ̂̂Γ̂ΓTl Γ̂̂Γ̂Γ−1
0 ) (4.2)

where T is the number of observations, k is the dimension for which is fixed to 2
in this study, tr(·) is the trace of the matrix, i.e. the sum of the diagonal elements

in the matrix. Γ̂̂Γ̂Γl is the sample lag-l cross-covariance matrix, see Eq. 3.1. This
statistic follows asymptotically a chi-square distribution with k2m degrees of
freedom and when testing the residuals, the degree of freedom becomes k2m− q
(Tsay 2010, p. 407):

Qk(m) ∼ χ2(k2m− q)

Reject the null hypothesis if the test statistic exceeds the critical value.

4.4 Order Selection

There are several useful tools that are available in determining the order of a
time series model. Here we introduce two of them: Akaike information criterion
(AIC) and Schwarz–Bayesian information criterion (BIC).

AIC

AIC(l) = ln(σ̃2
l ) +

2l

T

where T is the sample size, and σ̃2
l is the maximum-likelihood estimate of σ2

a

with a model of order l. The first term measures the goodness of fit and second
term is the penalty function of the criterion because it penalizes a candidate
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model by the number of parameters used (Tsay 2010, p. 48).

BIC

BIC is closely related to the AIC, the only different is the penalty function:

BIC(l) = ln(σ̃2
l ) +

l ∗ ln(T )

T

It is obviously that BIC is going to select a lower order than AIC when the
sample size is sufficiently large.

Since both AIC and BIC estimate the errors, the selected rule is then choose the
order that provide the minimum value of the AIC or BIC. ”There is no evidence
to suggest that one approach outperforms the other in a real application”(Tsay
2010, p. 49).

4.5 Error Measurement

What we are most concerned about in forecasting is the accuracy, thus our
model evaluation is performed in the aspect of prediction errors. To give a com-
parable intuitive reflection of the total prediction errors that generated through
the process, three error measurements for which are suggested by Hyndman &
Athanasopoulos (2018) are introduced.

Mean Absolute Error, MAE

MAE =
1

T

T∑
t=1

|Ft −At|

Root Mean Square Error, RMSE

RMSE =

√∑T
t=1(Ft −At)2

T

Mean Absolute Percentage Error, MAPE

MAPE =
100%

T

T∑
t=1

∣∣∣∣Ft −AtAt

∣∣∣∣
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where T is the number of predictions, Ft is the predicted value at time t and
At is the actual value at time t in all three measurements.

4.6 Naive Approach

A naive approach in prediction is to expect that the future prices is equal to
present price. More mathematically, consider a time series xt, the naive fore-
casting approach is meaning that the expected value of xt+l given all available
data at time t is equal to the expected value of xt, i.e.

E[xt+l|Ft] = E[xt|Ft] = xt

for any positive integer l. This forecasting approach gives the same result as the
forecasting of random walk process and is also called the random walk forecasts
(Hyndman & Athanasopoulos 2018, ch. 3.1). The naive forecasting approach is
used as a benchmark in model evaluation.

5 Case Study

The study consists of three part: preprocess, analysis and prediction. In the
preprocess part the raw data will be processed and divided into groups. The
analysis part will start with several tests to verify if the data satisfies the as-
sumption for pairs trading. An univariate and a multivariate time series model
is then fit to the data. Before send the fitted models to the prediction part,
a model adequacy test is conducted and all unsatisfactory models are thrown
away. The prediction process follows a so called time series cross validation
procedure which will be introduced later, and a model evaluation is conducted
through a comparison of errors between the forecasting values and the actual
values.

5.1 Data

Unfortunately it is impossible to find securities that are facing exactly the same
risk factors and are equally sensitive to the factor which in term gives exactly
the same expected return in reality. However, the risk factors and correspond-
ing sensitivities for companies that are providing the same service or product
within the same industry and market may be highly similar. A cointegration
relationship which is the main assumption that need to be satisfied in further
analysis may also exist among such companies.

A dual-listed company(DLC) is composed by two corporations which have their
respective legal identities and stock exchange listings, while they conduct busi-
ness as a single operation. Theoretically the risk factors exposure and sensitivity
are almost the same due to the DLCs characteristics, hence the stock prices of
DLCs should move in a lockstep and give an expected return at same level and
thereon give an opportunity of trade in pairs. As a result, we chose one of
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the world’s largest mining company - BHP Billiton - which is also a DLC. The
two corporations are the Australian BHP Group Limited, denote as BHP, and
the British BHP Group plc, denote as BBL. The stock price of BHP and BBL
on the New York Stock Exchange are downloaded from Yahoo Finance. All
available historical data after merging until 2020 are used, that is, data from
2003-06-25 to 2019-12-31. After removing all unavailable values there are total
4158 observations.

Figure 1 shows the time plot of the logarithm of the adjusted closing price for
both BHP and BBL, for convenience we will use ”log price” instead of saying
the whole name of ”logarithm of the adjusted closing price”. As shown, the
log price of BHP always lies above the BBL and the the two stocks are moving
together. Though the observed price gap between the two stocks are somewhat
enlarged after 2010, but still holding a steady state. It is plausible to believe
that stocks of a dual-listed company is tradable in pair, however there are some
exceptions in the history and it is therefore necessary to test the tradability
among these two stocks.

Figure 1: log adjusted closing price of BHP and BBL, from 2013-06-25 to 2019-
12-31

5.2 Training and Testing Group

Before data testing and further analysis we divide the data into two groups, a
training and a testing group. The purpose with the training and testing group
is to conduct value comparison and model evaluation. Training data are used
to conduct model fitting and parameter estimating, and thereafter a prediction
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of the exogenous data, i.e. the data in the testing group. By comparing the
predicted and actual values, a model valuation based on error analysis is then
taking place.

The testing group contains the latest one year’s data, i.e. data from 2019-01-01
to 2019-12-31. Remainders, i.e. data from 2003-06-25 to 2018-12-31, belong to
the training group.

5.3 Test of Tradability

A pair is said to be tradable if the pair-making stocks are cointegrated (Vidya-
murthy 2004, p. 104). To check whether there exist a cointegration relationship
between BHP and BBL, two approaches are used: (1) check if the AR modeled
linear combination between the log prices of BHP and BBL is stationary; (2)
determine the existence of cointegration through the Johansen’s cointegration
test on VAR modeled log prices of BHP and BBL.

5.3.1 Linear Combination

First of all, we need to determine which series ought to be the independent
variable when constructing a linear regression on the BHP-BBL pair. According
to Vidyamurthy (2004, p. 108) that the stock with a lower variance on returns
indicate a lower volatility and is therefore appropriate to be treated as the
independent variable. It can be shown that:

log(pt)− log(pt−1) ≈ pt − pt−1

pt−1

where pt is the price at time t, hence the difference in the log price can be
construed to be the return (Vidyamurthy 2004, p. 30).

The variance on returns of BHP and BBL is 0.0005760112 and 0.0006700049
respectively and hence the BHP series is chosen to be the independent variable.
Construct a simple linear regression in the form of BBLt = β0 + β1 ∗ BHPt,
following relationship is obtained by using ordinary least square (OLS) estima-
tion:

BBLt = 0.0156 + 0.9492 ∗BHPt + ε̂t

where BBLt and BHPt is the respective log price at time t and ε̂t is the esti-
mated residual at time t (details see Table 8 in Appendix). As discussed earlier
in section 3.4 and 3.5 that the associated fitted spread can be calculated by:

ŵt = BBLt − 0.9492 ∗BHPt = 0.0156 + ε̂t (5.1)

The expected value of fitted spread is then simply the same as the intercept of
the linear combination since the residuals ε̂t is asymptotically normal distributed
with mean zero (see Figure 5 in Appendix), i.e. µŵ = E[ŵt] = E[0.0156 + ε̂t] =
0.0156.
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The fitted spread, ŵt, is plotted in Figure 2. The horizontal solid line represents
the mean value of the fitted spread regarding the training group. The actual
spread regarding the testing group which provided by the same linear combina-
tion is referring to the line on the right of the vertical dashed line. A cursory
look at this spread series seems to suggest that this par is not stationary and
thereby not tradable. But pay attention on the scale of y-axis, that this tiny
scale may deceive our eyes. Therefore it is necessary to conduct the ADF-test
on this spread series.

Figure 2: Fitted spread between BHP and BBL. Horizontal solid line represents
the mean value of the fitted spread regarding the training group.

According to preceding discuss on ADF-test that the order of the model need
to be determined as well as the model parameters. Thus a construction of AR
model on the spread series is conducted start by order determination. Large
order can increase the computational complexity which is what we want to
avoid. For this reason we only search suitable orders below 13.

Conduct first a maximum-likelihood estimation on the variance of the white
noise term in an AR(p) model, for which p = 0, ..., 13. With this estimation one
can compute the corresponding AIC and BIC using the formula given in section
4.4. The order of the model is decided by the lowest value of the information
criteria. Values of AIC and BIC for AR model on the spread series are presented
in Table 1.

The AIC suggests an AR(5) model on fitted spread series ŵt, while the BIC
suggests an AR(4) model. This is agreed with the expectation that BIC will
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Table 1: AIC and BIC for AR model on spread series

p AIC BIC p AIC BIC
0 -6.3307 -6.3307 7 -9.7832 -9.7720
1 -9.7124 -9.7108 8 -9.7833 -9.7705
2 -9.7649 -9.7617 9 -9.7828 -9.7683
3 -9.7729 -9.7680 10 -9.7831 -9.7670
4 -9.7821 -9.7757 11 -9.7815 -9.7639
5 -9.7837 -9.7757 12 -9.7812 -9.7620
6 -9.7836 -9.7740 13 -9.7807 -9.7598

Note: selected order marked in bold

select a lower order when sample size is large which mentioned in section 4.4. An
ADF-test on ŵt for both models is conducted for confirmation of stationarity.

The ADF-test gives a test statistic at -3.9573 with a p-value at 0.0111 for AR(4)
and a test statistic at -3.8621 with a p-value at 0.01586 for AR(5). Both mod-
els have a p-value lower than 5 % which implies that we can reject the null-
hypothesis and conclude that the spread series is stationary for both models. A
lower p-value implies that the probability for ŵt to be stationary is higher which
may suggest that the AR(4) model is fitting the spread series better regarding
the property of the cointegration.

5.3.2 Cointegration

As mentioned in section 4.2 that the order of the VAR model is involved in
Johansen’s cointegration test, hence AIC and BIC are used to determine the
order of the VAR model in the same way as AR model. Again, AIC and BIC
gives different results. AIC suggests a VAR(5) and BIC suggests a VAR(4)
model on the log prices of BHP and BBL; see Table 2.

Table 2: AIC and BIC for VAR model on log price series

p AIC BIC p AIC BIC
0 -7.6773 -7.6773 7 -17.3450 -17.3000
1 -17.2486 -17.2422 8 -17.3438 -17.2924
2 -17.3251 -17.3122 9 -17.3420 -17.2842
3 -17.3338 -17.3145 10 -17.3422 -17.2780
4 -17.3431 -17.3174 11 -17.3411 -17.2705
5 -17.3468 -17.3147 12 -17.3400 -17.2629
6 -17.3462 -17.3077 13 -17.3385 -17.2550

Note: selected order marked in bold

Since there is no reason to believe a presence of trend in the log price of the
two stocks and the spread series is likely to have a non-zero mean when look-
ing at Figure 1, thus a constant restricted (case 2 in section 3.5.2) Johansen’s
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cointegration test is conducted for both VAR models with both trace and max-
eigenvalue test type. The test results using MacKinnon-Haug-Michelis p-values
are presented in Table 3. The test using Osterwald-Lenums p-values gives the
same results and is presented in Table 9 in Appendix. For VAR(4) model, the
trace statistics and max-eigenvalue statistics indicate a presence of 1 cointegrat-
ing vector at 1 % respective 5 % levels. While for VAR(5) model, both trace
and max-eigenvalue statistics indicate a presence of 1 cointegrating vector at 1
% level. This implies that the cointegration relationship between the log prices
of BHP and BBL is stronger with a VAR(5) model and might produce a better
prediction result in further analysis.

Table 3: Johansen’s cointegration test for VAR(4) and VAR(5), case 2

VAR(4)

Eigenvalues
0.005020311
0.001904570

Hypothesis Test 5pct 1pct p-value∗

Trace
m=0 27.08425 20.26184 25.07811 0.0049
m≤1 7.440625 9.164546 12.76076 0.1050

Max-eigen
m=0 19.64362 15.89210 20.16121 0.0122
m≤1 7.440625 9.164546 12.76076 0.1050

VAR(5)

Eigenvalues
0.005195894
0.001652006

Hypothesis Test 5pct 1pct p-value∗

Trace
m=0 26.77869 20.6184 25.07811 0.0055
m ≤ 1 6.451459 9.164546 12.76076 0.1586

Max-eigen
m=0 20.32723 15.89210 20.16121 0.0094
m≤1 6.451459 9.164546 12.76076 0.1586

∗MacKinnon-Haug-Michelis(1999) p-values

5.4 Model Fitting and Checking

It has been shown that AR(4) modeled spread and VAR(5) modeled log prices
are better in line with the requirement of the pairs trading. However, there
is no evidence to support that AIC selected order is better than BIC’s and
”substantive information of the problem under study and simplicity” are also
important when choosing the model (Tsay 2010, p. 49). Therefore, both AR(4)
and AR(5) for spread series, and both VAR yielded ECMvar(3) and ECMvar(4)
for log prices are modeled. Bear in mind that ECMvar models have order of
(p − 1) where p is the order of the corresponding VAR model. The reason
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to modelling ECMvar instead of VAR is that the ECMvar model consists the
cointegration relationship which is important in further prediction.

5.4.1 Fit AR Model on Spread

The model parameters in AR(5) and AR(6) are estimated by the maximum-
likelihood methods (Tsay 2010, p. 49-50) and the constant terms are computed
by the Eq. 2.3 respectively. The estimated AR models are as follows:

AR(4) model

ŵt = 0.0001615757 + 0.7298xt−1

+ 0.1421xt−2 + 0.0218xt−3

+ 0.0960xt−4 + at

σ2
a = 0.00005634

AR(5) model

ŵt = 0.0001578812 + 0.7261xt−1

+ 0.1424xt−2 + 0.0198xt−3

+ 0.0606xt−4 + 0.0409xt−5

+ at

σ2
a = 0.00005622

Following the discussion in section 2.4, the associated characteristic roots are
obtained and the fitted AR models can be rewritten into the form av Eq. 2.5
as follows:

AR(4) model

(1− 0.9929928B)(1− 0.4602519B)

(1− 0.4582326B)(1− 0.4582326B)ŵt = 0.0001615757 + at

AR(5) model

(1− 0.9933985B)(1− 0.4062324B)

(1− 0.4062324B)(1− 0.4996340B)

(1− 0.4996340B)ŵt = 0.0001578812 + at

Since all the characteristic roots are less than 1 in modulus for both models
respectively, the spread series ŵt is again verified to be stationary with both
models.
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5.4.2 AR Model Checking

The univariate version of Portmanteau test in section 4.3 is used to check the
adequacy of AR(4) and AR(5) models. Note that the tested object is the residual
series of the AR model, which is eqivalent to the at terms in the model. Use
Eq. 2.1 and Eq. 4.1, the associated Portmanteau statistics are obtained. The
corresponding critical values are provided by χ2(m− q), where q is the number
of AR coefficients used in the model which is 4 for AR(4) and 5 for AR(5). Tests
are conducted with m = 10, 15, 20. The results presented in Table 4 suggest to
reject the H0 with all three m for AR(4) but not for AR(5). This implies that
there exist a serial correlation in the first 20:th lags of the residuals for AR(4)
and no serial correlations for AR(5) at 5 % level. Since the assumption for at is
that it is a Gaussian white noise series, which means that there is no existence
of serial correlations. Thus, we can conclude that the AR(4) is not adequate
and all information given by it can not be trusted. Though the spread series do
have a higher probability to be stationary with an AR(4) model, we still throw
away this model duo to its inadequacy. Only AR(5) is send to the prediction
process.

Table 4: AR models’ Portmanteau test

m Statistic χ2
0.05(m− q) p-value

AR(4)
10 23.619 12.59159 0.0006135
15 26.905 19.67514 0.00475
20 29.6 26.29623 0.02019

AR(5)
10 10.104 11.0705 0.07234
15 13.496 18.30704 0.1973
20 15.35 24.99579 0.4265

5.4.3 Fit ECMvar

Since both log prices of the BHP and BBL are unit-root nonstationary and is
now verified to be cointegrated, the ECM is then needed in order to transform
the series into stationary jointly and thereby predictable.

Consider a bivariant time series xxxt =

[
BBLt
BHPt

]
and use Eq. 3.6 with a fixed

βββ-matrix: βββ =
[
1 −0.9492

]T
to obtain the maximum-likelihood estimated

ECMvar models, that is the model in Eq. 3.6. The reason to fix the βββ-matrix
like this is to ensure that the linear relationship BBLt− 0.9492BHPt (Eq. 5.1)
is hold all along the system. Estimated ECMvar model are in the follow:
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ECMvar(3)

∆x∆x∆xt =

[
0.0009
0.0007

]
+

[
−0.0256
−0.0149

] [
1 −0.9492

]
xxxt−1

+

[
−0.0116 −0.0056
0.2812 −0.3052

]∗
1

∆x∆x∆xt−1

+

[
−0.1136 0.1054
0.0223 −0.0334

]∗
2

∆x∆x∆xt−2

+

[
−0.0477 0.0364
0.0575 −0.0710

]∗
3

∆x∆x∆xt−3

+ aaat

ΣΣΣa =

[
0.0006678725 0.0005935363
0.0005935363 0.0005715220

]
ECMvar(4)

∆x∆x∆xt =

[
0.0009
0.0007

]
+

[
−0.0254
−0.0150

] [
1 −0.9492

]
xxxt−1

+

[
−0.0145 −0.0023
0.2814 −0.3053

]∗
1

∆x∆x∆xt−1

+

[
−0.1227 0.1145
0.0209 −0.0320

]∗
2

∆x∆x∆xt−2

+

[
−0.0720 0.0630
0.0529 −0.0661

]∗
3

∆x∆x∆xt−3

+

[
−0.0730 0.0571
−0.0137 0.0114

]∗
4

∆x∆x∆xt−4

+ aaat

ΣΣΣa =

[
0.0006668510 0.0005933817
0.0005933817 0.0005715842

]

5.4.4 ECMvar Model Checking

The multivariate Portmanteau test on the residual series is used here to check
the adequacy. The associated sample cross-covariance matrix is then the ΣΣΣa-
matrix for each model and the required q value is then 3 for ECMvar(3) and
4 for ECMvar(4). Use Eq. 3.1 and Eq. 4.2 to obtain the corresponding test
statistics and compare with the critical values provided by χ2(22m− q) at 5 %
level for m = 5, 10, 15. Results are presented in Table 5.

It has shown that H0 is rejected when m = 5 for ECMvar(3) model at 5 %
level. Though the p-values at m = 10 and m = 15 are higher than 0.05, but are
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Table 5: ECMvar models’ Portmanteau test

m Statistic χ2
0.05(22m− q) p-value

ECMvar(3)
5 30.6210 27.58711 0.02
10 46.5131 52.19232 0.14
15 71.2096 75.62375 0.10

ECMvar(4)
5 7.1229 26.29623 0.97
10 23.2649 50.99846 0.95
15 49.6793 74.46832 0.71

still very small compare with the corresponding p-values in ECMvar(4) model.
Remember that the goal is to accept the model which do not reject the H0 to
achieve a residual series that behaves like a white noise series. Therefore, the
ECMvar(3) model is identified as inadequacy atm = 5 and relatively inadequacy
at m = 10 and 15 and hence is thrown away. The ECMvar(4) is also send to
the prediction process for further analysis.

5.5 Prediction

As mentioned in section 2.4 that the predicted values of a long-term forecasting
for a stationary AR model will converge to its unconditional mean. Figure 4 in
Appendix is supporting this assertion. What we concerned in pairs trading is
the existence and the magnitude of deviation, such convergence is making the
long-term forecasting meaningless regarding the pairs trading. Thus, this study
is focusing on short-term forecast: 1-step and 2-step forecasting.

The 1-step and 2-step forecasting is conducted by following a procedure called
times series cross-validation. In this procedure, the forecasting origin is rolling
forward with time, and all historical data prior to the current forecasting origin
are put into the training group. Only one observation is predicted with condi-
tional on the associated training set at each time step (Hyndman & Athana-
sopoulos 2018, Ch. 3.4). In other words, consider a time series {xt}, one may
conduct a l-step-ahead forecast by using the equation:

x̂h+i(l) = E[xh+i+l|Fh+i], i = 0, 1, 2, ... (5.2)

where h is the original forecasting origin.

Two types of forecasting is used: (1) only updated historical data to forecast
the future values; (2) update both historical data and model parameters at each
time step to forecast the future values. Both type 1 and type 2 forecasting
are applied to the model AR(5) and ECMvar(4) models. The naive approaches
are used only with type 1 forecasting. All predicted values are compared with
the actual values which are obtained by the observed log prices of the two
stocks through the predetermined linear combination. Model errors measured
in MAPE, RMSE and MAE are calculated and analysed.
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Use the Eq. 5.2 and previous introduced forecasting formula for each model, one
can obtain the forecasting values. The forecasting values of the spread series can
be obtained directly by using the AR models. While using the ECMvar models,
the forecasting values of the spread series are computed via the predetermined
linear combination (Eq. 5.1) between the forecasting value of the log pries of
the two stocks.

The predicted values are small and the differences between the actual and pre-
dicted values are tiny which make it difficult to draw any conclusion about the
models intuitively through the images (see Figure 3). However, the gap between
the actual and predicts in the 2-step-ahead forecasting is larger which implies
that the accuracy is lower in such forecasting. This is in line with the theory
that larger steps create larger errors.

Take a closer look at the model errors obtained by the different error measure-
ments, in Table 6 and Table 7. Unfortunately none of our models is outper-
forming the naive approach either in 1-step nor 2-step forecasts. However type
2 ECMvar(4) is outperformed all other models. In overall, the ECMvar models
have a lower error than AR models with all three error measurements and type
2 forecasts are better than type 1 in both 1-step and 2-step forecasts. Although
both AR and ECMvar provided forecast spread series are directly or indirectly
related to the predetermined linear combination, but ECMvar model do take
along this cointegration information with it during every step in the forecasting
which AR model do not. The reason that type 2 forecasts are more accurate in
prediction is that it use the latest historical data to adjust the parameters which
reflect to the relationships between the previous data and current data. This
relationship might be changed by some business activities or social events and it
is therefore necessary to catch such change and update the available information
in order to give a more accurate and believable prediction.

It has been shown in Table 6 that type 1 AR(5) is better than type 2 AR(5) in
MAPE while a contrary result in RMSE. Such problem can be caused by the
characteristics of the error measurements. MAPE is widely used as a percent-
age measures in forecast performances, but it has a disadvantage that it put
a heavier penalty when handle the negative errors (Flores 1986, Hyndman &
Athanasopoulos 2018). A forecast method that minimises the MAE will lead to
forecasts of the median, while minimising the RMSE will lead to forecasts of the
mean (Hyndman & Athanasopoulos 2018, Ch. 3.4). On the basis of this, one
can say that a higher MAPE might implies an existence of more negative errors,
a higher RMSE might implies that there exist some relative extreme errors, and
a higher MAE might implies an average higher errors. In the case of pairs trad-
ing, price changing, no matter if it goes up or down, is equally important to the
investors. Hence, the usage of MAPE here is not as suitable as the other two
duo to its disadvantage. Regarding RMSE and MAE, an aggressive investor
might chose the model with a lower RMSE, with aspiration to seek more profits
from those relatively extreme minor errors. While a conservative investor might
prefer models with lower MAE.
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(a) 1-step-ahead forecasting

(b) 2-step-ahead forecasting

Figure 3: Forecasting for the spread between BHP and BBL, with forecasting
origin at 2018-12-31
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Summarize the results:

• None of our models is outperforming the naive approach in both 1-step
and 2-step forecasts.

• Type 2 ECMvar(4) forecast is outperforming all other models in both
1-step and 2-step forecast.

• ECMvar model provided predictions of the spread between BHP and BBL
is better than the AR model provided predictions.

• Rolling forecasting origin based time series cross-validation with update
in both historical data and model parameters can improve the forecasting
accuracy.

Table 6: Model Errors for 1-step-ahead Forecast

MAPE RMSE MAE

AR(5) type 1 4.461833 0.003081 0.002345
AR(5) type 2 4.462820 0.003077 0.002341

ECMvar(4) type 1 4.424975 0.003070 0.002324
ECMvar(4) type 2 4.421785 0.003067 0.002321

Naive 4.304111 0.003026 0.002249

Table 7: Model Errors for 2-step-ahead Forecast

MAPE RMSE MAE

AR(5) type 1 6.074521 0.004133 0.003193
AR(5) type 2 6.066236 0.004125 0.003186

ECMvar(4) type 1 5.991964 0.004092 0.003155
ECMvar(4) type 2 5.989897 0.004087 0.003151

Naive 5.948054 0.004035 0.003080

5.6 Discussion

The purpose with this study is to compare the forecast accuracy between AR
and ECMvar model on the spread series which provided by two cointegrated
time series. The study start with a verification of the feasibility for pairs trading
though a cointegration test. Directly with the Johansen’s cointegration test and
indirectly with the ADF test on the associated linear combination. The order
determination of the model is implemented in order to conduct the cointegration
tests. In this part, four models pass the tradability test: AR(4) and AR(5)
which present the spread series, and VAR(4) and VAR(5) which present the
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log prices of the two associated stocks. It makes sense that the spread series
correspond AR model and the log prices correspond VAR model have the same
order. If the current log prices are related to the past 5 days log prices, then
the spread between the log prices is also related to the past 5 days spread, and
vice versa. The AIC and BIC values used to determine the order of the model
are very small, which is mainly due to the small variance of the maximum-
likelihood estimated white noise series. These small variance indicate that the
volatility in the price of the two stocks is extremely small. However, in the
subsequent model examination, AR(4) and VAR(4) yielded ECMvar(3) show an
inadequacy in terms of serially- or cross- correlated residuals. As a consequence,
only AR(5) and VAR(5) yielded ECMvar(4) are send to the final prediction
part. Disappointingly that none of the AR(5) or ECMvar(4) is outperform
the naive forecast approach. But in overall, the ECMvar model is better than a
simple AR model on the spread series analysis. It has higher prediction accuracy
because it comprise the cointegration information and this information is exist in
every predicted log prices pairs, which then delivered to the associated predicted
spread. The AR predictions is lack of this cointegration information and only
concern about the existing information about the spread. It is the log prices that
decides how large is the spread, and the stationarity with the spread decides how
log prices need to adjust in the future. Thus the AR predictions may deviate
more from the actual spread.

There are some restrictions in this study, which can be improved in any further
studies. The deterministic function has been restricted to case 2, as there is
no significant time trend when looking throughout the whole period. But if
concerning the seasonality, especially the business cycle, there is a certain time
tend during certain periods. Moreover, the chosen models in this study are
the most simple univariate and multivariate time series models. Therefore,
using STL decomposition (Seasonal and Trend decomposition using Loess) and
some other more advanced time series models like ARIMA or GARCH which
concerning the moving average and volatility, the forecasting results can be
improved and may have a chance to beat the naive forecasting approach.
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A Tables

Table 8: Linear regression on BHP and BBL

Dependent variable:

BBL

BHP 0.9492∗∗∗

(0.0013)

Constant 0.0156∗∗∗

(0.0045)

Observations 3,907
R2 0.9928
Adjusted R2 0.9928
Residual Std. Error 0.0422 (df = 3905)
F Statistic 535,051.0000∗∗∗ (df = 1; 3905)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Johansen’s cointegration test for VAR(4) and VAR(5), case 2

VAR(4)

Eigenvalues
0.005020311
0.001904570

Hypothesis Test 5pct∗ 1pct∗

Trace
m=0 27.08 19.96 24.60
m<=1 7.44 9.24 12.97

Max-eigen
m=0 19.64 15.67 20.20
m<=1 7.44 9.24 12.97

VAR(5)

Eigenvalues
0.005195894
0.001652006

Hypothesis Test 5pct∗ 1pct∗

Trace
m=0 26.78 19.96 24.60
m<=1 6.45 9.24 12.97

Max-eigen
m=0 20.33 15.67 20.20
m<=1 6.45 9.24 12.97

∗Osterwald-Lenum(1992) critical values

B Figures
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Figure 4: Multi-step-ahead forecasting for the spread between BHP and BBL
regarding AR(5) and ECMvar(4) models. Forecasting origin at 2018-12-31 and
forecasting horizon reflects the whole 2019. Horizontal line denote the uncondi-
tional mean of the spread.

(a) QQ-plot for residuals (b) Histogram for residuals

Figure 5: Plot for residuals from fitted linear combination between BHP and
BBL
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C Derivations

From VAR to ECMvar

Consider a VAR(p) model with deterministic function µµµt in the follows:

xxxt = µµµt + ΦΦΦ1xxxt−1 + · · ·+ ΦΦΦpxxxt−p + aaat

subtract xxxt−1 in both side and obtain:

xxxt − xxxt−1 = µµµt + ΦΦΦ1xxxt−1 − xxxt−1 + · · ·+ ΦΦΦpxxxt−p + aaat

∆x∆x∆xt = µµµt + (ΦΦΦ1 − III)xxxt−1 + · · ·+ ΦΦΦpxxxt−p + aaat

Let ∆x∆x∆xt−1 = xxxt−1−xxxt−2, ∆x∆x∆xt−2 = xxxt−1−xxxt−3 and etc, the right hand side can
rewrite as:

µµµt + (ΦΦΦ1 − III)xxxt−1 + ΦΦΦ2(xxxt−1 −∆x∆x∆xt−1) + · · ·+ ΦΦΦp(xxxt−1 −∆x∆x∆xt−p+1) + aaat

=µµµt + (ΦΦΦ1 − III + ΦΦΦ2 + · · ·+ ΦΦΦp)xxxt−1 −ΦΦΦ2∆x∆x∆xt−1 − · · · −ΦΦΦp∆x∆x∆xt−p+1 + aaat

=µµµt + (−III + ΦΦΦ1 + ΦΦΦ2 + · · ·+ ΦΦΦp)xxxt−1 −
p∑
i=2

ΦΦΦi∆x∆x∆xt−i+1 + aaat

Let

ΠΠΠ = (−III + ΦΦΦ1 + ΦΦΦ2 + · · ·+ ΦΦΦp)

ΦΦΦ∗
j = −

p∑
i=j+1

ΦΦΦi

the right hand side becomes:

µµµt + ΠΠΠxxxt−1 +

p−1∑
j=i−1

ΦΦΦ∗
j∆x∆x∆xt−i+1 + aaat

Then we have the ECM for VAR as follows:

∆x∆x∆xt = µµµt + ΠΠΠxxxt−1 +

p−1∑
j=1

ΦΦΦ∗
j∆x∆x∆xt−j + aaat
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