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Abstract

In this thesis we apply univariate time series analysis on monthly

mean weather data. By comparing SARIMA models with a naive ap-

proach, we evaluate the forecast performance for the air temperature,

wind speed and precipitation in the south of Sweden. To stabilize the

variance of the monthly mean wind speed and precipitation we ap-

ply Box-Cox transformations on the time series. It is concluded that

the SARIMA models have better forecast performance during a 159

months forecast horizon than the naive models.
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2 Introduction
Forecasting the weather is a highly relevant subject nowadays with the current awareness of climate change.
There is extensive research in this field, for example the Rossby Centre, a climate model research unit at the
Swedish Meteorological and Hydrological Institute (SMHI), creates climate scenarios using a supercomputer
and very complex models. The models are based upon emission or radiation scenarios which impacts the
climate. The climate scenarios are not weather forecasts however, they are more focused on the long-term
changes. Weather forecasts on the other hand are relevant for short-term predictions (SMHI, n.d (a)). In this
study we utilize univariate time series analysis to examine three basic weather components: Temperature,
wind speed, and precipitation.

When forecasting the weather, the naive approach is one of the most common. The air temperature in
Sweden is very dependent on the current season, with temperatures below 0 Celsius in the winter and above
20 Celsius in the summer. The seasonal naive approach assumes on a mothly basis that the the conditions
for a specific month are the same every year. With focus on the SARIMA class of models we explore if the
more advanced models provide better forecasts than the naive approach.

When forecasting into the future the possibility to check the preciseness of the predicted values are lost. To
measure the forecast performance of models we perform out-of-sample forecasts for periods between 1966
to 2019 where we have known observations to compare against. By using univariate time series analysis we
explore the forecasting of the monthly mean weather of air temperature, wind speed and precipitation. How
well does the considered forecast models perform, and are they better than the naive approach?

3 Theory
In this section definitions and other vocabulary applied in the method and analysis are explained. Unless
stated otherwise, the theory comes from (Tsay, Chapter 2, 2010).

3.1 Stationarity
A time series {𝑋𝑡} consists of a series of observations 𝑥𝑡 ordered by the indexed time 𝑡. Stationary time
series refers to time series for which the change over time are constant, for example if it grows linearly. For
a strictly stationary time series {𝑋𝑡}, the joint distribution of (𝑋𝑡1

, ..., 𝑋𝑡𝑘
) does not vary over time. More

common is the assumption of the weaker stationarity, where the mean E[𝑋𝑡] = 𝜇 (𝜇 constant) and the
covariance Cov(𝑋𝑡, 𝑋𝑡−𝑙) = 𝛾𝑙 does not vary over time for some integer 𝑙. The covariance 𝛾𝑙 is called the
lag-𝑙 autocorrelation of 𝑋𝑡. For 𝑙 = 0 the lag-0 autocorrelation is 𝛾0 = Var(𝑋𝑡) (Tsay, 2010. p.30).

3.2 Transformations
Sometimes when the time series does not meet the criteria or assumptions of for example weakly stationarity
then a transformation may be in order.

3.2.1 Differencing

Transforming non-stationary series to stationary can be done by differencing as many times as necessary. We
introduce the backshift operator for a time series {𝑋𝑡} given by 𝐵𝑋𝑡 = 𝑋𝑡−1. We refer to Δ𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1
as a regular differencing. For 𝑑 = 1, 2, ... times differencing, we can then express

Δ𝑑𝑋𝑡 = (1 − 𝐵)𝑑𝑋𝑡.
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We are also able to difference at lags of higher order. For a differencing at lag-𝑠 where 𝑠 > 1, we use
Δ𝑠𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−𝑠 which then for 𝐷 = 1, 2, ... times differencing is

Δ𝐷
𝑠 𝑋𝑡 = (1 − 𝐵𝑠)𝐷𝑋𝑡.

For example, for a yearly seasonal differencing on monthly data, one uses 𝑠 = 12 and 𝐷 = 1, 2, ..., for each
new yearly differencing. In the SARIMA model described in Section 3.8 the concept of seasonal differencing
occurs.

3.2.2 Box-Cox transformation

One of the assumptions of stationarity is constant variance, thus time series which exhibit changing variance
with time are non-stationary. Also then a transformation of the time series might be desirable (Tommaso
and Helmut, 2011). The Box-Cox family of power transformations applies a parameter 𝜆 such that

𝑋𝑡(𝜆) = {
𝑋𝜆

𝑡 −1
𝜆 , 𝜆 ≠ 0

ln 𝑋𝑡 , 𝜆 = 0 , for all 𝑡 ≥ 0

so for 𝜆 = 1 the original data scale is used with a shift of −1. The parameter 𝜆 is estimated from the data,
see Appendix A: Section 8.1.1.

The Box-Cox transformation may yield a stationary process, but if it still is non-stationary then other
methods can be applied, for example differencing described in Section 3.2.1.

3.2.3 Seasonal adjustment

Data that is seasonal can be adjusted by removing the seasonal component. This is a way of handling the
seasonality of data. The additive model is applied for data which does not increase/decrease over time,
otherwise a multiplicative model is more appropriate. For the additive model, one can decompose the time
series {𝑋𝑡} into 𝑋𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝐶𝑡 + 𝐼𝑡, where 𝑇𝑡 represents the trend, 𝑆𝑡 the seasonality, 𝐶𝑡 the cycle and
𝐼𝑡 the irregular decomposition (Linde, 2005). This method will be discussed but not applied.

3.3 White noise
The white noise series {𝑎𝑡} is defined by a sequence of independent identically distributed (i.i.d) random
variables with finite mean and variance (Tsay, 2010). Further the Gaussian white noise series follows a
normal distribution with zero mean and constant variance 𝜎2

𝑎.

For Section 3.4-3.7 the presentation of the terms in the AR and MA polynomials, may differ from what
is used in (Tsay, 2010). This notation was preferred since the R function Arima used in the methodology
Section 4 is theoretically based on the notations that are presented.

3.4 AR
We define the general Autoregressive model, denoted AR(𝑝) with 𝑝 parameters, by

𝑋𝑡 = 𝑐 +
𝑝

∑
𝑖=1

𝜙𝑖𝑋𝑡−𝑖 + 𝑎𝑡,

where {𝑎𝑡} is a white noise series and 𝑐 is a constant (Tsay, 2010. p.46).

With the backshift operator we can also write the AR(𝑝) as

(1 −
𝑝

∑
𝑖=1

𝜙𝑖𝐵𝑖)𝑋𝑡 = 𝑐 + 𝑎𝑡.
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3.5 MA
The moving averages model, MA(𝑞) with 𝑞 parameters, is generalized to

𝑋𝑡 = 𝑐 + 𝑎𝑡 +
𝑞

∑
𝑗=1

𝜃𝑗𝑎𝑡−𝑗,

with 𝑞 > 0 and where {𝑎𝑡} is a white noise series and 𝑐 is a constant. With the backshift operator we can
also write the MA(𝑞) as

𝑋𝑡 = 𝑐 + (1 +
𝑞

∑
𝑗=1

𝜃𝑗𝐵𝑗)𝑎𝑡.

The MA(𝑞) model exhibits time invariant mean, E[𝑋𝑡] = 𝑐, and variance Var(𝑋𝑡) = (1 + ∑𝑞
𝑗=1 𝜃2

𝑗 )𝜎2
𝑎, thus

the model is always weakly stationary (Tsay, 2010. p.59).

3.6 ARMA
The combining of the AR and MA models gives way for the Autoregressive Moving Averages model,
ARMA(𝑝, 𝑞) which is generalized with the parameters 𝑝 ≥ 0 and 𝑞 ≥ 0 as

𝑋𝑡 = 𝑐 +
𝑝

∑
𝑖=1

𝜙𝑖𝑋𝑡−𝑖 + 𝑎𝑡 +
𝑞

∑
𝑖=1

𝜃𝑖𝑎𝑡−𝑖,

where {𝑎𝑡} is a white noise series. With the backshift operator we can write the generalized ARMA(𝑝, 𝑞)
model as:

(1 −
𝑝

∑
𝑖=1

𝜙𝑖𝐵𝑖)𝑋𝑡 = 𝑐 + (1 +
𝑞

∑
𝑗=1

𝜃𝑗𝐵𝑗)𝑎𝑡.

Thus the ARMA(𝑝, 𝑞) model is set up by the respective polynomials of the AR(𝑝) and MA(𝑞) models. Note
that for 𝑝 = 0 we are left with a pure MA(𝑞) model, and likewise if 𝑞 = 0 then the ARMA(𝑝, 0) is the same
as an AR(𝑝) model.

The ARMA model meets the criteria of weak stationary when all solutions of the characteristic equation in
absolute value are less than 1. We then obtain an unconditional mean, E[𝑋𝑡] = 𝑐/(1 − 𝜙1 − ... − 𝜙𝑝) (Tsay,
2010. p.66).

3.7 ARIMA
The Autoregressive Integrated Moving Average model, ARIMA, utilizes differencing to obtain stationary
time series before applying an ARMA model on the changed series. The model is generalized such that for
non-negative integers 𝑝, 𝑑, 𝑞 with the backshift operator the ARIMA(𝑝, 𝑑, 𝑞) model is given by

(1 −
𝑝

∑
𝑖=1

𝜙𝑖𝐵𝑖)(1 − 𝐵)𝑑𝑋𝑡 = (1 +
𝑞

∑
𝑖=1

𝜃𝑖𝐵𝑖)𝑎𝑡, (3.7.1)

where {𝑎𝑡} is a white noise series. The left hand side of (3.7.1) consists of the AR-polynomial of 𝑝 parameters,
the 𝑑 times differencing of the {𝑋𝑡} time series and the right hand side shows the MA-polynomial of 𝑞
parameters. Note that if we write the 𝑑 times differenced {𝑋𝑡} series as 𝑊𝑡 = (1 − 𝐵)𝑑𝑋𝑡 the equation
(3.7.1) match with the ARMA(𝑝, 𝑞) model applied on the changed time series {𝑊𝑡} described in (3.6.1)
in Section 3.6. The AR-polynomial contains an unit root and so the ARIMA model is called unit-root
non-stationary, which can be managed by differencing (Tsay, 2010. p.76). According to (Hyndman and
Athanasopoulos, 2014) the differencing of a time series may contribute to a more stable mean while reducing
trend and seasonality.
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As an example we can describe the ARIMA(1, 1, 1) model by the time series {𝑋𝑡}, so the change series
𝑊𝑡 = Δ𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1 follows a stationary ARMA(1, 1) model (Tsay, 2010. p.76). We can estimate
the parameters using maximum likelihood or least squares method. Assume that we have a data set of 𝑁
observations on which we fit the ARIMA(1, 1, 1) model, and for which we want to estimate the unknown
parameters (𝜙1, 𝜃1, 𝜎2

𝑎). (Box et al., 2016. p.209-214 & 262-264) provides a parameter estimation on the
generalized ARIMA(𝑝, 𝑑, 𝑞) model which we have adjusted to the case (𝑝, 𝑑, 𝑞) = (1, 1, 1).
The ARIMA(1, 1, 1) model can be described by

𝑋𝑡 = 𝑐 + 𝑋𝑡−1 + 𝜙1(𝑋𝑡−1 − 𝑋𝑡−2) + 𝜃1𝑎𝑡−1 + 𝑎𝑡 (3.7.2)

which for the change series {𝑊𝑡} of the once differenced {𝑋𝑡} series can be written as

𝑊𝑡 = 𝑐 + 𝜙1𝑊𝑡−1 + 𝜃1𝑎𝑡−1 + 𝑎𝑡, (3.7.3)

where {𝑎𝑡} is a white noise process, 𝑐 a constant, 𝜙1 the autoregressive parameter and 𝜃1 the moving averages
parameter. For differenced series, if the mean E[Δ𝑋𝑡] = 𝜇 ≠ 0 then 𝑐 = 𝜇(1 − 𝜙1) (Shumway and Stoffer,
2011. p.141). For this example we assume a zero mean, thus 𝑐 = 0, which is also suggested for differenced
series by (Box et al., 2016. p.211).

Let us rewrite the equation (3.7.2) in the following

𝑎𝑡 = 𝑋𝑡 − 𝑋𝑡−1 − 𝜙1(𝑋𝑡−1 − 𝑋𝑡−2) − 𝜃1𝑎𝑡−1, (3.7.4)

which written with the change series 𝑊𝑡 from equation (3.7.3) is

𝑎𝑡 = 𝑊𝑡 − 𝜙1𝑊𝑡−1 − 𝜃1𝑎𝑡−1. (3.7.5)

The equation (3.7.5) involves past values, 𝑊𝑡−1 and 𝑎𝑡−1, which at time 𝑡 are unknown. This makes it
difficult to obtain the parameter estimates of (𝜙1, 𝜃1). However by including the unknown past values as
parameters to be estimated, we can then use these estimates in the likelihood optimization to obtain the
parameter estimates of (𝜙1, 𝜃1).
If we let 𝑊 ∗

𝑡−1 and 𝑎∗
𝑡−1 be estimates of the unknown past values 𝑊𝑡−1 and 𝑎𝑡−1. We could set the values

of 𝑊 ∗
𝑡−1, 𝑎∗

𝑡−1 as their unconditional expectations, thus 𝑎∗
𝑡−1 = 0 and if 𝐸[𝑊𝑡] = 𝜇 ≠ 0 then we use the

mean 𝑊 ∗
𝑡−1 = ∑𝑁−1

𝑡=1 𝑊𝑡/(𝑁 − 1) otherwise 𝑊 ∗
𝑡−1 = 0. Other approximations are possible, and can be

further explored in (Box et al., 2016. p.211-212). Starting at 𝑡 = 0 we can then recursively calculate 𝑎𝑡
for 𝑡 = 1, 2, ..., 𝑁 − 1 as a function of the observations {𝑊𝑡}, the estimated values 𝑊 ∗

−1, 𝑎∗
−1 and using some

parameters 𝜙1, 𝜃1. Let us denote the set of values by 𝑎𝑡(𝜙1, 𝜃1 ∣ 𝑊 ∗
𝑡−1, 𝑎∗

𝑡−1, 𝑊𝑡).

𝑎0 = 𝑊0 − 𝜙1𝑊 ∗
−1 − 𝜃1𝑎∗

−1
𝑎1 = 𝑊1 − 𝜙1𝑊0 − 𝜃1𝑎0 = 𝑊1 − (𝜙1 + 𝜃1)𝑊0 + 𝜙1𝜃1𝑊 ∗

−1 + 𝜃2
1𝑎∗

−1
⋮

If the series {𝑎𝑡} is a Gaussian white noise series, then for 𝑡 = 1, 2, ..., 𝑁 − 1, 𝑎𝑡 are normally distributed
with density function

𝑝(𝑎1, 𝑎2, ...𝑎𝑁−1) ∝ (𝜎2
𝑎)−(𝑁−1)/2 exp [ −

𝑁−1
∑
𝑡=1

𝑎2
𝑡

2𝜎2𝑎
]. (3.7.6)
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The R package forecast function Arima which is employed in Section 5 uses maximum likelihood or minimiz-
ing conditional sum-of-squares methods to estimate the parameters. The conditional loglikelihood function
is given by

𝐿∗(𝜙1, 𝜃1, 𝜎2
𝑎) = −𝑁 − 1

2 ln(𝜎2
𝑎) − 𝑆∗(𝜙1, 𝜃1)

2𝜎2𝑎
(3.7.7)

conditioned on the choise of values (𝑊 ∗
𝑡−1, 𝑎∗

𝑡−1). By minimizing the conditional sum-of-squares estimates

𝑆∗(𝜙1, 𝜃1) =
𝑁−1
∑
𝑡=1

𝑎2
𝑡 (𝜙1, 𝜃1 ∣ 𝑊 ∗

𝑡−1, 𝑎∗
𝑡−1, 𝑊𝑡) (3.7.8)

we obtain the parameter estimates. To stress that the conditional loglikelihood and sum-of-squares estimates
are conditioned on the choise of the values (𝑊 ∗

𝑡−1, 𝑎∗
𝑡−1) we use the asterisks for 𝐿∗(𝜙1, 𝜃1, 𝜎2

𝑎) and 𝑆∗(𝜙1, 𝜃1).
From the equation (3.7.7) it is clear that the conditional sum-of-squares function 𝑆∗(𝜙1, 𝜃1) plays a big part
in the calculation of the conditional loglikelihood. For a fixed value of 𝜎2

𝑎, the conditional loglikelihood 𝐿∗ is
a linear function of the conditional sum-of-squares function 𝑆∗. The minimized conditional sum-of-squares
parameter estimates are called conditional least-squares estimates. Ordinarily the conditional least-squares
parameter estimates are in close proximity to the conditional maximum likelihood parameter estimates.

3.8 SARIMA
The seasonal ARIMA model, SARIMA, can be applied for data that exhibits seasonality and is generalized
such that ARIMA(𝑝, 𝑑, 𝑞)(𝑃 , 𝐷, 𝑄)𝑠 with 𝑠 > 1 being the number of periods in each season and 𝑝, 𝑞, 𝑃 , 𝑄
non-negative integers. We can present the general SARIMA model by

(1 −
𝑝

∑
𝑖=1

𝜙𝑖𝐵𝑖)(1 − 𝐵)𝑑(1 −
𝑃

∑
𝑖=1

Φ𝑖𝐵𝑠𝑖)(1 − 𝐵𝑠)𝐷𝑋𝑡 = (1 +
𝑞

∑
𝑖=1

𝜃𝑖𝐵𝑖)(1 +
𝑄

∑
𝑖=1

Θ𝑖𝐵𝑠𝑖)𝑎𝑡,

where {𝑎𝑡} is a Gaussian white noise series.

Denoting the seasonal autoregressive part of the SARIMA model as SAR(𝑃 ) and the seasonal moving
averages part of the seasonal ARIMA model by SMA(𝑄), (Shumway and Stoffer, 2011. p.154-157).

3.9 The Naive model, a random walk
The naive model when forecasting time series states that the conditions today will be the same as yesterday.
The naive model is also called the random walk, an ARIMA(0, 1, 0) model, which can be described by

𝑋𝑡 = 𝑐 + 𝑋𝑡−1 + 𝑎𝑡,

where 𝑎𝑡 ∼ 𝑁(0, 𝜎2) is a white noise series with zero mean and the constant 𝑐 = E[𝑋𝑡 − 𝑋𝑡−1] is referred
to as the drift of the model. We can easily compute the residual series 𝑎𝑡 = 𝑋𝑡 − 𝑋𝑡−1. The random walk
series do not meet the requirement of weak stationarity (Tsay, 2010. p.72).

The random walk models a differencing at lag-1, while a seasonal differencing at lag-𝑠 will instead take the
difference between observations 𝑥𝑡 and the previous season’s observation 𝑥𝑡−𝑠 for the period 𝑠. This is highly
relevant for data with seasonality gives away to the seasonal naive model described by

𝑋𝑡 = 𝑐 + 𝑋𝑡−𝑠 + 𝑎𝑡

for 𝑠 periods and the white noise series 𝑎𝑡 ∼ 𝑁(0, 1) with zero mean. The seasonal naive model can be
written as an ARIMA(0, 0, 0)(0, 1, 0)𝑠 model at period 𝑠 (Hyndman and Athanasopoulos, 2014).
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3.10 Forecast
Let ℎ be the forecast origin and let us denote the information set available at time ℎ by ℱℎ. The 1-step
ahead forecast of the series 𝑋ℎ can with general ARMA(𝑝, 𝑞) model be described by

�̂�ℎ(1) = E[𝑋ℎ+1 ∣ ℱℎ] = 𝑐 +
𝑝

∑
𝑖=1

𝜙𝑖𝑋ℎ+1−𝑖 +
𝑞

∑
𝑖=1

𝜃𝑖𝑎ℎ+1−𝑖,

with the forecast error 𝑒ℎ(1) = 𝑋ℎ+1 − �̂�ℎ(1) = 𝑎ℎ+1 and its variance Var(𝑒ℎ(1)) = 𝜎2
𝑎.

The 𝑙-steps ahead forecast can be described by

�̂�ℎ(𝑙) = E[𝑋ℎ+𝑙 ∣ ℱℎ] = 𝑐 +
𝑝

∑
𝑖=1

𝜙𝑖�̂�ℎ(𝑙 − 𝑖) +
𝑞

∑
𝑖=1

𝜃𝑖𝑎ℎ(𝑙 − 𝑖)

where

𝑎ℎ(𝑙 − 𝑖) = {0 if 𝑙 − 𝑖 > 0
𝑎ℎ+𝑙−𝑖 if 𝑙 − 𝑖 ≤ 0, and �̂�ℎ(𝑙 − 𝑖) = 𝑋ℎ+𝑙−𝑖 if 𝑙 − 𝑖 ≤ 0.

Recursively we can calculate the 1 to 𝑙 steps ahead forecast (Tsay, 2010. p.68-69).

We describe the forecast process by an example in which we calculate the 1-step ahead forecast of the
ARIMA(1, 1, 1) model for the time series {𝑋𝑡}. As explained in Section 3.7 if the time series {𝑋𝑡} is
modeled with the ARIMA(1, 1, 1) model, then the 𝑊𝑡 = Δ𝑋𝑡 series can be modeled with the ARMA(1, 1)
model. Let �̂�ℎ(1) denote the 1-step ahead forecast, which we calculate by the same theoretical approach
described above, then

�̂�ℎ(1) = E[𝑋ℎ+1 ∣ ℱℎ]
= E[(𝑋ℎ+1 − 𝑋ℎ) + 𝑋ℎ ∣ ℱℎ]
= E[𝑊ℎ+1 + 𝑋ℎ ∣ ℱℎ]
= �̂�ℎ(1) + 𝑋ℎ
= E[𝑊ℎ+1 ∣ ℱℎ] + 𝑋ℎ
= 𝑐 + 𝜙1𝑊ℎ + 𝜃1𝑎ℎ + 𝑋ℎ
= 𝑐 + 𝜙1(𝑋ℎ − 𝑋ℎ−1) + 𝜃1𝑎ℎ + 𝑋ℎ

where we have used that for 𝑖 > ℎ the mean of 𝑎𝑖 is zero and the �̂�ℎ(1) is the corresponding 1-step ahead
forecast of the ARMA(1, 1) model. The forecast error of the 1 step ahead forecast, 𝑒ℎ(1) is calculated by

𝑒ℎ(1) = 𝑋ℎ+1 − �̂�ℎ(1)
= 𝑋ℎ+1 − (�̂�ℎ(1) + 𝑋ℎ)
= 𝑊ℎ+1 − �̂�ℎ(1)
= 𝑎ℎ+1.

A 95 % prediction interval of the 1 step ahead forecast is calculated by �̂�ℎ(1) ± 1.96�̂�𝑎 where �̂�𝑎 is the
residual standard deviation. For the multistep prediction interval of the ARIMA model the calculations are
more complex and the theory out of the scope of this study. We will however compute prediction intervals
in Section 5.3.2 using the R package forecast for our future forecast plots.
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3.11 Statistical tests
3.11.1 Autocorrelation function

A way to determine the linear dependency (autocorrelation) between 𝑋𝑡 and 𝑋𝑡−𝑙 for an arbitrary 𝑙 is by
the Autocorrelation function (ACF) which is defined by

𝜌𝑙 = Cov(𝑋𝑡, 𝑋𝑡−𝑙)
√Var(𝑋𝑡) Var(𝑋𝑡−𝑙)

= Cov(𝑋𝑡, 𝑋𝑡−𝑙)
Var(𝑋𝑡)

= 𝛾𝑙
𝛾0

,

under the weak stationary assumption that Var(𝑋𝑡) = Var(𝑋𝑡−𝑙) where 𝜌𝑙 is 𝑋𝑡’s lag-𝑙 autocorrelation
coefficient between 𝑋𝑡 and 𝑋𝑡−𝑙.

For a weakly stationary time series {𝑋𝑡} satisfying 𝑋𝑡 = 𝜇 + ∑𝑞
𝑖=0 𝜓𝑖𝑎𝑡−𝑖 where 𝜓0 = 1 and {𝑎𝑡} is a

sequence of independent identically distributed random variables with mean E[𝑎𝑡] = 0, the estimated lag-𝑙
autocorrelation ̂𝜌𝑙 is asymptotically normally distributed 𝑁(0, (1 + 1 ∑𝑞

𝑖=1 𝜌2
𝑖 )/𝑇 ) for 𝑙 > 𝑞.

The estimated lag-𝑙 sample autocorrelation of 𝑋𝑡 is

̂𝜌𝑙 =
∑𝑇

𝑡=𝑙+1(𝑋𝑡 − �̄�)(𝑋𝑡−𝑙 − �̄�)
∑𝑇

𝑡=1(𝑋𝑡 − �̄�)2

for 1 ≤ 𝑙 < 𝑇 − 1 (Tsay, 2010. p.31-32).

3.11.2 The Partial Autocorrelation Function

The Partial Autocorrelation Function, denoted PACF, is a function of ACF which calculates the amount of
correlation between a time series {𝑋𝑡} and a lag 𝑙 which is not explained by the correlation at lags < 𝑙.
For 𝑘 = 1, 2, ... number of parameters and 𝑚 = 1, 2, .. we let 𝜙0,𝑘 be constants, 𝜙𝑚,𝑘 the coefficients of 𝑋𝑡−𝑚
and {𝑎𝑘𝑡} be the error terms of the AR(𝑘) models. Consider the following AR models which increase by the
amount of parameters

𝑋𝑡 = 𝜙01 + 𝜙11𝑋𝑡−1 + 𝑎1𝑡
𝑋𝑡 = 𝜙02 + 𝜙12𝑋𝑡−1 + 𝜙22𝑋𝑡−2 + 𝑒2𝑡
𝑋𝑡 = 𝜙03 + 𝜙13𝑋𝑡−1 + 𝜙23𝑋𝑡−2 + 𝜙33𝑋𝑡−3 + 𝑒3𝑡
𝑋𝑡 = 𝜙04 + 𝜙14𝑋𝑡−1 + 𝜙24𝑋𝑡−2 + 𝜙34𝑋𝑡−3 + 𝜙44𝑋𝑡−4 + 𝑒4𝑡

⋮

The parameter estimates ̂𝜙𝑘𝑘 for 𝑘 = 1, 2, ... can be estimated by a least squares method and are the lag-𝑘
sample PACF of 𝑋𝑡. The equations above calculated in a sequential order then shows the added contribution
of 𝑋𝑡−𝑘 to 𝑋𝑡 in an AR(𝑘 − 1) model. For an AR(𝑝) model, the sample PACF lag-𝑘 should be close to zero
for all 𝑘 > 𝑝, which can be helpful when selecting the amount of AR parameters in the model selection (Tsay,
2010. p.46-47).
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3.11.3 Ljung-Box Portmanteau test

The Ljung-Box Portmanteau test is a way of looking for serial correlation in the observations (Tsay, 2010.
p.32). Let 𝜌𝑙 be the autocorrelation, then the test can be set up with the hypothesis

𝐻0 ∶ 𝜌1 = ... = 𝜌𝑚 = 0
𝐻𝑎 ∶ 𝜌𝑙 ≠ 0, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑙 ∈ (1, 𝑚).

The test statistic is calculated by

𝑄(𝑚) = 𝑇 (𝑇 + 2)
𝑚

∑
𝑙=1

̂𝜌2
𝑙

𝑇 − 𝑙 ,

where 𝑇 is the number of observations, 𝑚 is the chosen lag and ̂𝜌𝑙 is the sample autocorrelation defined
in Section 3.11.1. Under the null hypothesis 𝑄(𝑚) is asymptotically 𝜒2− distributed with 𝑚 degrees of
freedom.

If 𝑄(𝑚) > 𝜒2
𝑚(𝛼) for the chosen level 𝛼 the 𝐻0 is rejected and the model can be considered inadequate.

The test can be applied on the residuals of a fitted model, which under the null hypothesis 𝑄(𝑚) is instead
asymptotically 𝜒2

𝑚−𝑝 distributed and 𝑝 is the corresponding amount of AR parameters of the fitted model
(Tsay, 2010. p.50-51).

3.11.4 ADF

The Augmented Dickey-Fuller unit root test is a tool to discover an unit root in an AR(𝑝) process, and
is thus a way of evaluating the stationarity of a time series. The ADF test is set up by testing the null
hypothesis 𝐻0 ∶ 𝛽 = 1 against the alternative hypothesis 𝐻𝑎 ∶ 𝛽 < 1. This is done by using the regression
𝑋𝑡 = 𝑐𝑡 + 𝛽𝑋𝑡−1 + ∑𝑝−1

𝑖=1 𝜙𝑖Δ𝑋𝑡−𝑖 + 𝑎𝑡, such that 𝑐𝑡 is the deterministic function of the time index 𝑡, the
differenced series of {𝑋𝑡} is Δ𝑋𝑗 = 𝑋𝑗 − 𝑋𝑗−1. Let ̂𝛽 be the least-squares estimate of 𝛽, then we have the
𝑡-statistic

ADF-test =
̂𝛽 − 1

𝑠𝑒( ̂𝛽)
.

When the null hypothesis is rejected, it signals a stationary time series (Tsay, 2010. p.77).

3.11.5 AIC

Akaike’s Information Criterion uses estimated maximum likelihood to determine the goodness of fit of a
model. AIC is defined by

𝐴𝐼𝐶 = −2𝐿( ̂𝜃) + 2𝑘,
where 𝐿( ̂𝜃) is the estimated maximum loglikelihood of parameters 𝜃 and 𝑘 is the number of parameters in
𝜃. A model with a low AIC is then seen as a better fit to data than a model with high a AIC (Held and
Sabanés Bové, 2014. p.224).
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3.11.6 Likelihood Ratio test

We can compare two models 𝑀𝑖 and 𝑀𝑗, where 𝑀𝑖 ⊂ 𝑀𝑗, by a Likelihood Ratio test (LR-test). By using
the description of the LR-test from (Held and Sabanés Bové, 2014. p.221-222) we write the hypothesis

𝐻0 ∶ 𝑀𝑖 holds
𝐻1 ∶ 𝑀𝑗 holds, but not 𝑀𝑖,

which we wish to test against each other. The test statistic can be calculated by

𝐺2(𝑀𝑖 ∣ 𝑀𝑗) = 𝐺2(𝑀𝑖) − 𝐺2(𝑀𝑗)
= 2(𝐿( ̂𝜃𝑀𝑖

) − 𝐿( ̂𝜃𝑀𝑗
)),

with the estimated maximum loglikelikoods 𝐿( ̂𝜃𝑀𝑖
) and 𝐿( ̂𝜃𝑀𝑗

).

𝐺2(𝑀𝑖 ∣ 𝑀𝑗) is asymptotically 𝜒2
𝑑𝑓(𝛼)- distributed for 𝑑𝑓 = number of additional parameters in 𝑀𝑗 degrees

of freedom and chosen level 𝛼. The corresponding p-value is given by

𝑃(𝜒2
𝑑𝑓(𝛼) ≥ 𝐺2(𝑀𝑖 ∣ 𝑀𝑗)).

3.11.7 RMSE

The root mean square error is a measurement of the deviation of the predicted value ̂𝑥𝑡 to the observed value
𝑥𝑡 at time 𝑡. This comes in handy when determining how well a forecast model performs. For 𝑁 observations
the RMSE of is computed by

𝑅𝑀𝑆𝐸(�̂�) = √𝑀𝑆𝐸(�̂�) =
√√√
⎷

1
𝑁

𝑁
∑
𝑡=1

( ̂𝑥𝑡 − 𝑥𝑡)2.

That a model fits data and thus shows a good in-sample forecasting does not directly lead to a good out-of-
sample forecasting. The RMSE will be used to evaluate the forecasting performance of fitted models.
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4 Data
Originally daily weather data was collected from (SMHI, n.d (b)) of air temperature, wind speed and
precipitation. The data was distributed over 28 stations from different locations in Sweden between the
dates 1966-01-01 and 2019-11-01. For this thesis the stations were divided into the categories South, Mid
and North based on their geographical location, where the 15 chosen stations were selected after inspecting
lowest amount of missing values in each data set.

The analysis was focused on the South region, which is represented by Falsterbo, Hallands Väderö, Hanö,
Vinga and Visby, unless otherwise stated. The data was looked at on a monthly basis, and it exhibited
strong seasonal patterns that is approached in the model selection. The mean over each month was taken,
so the analysis is without consideration to the fluctuation that daily data may provide.

In general the monthly mean air temperatures varied between 20 to -20 degrees Celsius depending on in
which part of Sweden the station was located. For example, the mean air temperatures varied between 20
and -5 degrees (Celsius) in the south (Figure 1), and there were some very clear seasonal components. When
looking closer on smaller ranges of the data, the yearly periods were particularly distinct.

The monthly wind speed in the south varied between 3 and 12 meter per second (mps) as seen in Figure
1, whereas in the mid area and the north the interval was between 0 and 7 mps. The precipitation had
monthly observations between 0 to 6 milliliter (mm) of precipitation for the whole country of Sweden. The
data appeared to spike quite randomly but otherwise had a clear periodic behavior on a yearly basis as seen
in Figure 1.
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Figure 1: Representative plots of monthly mean weather data in Sweden

4.1 Transforming data
As illustrated in Figure 1, the wind speed and precipitation plots exhibits unstable variances. To remedy
this, the Box-Cox transformations were applied to these time series. The method of transformation is more
thoroughly presented in Appendix A: Section 8.1.1. The transformed time series are plotted in Appendix A:
Figure 8.

An approach to handling the seasonality of a time series was to seasonally adjust the data before modelling,
thus yielding seasonal stationary data. The weather data consisted of at least trends and seasons which
in general did not change over time, so an additive model could have been applied as seasonal adjustment.
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Another approach of handling the seasonality could be by seasonal differencing in the seasonal ARIMA
(SARIMA) model. The SARIMA model was more effective than the seasonal adjusting since it allowed
random changes in the seasonal component (Linde, 2005). For example, there was a strong pattern of
annual seasonality in the mean air temperature, so one seasonal differencing at appropriate lag-𝑙 would have
been applied in the SARIMA model at least. For this paper the SARIMA model method of dealing with
seasonality has been applied.

5 Methodology
In the forecasting model selection we looked at models using past data from the station, and also considered
possible forecasting models obtained using past data from the other stations from the same category. Since
we focused on the southern region of Sweden, the station located in Falsterbo was chosen to be used for
prediction. The other stations in the region were thus not used in the forecast process, and were only
considered in the model selection phase. A selection of tested models are presented in Appendix B: Table 9.
We also evaluated the naive and seasonal naive models for the Falsterbo station data. The chosen models
were then compared with the naive and seasonal naive models in the Section 5.3 about forecast performance.

We followed the iterative approach to model building described in (Box et al., 2016, p.16), which was
manually conducted in different stages. After exploring the data the SARIMA class of models was considered.
Then an identification of a potential SARIMA model was made. Diagnostic checking of the potential model
was performed to see if it was adequate. If deemed a good fit the model was used in forecasting, otherwise
if proved inadequate the potential model was discarded and the process starts over on identifying a new
potential model.

In the second stage of model building, where we attempted to identify a potential model, an automatic model
selection was initially considered. The R function auto.arima was considered, but the resulting models gave a
poorer fit than the ones obtained in the manual model selection and was thus not included. When performing
the manual model selection, the following approach and logic from (Hyndman and Athanasopoulos, 2014)
was applied in identifying a potential model. The SARIMA model was fitted by first observing the data
in plots to see if there were any seasonality, trends, fluctuating observations or change in variance. In
the case of unstable variance, Box-Cox transformations were applied in the previous Section 4.1. If the
data was non-stationary, seasonal and non-seasonal differencing were applied the required amount of times
until stationarity was accomplished. ADF tests were performed in this phase to test the stationarity of the
data using an appropriate lag produced by the chosen order of the function ar in the R package stats for
the test. The amount of differencing was reflected in the 𝑑 (non-seasonal) and 𝐷 (seasonal) values of the
ARIMA(𝑝, 𝑑, 𝑞)(𝑃 , 𝐷, 𝑄)𝑠 model.

The ACFs and PACFs can give indication on whether an AR(𝑝), MA(𝑞), SAR(𝑃 ) or SMA(𝑄) term should
be added to the model. For instance (Shumway and Stoffer, 2011. p.108,155) suggests that, for the non-
seasonal terms we look for if the PACFs plot cuts off after lag-𝑝 and the ACFs plot tails off after lag 𝑝 then
we may consider adding AR(𝑝) terms to the model. While if the ACFs plot cuts off after lag 𝑞 and the
PACFs plot tails off after lag 𝑞 we instead consider MA(𝑞) terms. For seasonal terms we consider a similar
reasoning, from (Hyndman and Athanasopoulos, 2014), which suggests that if at a specific lag 𝑠 and further
on 2𝑠, 3𝑠, … the ACFs “spikes” and the PACFs cuts off at lag 𝑠 then adding a SAR(𝑃 ) may be appropriate.
While if the reverse is true of the ACFs and PACFs then adding a SMA(𝑄) term to the model should be
considered instead. Here the term “spikes” refers to the sample ACF presence outside of the standard error
limits, which are depicted in blue in the ACFs plots. A spike in the ACFs plot tells us that the ACF at lag-𝑙
is significantly different from 0 at a 5 % level. The same applies to the PACF case.

Further in the next stages of model building the potential model was fitted and we calculated the AIC as a
measure of the goodness of fit. The ACFs and PACFs plots of the potential model’s residuals are presented,
which for a white noise series that consists if i.i.d random variables should be approximately 0. When
determining which models appeared to be adequate at this stage, all the sample ACFs should have been
within their 5 % standard error limits to indicate them being not significantly different from 0 (Tsay, 2010.
p.32).
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The Ljung-Box test was performed to test the independence between the lags and thus the absence of
autocorrelation. We further checked if the residuals resembled white noise with residual diagnostics in the
form of Q-Q plots, standardized histogram and scatter plot over residuals versus fitted values were evaluated
in the diagnostic checking.

For mixed ARIMA models there are simulation studies suggesting a Likelihood Ratio test may perform better
than a t-test when testing for unit roots according to (Box et al., 2016, p.359). To test the significance of
the whole models we conducted LR-tests (Section 3.11.6) in the model selection. Thus we had an additional
way of comparing models. This was a way of determining if more parameters should have been included in
the model for a better goodness of fit. The in-sample RMSE was also used to see how well the fitted values,
the in-sample forecasts, had been calculated in comparance to the observed values. When the best model
had been chosen, it was used for out-of-sample forecast in Section 5.3.

5.1 Model selection
We will present plots in a representative manner for the air temperature, whilst referring to the appropriate
appendix for the other variables. This is applied for both the model selection and the evaluation of the naive
models.

5.1.1 Air temperature model selection

In this section we wanted to find a model which fitted the data using the methodology described above. Let
us denote the monthly mean air temperature in Falsterbo by the series {𝑋𝑡}. We started the model selection
phase by performing ADF tests on the monthly mean air temperature for all stations in the south region,
with main focus on Falsterbo. Since Falsterbo station was chosen as a representative of the south of Sweden
stations, it was important to see if the other stations in the region tested similar. The ADF test statistic
for the monthly mean air temperature in Falsterbo was calculated using the R package fUnitRoots function
adfTest to −5.11 and with a p-value of 0.01. Thus we could reject the null hypothesis (Appendix A: Table
8) on a 1 % level, meaning the series could be considered stationary and that no unit root was detected.
Thus no regular differencing has to be applied for the monthly mean air temperature in the South.
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Figure 2: Sample ACFs plots of monthly mean air temperature in Falsterbo series {𝑋𝑡}. The right ACF
plot have been seasonal differenced once, 𝐷 = 1 at the period 𝑠 = 12.
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The ACFs plot of the monthly mean air temperature without seasonal differencing displays a clear seasonal
pattern in Figure 2. With the seasonal differencing the ACFs plot in Figure 2 shows significant spike at
lag-1 which suggests a non-seasonal MA-term, and a significant spike at lag-12 which suggests a seasonal
MA-term (Hyndman and Athanasopoulos, 2014). Thus the ARIMA(0, 0, 1)(0, 1, 1)12 model was chosen as
our starting point. We see the same plots and corresponding PACF in Appendix A: Figure 9.

By evaluating the ACFs and PACFs of the residuals of the fitted models, we continued to look for significant
spikes which would have indicated that we should have added another component for a better fit. We also
fitted some other models, as the ARIMA(1, 0, 0)(1, 1, 0)12. This was also done on the other stations in the
South to see which models fitted the data best, since we wanted the best model for the whole area. The
ACFs and PACFs of the ARIMA(1, 0, 0)(0, 1, 1)12 model´s residuals are found in Appendix B: Figure 12,
where approximately all sample ACFs are within the 5 % standard error limits which indicates that they are
not significantly different from 0.

The model with the lowest AIC of 2248.76 when applied to the Falsterbo data was ARIMA(1, 0, 1)(0, 1, 1)12
with ARIMA(1, 0, 0)(0, 1, 1)12 and ARIMA(0, 0, 3)(0, 1, 1)12 close behind as seen in Table 1. After also
checking these models as well as other similar models for the monthly mean air temperature of the other
stations in the South, these models were also suggested as the best fits even when fitted on the other stations
in the South. The models are summarized in Appendix B: Table 9. To determine which of these models to
choose we wanted to evaluate the in-sample RMSE and the residuals, and also perform LR-tests.

Table 1: Selection of potential models for monthly mean air temperature in Falsterbo series {𝑋𝑡}. The
chosen model is presented in bold font.

Model AIC RMSE LogLik
ARIMA(0, 0, 1)(0, 1, 1)12 2284.27 1.439356 -1139.136
ARIMA(0, 0, 2)(0, 1, 1)12 2267.2 1.46336 -1129.602
ARIMA(0, 0, 3)(0, 1, 1)12 2253.6 1.419938 -1121.802
ARIMA(1, 0, 0)(0, 1, 1)12 2248.76 1.417881 -1121.381
ARIMA(1, 0, 1)(0, 1, 1)12 2248.45 1.414223 -1120.224

For the ARIMA(0, 0, 3)(0, 1, 1)12 the in-sample RMSE measured up to 1.417881, which was slightly lower
than 1.419938 for the ARIMA(1, 0, 1)(0, 1, 1)12 model. The model with the lowest in-sample RMSE was
however ARIMA(1, 0, 1)(0, 1, 1)12 at 1.414223.

The residuals should have constant variance and hopefully be normally distributed. Before deciding which
model to use in the forecasting process we looked at Q-Q plots and histograms of the residual series for the
models. The residual plots for the three models were very similar. They all displayed some lower tails and
also seemed to have some outliers at the bottom of the Q-Q plots, as seen for the ARIMA(1, 0, 0)(0, 1, 1)12
model in Figure 3. The Residual versus fitted plot in Figure 3 shows that the points are mostly evenly
scattered along the estimated regression line depicted in red, but there appears to be some sort of clustering.
With that in mind the residuals were considered approximately white noise, which was desireable. Both the
AIC and RMSE indicated that the ARIMA(1, 0, 1)(0, 1, 1)12 model was the best fit for the monthly mean air
temperature in Falsterbo.
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Figure 3: Residual diagnostics of the ARIMA(1, 0, 0)(0, 1, 1)12 model of monthly mean air temperature in
Falsterbo series {𝑋𝑡}.

We performed LR-tests with one model against another model with more parameters. We used the null
hypothesis that the smaller model holds against the alternative hypothesis that the bigger model holds
but not the smaller model. Out of the three considered models the ARIMA(0, 0, 3)(0, 1, 1)12 model had
the most parameters and was thus the largest model, so we started by comparing that model to the
ARIMA(1, 0, 1)(0, 1, 1)12 model. The loglikelihood of the models are presented in Table 1.

For simplicity we let 𝑀𝐴1 represent the ARIMA(1, 0, 1)(0, 1, 1)12 model, 𝑀𝐴2 the ARIMA(1, 0, 0)(0, 1, 1)12
model and 𝑀𝐴3 the ARIMA(0, 0, 3)(0, 1, 1)12 model in the LR-tests.

For 𝑀𝐴1 ⊂ 𝑀𝐴3, we got:

𝐺2(𝑀𝐴1 ∣ 𝑀𝐴3) = 𝐺2(𝑀𝐴1) − 𝐺2(𝑀𝐴3) = −2(−1121.8 − (−1120.22)) = 3.16
With one additional parameter in 𝑀𝐴3 we got that there was 𝑑𝑓 = 1 degrees of freedom and p-value:

𝑃(𝜒2
1 ≥ 𝐺2(𝑀𝐴1 ∣ 𝑀𝐴3)) = 0.0757

In comparison to 𝜒2
1(0.05) = 3.84 we got a lower test statistic, which together with the p-value that barely

exceeded 0.05 made us not reject the null hypothesis on a 5 % level. We continued by comparing the
ARIMA(1, 0, 1)(0, 1, 1)12 model with the simpler ARIMA(1, 0, 0)(0, 1, 1)12 model.

For 𝑀𝐴2 ⊂ 𝑀𝐴1, we got:

𝐺2(𝑀𝐴2 ∣ 𝑀𝐴1) = −2(−1121.38 − (−1120.22)) = 2.31
With one additional parameter in 𝑀𝐴1 we got that there was 𝑑𝑓 = 1 degrees of freedom and p-value:

𝑃(𝜒2
1 ≥ 𝐺2(𝑀𝐴2 ∣ 𝑀𝐴1)) = 0.1283

So we could not reject the null hypothesis that the 𝑀𝐴2 model held on a 5 % level. Thus we chose the
simpler ARIMA(1, 0, 0)(0, 1, 1)12 model to use for forecasting.
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We performed the Ljung-Box test on the ARIMA(1, 0, 0)(0, 1, 1)12 residual series to look for serial correlation
in the observations. This was set up with the null hypothesis that the lag-𝑙 for 𝑙 ∈ (1, 𝑚) were independent of
each other against the alternative hypothesis that at least one of the lag-𝑙 in 𝑙 ∈ (1, 𝑚) were not independent.
For 𝑚 = 12 we got the following test result.

𝑄(12) = 17.932 < 𝜒2
12(0.05) = 21.03,

with the p-value
𝑃(𝜒2

12(0.05) ≥ 𝑄(12)) = 0.118.
Since the test statistic was lower than 𝜒2

12(0.05) and the p-value exceeded 0.05, we could not on a 5 % level
reject the null hypothesis of independence between the observations in favor of the alternative hypothesis that
there were serial correlation between the observations. For 𝑚 = 24 we could once more not reject the null
hypothesis, with the results being presented in Appendix B: Table 10. However for 𝑚 = 36 we got the p-value
0.048 < 0.05 for which we could reject the null hypothesis on a 5 % level. This meant that at higher lags
there might exist serial correlation between the observations. We chose to keep the ARIMA(1, 0, 0)(0, 1, 1)12
model as a the selected model for forecasting in Section 5.3.

The model selected for the monthly mean air temperature series {𝑋𝑡} could be described by:

(1 − 𝜙1𝐵)(1 − 𝐵12)𝑋𝑡 = (1 + Θ1𝐵12)𝑎𝑡

So,
𝑋𝑡 = 𝑋𝑡−12 + 𝜙1(𝑋𝑡−1 − 𝑋𝑡−13) + Θ1𝑎𝑡−12 + 𝑎𝑡,

where {𝑎𝑡} was a white noise series. With the coefficients estimates we could write the model as:

𝑋𝑡 = 𝑋𝑡−12 + 0.5014(𝑋𝑡−1 − 𝑋𝑡−13) − 0.9299𝑎𝑡−12 + 𝑎𝑡,

where we used coefficients estimations computed by R. A summary of the model is found in the Appendix
B: Table 11.

5.1.2 Wind speed model selection

Let us denote the Box-Cox transformed monthly mean wind speed by the series {𝑉𝑡(𝜆𝑊 )}. We performed
the ADF test for the Box-Cox transformed monthly mean wind speed as described in the beginning of
Section 5.1.1, for which the test results are found in Appendix A: Table 8. The p-value of the test statistic
for the Falsterbo station data was 0.69 for which we could not reject the null hypothesis, meaning the test
had detected an unit root in the series, and that the non-stationary time series needed regular differencing.
There was only one stations in the South (Hallands Väderö) for which we could reject the null hypothesis on
a 5 % level. Upon differencing the {𝑉𝑡(𝜆𝑊 )} series one time, the null hypothesis in the ADF test could be
rejected and thus the monthly mean wind speed could after a Box-Cox transformation and one differencing
be seen as stationary (Appendix A: Figure 10). So once again we went through the procedure of examining
the sample ACFs and PACFs plots of the transformed data and manually proceeding in the same manner
for the residual series. There are significant spikes at lag-1 and 12 in the sample ACF plot in Appendix
A: Figure 10, and the base SARIMA models to be considered were then the ARIMA(0, 1, 1)(0, 1, 1)12 and
ARIMA(1, 1, 0)(1, 1, 0)12 models.

After manually fitting different similar SARIMA models the one with the lowest AIC of -1629.314633 value
was the ARIMA(1, 1, 2)(0, 1, 1)12 model, with several similar models close behind presented in Table 2 and
also in Appendix B: Table 9.
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Table 2: Selection of potential models for the Box-Cox transformed monthly mean wind speed in Falsterbo
series {𝑉𝑡(𝜆𝑊 )}. The chosen model is presented in bold font.

Model AIC RMSE LogLik
ARIMA(0, 1, 1)(0, 1, 1)12 -1624.01 0.062277 815.005
ARIMA(0, 1, 2)(0, 1, 1)12 -1626.75 0.061996 817.376
ARIMA(0, 1, 3)(0, 1, 1)12 -1625.9 0.061937 817.952
ARIMA(1, 1, 1)(0, 1, 1)12 -1627.21 0.061972 817.603
ARIMA(1, 1, 2)(0, 1, 1)12 -1629.31 0.061857 819.657
ARIMA(1, 1, 3)(0, 1, 1)12 -1624.23 0.061896 818.113

By looking at the in-sample RMSE in the same table we saw that the ARIMA(1, 1, 2)(0, 1, 1)12 model’s in-
sample RMSE of 0.061857 was slightly lower than the other models. However considering the small difference
between the models AIC and in-sample RMSE, we computed LR-tests and looked at residuals diagnostics
before discarding any model. The best model candidate for the best fit was ARIMA(1, 1, 2)(0, 1, 1)12, thus
we performed LR-tests to compare it with other models. We let 𝑀𝑊1 represent the ARIMA(1, 1, 1)(0, 1, 1)12
model and 𝑀𝑊2 the ARIMA(1, 1, 2)(0, 1, 1)12 model which we compared in a LR-test. The null hypoth-
esis 𝐻0 ∶ 𝑀𝑊1 holds, was tested against the alternative hypothesis 𝐻𝑎 ∶ 𝑀𝑊2 holds, but not 𝑀𝑊1. The
loglikelihood of the models are presented in Table 2.

For 𝑀𝑊1 ⊂ 𝑀𝑊2, we got:

𝐺2(𝑀𝑊1 ∣ 𝑀𝑊2) = 𝐺2(𝑀𝑊1) − 𝐺2(𝑀𝑊2) = −2(817.6 − (819.66)) = 4.11
With there being one additional parameter in 𝑀𝑊2 there was 𝑑𝑓 = 1 degrees of freedom and p-value:

𝑃(𝜒2
1 ≥ 𝐺2(𝑀𝑊1 ∣ 𝑀𝑊2)) = 0.0427

In comparison to 𝜒2
1(0.05) = 3.84 we got a higher test statistic, which together with the significant p-

value lesser than 0.05 made us reject the null hypothesis on a 5 % level. A LR-test between the smaller
ARIMA(1, 1, 2)(0, 1, 1)12 model and the bigger ARIMA(1, 1, 3)(0, 1, 1)12 model was also performed with the
null hypothesis that the smaller model would hold against the alternative hypothesis that the bigger model
would hold but not the smaller model. The resulting test statistic indicated that null hypothesis could not
be rejected, which lead us to consider the ARIMA(1, 1, 2)(0, 1, 1)12 model as the best fit for the Box-Cox
transformed and once differenced mean wind speed in Falsterbo.

The sample ACFs and PACFs of the ARIMA(1, 1, 2)(0, 1, 1)12 model’s residuals depicted in Appendix B:
Figure 13 shows that all sample ACFs except at lag-5 are well within the 5 % standard error limits. The
ACF at lag-5 is almost at the upper limit, which lead us to approximately consider all the sample ACFs as
not significantly different from 0 at a 5 % level. The residual diagnostics of the ARIMA(1, 1, 2)(0, 1, 1)12
model are plotted in Appendix B: Figure 14. The residuals follow a normal distribution with some outliers
on the tail, which explains the left shifted histogram of the standardized residuals. The residual vs fitted
scatter plot indicates a constant variance.

We also performed the Ljung-Box test on the residuals of the ARIMA(1, 1, 2)(0, 1, 1)12 model to evaluate if
there was any serial correlation present in the residual series. The Ljung-Box test on the residuals results
(Appendix A: Table 10) shows p-values larger than 0.05, which indicates that one can not reject the null
hypothesis of independence between the observations for the alternative hypothesis that there are serial
correlation in the observations. So we may consider the residual series white noise.
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The selected ARIMA(1, 1, 2)(0, 1, 1)12 model can for the Box-Cox transformed monthly mean wind speed
{𝑉𝑡(𝜆𝑊 )} be described by:

(1 − 𝜙1𝐵)(1 − 𝐵12)(1 − 𝐵)𝑉𝑡(𝜆𝑊 ) = (1 + 𝜃1𝐵 + 𝜃2𝐵2)(1 + Θ1𝐵12)𝑎𝑡

where {𝑎𝑡} is a white noise series.

Which can in terms of the Box-Cox transformer 𝜆𝑊 = −0.4378918 and by using the backshift operator
defined by 𝐵𝑖𝑉𝑡 = 𝑉𝑡−𝑖 for the time series {𝑉𝑡} be rewritten as

𝑉𝑡(𝜆𝑊 ) = (1 + 𝜙1)(𝑉𝑡−1(𝜆𝑊 ) + 𝑉𝑡−12(𝜆𝑊 ) − 𝑉𝑡−13(𝜆𝑊 ))+

+𝜃1𝑎𝑡−1 + 𝜃2𝑎𝑡−2 + Θ1𝑎𝑡−12 + 𝜃1Θ1𝑎𝑡−13 + 𝜃2Θ1𝑎𝑡−14 + 𝑎𝑡.

𝑉𝑡(𝜆𝑊 ) = (1 + 0.8334)(𝑉𝑡−1(𝜆𝑊 ) + 𝑉𝑡−12(𝜆𝑊 ) − 𝑉𝑡−13(𝜆𝑊 ))−
−1.6706𝑎𝑡−1 + 0.6807𝑎𝑡−2 − 0.9576𝑎𝑡−12 + 1.5998𝑎𝑡−13 − 0.6518𝑎𝑡−14 + 𝑎𝑡.

The model’s coefficients estimates of the Box-Cox transformed monthly mean wind speed was computed by
R. A summary of the model is found in the Appendix B: Table 12.

5.1.3 Precipitation model selection

Let us denote the Box-Cox transformed monthly mean precipitation by the series {𝑌𝑡(𝜆𝑃 )}. We started by
performing the ADF test in the same manner as earlier, which test results are found in Appendix A: Table 8.
As a summary we obtained the p-value 0.01 for all the stations in the South in the ADF test which lead us to
reject the null hypothesis and to consider the {𝑌𝑡(𝜆𝑃 )} series as stationary. Thus no regular differencing was
applied for the Box-Cox transformed monthly mean precipitation in the South. The ACF of the Box-Cox
transformed monthly mean precipitation without seasonal differencing displayed a clear seasonal pattern,
leading us to proceed with one seasonal differencing (Appendix A: Figure 11). The ACFs plot in Appendix
A: Figure 11 shows a significant spike at lag-12 which suggests a seasonal MA-term (SMA) (Hyndman and
Athanasopoulos, 2014). Thus the ARIMA(0, 0, 0)(0, 1, 1)12 was our starting point for the manual model
selection, and we also considered similar models.

Table 3: Selection of potential models for the Box-Cox transformed monthly mean precipitation in Falsterbo
series {𝑌𝑡(𝜆𝑃 )}. The chosen model is presented in bold font.

Model AIC RMSE LogLik
ARIMA(0, 0, 0)(0, 1, 1)12 1321 1.175032 -658.499
ARIMA(0, 0, 1)(0, 1, 1)12 1318.38 1.175942 -656.191
ARIMA(1, 0, 0)(0, 1, 1)12 1318.96 1.175582 -656.478
ARIMA(1, 0, 1)(0, 1, 1)12 1323.49 1.172896 -657.745

After fitting different similar SARIMA models, the one with the lowest AIC value was ARIMA(0, 0, 1)(0, 1, 1)12
closely followed by the ARIMA(1, 0, 0)(0, 1, 1)12 presented in Table 3 and also in Appendix B: Table 9. The
in-sample RMSE did not add much clarity on which model that should be chosen, but further evaluation of
the residuals indicated that the ARIMA(0, 0, 1)(0, 1, 1)12 model was the better fit.

We performed LR-tests to compare the models and decide upon which model to chose. We let 𝑀𝑃1
represent the ARIMA(0, 0, 0)(0, 1, 1)12 model, 𝑀𝑃2 the ARIMA(0, 0, 1)(0, 1, 1)12 model and 𝑀𝑃3 the
ARIMA(1, 0, 1)(0, 1, 1)12 model which we compared in LR-tests. The null hypothesis 𝐻0 ∶ 𝑀𝑃1 holds, was
tested against the alternative hypothesis 𝐻𝑎 ∶ 𝑀𝑃2 holds, but not 𝑀𝑃1. The loglikelihood of the models are
presented in Table 3.
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For 𝑀𝑃1 ⊂ 𝑀𝑃2, we got:

𝐺2(𝑀𝑃1 ∣ 𝑀𝑃2) = 𝐺2(𝑀𝑃1) − 𝐺2(𝑀𝑃2) = −2(−658.5 − (−656.19)) = 4.62
With there being one additional parameter in 𝑀𝑃2 there is 𝑑𝑓 = 1 degrees of freedom and p-value:

𝑃(𝜒2
1 ≥ 𝐺2(𝑀𝑃1 ∣ 𝑀𝑃2)) = 0.0317

In comparison to 𝜒2
1(0.05) = 3.84 we got a higher test statistic, which together with the significant p-

value lesser than 0.05 made us reject the null hypothesis on a 5 % level. We continued with comparing
𝑀𝑃2 and 𝑀𝑃3 in a LR-test with the null hypothesis 𝐻0 ∶ 𝑀𝑃2 holds, against the alternative hypothesis
𝐻𝑎 ∶ 𝑀𝑃3 holds, but not 𝑀𝑃2.

𝐺2(𝑀𝑃2 ∣ 𝑀𝑃3) = 𝐺2(𝑀𝑃2) − 𝐺2(𝑀𝑃3) = −2(−656.19 − (−656.48)) = −0.57
With there being one additional parameter in 𝑀𝑃3 we get that there is 𝑑𝑓 = 1 degrees of freedom and
p-value:

𝑃(𝜒2
1 ≥ 𝐺2(𝑀𝑃2 ∣ 𝑀𝑃3)) = 0.0779.

We could thus not reject the hypothesis that the smaller model held on a 5% level since the p-value was
higher than 0.05 and the test statistic was lower than 𝜒2

1(0.05) = 3.84. Thus we prefered the smaller model,
in this case the ARIMA(0, 0, 1)(0, 1, 1)12 model.

LR-tests with the ARIMA(0, 0, 1)(0, 1, 1)12 model replaced by the ARIMA(1, 0, 0)(0, 1, 1)12 model were also
performed, and provided the same results. Thus the LR-tests did not provide an explicit model that gave the
best fit, but we knew that both the ARIMA(0, 0, 1)(0, 1, 1)12 model and the ARIMA(1, 0, 0)(0, 1, 1)12 model
were adequate. Since ARIMA(0, 0, 1)(0, 1, 1)12 had a slightly lower AIC we chose this model to continue with
in the forecasting in Section 5.3.

The sample ACFs plot depicted in Appendix B: Figure 18 of the ARIMA(0, 0, 1)(0, 1, 1)12 model’s residuals
have all ACFs within the standard error limits, which indicates that they are at a 5 % level not significantly
different from 0. We wanted the residuals to look approximately normally distributed to be a good fit
and resemble white noise. The residual diagnostics of the ARIMA(0, 0, 1)(0, 1, 1)12 model for the Box-Cox
transformed monthly mean precipitation in Falsterbo is found in Appendix B: Figure 19. There we see that
the histogram is clearly shifted to the left due to the outliers that are spotted in the Q-Q plot. We also
detected a tail in the Q-Q plot, but we approximately treated the residuals as a white noise series. These
outliers could possibly be explained by the extreme dips seen in the plot of the Box-Cox transformed monthly
mean precipitation data in Appendix A: Figure 8, with the most prominent outlier occuring in June 1992.

The Ljung-Box test of the residuals results indicated that one could not reject the null hypothesis of in-
dependence between the observations (with p-values of approximately 0.8) as seen in Appendix B: Table
10.

The model selected can for the Box-Cox transformed monthly mean precipitation {𝑌𝑡(𝜆𝑃 )} be described by:

(1 − 𝐵12)𝑌𝑡(𝜆) = (1 + 𝜃1𝐵)(1 + Θ1𝐵12)𝑎𝑡

where {𝑎𝑡} is a white noise series. Thus in terms of the Box-Cox transformed 𝜆𝑃 = 0.0823902 and by using
the backshift operator defined by 𝐵𝑖𝑌𝑡 = 𝑌𝑡−𝑖 for time series {𝑌𝑡}, can be written as

𝑌𝑡(𝜆𝑃 ) = 𝑌𝑡−12(𝜆𝑃 ) + 𝜃1𝑎𝑡−1 + Θ1𝑎𝑡−12 + 𝜃1Θ1𝑎𝑡−13 + 𝑎𝑡

which with the coefficients estimates are

𝑌𝑡(𝜆𝑃 ) = 𝑌𝑡−12(𝜆𝑃 ) + 0.0918𝑎𝑡−1 − 0.9858𝑎𝑡−12 − 0.0905𝑎𝑡−13 + 𝑎𝑡

The model’s coefficients estimates for the Box-Cox transformed monthly mean precipitation data are com-
puted by R and a summary of the model is found in the Appendix B: Table 13.
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5.2 Naive and seasonal naive models
By the analysis of the ACF and PACF plots of the Box-Cox transformed Falsterbo data (Appendix A: Figure
10,11) we concluded that the Box-Cox transformed data could not be considered stationary without any
differencing. For the case of the Box-Cox transformed monthly mean wind speed {𝑉𝑡(𝜆𝑤)}, only the cases
with either one regular differencing or with both regular and seasonal differencing are displayed. This was
taken in mind when fitting the naive models on the transformed data, since it meant the Box-Cox transformed
data may not meet the requirements of stationarity. All variables exhibited seasonality on a yearly basis and
thus the seasonal naive model had some potential since it involved one seasonal differencing.

After fitting the naive and seasonal naive models to the monthly mean air temperature and the Box-Cox
transformed monthly mean wind speed and precipitation in Falsterbo we see from the sample ACFs and
PACFs plots clear indication on there being serial correlation present for the two naive models that are
employed, the random walk and the seasonal naive model.

5.2.1 Air temperature
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Figure 4: ACF and PACF plot of the naive models residuals of the monthly mean air temperature in Falsterbo
series {𝑋𝑡}. In these plots the naive model is denoted by ARIMA(0, 1, 0) and the seasonal naive model is
represented by ARIMA(0, 0, 0)(0, 1, 0)[12].

The sample ACFs plot of the naive models’ residuals for the monthly mean air temperature in Figure 4
shows big positive spikes at the seasonal lags 12, 24 among others. The corresponding sample PACFs also
show a lot of significant spikes. The sample ACFs and PACFs of the seasonal naive models residuals for the
monthly mean air temperature have spikes at lag-1 and 12, but most ACFs are within the standard error
limits and thus not significantly different from 0 at a 5 % level.
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Figure 5: Residual diagnostics of the naive model for the monthly mean air temperature in Falsterbo series
{𝑋𝑡}.
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Figure 6: Residual diagnostics of the seasonal naive model for the monthly mean air temperature in Falsterbo
series {𝑋𝑡}.
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The Q-Q plots of the naive models residuals for the monthly mean air temperature does not look to be
following a normal distribution (Figure 5-6). The Q-Q plot of the seasonal naive model’s residuals for the
monthly mean air temperature shows tails, but resembles normal distribution fairly well (Figure 6). The
points do not follow the standardized normal line as well as the selected SARIMA model does, but it is
fairly close. The naive model’s Residual versus fitted plot shows a scatter that clearly deviates from the
estimated regression line (depicted in red in Figure 5) in a systematic way. The variance of the residuals is
obviously not constant, so we see the presence of conditional heteroscedasticity in the residuals. The bars in
the histogram in Figure 5 does not follow the standardized normal curve depicted in red. The bars in the
histogram of the seasonal naive model’s residuals in Figure 6 are evenly distributed across the standardized
normal curve represented by the red curve in Figure 6. The seasonal naive model’s Residual versus fitted
plot shows a fairly even scatter of points along the estimated regression line.

5.2.2 Wind speed

The sample ACFs plot of the naive models’ residuals for the Box-Cox transformed monthly mean wind speed
have small spikes at lag-12, 24 and at other lags as seen in Appendix B: Figure 15. There is a seasonal
behavior on both the sample ACFs and PACFs. The seasonal naive model’s residuals sample ACFs plot and
PACFs plot both has spikes at lag-1 and 12, but most lags are within the standard error limits and thus not
significantly different from 0 at a 5 % level.

The Q-Q plots for both naive models’ residuals of the Box-Cox transformed monthly mean wind speed follows
the standardized normal line well, and the histograms are fairly evenly distributed as depicted in Appendix B:
Figure 16-17. The Residual versus fitted plots shows points evenly scattered along the estimated regression
line depicted in red in Appendix B: Figure 16-17.

5.2.3 Precipitation

The sample PACFs plot of the naive models residuals for the Box-Cox transformed monthly mean precipita-
tion has many spikes but not in a clear seasonal pattern (Appendix B: Figure 20). The ACFs plot however
has a spike at lag-1 and the rest of the lags have within the standard error limits and thus not significantly
different from 0 at a 5 % level. The seasonal naive models residuals sample ACFs and PACFs plots have a
spike at lag-12 which is thus significantly different from 0.

The Q-Q plots from the naive models’ residuals for the Box-Cox transformed monthly mean precipitation
in Appendix B: Figure 21-22 seems to approximately follow the standardized normal line. There are two
to three distinct outliers which skews mainly the histograms and the Residual versus fitted plots. Without
these outliers, the points and bars in the plots are quite evenly distributed. The two Residual versus fitted
plots show a cluster of points with a few outliers. There is however a clear tilt in the clusters, meaning they
are only partially centered along the estimated regression lines depicted in red in Appendix B: Figure 21-22.

The Ljung-Box tests results on the residuals for the naive models for all variables all had a p-value of 0
which indicates that there may exist some serial correlation between the observations Appendix B: Table 10.
The AIC and in-sample RMSE on the fitted naive models are also presented in Appendix B: Table 9 with
some of the models from the model selection in the previous section. For all variables the naive models have
a distinctly higher AIC than the chosen model. For monthly mean air temperature the seasonal naive
model has a lower AIC than the naive model, but for the monthly mean Box-Cox transformed wind
speed and the monthly mean Box-Cox transformed precipitation the reverse is true.
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5.3 Prediction
“The forecasting of the random walk model is considered not predictable” (Tsay, 2010. p.73)

At this point we were ready to start with the forecasting. To get a grasp of the out-of-sample forecasting
performance of the models we used the chosen models and compared with the naive models. Since we used
Box-cox transformations on the monthly mean wind speed and precipitation data when fitting the models,
the estimated coefficients for those variables were on that scale. That meant we had to transform the
forecast values back to the original scale before evaluating the forecast performance. For this the inverse of
the respective transformations were employed, see Appendix A: Section 8.1.1.1 for calculations.

For the forecast we divided the data into a train set on which we fitted the model, and a control set that we
could compare the out-of-sample forecast of the model with. We used a recursive method of prediction, which
went from 1 to 𝑛-steps ahead starting at the last observation of the time series at time 𝑡. The parameters of
the models were fixed and thus not re-evaluated for each step of the forecasting.

Depending on where the split between the train and control set was made, the forecast could differ. This
was because the data contained some abnormalities which could, depending on the location of the split
and the choice of model, cause a very bad forecast. For example the naive model would only use the last
observation of the train set and thus only forecast that value for all future points. Therefore we looked
at the forecast performance for different splits of the data set. To get a fair comparison, the 1 to 𝑛-steps
ahead forecast would be of the same length independently of the location of the split. By the choice of these
splits the length of forecast was a quarter of the data, a 1 to 159- steps ahead forecast. For consistency,
the same length of data (159 observations) were used in the train samples. For example if a split between
the training and control set was put between February and Mars 1980, then the train set consisted of data
points between January 1966 to February 1980 and the control set between Mars 1980 to May 1993 (which
is also the out-of-sample forecast period).

As a bonus we also looked at the 1 to 60- steps ahead future forecasting for the chosen models. For this we
had no real observations to check against, as we had used the whole data set to fit the models on.

5.3.1 Naive versus SARIMA

5.3.1.1 Air temperature

In Table 4 it seems that the ARIMA(1, 0, 0)(0, 1, 1)12 overall distinctly obtains the lowest values of the out-
of-sample and in-sample RMSE in comparison to the naive models. So in this case, the model with the
best performing in-sample forecast also performed the best in the out-of-sample forecast by our method
of measuring the forecast performance. Something worth highlighting is that the out-of sample forecasted
RMSE are low for the seasonal naive model and almost as good as the ARIMA(1, 0, 0)(0, 1, 1)12 model’s.
This is also reflected in Appendix C: Figure 23, where the seasonal naive model appears to more or less follow
the data.

Table 4: Forecasting performance of the monthly mean air temperature in Falsterbo series {𝑋𝑡}. The AIC
and RMSE highlighted in green are based on the in-sample forecasts, while the other five columns to the
right are based on out-of-sample forecasts. The model chosen from the model selection is presented in bold
font.

In-sample forecast RMSE: Out-of-sample forecast
Model AIC RMSE Feb/Mars 1980 Sep/Oct 1986 May/June 1993 Dec 1999/Jan 2000 Aug/Sep 2006
ARIMA(1, 0, 0)(0, 1, 1)12 2248.76 1.417881 1.795518 2.270690 1.602446 1.630145 1.798879
ARIMA(0, 1, 0)(0, 0, 0)12 3405.4 3.525834 11.295829 8.990851 6.691491 6.952178 12.885543
ARIMA(0, 0, 0)(0, 1, 0)12 2680.35 2.049622 2.440139 3.005130 2.036506 1.711359 2.456042
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The in-sample RMSE together with the AIC value gave us an idea of how well the model fit the data. So
although the naive model had a low in-sample RMSE of 3.525834, the AIC at 3405.4 reflects the very poor
fit to data versus the seasonal naive model and the ARIMA(1, 0, 0)(0, 1, 1)12 model which both had AIC
below 2700.

This lead us to reflect upon the low in-sample RMSE value of the naive model. The naive model’s in-sample
RMSE is calculated by

𝑅𝑀𝑆𝐸(�̂�) =
√√√
⎷

1
𝑁

𝑁
∑
𝑡=1

( ̂𝑥𝑡 − 𝑥𝑡)2 =
√√√
⎷

1
𝑁

𝑁
∑
𝑡=1

(𝑥𝑡−1 − 𝑥𝑡)2,

meaning we take the squared difference between successive months. So an interpretation is that there are
approximately a standard deviation of 3.5 degrees Celsius in monthly mean air temperature between the
successive months.

The naive model out-of-sample forecast is sensitive to its starting point which is reflected in the corresponding
RMSE values in Table 4. As seen in Appendix C: Figure 23 there is a clear association between the green
lines showing the naive model’s forecast and the RMSE values for those predictions. The more off-center
the line is, the higher the RMSE value is. It becomes apparent that the naive model did not perform well
at the out-of-sample forecasts of the monthly mean air temperature. The used data has observations in the
range −10 to 20 and the naive model produced RMSE values between 6.691491 and 12.885543.

The seasonal naive model forecasts the monthly mean air temperature surprisingly well considering its
simplicity. Unlike the basic naive model, it is not affected by which month of the year that is used as its
starting point.

5.3.1.2 Wind speed

After transforming the data back on original scale by inverse Box-cox transformation we were able to evaluate
the forecast performance for the monthly mean wind speed. The seasonal naive model had a higher AIC
than the naive model and similar in-sample forecasting RMSE. So based on that alone it was possible that
the naive model performed better on the in-sample forecasting than the seasonal naive model did.

From Appendix C: Figure 24 it is clear that the naive model, depicted in green, provides a poor forecast of
the monthly mean wind speed. The out-of-sample RMSE of the naive model in Table 5 are between 1.194
and 3.051, which in comparison to the other considered models provide the worst out-of-sample forecast
performance. The best out-of-sample forecasts are by the ARIMA(1, 1, 2)(0, 1, 1)12 model and the seasonal
naive model. The out-of-sample RMSE are slightly lower for the seasonal naive model in three out of the
five of the presented out-of-sample RMSE in Table 5, and both vary between approximately 1 and 2.

From Appendix C: Figure 24 we see that the seasonal naive model (in blue) and the ARIMA(1, 1, 2)(0, 1, 1)12
model (in red) have very similar out-of-sample forecasting performance. On a closer look, the monthly mean
wind speed ranges on an interval of approximately seven units, so a sample standard deviation of 1 mps is
still quite large.

Table 5: Forecasting performance of the monthly mean wind speed in Falsterbo series {𝑋𝑡}. The AIC and
RMSE highlighted in green are based on the in-sample forecasts, while the other five columns to the right
are based on out-of-sample forecasts. The model chosen from the model selection is presented in bold font.

In-sample forecast RMSE: Out-of-sample forecast
Model AIC RMSE Feb/Mars 1980 Sep/Oct 1986 May/June 1993 Dec 1999/Jan 2000 Aug/Sep 2006
ARIMA(1, 1, 2)(0, 1, 1)12 -1629.31 0.061857 1.801266 1.078409 1.382186 0.970540 1.986762
ARIMA(0, 1, 0)(0, 0, 0)12 -1324.01 0.084174 1.492305 1.364077 1.649253 1.194350 3.050572
ARIMA(0, 0, 0)(0, 1, 0)12 -1277.19 0.085042 1.468920 1.382715 1.379295 1.090901 1.778216
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5.3.1.3 Precipitation

After transforming the data back on original scale by inverse Box-cox transformation we are now able to
evaluate the forecast performance for the monthly mean precipitation.

Overall the out-of-sample RMSE is the lowest for the ARIMA(0, 0, 1)(0, 1, 1)12 model when comparing with
the naive models in Table 6 and ranges between 0.872 and 1.116. The ARIMA(0, 0, 1)(0, 1, 1)12 model
forecasts steadily with a similar performance result indifferent of the placement of the split between train
and control set. Something worth noting however is that the scale of the y-axis in Appendix C: Figure 25 is
very large in comparance to the amplitude of the original data. With that in mind, an out-of-sample forecast
RMSE of size 0.877883 mm as seen in Table 6 is quite large for data that mostly varies between 0 and 6 mm.

The out-of-sample forecast RMSE in Table 6 for the naive models are slightly higher in general. The naive
model is sensitive to the starting point of the forecasting, which is reflected both in the out-of-sample RMSE
that vary between 0.828 and 1.555, and in Appendix C: Figure 25. The green line representing the naive
model in Appendix C: Figure 25 (c-e) is not as centered to the mean of that forecasting period as in the
first two plots (a-b), which in turn is reflected in the larger RMSE values for those out-of-sample forecasts.
The monthly mean wind speed data show more large peaks after around the 1990´s, which clearly affects
the performance of the seasonal naive model which needs a good representative year at its basis to perform
out-of-sample forecast adequately. We see in Appendix C: Figure 25 a large variety of how well the seasonal
naive model, depicted in blue, can perform depending on the starting points. In Appendix C: Figure 25
(b,d) the predictions are based on years with distinctly large variation in the monthly mean precipitation in
comparance to most of the following years.

The AIC of the ARIMA(0, 0, 1)(0, 1, 1)12 model is distinctly better than for the naive models. Likewise as
for the wind speed we have an AIC for the naive model that is slightly lower than for the seasonal naive
model. This we can interpret as that the in-sample forecasting of the seasonal and nonseasonal naive model
predict similarly poorly for the monthly mean precipitation in Falsterbo.

Table 6: Forecasting performance of the monthly mean precipitation in Falsterbo series {𝑌𝑡(𝜆𝑃 )}. The AIC
and RMSE highlighted in green are based on the in-sample forecasts, while the other five columns to the
right are based on out-of-sample forecasts. The model chosen from the model selection is presented in bold
font.

In-sample forecast RMSE: Out-of-sample forecast
Model AIC RMSE Feb/Mars 1980 Sep/Oct 1986 May/June 1993 Dec 1999/Jan 2000 Aug/Sep 2006
ARIMA(0, 0, 1)(0, 1, 1)12 1318.38 1.175942 0.877883 0.871667 0.903777 1.007906 1.115926
ARIMA(0, 1, 0)(0, 0, 0)12 1683.46 0.908696 0.827624 0.952827 1.315823 1.336915 1.555054
ARIMA(0, 0, 0)(0, 1, 0)12 1716.48 0.946784 1.063988 1.252456 1.187473 1.130985 1.290487

5.3.2 Future forecasts

For the 1 to 60- step ahead forecasting of the future we also includes a 95% prediction interval. The certainty
of the prediction interval relies on the residuals following a normal distribution and not being correlated,
otherwise it may lead to incorrect prediction intervals (Hyndman and Athanasopoulos, 2014). In Figure
7 the prediction intervals for all time series future forecast are approximately within the length of 6 units
(Celsius, mps and mm). The 95% prediction interval for the monthly mean air temperature future forecast
gets wider at the top of the curves than in between the wave shaped curves (Figure 7).
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So values closer to the mean show more certainty in its prediction, while the more extreme air temperatures
occurring in the summer and winter are more uncertain. The forecast of the monthly mean precipitation
have its lower limit of the confidence interval in close proximity to the forecast, but an upper limit farther
away. Considering that the time series is quite zero heavy and it randomly peaks with higher amount of
precipitation (Figure 1), the biggest variation of the precipitation occurs mostly for higher values than the
forecasted points. The monthly mean wind speed forecast also shows an upper limit with room for more
variation and uncertainty than the lower limit of the forecast.

Prediction intervals for multistep ahead forecasts tends to grow the larger the choice of the forecast horizon
for ARIMA models. According to (Hyndman and Athanasopoulos, 2014) models with stationary data and
no differencing will for large forecast horizons have prediction intervals that converges. But for a model
with data that is originally non-stationary and is differenced, the prediction intervals increase the larger
the forecast horizon. In Figure 7 the prediction intervals do not appear to increase for the forecast horizon
ℎ = 60, but after testing larger forecast horizons (ℎ = 100 and ℎ = 500) it was noted that only the
ARIMA(1, 1, 2)(0, 1, 1)12 model of the monthly mean wind speed had increasing prediction intervals.

Figure 7: 1 to 60 steps ahead future forecasts of the monthly mean air temperature (top), wind speed (middle)
and precipitation (bottom) in Falsterbo with 95 procent prediction interval depicted in blue. Presented in
black is the original data which has been cut of from November 2014 to get a close up of the forecasting.
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6 Discussion
The focus on this thesis has been on analyzing whether we can find time series methods, mainly focusing on
the SARIMA model class, which predict the weather better than the naive approaches. It is quite clear that
the SARIMA models do provide both better in-sample forecast and out-of-sample forecasts than the naive
models of the monthly mean weather data in Falsterbo. However the seasonal naive model provided quite
a good and almost adequate forecast performance, especially for the monthly mean air temperature and
wind speed. What affected the out-of-sample forecasts performance the most was whether the train sample
contained any major abnormalities, which could seriously worsen the forecasting performance. In Section
5.3 where we analysed the out-of-sample forecasts of the monthly mean wind speed and precipitation
(Appendix C: Figure 24-25), we see that the naive models were particularly sensitive to their forecasts
starting points.

The parameters of the models are not re-evaluated during the out-of-sample forecasting, but if we instead use
a rolling window we would be able to re-fit the model in each step of the multistep ahead forecast. It would
be interesting to see if the rolling window forecasting method would lead to better forecast performance,
considering new observations would be included in the model re-fit of each step. In Section 5.3 where we
evaluate the forecast performance we chose to only do 1 to 159 steps ahead forecasts performance evaluation,
thus we do not look closer on in particular the shorter lengths of forecasts and if that would result in lower
out-of-sample RMSE. The amount of data that the models were fitted for the out-of-sample forecasts did
not either vary.

It seems that using the seasonal naive model for predicting the monthly mean air temperature is not that
bad of an approach, as seen by the out-of sample forecasts in Appendix C: Figure 23-25. It is likely that
the naive models will perform worse on more granular data. This is due to the monthly data being just an
average over daily observations which may fluctuate, but we only use a smooth mean.

We also performed Box-Cox transformations on some of the variables, and there are widely discussed conse-
quences of how that affects the forecasting. (Tommaso and Helmut, 2011) investigated for macroeconomic
data whether the Box-Cox transformation provided better forecasting performance. Most of the used series
did not receive a better forecast performance after transforming the time series data. Also the larger forecast
horizon ℎ that was set, the less advantages the transformation yielded. We base our forecast evaluation on a
large forecast horizon ℎ = 159, so whether the Box-Cox transformations actually were necessary for a good
forecast is for now left unknown and with need of further investigations.

There were cases when there was a clear existence of serial correlation. For example the sample ACFs plot
of the naive models residuals of the monthly mean air temperature in Figure 4 displayed spikes outside of
the standard error limits which indicated that the ACFs are significantly different from 0. Together with
the Ljung-Box tests results summarized in Appendix B: Table 10 for the naive models, it is appearent that
the residuals of these naive models are correlated. This can lead to bad computations in for example the
forecasting process, since the forecast model is based on uncorrelated residuals. The presence of correlation
in the residuals can thus lead to not trustable forecasts according to (Hyndman and Athanasopoulos, 2014).

To avoid the problem of overfitting we used the LR-test to compare the likely best models against each other
in the model selection. But for the initial evaluation we only considered one type of information criterion,
AIC, while there are other measures possible. For example, it is possible that the Bayesian Information
Criterion (BIC) would indicate the ARIMA(1, 0, 0)(0, 1, 1)12 model as the best fit in the first place for the
monthly mean air temperature which the AIC did not. Clearly there are some restrictions to this study and
many aspects that are not explored. One of the most interesting aspect is if and how the variables affects
each other, which could be explored by multivariate time series methods that are left for more advanced
studies.
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8 Appendices
8.1 Appendix A: Initial diagnostics/evaluations
8.1.1 Box-Cox transformation

The r package forecast has a function BoxCox.lambda which employs two methods of calculating 𝜆, the
“guerrero” method or the “loglik” method. There is an experimental study exploring the methods available
in BoxCox.lambda with the purpose to find out which method benefits the forecasting the best (Thombre,
2016). From the conclusion that the “guerrero” method provided slightly better forecasting results, that was
the method applied in this thesis. The method of calculating 𝜆 was presented by (Guerrero, 1993) and it
chooses the 𝜆 that minimizes the coefficient of variation for time series. Analyzing the method further is
outside the scope of this thesis.

The Box-Cox transformations are given by:

𝑥𝑡(𝜆) = {
𝑥𝜆

𝑡 −1
𝜆 , 𝜆 ≠ 0

ln 𝑥𝑡 , 𝜆 = 0 ,

so for 𝜆 = 1 the original data scale is used. Note that the observations are required to be positive for the
transformation to work.

By the BoxCox.lambda function we are provided with the values for 𝜆 presented in Appendix A: Table 4.

8.1.1.1 Inverse Box-Cox transformation Reversing the transformation to original scale can be ac-
complished by

𝑥𝑡 = {(𝜆𝑥𝑡(𝜆) + 1)1/𝜆 , 𝜆 ≠ 0
exp(𝑥𝑡(𝜆)) , 𝜆 = 0 .

8.1.1.2 Box-Cox table of transformations

Table 7: The Box-Cox transformation values of the parameter 𝜆 for the monthly mean wind speed (𝜆𝑊 ) and
precipitation (𝜆𝑃 ) for all stations.

Wind speed, (𝜆𝑊 ) Precipitation, (𝜆𝑃 )

South
Falsterbo -0.4378918 0.0823902
Hallands Väderö -0.1148000 0.1526751
Hanö -0.9999242 0.0986390
Vinga -0.4391843 0.2874954
Visby -0.3965855 0.1721041

Mid
Hagshult 0.1110818 0.1596284
Såtenär -0.9021474 0.0593852
Sunne 0.7857286 0.1002408
Tullinge 0.1258573 0.0754168
Stockholm 0.0529460 0.0747601

North
Krångede 0.4101825 -0.0711494
Örnsköldsvik 0.2952780 0.0714934
Lycksele 0.5071668 0.1369188
Rödkallen -0.0416061 0.2016316
Arjeplog 0.5128968 0.1086850
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8.1.1.3 Box-Cox transformations plots
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Figure 8: Plots of the monthly mean air temperature, {𝑋𝑡}, the Box-Cox transformed monthly mean wind
speed, {𝑉𝑡(𝜆𝑃 )} = {𝑉𝑡(−0.438)}, and precipitation, {𝑌𝑡(𝜆𝑊 )} = {𝑌𝑡(0.082)}, in Falsterbo.

8.1.2 ADF test results

Table 8: ADF-tests of the monthly mean air temperature series {𝑋𝑡}, the Box-Cox transformed monthly
mean wind speed series {𝑉𝑡(𝜆𝑃 )} and precipitation series {𝑌𝑡(𝜆𝑊 )}, in the south of Sweden. The test were
computed on all the five stations in the category South.

Air temperature Transformed wind speed Transformed precipitation
Statistic p-value Statistic p-value Statistic p-value

Falsterbo -5.110716 0.0100000 -1.732564 0.6915102 -17.035680 0.01
Hallands Väderö -3.308740 0.0700543 -3.917002 0.0135719 -9.273514 0.01
Hanö -4.638676 0.0100000 -3.195784 0.0886557 -16.924571 0.01
Vinga -4.352447 0.0100000 -2.375166 0.4195061 -5.708321 0.01
Visby -5.223918 0.0100000 -2.420918 0.4001391 -8.867496 0.01
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8.1.3 ACF and PACF plots
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Figure 9: Sample ACF and PACF plots of monthly mean air temperature in Falsterbo series {𝑋𝑡}. The
seasonal differencing is denoted by 𝐷 and is defined in Section 3.2.1.
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Figure 10: Sample ACF and PACF plots of the Box-Cox transformed monthly mean wind speed in Falsterbo
series {𝑉𝑡(𝜆𝑃 )}. The regular differencing is denoted 𝑑 and the seasonal differencing 𝐷 at lag 12, which are
defined in Section 3.2.1.
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Figure 11: Sample ACF and PACF plots of the Box-Cox transformed monthly mean precipitation in Falsterbo
series {𝑌𝑡(𝜆𝑊 )}. The seasonal differencing is denoted by 𝐷 and is defined in Section 3.2.1.
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8.2 Appendix B: Model evaluation
8.2.1 Model selection

Table 9: Table of some of the considered models in the model selection in Section 5.1 for the monthly mean
weather. The models selected for forecasting are higlighted in the table. The model chosen from the model
selection is highlighted in light green, while the naive model and seasonal naive model are highlighted in
progressively darker shades of green.

South
Model AIC RMSE
Air temperature

ARIMA(0, 0, 1)(0, 1, 1)12 2284.27 1.439356
ARIMA(0, 0, 2)(0, 1, 1)12 2267.2 1.46336
ARIMA(0, 0, 3)(0, 1, 1)12 2253.6 1.419938
ARIMA(1, 0, 0)(0, 1, 1)12 2248.76 1.417881
ARIMA(1, 0, 1)(0, 1, 1)12 2248.45 1.414223
ARIMA(0, 1, 0)(0, 0, 0)12 3405.4 3.525834
ARIMA(0, 0, 0)(0, 1, 0)12 2680.35 2.049622

Box-Cox transformed wind speed
ARIMA(0, 1, 1)(0, 1, 1)12 -1624.01 0.062277
ARIMA(0, 1, 2)(0, 1, 1)12 -1626.75 0.061996
ARIMA(0, 1, 3)(0, 1, 1)12 -1625.9 0.061937
ARIMA(1, 1, 1)(0, 1, 1)12 -1627.21 0.061972
ARIMA(1, 1, 2)(0, 1, 1)12 -1629.31 0.061857
ARIMA(1, 1, 3)(0, 1, 1)12 -1624.23 0.061896
ARIMA(0, 1, 0)(0, 0, 0)12 -1324.01 0.084174
ARIMA(0, 0, 0)(0, 1, 0)12 -1277.19 0.085042

Box-Cox transformed precipitation
ARIMA(0, 0, 0)(0, 1, 1)12 1321 1.175032
ARIMA(0, 0, 1)(0, 1, 1)12 1318.38 1.175942
ARIMA(1, 0, 0)(0, 1, 1)12 1318.96 1.175582
ARIMA(1, 0, 1)(0, 1, 1)12 1323.49 1.172896
ARIMA(0, 1, 0)(0, 0, 0)12 1683.46 0.908696
ARIMA(0, 0, 0)(0, 1, 0)12 1716.48 0.946784
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8.2.1.1 Ljung Box test

Table 10: Ljung-Box test on residuals of monthly mean air temperature, Box-Cox transformed monthly
mean wind speed and precipitation. The test statistics 𝑄(𝑚) are asymptotically 𝜒2

𝑚(𝛼) distributed, which
on a 5 percent level are 𝜒2

12(0.05) = 21.026, 𝜒2
24(0.05) = 36.415 and 𝜒2

36(0.05) = 50.998 for the used lag-𝑚.
Air temperature Transformed wind speed Transformed precipitation

lags 𝑄(𝑚) p-value 𝑄(𝑚) p-value 𝑄(𝑚) p-value
Models: ARIMA(1,0,0)(0,1,1)[12], ARIMA(1,1,2)(0,1,1)[12], ARIMA(0,0,1)(0,1,1)[12]

𝑚 = 12 17.932 0.118 14.214 0.287 6.917 0.863
𝑚 = 24 30.557 0.167 22.298 0.561 17.222 0.839
𝑚 = 36 51.181 0.048 36.066 0.466 28.144 0.822

Naive model
𝑚 = 12 2252.5 0 109.9 0 115.6 0
𝑚 = 24 4484.2 0 144.8 0 134.9 0
𝑚 = 36 6657.9 0 186.6 0 155.9 0

Seasonal naive model
𝑚 = 12 282.6 0 225.5 0 168.4 0
𝑚 = 24 347.9 0 268.9 0 183.6 0
𝑚 = 36 410.3 0 282.7 0 196.6 0

8.2.2 Models

8.2.2.1 Air temperature

8.2.2.1.1 ARIMA(1, 0, 0)(0, 1, 1)12 model

Table 11: Summary of the ARIMA(1, 0, 0)(0, 1, 1)12 forecasting model for the monthly mean air temperature
in Falsterbo series {𝑋𝑡}.

ARIMA(1,0,0)(0,1,1)[12]
Estimates Standard errors

AR 0.5013920 0.0013019
SMA -0.9298825 0.0004073
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Figure 12: Sample ACF and PACF plots of the ARIMA(1, 0, 0)(0, 1, 1)12 model’s residuals of the monthly
mean air temperature in Falsterbo series {𝑋𝑡}.

8.2.2.1.2 Naive models (air temperature)

Found in Section 5.2.

8.2.2.2 Box-Cox transformed wind speed

8.2.2.2.1 ARIMA(1, 1, 2)(0, 1, 1)12 model

Table 12: Summary of the ARIMA(1, 0, 0)(0, 1, 1)12 forecasting model for the Box-Cox transformed monthly
mean wind speed in Falsterbo series {𝑉𝑡(𝜆𝑊 )}.

ARIMA(1,0,1)(0,1,1)[12]
Estimates Standard errors

AR 0.8334250 0.0066899
MA1 -1.6706499 0.0093987
MA2 0.6806928 0.0083891
SMA -0.9575664 0.0007132
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Figure 13: Sample ACFs and PACFs plots of the ARIMA(1, 1, 2)(0, 1, 1)12 model’s residuals of the Box-Cox
transformed monthly mean wind speed in Falsterbo series {𝑉𝑡(𝜆𝑊 )}.
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Figure 14: Residual diagnostics on the ARIMA(1, 1, 2)(0, 1, 1)12 model for the Box-Cox transformed monthly
mean wind speed in Falsterbo series {𝑉𝑡(𝜆𝑊 )}.
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8.2.2.2.2 Naive models (Box-Cox transformed wind speed)
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Figure 15: Sample ACFs and PACFs plots of the naive models residuals of the Box-Cox transformed monthly
mean wind speed in Falsterbo series {𝑉𝑡(𝜆𝑊 )}. In these plots the naive model is denoted by ARIMA(0, 1, 0)
and the seasonal naive model is represented by ARIMA(0, 0, 0)(0, 1, 0)[12].
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Figure 16: Residual diagnostics for the naive model of the Box-Cox transformed monthly mean wind speed
in Falsterbo series {𝑉𝑡(𝜆𝑊 )}.
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Figure 17: Residual diagnostics for the seasonal naive model of the Box-Cox transformed monthly mean
wind speed in Falsterbo series {𝑉𝑡(𝜆𝑊 )}.

8.2.2.3 Box-Cox transformed precipitation

8.2.2.3.1 ARIMA(0, 0, 1)(0, 1, 1)12 model

Table 13: Summary of the ARIMA(1, 0, 0)(0, 1, 1)12 forecasting model for the Box-Cox transformed monthly
mean precipitation in Falsterbo series {𝑌𝑡(𝜆𝑃 )}.

ARIMA(0,0,1)(0,1,1)[12]
Estimates Standard errors

MA 0.0918550 0.0018120
SMA -0.9858011 0.0020567
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Figure 18: Sample ACFs and PACFs plots of the ARIMA(0, 0, 1)(0, 1, 1)12 model’s residuals of the Box-Cox
transformed monthly mean precipitation in Falsterbo series {𝑌𝑡(𝜆𝑃 )}.
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Figure 19: Residual diagnostics on the ARIMA(0, 0, 1)(0, 1, 1)12 model for the Box-Cox transformed monthly
mean precipitation in Falsterbo series {𝑌𝑡(𝜆𝑃 )}.
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8.2.2.3.2 Naive models (Box-Cox transformed precipitation)
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Figure 20: Sample ACFs and PACFs plots of the naive models residuals of the Box-Cox transformed monthly
mean precipitation in Falsterbo series {𝑌𝑡(𝜆𝑃 )}. In these plots the naive model is denoted by ARIMA(0, 1, 0)
and the seasonal naive model is represented by ARIMA(0, 0, 0)(0, 1, 0)[12].
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Figure 21: Residual diagnostics of the naive model for the Box-Cox transformed monthly mean precipitation
in Falsterbo series {𝑌𝑡(𝜆𝑃 )}.
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Figure 22: Residual diagnostics of the seasonal naive model for the Box-Cox transformed monthly mean
precipitation in Falsterbo series {𝑌𝑡(𝜆𝑃 )}.
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8.3 Appendix C: Forecasts
8.3.1 Air temperature
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Figure 23: 1 to 159 steps ahead out-of-sample forecast for the monthly mean air temperature in Falsterbo.
The naive model is depicted in green, the seasonal naive model in blue and the chosen model from the
model selection, ARIMA(1, 0, 0)(0, 1, 1)12 is in red. The split between the train and control samples was
made between (a) February and Mars 1980, (b) September and October 1986, (c) May and June 1993, (d)
December 1999 and January 2000, (e) August and September 2006. For all out-of-sample forecasts (a-e),
159 points in data prior to the location of the split was used to fit the models.
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8.3.2 Wind speed
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Figure 24: 1 to 159 steps ahead out-of-sample forecast for the monthly mean wind speed in Falsterbo.
The naive model is depicted in green, the seasonal naive model in blue and the chosen model from the
model selection, ARIMA(1, 1, 2)(0, 1, 1)12 is in red. The split between the train and control samples was
made between (a) February and Mars 1980, (b) September and October 1986, (c) May and June 1993, (d)
December 1999 and January 2000, (e) August and September 2006. For all out-of-sample forecasts (a-e),
159 points in data prior to the location of the split was used to fit the models.
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8.3.3 Precipitation
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Figure 25: 1 to 159 steps ahead out-of-sample forecast for the monthly mean precipitation in Falsterbo.
The naive model is depicted in green, the seasonal naive model in blue and the chosen model from the
model selection, ARIMA(0, 0, 1)(0, 1, 1)12 is in red. The split between the train and control samples was
made between (a) February and Mars 1980, (b) September and October 1986, (c) May and June 1993, (d)
December 1999 and January 2000, (e) August and September 2006. For all out-of-sample forecasts (a-e),
159 points in data prior to the location of the split was used to fit the models.
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