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Abstract

Media reports state that there is a significant wage gap between

native borns and non-native borns in Sweden. Using societal data from

all Swedish municipalities and a simple linear regression, this study

concludes that not only is this true, but that the gap grew between

2002 and 2017. In order to change this trend, it is helpful to build

a predictive model so we can find the factors that affect the gap the

most. To do this, the study builds three different panel data models:

a pooled OLS regression, a fixed effects model and a random effects

model. This in order to answer two questions: can we predict the

future of the wage gap using a panel data model, and which panel data

model makes the best predictions? The models are then evaluated and

compared, in order to determine which one is best suited for the data.

The study concludes that it is possible for a panel data model to make

predictions of this wage gap based on the data we have, and that the

fixed effects model is best suited for this analysis. It also concludes

that some kind of panel data model could help in minimizing the wage

gap. However, a more extensive analysis would be needed.
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1 Background

You have probably heard of the gender wage gap, as many studies have been
published on the subject (see Arulampalam et al. and Blau & Kahn). Some-
thing you do not hear about as often - but probably does not surprise you -
is the wage gap between native borns and non-native borns. This wage gap
has sometimes been the focus of media attention, and many things have been
discussed as possible factors in deciding your salary. The media discussion has
mentioned factors such as how far from the host country1 you are born (Olsson
2017), what your gender is (Katz & Österberg 2013), how long you have been
in the host country as well as the age you arrived, and your skills in the host
country’s language (Expressen 2017). It has also been suggested that having
a name that sounds local, as well as looking and ”seeming” local, helps (Ex-
pressen 2017). Political organizations have deemed this issue worthy of scientific
reasearch. One example is an analysis from Saco (Edström et al. 2017) for the
interested reader.

In order to change something in society, we first have to understand it. In
the case of this wage gap, it would most easily be changed if we could find the
factors that affect it the most. This would include trying to understand which
factors to change, how much to change them and when to change them in order
to eliminate the gap. One way to do that is to build a model that predicts the
gap in future years. By analysing this model, we can understand what needs to
change.

This study contributes to the understanding of how society affects this wage
gap not by focusing on individual people and their backgrounds but instead on
the society in the host country, or more specifically, the host municipality. It is
limited to municipalities in Sweden between the years 2002 and 2017 and dis-
cusses how different societal variables affect the mean salary for an immigrant
compared to the mean salary of a native born. It also analyses the differences
between certain types of panel data models.

How much people make of course depends not only on what profession they
work in, but also if they work full time. We have decided to ignore both of
these aspects to accomodate to the frame of this study.

2 Purpose and research questions

The purpose of this analysis is to find the best model to predict the average in-
come difference between native borns and non-native borns in different Swedish

1The European Commission’s definition of ’host country’ is ”The EU State in which a
non-EU national takes up legal residence” (European Commission DG Migration and Home
Affairs 2020). In this study, it is not necissarily a non-EU national, but anyone born outside
of the host country.
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municipalities. The research questions are:

How has the national average wage gap between immigrants and native
borns changed in Sweden over the years 2002-2017?

Can we make a predictive model for the average wage gap in each Swedish
municipality based on the data we have?

Which panel data model makes the best predictions for this data?

The idea is that the model should be able to predict the average wage gap in
every municipality for future years. The model will be examined to see if it can
predict the gap with a result close enough to the actual value to be deemed
reliable. Where to draw the line for a reliable model is, however, not obvious,
so we will use different well-known statistical analyses to determine how well
the model makes predictions.

3 Data

The data for this analysis was downloaded from Statistics Sweden in March
2020. Statistics Sweden is responsible for all offical and government statistics in
Sweden. They have a database of statistics that is updated every day (Statistics
Sweden, Statistical Database). The data chosen for this analysis covers the years
2002-2017, because those were the years that had data for all of the sought after
variables. This means that the analysis will have balanced data, which in turn
means that the number of observations is the same in each cross-section unit,
and no data is missing from the data frame. If this is not the case, and data is
missing in some part of the data frame, the data is unbalanced.

From the years 2002-2017, data from all 290 Swedish municipalities on the vari-
ables average age, population, number of non-native born people (later changed
to be proportion of non-native born people), average income and number of
people with ’eftergymnasial utbildning’, i.e. number of people with tertiary ed-
ucation. Beyond these, one variable was chosen that was Sweden-specific (rather
than municipality-specific): Number of asylum seekers in Sweden. We have six
explanatory variables, two variables that give us the panel data structure (year
and municipality), and a response variable. The response variable is difference
in average income between Swedish borns and non-native borns in a certain
municipality in a certain year. This is calculated as:

AVG(salary for Swedish borns)−AVG(salary for non-native borns), (1)

(where AVG stands for average), and will thefeore be positive when the average
salary for the Swedish born is higher than the avarage salary for the non-native
born.

Both parts of the response variable were found on Statistics Sweden in the
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format of average disposable income in the municipality, in a value called price
base amount, a number yearly determined by the government (SFS 2010:110, 2
ch 6 & 7 §). The point of this value is to adjust for the inflation, so you can
compare numbers between different years (Nationalencyklopedin, Basbelopp).
To be able to compare the salary for native borns with the salary for non-native
borns, the subtraction in equation (1) was made.

3.1 Variables

Table 1 lists the variables used in this study.

Type Variable Meaning Size

Response Yit
AVG(salary for native borns) minus
AVG(salary for non-native borns)

-1 < Yit < 6

Explanatory X
(1)
it Municipal avg age 36 < X

(1)
it < 50

Explanatory X
(2)
it Municipal population 2400 < X

(2)
it < 940000

Explanatory X
(3)
it Municipal proportion non-natives 0.02 < X

(3)
it < 0.05

Explanatory X
(4)
it Number of asylumseekers in Sweden 17 000 < X

(4)
it < 170000

Explanatory X
(5)
it

Municipal avg income (thousand kro-
nor)

480 < X
(5)
it < 2800

Explanatory X
(6)
it

Municipal number of people with ter-
tiary education

200 < X
(6)
it < 360000

Index i The municipality 1 < i < 290
Index t The year 2002 < t < 2017

Table 1: List of variables used in this study.

4 Theory and method

4.1 Regression

The panel data models, which will be used in this study and which we will get
to in section 4.3, are, like many other models, based on basic linear regression.
For this reason, we will first lay a basic ground of the linear regression model to
help the reader understand the further theory. A lot of this is well described in
Koop (2008) chapter 8, so if nothing else is stated, that is the source for section
4.1.

Regression is a very important econometric tool used to understand the re-
lationship between variables, and is especially useful for an analysis of many
variables with complex interactions. On the most basic level, a linear regression
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model describes the linear relationship between two variables, X and Y :

Y = α+ βX + ε, (2)

where Y is our response variable, X is our explanatory variable, α is the inter-
cept and β the slope. ε, in turn, is the error, and is added because the regression
line Y = α+βX is very likely missing some important variables that may affect
Y (Koop 2008, pp. 31-35). This regression model is chosen to be the best-fitting
line to our observations, or our ’individuals’, as we will refer to them. In order
to explain what the best-fitting line is, we must start by introducing the resid-
ual. A residual is the difference between the actual value and its estimate. If
we rearrange equation (2) and adjust it to be just one individual i we find that

εi = Yi − α− βXi.

If we now replace α and β with their estimates (denoted by α̂ and β̂) we get

ε̂i = Yi − α̂− β̂Xi,

where ε̂ is the residual. The values from this equation give a straight line that
deviates slightly from the true values. What we call the best-fitting regression
line is the one that deviates the least from the actual values, or the one that has
the smallest residuals according to some criteria. There are different versions of
this criteria, but the most common is the sum of squared residuals (SSR):

SSR =

N∑
i=1

ε̂2
i ,

and the best-fitting line is the one with the α̂ and β̂ that give the smallest SSR.
These are referred to as the ordinary least squares (OLS) estimates, which are
the ones we will use in this analysis. There are certain assumptions for the
residuals that need to be fulfilled in order for OLS to be the best estimation for
a certain model. These assumptions - and how to test them - will be adressed
in section 4.2. If we conclude OLS to be the best estimator, we say that OLS is
BLUE (best, linear, unbiased estimator) (Koop 2008, p. 72). If the assumptions
are not fulfilled, OLS is not BLUE, which means that another estimation theory
could possibly give better results. (The inclined reader can dive deeper into OLS
estimation for multiple regression in Koop 2008, ch. 2.3.1.)

4.2 Residuals and model evaluation

As mentioned in 4.1, we have to make different assumptions about our model’s
residuals. Testing residuals is an essential part of the model-building process.
As mentioned above, if the assumption 1-4 below are not fulfilled, OLS is not
BLUE, and we cannot really assume that any tests (including the ones that we
will use) are accurate. Therefore, one must know these possible specification
errors, and know how to test a model for them (Andersson et al. 2019, p. 63).

Hyndman (2018, ch 3.3) and Koop (2008, p. 66) write as follows:
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1. The residuals are uncorrelated. If there are correlations between residuals,
then there is information left in the residuals which should be used in
computing forecasts (cov(ε̂it, ε̂jt) = 0 for i 6= j)

2. The residuals have zero mean. If the residuals have a mean other than
zero, then the forecasts are biased (E(ε̂it) = 0)

3. The residuals have constant variance (var(ε̂it) = E(ε̂2
it) = σ2) (homoscedas-

ticity)

4. The residuals are normally distributed

In Koop, these assumptions will be found without index t. We have adapted
them to panel data by adding the time aspect. More on why panel data needs
this in section 4.3.

The assumptions 1-4 are built for a normal linear regression model. However,
we will work with panel data models. As we will see in section 4.3, the pooled
model and the fixed effects model are really just normal regression models, ex-
cept that the fixed effects model has a new α for every individual. Because of
this, the classical assumptions 1-4 are still the ones to take into account for both
of these models (Koop 2008, p. 260). What goes for the random effects model
will be discussed in section 4.3.3.

As mentioned in section 4.1, assumptions 1-4 need to be tested in order to
determine if OLS is BLUE for a certain model. This is based on the Gauss-
Markov Theorem (Koop 2008, p. 72). Accoring to Koop (2008), the proof of
this theorem uses the first 3 assumptions, and a fifth one (Xi is not a random
variable), but not assumption number 4. So if 1-3 and 5 are true, OLS is BLUE
even if the residuals are not normally distributed. However, we will still test
assumption 4 as well. As for the fifth assumption, we cannot test whether out
X : s are random variables. We know that they are observable and therefore
we can estimate them and will consider the fifth assumption to be true.

In the following sections, we will go through how to test assumptions 1-4, and
these will be checked for the fixed effects model and the pooled model. Assump-
tions 1-3 are not easily checked for panel data models (panel data models will
be covered in section 4.3). Theory of how to check them for panel data mod-
els exists, but it is mostly very complicated. Therefore, we will analyse these
graphically, and draw conclusions from that.

4.2.1 Uncorrelated residuals

Correlation in residuals is not easily checked in a plot. One possibility is plot-
ting the residuals against time to check for patterns. This is not a statistical
test, but since correlation means that the residual for a year t is affected by the
residual for the year before, t − 1, this plot gives us an indication of possible
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correlation. If there is no pattern, we have no indication of correlation. If there
is a pattern, there is a possibility of some type of correlation.

There are ways to determine correlation via tests. However, these tests are
not usually made for panel data, but rather for time series data. One example
is the Breusch-Godfrey test (see Koop 2008, ch. 5.4.3). Some of these tests can
be modified to fit panel data, but the theory is complicated. Therefore, we will
analyse this using a residuals vs time plot.

4.2.2 Zero mean

For panel data, there is no statistical test to use in order to analyse whether
the residuals have zero mean. We will therefore calculate a moving average
over time. This will be calculated so that we have one residual average per
year, over all municipalities. The moving average will be plotted in the same
residuals vs time plot that is used in section 4.2.1, and analysed. If the values
are close enough to 0, we will consider our residuals to have a zero mean. This
will give us an indication of whether our model fulfills this assumption, but it
is important to note that it is not actually a proper test.

4.2.3 Constant variance (homoscedasticity)

Homoscedasticity, or the constant variance of the residuals, is often checked
using a residuals vs fitted plot (Andersson et al. 2019, p. 68). This is exactly
what it sounds like, residuals are plotted against fitted values (estimates). If
the plot is an even band centered around 0, with no particular pattern, constant
variance can be assumed. If not, the variance can not be assumed to be constant.
This plot can also come in other forms, for example residuals vs observed values,
and is then analysed in the same way as the residuals vs fitted plot.

4.2.4 Normal distribution

Whether the residuals are normally distributed is easiest checked through a
Normal Quantile plot, or Q-Q plot. In a Q-Q plot, you plot the ordered residuals
against γi = Φ−1[(i− 3

8 )/(N + 1
4 )], where Φ is the standard normal cumulative

distribution function (Andersson et al. 2019, p. 69). This analyses the residuals
against the theoretical normal quantiles. If the plot looks more or less like a
straight line, the residuals can be assumed to be normally distributed. If it looks
like a straight line with ’tails’ (or more like an ’s’-shape) it is not completely
normally distributed.

4.2.5 Linearity

Something else that is often tested in multiple linear regressions is linearity.
According to Andersson et al. (2019, p. 64), if the relationship between re-
sponse and explanatory variables is not linear, using OLS is ”unsatisfactory”.
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According to Andersson et al. (2019, p. 64), if the relationship is not linear ”pa-
rameter estimates are not only biased but also without any meaning”. James
et al. (2013, p. 92) suggests that a useful tool for checking linearity graphi-
cally is using the same residuals vs fitted plots we are already using to check
homoscedasticity. We will add a smooth fit to these plots, which will help us
identify trends. If these smooth fits are more or less straight lines, linearity
can be assumed. If not, steps can be taken to improve linearity. For example,
non-linear transformations of the predictive variables (such as logX and X2)
can be used.

4.3 Building the models

Panel data is gaining popularity in empirical research (Woolridge 2013, p. 448).
Panel data is data that has both cross-sectional and time series aspects (Koop
2008, p. 255). Cross-sectional data is data collected over many units (for ex-
ample a number of different companies), and time series data is data collected
from the same individual many times (for example a specific company at differ-
ent times) (Koop 2008, pp. 2-3). The unit in cross-sectional data is indicated
using an index i, and the time unit in time series data is indicated using an
index t. In panel data, both indices are used and the notation is Yit.

For a panel data analysis, the data set is supposed to be collected by first
randomly selecting the groups from which to collect it, and then collecting data
on the same variables a number of times over a certain period (Woolridge 2013,
p. 448). The data set used here was not collected specifically for this analysis,
and therefore was not necessarily collected according to this method. How-
ever, it seems to be collected in an appropriate manner. The data is collected
from a certain group (people living in Sweden), and the same variables have
been collected from this group once a year. The collection of data also follows
the same ’individuals’, or municipalities in our case. Within these individuals,
things probably change over time as people move, die and are born, but that is
all encased in the time aspect of this investigation. From what we can gather,
the data set was collected in line with panel data methods, and should therefore
be possible to use for a panel data investigation.

There are a number of different panel data models, and they are all variants of
the classic linear regression model (Andersson et al. 2019, p. 121):

Yi = βXi + εi,

where

Yi =


Yi1
Yi2
...
YiT

 , Xi =


1 X

(2)
i1 · · · X

(k)
i1

1 X
(2)
i2 · · · X

(k)
i2

...
...

. . .
...

1 X
(2)
iT · · · X

(k)
iT

 , εi =


εi1
εi2
...
εiT

 ,
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β is a vector of size k × 1, and i is the ith individual. This means that all
individuals i are observed T times. The three main models for panel data
- pooled OLS regression, fixed effects and random effects - all fall in to the
category of variants of the classic linear regression model. These are the ones
we will have a closer look at. We will now discuss them one at a time.

4.3.1 Pooled OLS regression

Pooled OLS regression is the most basic method of panel data, but it more or
less ignores the panel structure of the data. This means that it does not distin-
guish between different individuals, and therefore does not give any indication
of the difference between them (Andersson et al. 2019, pp. 121-122). As we
are interested in the difference between individuals (one of the reasons we are
using panel data), pooled OLS regression might not be the appropriate choice
of model.

To explain why pooled regression is unsuitable for certain types of analyses,
the following example is used in Koop (2008, pp. 256-257). Imagine we have
two variables: Y for income and X for years of education. A pooled regression
in this form

Yit = α+ βXit + εit,

(also recognized as a standard regression model), only works if all individuals
have the same relationship between our two variables, in this case income and
years of education. For example, the intercept (α) describes the starting point
for an individual’s earnings. This will, more often than not, be different for
different individuals. Because of this, the pooled regression might not be the
best choice. However, this study will still build a pooled model, to use as a
comparison to the other models we build.

As indicated by the name, in pooled OLS regression OLS is BLUE given that
ε̂it satisfies the classical assumptions (see section 4.2) (Koop 2008, p. 256). In
other words, it is assumed that ε̂it are independent, identically distributed, have
a zero expected value and a variance σ2.

Now, we will look at fixed effects and random effects models. Both of these
are so called ’individual effect models’, which are models with an intercept that
varies across the individuals and is denoted αi. This gives different individuals
the possibility to have different starting points (Koop 2008, ch. 8.3).

4.3.2 The fixed effects model

In the fixed effects model, dummy variables are used to model the individual
effect. A dummy variable is either 0 or 1, and is often used to represent an indi-
vidual’s gender, having 1 represent females and 0 represent males. When used
in the fixed effects model, the dummy variables are not explanatory variabels,
but are used to decide which intercept should be used. These dummies have the
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quality that Dij = 1 for the jth individual (and j = 2, ..., N , where N is the
number of individuals), and 0 for all other individuals (Koop 2008, p. 260). In
other words, if i = j, Dij = 1, and if i 6= j, Dij = 0. The fixed effects regression
looks like

Yit = α1 + α2Di2 + · · ·+ αNDiN + βXit + εit,

where the vector β is the same for all individuals. To avoid multicollinearity,
we use one dummy variable less than the number of individuals (Andersson et
al. 2019, p. 123), and individual 1 is here our reference unit. The reference unit
was chosen simply because it is the first one. However, the reference unit could
have been any of our individuals. The individuals are ordered after Statistics
Sweden’s numbering of the municipalities, where each municipality has a four-
digit-number. These (as they are at the time of writing) can be found in the
appendix, in A.6.

As with the pooled model, if ε̂it satisfies the classical assumptions, OLS is
BLUE for the fixed effects model (see section 4.2) (Koop 2008, p. 260). That
means the same assumptions as in the pooled model are applied to ε̂it.

The fixed effects model often leads to a regression with many explanatory vari-
ables. If the dataset has N individuals, T years and k explanatory variables,
the fixed effects model will have N + k coeffeicents to estimate, something that
might be a problem if N is very large, which it often is (Koop 2008, ch. 8.3.1).
Whether this is a problem in our analysis will be discussed in section 6.

4.3.3 The random effects model

We have now covered a very simple panel data model (pooled OLS regression)
and a slightly more complicated one (fixed effects model). On the even more
complicated side of the spectrum, we have the random effects model. The ran-
dom effects model does not use dummy variables to model the individual effect,
but rather a random variable. This means that the many estimations needed in
order to build a fixed effects model disappear in use of a random effects model,
and if many estimations are necessary, a random effects model might be less
work.

The random effects model explains the individual effect with a random vari-
able, and is written

Yit = αi + βXit + uit, (3)

where
αi = α+ vi.

vi is a random variable, which means that αi, the individual effect, is a random
variable (Koop 2008, p. 263), and α is a constant. In equation (3), the error is
denoted uit rather than the usual εit. If one wants to write the random effects
model in the form of a general regression model, it is possible to rewrite it as

Yit = α+ βXit + εit,
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where
εit = vi + uit.

This second set of equations is an alternative way of writing the first set of
equations. Koop (2008, p. 263) assumes that uit and vi both satisfy the classical
assumptions. This means that we assume that they ”are independent random
variables each with a N(0, σ2

u) distribution”, and the same for vi, with var(uit) =
σ2
u being the variance for u (and corresponding for vi). We also assume that uit

and vi are uncorrelated with each other. Other than that, the assumptions for
the residuals are slightly different from the pooled model and the fixed effects
model. Koop (2008, p. 263) lists the following properties:

E(ε̂it) = 0

var(ε̂it) = σ2
u + σ2

v

cov(ε̂it, ε̂jt) = 0, for i 6= j

cov(ε̂it, ε̂js) = 0, for i 6= j and s 6= t

cov(ε̂it, ε̂is) = σ2
v for s 6= t

As discussed above, beacuse this model does not use dummy variables it only
has one intercept and k explanatory variables - therefore the problem discussed
with the fixed effects model (that there are many coefficients to estimate) does
not apply here (Koop 2008, ch. 8.3.2). Because of this, the random effects
model might be attractive for a data set with many individuals. However, the
random effects model’s residuals are a little different from what we are used
to, and this adds a more complicated side of this model. In the last of the
properties above, it is assumed that two errors for the same individual at two
different times are correlated with each other (i.e. cov(εit, εis) 6= 0) (Koop 2008,
p. 264). This means that these errors do not satisfy the classical assumptions
and OLS is not BLUE. Instead, GLS (generalized least squares) should be used.
For this reason, we will stick to comparing the fixed effects model to the pooled
model. As for the random effects model, we will build it for the sake of seeing if
this more complicated version gives better estimations, but stick with the other
models for the bigger analysis. Since we will not be using GLS we will not go
into detail about it. The inclined reader can read about it in Koop (2008), ch.
5.

4.3.4 Choosing variables

Usually, when working with regressions, some form of stepwise variable selection
is used in order to narrow down the number of variables in the model. However,
when working with as few variables as we are, this step is not needed. The
reason is that with so few variables, we can easily check them one by one to
decide which ones are relevant. When checking if the variables are relevant, we
use a Wald significance test, based on the Wald statistic (Held & Bové 2014,
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ch. 4.2.4). The general version of the Wald statistic is H0 : β = β0 and

(β̂ − β0)

se(β̂)

a∼ N(0, 1),

where se is the standard error.

A significance test is a way to test a hypothesis H0 against a hypothesis H1

(Held & Bové 2014, ch. 3.3). When using the Wald test to choose variables,
H0 is β0 = 0 (and should therefore not be used), and H1 is β0 6= 0 (and should
therefore be used). A low p-value (usually determined to be under 0.05) means
a rejection of the null hypothesis, and in this case means we should keep the
variable. The lower the p-value, the more significant the variable is in the re-
gression. All variables significant according to the Wald test will be used in the
respective models. We will include the random effects model in this part of the
analysis, even though we can not know if the results are accurate.

4.4 Comparing the models

After having checked, and hopefully confirmed, that the fixed effects and pooled
models fulfill the assumptions from section 4.2, we can compare them. We will
compare our models in two ways: with the standard error, and with the ad-
justed R-squared. This section will cover how to compare models in these two
ways.

Had we decided to use the random effects model in this study, this section
would have contained a test that compared the fixed effects and random effects
models. One test that could have been used is the Hausman test. The inclined
reader can read about the Hausman test in Koop (2008), pp. 154-156 and pp.
264-266.

4.4.1 Standard error

The standard error represents the average distance between the regression line
and the actual values. There is one standard error per individual, and it is
calculated as the square root of the variance (Held & Bové 2014, p. 56), and we
want it to be as small as possible. The standard error gives a quick overview
of the difference between two models. A model that has consistently higher
standard errors than another model, most probably makes inferior predictions.

4.4.2 R-squared

The R-squared is a way to measure model fit and is defined as

R2 = 1− Σitε̂
2
it

Σit(Yit − Y t)2
,
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(where Y t is the mean of Yit for a certain year) and can, according to Koop
(2008, p. 95) ”be interpreted as the proportion of the variability of the response
variable that can be explained by the explanatory variables”. R2 is, however,
not perfect when dealing with multiple regression as adding new explanatory
variables always increases the R2. Because of this, something called the adjusted
R2 (or R2

adj) was introduced. R2
adj is defined as

R2
adj = 1− s2

1
N−1Σit(Yit − Y t)2

,

where s2 =
Σitε̂

2
it

N−k−1 is an estimate of the variance σ2 and 1
N−1Σit(Yit − Y t)

2 is
the sample variance. As we are working with models with multiple explanatory
variables, R2

adj will be used in this analysis. The formulas for R2 and R2
adj above

are adjusted to work or panel data. In original form, R2 and R2
adj only contain

the index i and not it. However, we will still calculate these using the sum of
squared residuals (Σε̂), so we replaced the i with it, and added index t to Y .

For R2 and R2
adj , 1 is a perfect fit (Koop 2008, p. 37) and 0 is a terrible

fit. The closer to 1, the better. Koop gives the following example: if you have
Y = cost of production on X = output for 123 electric utility companies, an
R2 of 0.92 means that ”92% of the variation in costs across companies can be
explained by the variation in output”.

4.5 Evaluating the predictions - Cross-validation

Within forecasting with regression methods, there are multiple ways to do what
is called cross-validation, a way to evaluate a predictive model (Sundberg 2016,
p. 70). Cross-validation is usually done by dividing the data into a traning and
a test sample. The former is used to estimate parameters, and the latter is a
sample to compare with. This division is often proposed to follow the 80-20 rule
(Hastie et al. 2017, ch. 7.10): using 80% of the data for the training sample,
and the remaining 20% for the test sample. For simplicity reasons, this study
will divide the data into 15 years for the training sample and the last year for
the test sample. The reason is that it will be quicker and easier to only look at
one time unit when analysing the test data.

Cross-validation for panel data forecasting is not covered by the panel data
literature at our disposal. Because of this, the cross-validation theory in section
4.5.1 is based in general regression theory. We have made an attempt at adapt-
ing it to panel data models, in order to have something to base our analysis
on.
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4.5.1 Mean Squared Error of Prediction

MSEP, or Mean Squared Error of Prediction, is a form of cross-validation. It
determines the size of the prediction error with the following equation:

MSEP =
1

N

N∑
1

(yi − ŷi,−i)
2,

where yi is the response variable for i, ŷi,−i is the predicted yi value from data
without observation i and N is the number of observations (Sundberg 2016,
p. 70). Here, N is used because that is the total number of observations in
a ’normal’ regression. In panel data, N is the number of individuals, and the
total number of observations is NT , where T is the number of years. However,
we will only make predictions for the year 2017, and will therefore keep only N .
Also, our response variable is not Yi, but Yit, where t = 2017, since that is the
year we are predicting. Besides all of this, our prediction is made not by taking
out individual values but an entire year. This means that in our case, we use
ŷit,−t instead of ŷi,−i. We now have:

MSEP =
1

N

N∑
1

(yit − ŷit,−t)
2, where t = 2017.

The MSEP value is often used to compare prediction models, and the model is
better the lower the value. According to Sundberg (2016, p. 70), taking the
square root of MSEP, what is called RMSEP, is equivalent to using MSEP. Since
they are equivalent, we will be using MSEP to compare our models.

The prediction model will be based on the first 15 years (2002-2016). Using
this model, we will then make predictions for the year 2017. Using the predic-
tions for 2017 (ŷit,−t) and the actual values for 2017 (yit), we will calculate an
MSEP value. This value will tell us if the model makes acceptable predictions.
However, no source really informs us what constitutes an acceptable MSEP
value. Since the value is based on the difference between the actual value and
the predicted value, we want it to be as small as possible. However, how large of
a difference is acceptable is up to us to determine, and might generally depend
on the size of the actual values, since the MSEP value is based on the difference
between the actual value and the predicted value. This means that the size of
the MSEP value is connected to how far off the predictions are, and we want
them to be as close to the actual values as possible. We can say that the size of
the MSEP value is relative. As an example, consider a model built to predict
the population in Stockholm. To evaluate the model, you build it based on
earlier years and use it to predict the population in June 2020 (which we know
is around 1.5 million). In this case, an MSEP of a couple of thousand would be
pretty good, and an MSEP of a couple of hundred would be really great. This
is because that means the MSEP value is very low compared to the actual value
of around 1.5 million.
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In our case however, the actual values are between -1 and 6 (see table 1), and
an MSEP of 100, 10, or even 1, would be bad. However, around 0.1 and 0.01,
we might start viewing it as an MSEP value indicating a reliable model. This
shows us that an MSEP value can be 1000 and only be around 1% of the actual
value, and indicate a reliable model. However, the MSEP value can also be 1
and be 100% of the actual value, and indicate a non-reliable model.

5 Results

5.1 National average income difference

To describe how the national average wage gap has changed between 2002 and
2017 (and answer the first research question), we decided to plot the national
average income difference in the years 2002-2017 (figure 1). Since the income is
in price base amount, it is adjusted for the inflation. It shows a clear increase in
difference over these years. Therefore, the answer to our first research question
is that the average wage gap has increased between 2002 and 2017.

Figure 1: The mean income difference between native borns and non-native
borns 2002-2017, in price base amount.

This increase can at least in part, according to Statistics Sweden, be explained
by the strong economic growth in Sweden between 2006 and 2008 (Statistics
Sweden, Vanligare med l̊ag ekonomisk standard bland utrikes födda). A similar
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trend can be found between 1996 and 1998, a period that was characterized
by strong economic growth. During booms, incomes tend to grow in all social
strata, but the incomes grow more in higher strata than lower ones, increasing
the income differences. As you can see in figure 1, the income difference grew
before the economic boom that started in 2006, as well as long after its end in
2008. This indicates a general increase in income difference in Sweden.

5.1.1 A simple regression model

To demonstrate a simple regression model, we will make one out of the data for
figure 1. It looks like this:

Yi = −137.4 + 0.069Xi + εi,

where Xi is the year, and Yi is the income difference said year. The full model
summary can be found in A.1, which also tells us that the R2

adj is over 0.96,
which is very good. This means that our model only has a 4% margin of error,
and shows how much simpler a simple regression model is compared to a mul-
tiple regression model.

This model only has one β, since we are only working with one explanatory
variable. This β is 0.069, meaning that when one year goes by, the mean in-
come difference increases by 0.069 price base amount. The model also has one
α, at −137.4. Looking at A.1, we can see that for the β, the standard error was
3.448× 10−03, and for α, the standard error was 6.928. We have not tested our
residuals for this model, and will not go in to detail about it. Because of that,
we do not really know if our conclusion about the wage gap from figure 1 actu-
ally holds any truth. We are mostly using this to compare a simple regression
model to our multiple regression models. In order to actually base anything on
a model like this, more extensive testing would be needed.
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Pooled Fixed effects Random effects

Intercept -2.6116 See figure 6 -3.4306
1 Municipal avg age 4.8851×10−02 7.4729×10−02 6.8818×10−02

2
Municipal popula-
tion

3.9174×10−06 -4.1219×10−05 3.0767×10−06

3
Municipal propor-
tion non-natives

9.2100×10−01 6.7290 4.0766

4
Number of asylum-
seekers in Sweden

4.5293×10−08 -2.5388×10−07 -1.1590×10−07

5
Municipal avg
income (thousand
kronor)

2.0773×10−03 1.2472×10−03 1.6285×10−03

6
Municipal number
of people with ter-
tiary education

-9.6378×10−06 5.2800×10−05 -9.1137×10−06

Table 2: Summary of the estimates of our three models

5.2 The contending models

As mentioned in 4.4, we started the process by dividing our data into a training
sample (the data for 2002-2016) and a test sample (the data for 2017). Based on
the training sample, three panel data models were built. The models’ estimates
can be found in table 2, and the models look like follows:
Pooled:

Yi2017 = α+ β1X
(1)
i2017 + β2X

(2)
i2017 + β3X

(3)
i2017 + β5X

(5)
i2017 + β6X

(6)
i2017 + εi2017

Fixed effects:

Yi2017 = αi+β1X
(1)
i2017+β2X

(2)
i2017+β3X

(3)
i2017+β4X

(4)
i2017+β5X

(5)
i2017+β6X

(6)
i2017+εi2017

Random effects:

Yi2017 = α+ β1X
(1)
i2017 + β2X

(2)
i2017 + β3X

(3)
i2017 + β5X

(5)
i2017 + β6X

(6)
i2017 + εi2017

Table 2 contains the calculated estimates for all three of our models. A.2, A.3
and A.4 contain the full model summaries, including the results of the Wald
significance test for each estimate. The α values for the fixed effects model can
be found in A.3, figure 6. The X:s are different for each municipality and year
and are too many to cover here. The intervals can be found in table 1, and the
exact values can be found in the original data at Statistics Sweden.

Table 2 shows that in almost all cases, the estimates for the same variable k are
of similar size, and of the same sign (positive or negative), in all three models.
Exceptions are Municipal population (and Municipal number of people with ter-
tiary education), where the fixed effects model has a negative (positive) estimate
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whereas the other two are positive (negative), and Number of asylumseekers in
Sweden, where the pooled model has a positive estimate whereas the other two
models have negative ones. The one variable that is not municipality-specific
(Number of asylumseekers in Sweden) is the only variable deemed irrelevant (ac-
cording to the Wald significance test, see section 4.3.4), and this in the pooled
model (with a p-value of around 0.76) and the random effects model (with a
p-value of around 0.26). This variable was concluded to be relevant (though
less so than the others) in the fixed effects model, with a p-value of about 0.01.
All other variables were concluded to be relevant in all three models, with the
biggest p-value being Municipal population in the random effects model, on the
size of 10−05. In the other two models, no p-value (except for the ones men-
tioned) was over the size of 10−11, making all variables very relevant. It might
not be very surprising that the only non-municipality-specific variable is the
only variable deemed irrelevant in two of the models. This is the least specific
variable and the only one that is the same over all municipalities. Important
to note is that while we are analysing these p-values like we know they are reli-
able, they too are effected by whether or not the residual assumptions are true,
something we will cover in section 5.3.

Since the difference over a single variable is very little between the models,
let us look at the pooled model as an example analysis of the estimates for the
β values. Looking at the pooled model’s column, we can see that the biggest
estimate is the one for municipal proportion non-natives, and the smallest one
is for number of asylumseekers in Sweden. We will use these two to discuss
estimate sizes. It is easy to assume that the biggest β makes the biggest impact
on the response variable. However, the impact is also affected by the size of
the explanatory variable itself. Looking at table 1, we can see that the size

of municipal proportion non-natives will be 0.02 < X
(3)
it < 0.05, while the size

number of asylumseekers in Sweden will be 17000 < X
(4)
it < 170000. If both

of these were to be in some kind of middle (say for example 0.035 and 93 500

respectively), βX would be around 0.032 for X
(3)
it and around 0.0042 for X

(4)
it .

The impact of municipal proportion non-natives is still bigger, but if X
(3)
it would

be at its lowest (0.02) and X
(4)
it would be at its highest (170000), this might

change. This shows that we cannot simply analyse the β-values, they need to
be analysed with their corresponding X-values.

Moving on from the β values, we will look at the α values for the fixed ef-
fects model in figure 6. Most of them are between 0 and −5, with a couple
of exceptions. The most extreme outliers are the highest ones: Stockholm at
15.72394129, Göteborg at 8.95646865 and Malmö at 3.58801080. A high α
means that the starting point for difference in salary is high. Interestingly, the
three highest α:s are found in Sweden’s three largest cities. The lowest α is
found in Haparanda at 5.882704, meaning that there, the starting point for
difference in salary is the furthest away from Stockholm.
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5.3 Residuals - Are the assumptions met?

In this section, we will analyse whether the assumptions discussed in section 4.2
are met by our fixed effects and pooled models. As mentioned in 4.2, we will do
this purely visually, by plotting our residuals in different ways. This is not ideal
and not as exact as using tests, but will give us a starting point for an analysis.

As was also mentioned in section 4.3.3, the random effects model’s residuals
will not be analysed. The reason is that we know that the residuals for the ran-
dom effects model are not uncorrelated, and therefore cannot assume that the
tests are accurate. As the reader may have noticed, the Wald significance test
and the estimates of the models have already been analysed (see section 5.2),
including for the random effects model. These analyses might not be accurate
if this section concludes that the assumptions are not met. This also goes for
the tests that can be found in appendix A.1, A.2, A.3 and A.4.

Plots for the two models we are analysing (the fixed effects model and the
pooled model) are similar in their distribution. Since that is the case, we will
show the plots for the fixed effects model in the text, and show the pooled
model’s plots in the appendix (A.5).

5.3.1 Uncorrelated residuals and Zero mean

This section will analyse the residuals as residuals vs time plots with moving
averages. Since we have 290 municipalities and a plot with every one would be
very chaotic, we chose to only show a plot containing five of our municipali-
ties. In order to show as accurate of a representation of all 290 municipalities
as possible, we chose two municipalities with some extreme residuals, and three
municipalities with residuals closely resembling the average residual in our mod-
els. The plot for the fixed effects model, with the moving average in it, can be
found in figure 2, and the plot for the pooled model can be found in A.5, in
figure 7.

Our two residuals vs time plots are very similar. We can see a clear cycli-
cal trend in Danderyd, and an outlier in Bromölla. The rest of the residuals
show a slight cyclical trend that was more clear in a more zoomed-out version
of the plots than the ones discussed in this essay. When a plot of all 290 mu-
nicipalities was analysed, it was concluded that this general trend (most lightly
cyclical, and some more cyclical) was the same over all municipalities. Most
residuals can be found between −0.5 and 0.5, with some exeptions and outliers.
Two municipalities with some of the most extreme trends were Danderyd and
Lidingö, which both happen to have had among the top 5 highest mean incomes
of Swedish municipalities in 2018 (Ekonomifakta, Din kommun i siffror). These
two do not simply have some outliers, like Bromölla, but have extreme values
for all years. Over all, the mostly slight and sometimes more extreme trend we
see indicates some form of autocorrelation. This because, as described in section
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4.2.1, a pattern indicates that any one year’s value is affected by the value of
the year before. Therefore, we will assume slight autcorrelation and accept that
assumption number 1 (uncorrelated residuals) is not fulfilled.

The moving average is the black line in each plot. This is the average mu-
nicipal residual every year. We can see that while the average is not the same
over the different years, it is always very close to 0. We will take this to be close
enough to the zero mean we assume, and we consider the second assumption of
a zero mean fulfilled.

Figure 2: Residuals vs time for the fixed effects model

5.3.2 Residuals vs fitted

Figure 3 shows our residuals vs fitted plot for the fixed effects model, and figure
8 for the pooled model. A residuals vs observed values plot gives more or less
the same result, and is therefore not discussed in this essay. Since the x-axis
is ordered by fitted values, the municipalities with lower income difference will
be at the far left, and the municipalities with higher income difference will be
at the far right. We can see that most of the residuals are centered around 0
on the y-axis, which is desired for a plot of this kind. If we only look at the
x-axis between 0 and 2.5, it looks like an even band around 0 (except for the
one obvious outlier at y = 3). Looking beyond x = 2.5, we can see that almost
all points belong to either Danderyd (orange squares) or Lidingö (blue circles),
which we have already concluded have extreme residuals, explaining the more
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Figure 3: Residuals vs fitted plot for fixed effects model
Orange squares: Danderyd, Blue circles: Lidingö, Green triangles: Bromölla.

varied positioning along the y-axis. If we were to remove these two municipal-
ities, constant variance could be assumed. However, as the plot includes both
of these municipalities, a slight cone shape is suggested. This shape usually
indicates that the variance increases with time (Andersson et al. 2019, p. 68).
However, since our data not only includes time series aspects, but also cross-
sectional aspects, it is not as simple for us. In this case, the plots suggest that
the variance increases with certain cross-sectional aspects (or certain munici-
palities). Either way, we can not assume constant variance (and therefore do
not consider the third assumption to be fulfilled), but note that granting the
removal of two municipalities, constant variance could most likely be achieved.

In both figure 3 and figure 8 (in A.5), we have marked the most extreme outliers
in color and shape depending on the municipality. We can note that there are
three municipalities represented here: Danderyd, Lidingö and Bromölla. Go-
ing back to the residuals vs time plots, we remember that Danderyd had the
most extreme cyclical trend, and Bromölla had one outlier, which exaplains
their distribution along the y-axis in the residuals vs fitted plots as well. When
analysed, the residuals vs time plots for Lidingö (both for fixed effects and the
pooled model) show similar trends to the ones we see in Danderyd. This shows
us a similarity in the residuals vs time plots compared to the residuals vs fitted
plots. In figures 3 and 8, the fact that Danderyd and Lidingö have extreme
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values also on the x-axis is explained by the high income difference in both of
these municipalities. Bromölla is not as high up on this list, and is therefore
more centered with the other points on the x-axis.

The blue line is the smooth fit that represents linearity. It is not a completely
straight line, but has no apparent pattern or shape. We will therefore assume
linearity in both models, and also note that the removal of Danderyd and Lid-
ingö would most probably improve also the linearity of the models.

5.3.3 Q-Q plot

The Q-Q plot for our fixed effects model can be found in figure 4, and the Q-
Q plot for the pooled model can be found in figure 9. They are similar, and
both very close to a straight line except for some outliers. The outliers form
tails, which means that the distribution is not completely normal. However,
these tails do not include many values, and all points above the upper red line

Figure 4: Q-Q plot for the fixed effects model.

(in both fixed effects and pooled) are Danderyd, Lidingö or Bromölla. These
are all familiar municipalities by now, as we have already concluded that their
residuals seem to be outliers in general. Below the lower red line we have, for
fixed effects: Danderyd, Örkelljunga, Lidingö, Höganäs and Strömsund, and
for pooled: Danderyd, Ljusnarsberg, Höganäs, Orkelljunga and Haparanda.
Some of these are new, but we still have the familiar outliers. The plots show
relatively symmetric distributions. Except for the tails, these plots indicate
normally distributed residuals, and we will consider the fourth assumption to
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Pooled Fixed effects Random effects

Intercept 1.0426×10−01 — 1.8789×10−01

1 Municipal avg age 2.1878×10−03 7.2259×10−03 4.5653×10−03

2 Municipal population 4.8195×10−07 4.7778×10−06 7.0156×10−07

3
Municipal proportion
non-natives

9.6377×10−02 2.5507×10−01 1.9913×10−01

4
Number of asylumseekers
in Sweden

1.5093×10−07 9.8707×10−08 1.0189×10−07

5
Municipal avg income
(thousand kronor)

3.3115×10−05 5.1453×10−05 4.0367×10−05

6
Municipal number of peo-
ple with tertiary educa-
tion

1.4497×10−06 6.8115×10−06 1.8542×10−06

Table 3: Summary of the standard errors of our three models

be true.

5.4 Which model is better?

5.4.1 R squared and standard error

We can see in A.2 and A.3 that the R2
adj for the pooled model was 0.57798 and

for the fixed effects model was 0.71234. This shows us that the simplicity of the
pooled model does seem to give us a less accurate model than the fixed effects
one. The fixed effects model’s R2

adj is not perfect, but it is higher than the
pooled model. Following Koop’s example (see section 4.4.2), the fixed effects
model’s variation in output explains around 71% of the variation in income dif-
ference across municipalities. The same number for the pooled model is around
58%. A model should be able to explain a high percentage of variation, and the
fixed effects model is therefore more desirable here. However, we will also check
the MSEP values for accuracy of predictions (see section 5.5.1).

In table 3, the standard erorrs for each model can be found. The standard
error represents the average distance between the regression line and the actual
values, and we want it to be as small as possible. A quick look at table 3 shows
us that most rows keep standard errors of about the same size, and there is
no systematic difference between the columns - which means that none of the
models generally have bigger or smaller standard errors. This means that there
is no indication in the standard errors that one model should give better or
worse predictions than another.
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5.5 Accuracy of predictions

According to R2
adj , the fixed effects model gives more accurate predictions than

the pooled model. Now, we will analyse the accuracy of the two models’ predic-
tions by comparing MSEP values (section 5.5.1) as well as plotting each models’
difference in actual value and predicted value (section 5.5.2).

5.5.1 MSEP

Our MSEP values ended up being 0.1414581 for the pooled model and 0.07969323
for the fixed effects model. Since the model is better the lower the MSEP-value,
this would contribute to the conclusion that the fixed effects model is better.
Once again, the simplicity of the pooled model seems to make it less accurate.
As discussed in section 4.5.1, what is an acceptable MSEP value is up for dis-
cussion. The MSEP values here are close to zero, but as concluded in 4.5.1, it is
more important whether the value is small in comparison to the actual Y values.
The Y 2017 = 1.745862, which means that our fixed effects model’s MSEP value
is around 4, 5% off, and our pooled model’s MSEP value is around 8% off.

5.5.2 Plotting the predictions

In figure 5, we bring in the random effects model for the sake of comparing its
predictions to the fixed effects model’s and the pooled model’s. The circles are
the fixed effects model, the crosses the pooled model, and the dots the random
effects model. Each point represent the difference in actual value and predicted
value for each of the municipalities. The municipalities are here only referenced
by a number, and the list to find the name of the municipality can be found in
A.6. There seems to be no apparent difference between the three models when
looking at it this way, as all dots are centered around 0, the way we want it. The
closer to 0, the better the prediction. However, we do see a couple of outliers.
The most extreme ones are found outside of the dashed helplines at 1.5 and −1.5.
These are: the random effects model’s value for Lidingö at 1.8436374, the fixed
effects model’s value for Danderyd at −1.7698345, the random effects model’s
value for Haparanda at −2.1398481, the pooled model’s value for Lidingö at
1.5286365, and the pooled model’s value for Danderyd at −1.9799257. Once
again, Danderyd and Lidingö show up as outliers. Since there is no apparent
difference between the three models here, our analysis of this plot is more or less
that the models give very similar results. However, we can see that the fixed
effects model only has one extreme outlier while both other models have two,
and that the two most extreme outliers belong to the random effects model.
This gives us slight indication that the fixed effects model may be better, and
it seems that the random effects model might be unnecessarily complicated.
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6 Discussion

The purpose of this analysis was to investigate the income differences between
native borns and non-native borns in different Swedish municipalities in the
years 2002-2017, as well as to analyse differences between three types of panel
data prediction models. The research questions were:

How has the national average wage gap between immigrants and native
borns changed in Sweden over the years 2002-2017?

Can we make a predictive model for the average wage gap in each Swedish
municipality based on the data we have?

Which panel data model makes the best predictions for this data?

These questions were answered by processing and analysing data from Statistics
Sweden using panel data methods. The first question has been answered using
the mean of the income difference for every year, and for the second and third
questions, three predictive models have been built. Now, the results will be
discussed.

For the first reseach question, we built a simple regression model to represent
the mean income difference in Sweden between the years of 2002-2017. As we
plotted the line, it was shown that the income difference had increased, some-
thing that could be explained at least in part by the strong economic growth
between 2006 and 2008 (see Statistics Sweden, Vanligare med l̊ag ekonomisk
standard bland utrikes födda). This model also acted as an example of the dif-
ference between a simple regression model and a multiple regression model.

Moving on to the second research question, we can conclude that while a predic-
tive panel data model for the average wage gap based on the data we have is not
very accurate, all three versions do work and make predictions. We concluded
in section 5.3 that for neither the pooled model, nor the fixed effects model,
OLS was BLUE, according to Koops (2008) assumptions. However, we still
used OLS as our estimator. In the random effects model’s case, the residuals
were not uncorrelated and we therefore did not go further with the analysis of
that model’s residuals. In the case of the pooled model and the fixed effects
model, the residuals were very similar; slightly correlated but with a zero mean,
and lack of constant variance but with a symmetric Q-Q plot with tails, indi-
cating normally distributed residuals with some outliers. In other words: we
considered assumptions 2 (zero mean) and 4 (normally distributed residuals) to
be true, and assumptions 1 (uncorrelated residuals) and 3 (constant variance)
not to be true. The conclusion is that both pooled OLS regression and fixed
effects can be used for the predictive model we are seeking, based on the data
we have. However, they might not be very accurate and some other type of
estimation theory (other than OLS) might be needed. We can not say anything
about the random effects model in this case. Yes, it makes predictions close
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to the fixed effects model’s predictions, but we have not tested it and can not
draw these conclusions about it. As for the models we did test, it might have
been possible to build a more accurate model. With more time and resources,
it would have been easier to understand and use the theory in a more extensive
way. The study might also have benefitted from more extensive data.

As for the third research question, the focus will be how complicated a model
gives the best predictions, and if more complicated is always better. This be-
cause we have realized that the fixed effects model is a more complicated version
of the pooled OLS regression, and the random effects model in turn is a more
complicated version of the fixed effects model. Here, we did compare the ran-
dom effects models estimates, p-values and standard errors to the other two
models, for a more interesting analysis, even though we cannot know that they
are accurate. We can conclude that while the added individual effects aspect
made the fixed effects model much better than the pooled model, there is no
sign of the added complexity of the random effects model being suitable for this
particular analysis. While the many α:s of the fixed effects model give us a lot
to calculate (the one downside we could find to the fixed effects model), that is
not very hard for a computer to do. We also cannot find many positives about
the random effects model that the fixed effects model does not have. Except for
two outliers, there was no notable difference in figure 5, showing the subtraction
of predicted value - actual value for the three models. However, since we did
not analyse the random effects model closely, it is hard to conclude if it has any
advantages over the fixed effects model in this case.

With more time, data and knowledge, it would probably be possible to build
a better model. It is also possible that it would give a very different result
regarding the difference between the fixed effects and random effects models.
However, our conclusion is that given the frame we were working in, the fixed
effects model gives the best predictions out of the three basic panel data mod-
els that we analysed. It did not give great predictions - probably because the
variables were not extensive enough - but for this particular analysis, it was
the better of the three models. Over all, the conclusion is that a panel data
model could help in finding the factors that affect the gap the most. Given more
extensive research, it could probably help in minimizing the wage gap between
native and non-native borns.
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A Appendix A

A.1 Simple regression model

Estimate Std. Error t-value Pr(>|t|)
Intercept -1.374e+02 6.928 -19.83 1.20e-11
Year 6.900e-02 3.448e-03 20.02 1.06e-11

Multiple R-Squared: 0.9662
Adj. R-Squared: 0.9638

Table 4: Summary results for simple regression model.

A.2 Pooled model

Estimate Std. Error t-value Pr(>|t|)
Intercept -2.6116 1.0426e-01 -25.04825 < 2.2e-16
Municipal avg age 4.8851e-02 2.1878e-03 22.3283 < 2.2e-16
Municipal population 3.9174e-06 4.8195e-07 8.1282 5.631e-16
Municipal proportion
non-natives

9.2100e-01 9.6377e-02 9.5562 < 2.2e-16

Number of asylumseekers
in Sweden

4.5293e-08 1.5093e-07 0.3001 0.7641

Municipal avg income
(thousand kronor)

2.0773e-03 3.3115e-05 62.7288 < 2.2e-16

Municipal number of peo-
ple with tertiary educa-
tion

-9.6378e-06 1.4497e-06 -6.6482 3.334e-11

R-Squared: 0.57857
Adj. R-Squared: 0.57798

Table 5: Summary results for pooled model.
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A.3 Fixed effects model

Estimate Std. Error t-Value Pr(>|t|)
Municipal avg age 7.4729e-02 7.2259e-03 10.3419 < 2.2e-16
Municipal population -4.1219e-05 4.7778e-06 -8.6271 < 2.2e-16
Municipal proportion
non-natives

6.7290 2.5507e-01 26.3806 < 2.2e-16

Number of asylumseekers
in Sweden

-2.5388e-07 9.8707e-08 -2.5721 0.01014

Municipal avg income
(thousand kronor)

1.2472e-03 5.1453e-05 24.2403 < 2.2e-16

Municipal number of peo-
ple with tertiary educa-
tion

5.2800e-05 6.8115e-06 7.7516 1.139e-14

R-Squared: 0.73185
Adj. R-Squared: 0.71234

Table 6: Summary results for fixed effects model.
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A.4 Random effects model

Estimate Std. Error z-value Pr(>|z|)
Intercept -3.4306 1.8789e-01 -18.2585 < 2.2e-16
Municipal avg age 6.8818e-02 4.5653e-03 15.0741 < 2.2e-16
Municipal population 3.0767e-06 7.0156e-07 4.3855 1.157e-05
Municipal proportion
non-natives

4.0766 1.9913e-01 20.4724 < 2.2e-16

Number of asylumseekers
in Sweden

-1.1590e-07 1.0189e-07 -1.1375 0.2553

Municipal avg income
(thousand kronor)

1.6285e-03 4.0367e-05 40.3431 < 2.2e-16

Municipal number of peo-
ple with tertiary educa-
tion

-9.1137e-06 1.8542e-06 -4.9153 8.865e-07

R-Squared: 0.69937
Adj. R-Squared: 0.69896

Table 7: Summary results for random effects model.

A.5 The pooled model’s residuals

Figure 7: Residuals vs time for the pooled model
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Figure 8: Residuals vs fitted plot for the pooled model
Orange squares: Danderyd, Blue circles: Lidingö, Green triangles: Bromölla.

Figure 9: Q-Q plot for the pooled model
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A.6 List of municipalities

Table 8: List of municipalities.

Beginning of Table
Number Municipality

1 0114 Upplands Väsby
2 0115 Vallentuna

3 0117 Öster̊aker
4 0120 Värmdö
5 0123 Järfälla
6 0125 Ekerö
7 0126 Huddinge
8 0127 Botkyrka
9 0128 Salem
10 0136 Haninge
11 0138 Tyresö
12 0139 Upplands-Bro
13 0140 Nykvarn
14 0160 Täby
15 0162 Danderyd
16 0163 Sollentuna
17 0180 Stockholm
18 0181 Södertälje
19 0182 Nacka
20 0183 Sundbyberg
21 0184 Solna
22 0186 Lidingö
23 0187 Vaxholm
24 0188 Norrtälje
25 0191 Sigtuna
26 0192 Nynäshamn
27 0305 H̊abo

28 0319 Älvkarleby
29 0330 Knivsta
30 0331 Heby
31 0360 Tierp
32 0380 Uppsala
33 0381 Enköping

34 0382 Östhammar
35 0428 Ving̊aker
36 0461 Gnesta
37 0480 Nyköping
38 0481 Oxelösund
39 0482 Flen
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Continuation of Table 8
Number Municipality

40 0483 Katrineholm
41 0484 Eskilstuna
42 0486 Strängnäs
43 0488 Trosa

44 0509 Ödeshög
45 0512 Ydre
46 0513 Kinda
47 0560 Boxholm
48 0561 Åtvidaberg
49 0562 Finsp̊ang
50 0563 Valdemarsvik
51 0580 Linköping
52 0581 Norrköping
53 0582 Söderköping
54 0583 Motala
55 0584 Vadstena
56 0586 Mjölby
57 0604 Aneby
58 0617 Gnosjö
59 0642 Mullsjö
60 0643 Habo
61 0662 Gislaved
62 0665 Vaggeryd
63 0680 Jönköping
64 0682 Nässjö
65 0683 Värnamo
66 0684 Sävsjö
67 0685 Vetlanda
68 0686 Eksjö
69 0687 Tran̊as
70 0760 Uppvidinge
71 0761 Lessebo
72 0763 Tingsryd
73 0764 Alvesta

74 0765 Älmhult
75 0767 Markaryd
76 0780 Växjö
77 0781 Ljungby
78 0821 Högsby
79 0834 Tors̊as
80 0840 Mörbyl̊anga
81 0860 Hultsfred
82 0861 Mönster̊as
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Continuation of Table 8
Number Municipality

83 0862 Emmaboda
84 0880 Kalmar
85 0881 Nybro
86 0882 Oskarshamn
87 0883 Västervik
88 0884 Vimmerby
89 0885 Borgholm
90 0980 Gotland
91 1060 Olofström
92 1080 Karlskrona
93 1081 Ronneby
94 1082 Karlshamn
95 1083 Sölvesborg
96 1214 Svalöv
97 1230 Staffanstorp
98 1231 Burlöv
99 1233 Vellinge

100 1256 Östra Göinge

101 1257 Örkelljunga
102 1260 Bjuv
103 1261 Kävlinge
104 1262 Lomma
105 1263 Svedala
106 1264 Skurup
107 1265 Sjöbo
108 1266 Hörby
109 1267 Höör
110 1270 Tomelilla
111 1272 Bromölla
112 1273 Osby
113 1275 Perstorp
114 1276 Klippan
115 1277 Åstorp
116 1278 B̊astad
117 1280 Malmö
118 1281 Lund
119 1282 Landskrona
120 1283 Helsingborg
121 1284 Höganäs
122 1285 Eslöv
123 1286 Ystad
124 1287 Trelleborg
125 1290 Kristianstad
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Continuation of Table 8
Number Municipality

126 1291 Simrishamn

127 1292 Ängelholm
128 1293 Hässleholm
129 1315 Hylte
130 1380 Halmstad
131 1381 Laholm
132 1382 Falkenberg
133 1383 Varberg
134 1384 Kungsbacka
135 1401 Härryda
136 1402 Partille

137 1407 Öckerö
138 1415 Stenungsund
139 1419 Tjörn
140 1421 Orust
141 1427 Sotenäs
142 1430 Munkedal
143 1435 Tanum
144 1438 Dals-Ed
145 1439 Färgelanda
146 1440 Ale
147 1441 Lerum
148 1442 V̊arg̊arda
149 1443 Bollebygd
150 1444 Grästorp
151 1445 Essunga
152 1446 Karlsborg
153 1447 Gullsp̊ang
154 1452 Tranemo
155 1460 Bengtsfors
156 1461 Mellerud
157 1462 Lilla Edet
158 1463 Mark
159 1465 Svenljunga
160 1466 Herrljunga
161 1470 Vara
162 1471 Götene
163 1472 Tibro
164 1473 Töreboda
165 1480 Göteborg
166 1481 Mölndal
167 1482 Kungälv
168 1484 Lysekil
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Continuation of Table 8
Number Municipality

169 1485 Uddevalla
170 1486 Strömstad
171 1487 Vänersborg
172 1488 Trollhättan
173 1489 Alings̊as
174 1490 Bor̊as
175 1491 Ulricehamn
176 1492 Åm̊al
177 1493 Mariestad
178 1494 Lidköping
179 1495 Skara
180 1496 Skövde
181 1497 Hjo
182 1498 Tidaholm
183 1499 Falköping
184 1715 Kil
185 1730 Eda
186 1737 Torsby
187 1760 Storfors
188 1761 Hammarö
189 1762 Munkfors
190 1763 Forshaga
191 1764 Grums
192 1765 Årjäng
193 1766 Sunne
194 1780 Karlstad
195 1781 Kristinehamn
196 1782 Filipstad
197 1783 Hagfors
198 1784 Arvika
199 1785 Säffle
200 1814 Lekeberg
201 1860 Lax̊a
202 1861 Hallsberg
203 1862 Degerfors
204 1863 Hällefors
205 1864 Ljusnarsberg

206 1880 Örebro
207 1881 Kumla
208 1882 Askersund
209 1883 Karlskoga
210 1884 Nora
211 1885 Lindesberg
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Continuation of Table 8
Number Municipality

212 1904 Skinnskatteberg
213 1907 Surahammar
214 1960 Kungsör
215 1961 Hallstahammar
216 1962 Norberg
217 1980 Väster̊as
218 1981 Sala
219 1982 Fagersta
220 1983 Köping
221 1984 Arboga
222 2021 Vansbro
223 2023 Malung-Sälen
224 2026 Gagnef
225 2029 Leksand
226 2031 Rättvik
227 2034 Orsa

228 2039 Älvdalen
229 2061 Smedjebacken
230 2062 Mora
231 2080 Falun
232 2081 Borlänge
233 2082 Säter
234 2083 Hedemora
235 2084 Avesta
236 2085 Ludvika
237 2101 Ockelbo
238 2104 Hofors
239 2121 Ovan̊aker
240 2132 Nordanstig
241 2161 Ljusdal
242 2180 Gävle
243 2181 Sandviken
244 2182 Söderhamn
245 2183 Bollnäs
246 2184 Hudiksvall
247 2260 Ånge
248 2262 Timr̊a
249 2280 Härnösand
250 2281 Sundsvall
251 2282 Kramfors
252 2283 Sollefte̊a

253 2284 Örnsköldsvik
254 2303 Ragunda
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Continuation of Table 8
Number Municipality

255 2305 Bräcke
256 2309 Krokom
257 2313 Strömsund
258 2321 Åre
259 2326 Berg
260 2361 Härjedalen

261 2380 Östersund
262 2401 Nordmaling
263 2403 Bjurholm
264 2404 Vindeln
265 2409 Robertsfors
266 2417 Norsjö
267 2418 Mal̊a
268 2421 Storuman
269 2422 Sorsele
270 2425 Dorotea
271 2460 Vännäs
272 2462 Vilhelmina
273 2463 Åsele
274 2480 Ume̊a
275 2481 Lycksele
276 2482 Skellefte̊a
277 2505 Arvidsjaur
278 2506 Arjeplog
279 2510 Jokkmokk

280 2513 Överkalix
281 2514 Kalix

282 2518 Övertorne̊a
283 2521 Pajala
284 2523 Gällivare

285 2560 Älvsbyn
286 2580 Lule̊a
287 2581 Pite̊a
288 2582 Boden
289 2583 Haparanda
290 2584 Kiruna

End of Table
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