
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

A Multiple Linear Regression Model
Concerning The Swedish Board of
Student Finance (CSN)
Yasmin Baghlani



Matematiska institutionen

Kandidatuppsats 2020:20
Matematisk statistik
September 2020

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm



Mathematical Statistics
Stockholm University
Bachelor Thesis 2020:20

http://www.math.su.se

A Multiple Linear Regression Model Concerning

The Swedish Board of

Student Finance (CSN)

Yasmin Baghlani∗

September 2020

Abstract

This survey study is aimed to detect factors that affect the number
of female students that take a loan, at the Swedish Board of Student Fi-
nance, by fitting a linear model. Data was abstracted from the National
Board of Student Aid (Sweden) and included four independent variables
such as education, unemployment, low income (below 60% of the median
income) and high income (income above 200% of the median). Further-
more, the dependent variable of the study was the fraction of female loan
borrowers from the National Board of Student Aid, in different Swedish
municipalities. The main purpose of the study was to examine the ef-
fect of each of the independent variables on the fraction of loan recipients
and to create a model to predict the percentage of future loan borrowers.
We used assumptions of the linear regression model to get a fitted and
valid multiple linear regression model, in which we looked at the outliers
of the data and checked the assumptions of the regression models. As
a result, we fitted a multiple linear regression model from data of 2015
and concluded that the fraction of people with an income less than 60%
of the median, in each municipality, was insignificantly correlated with
the fraction of loan borrowers. Regarding the significance of the inde-
pendent variables, the number of educated people in each municipality
was the most important variable, which had a positive relationship with
the fraction of borrowers. Accordingly, a higher number of educated in-
dividuals in each municipality increased the fraction of borrowers. The
second most significant independent variable was the fraction of individu-
als with an income higher than 200% of the median, and it was negatively
correlated with the number of borrowers, indicating that the number of
wealthy people in each municipality decreased the number of borrowers.
The least significant variable affecting the fraction of borrowers was the
unemployment rate. The higher the fraction of unemployed individuals in
each municipality was, the higher the fraction of borrowers was as well.
In order to make use of the regression model, the percentage of loan recip-
ients was predicted using the fitted regression equation on the data from
the next year 2016. The results suggest that the predicted values could
explain 73.7% of the actual data variations.
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1 Introduction

Background

CSN, the National Board of Student Aid, is a Swedish government agency
providing grants and loans to students. All citizen residents in Sweden have
the right to receive grants or request loans for a limited period. Disburse-
ments are regular (monthly) during the years of education. After this period,
one must return the loan along with a low profit when starting a job after
graduation. To qualify for receiving a loan from CSN, each student is only
assessed individually, regardless of what municipality they live in or how
much their family income is.

Purpose of Study

The purpose of this study was to examine factors affecting the percentage
of female student loan borrowers from CSN in 2015, in different Swedish
municipalities. The fraction of female borrowers was used as the depen-
dent variable and the following four factors were examined as independent
variables: The fraction of educated individuals, the fraction of unemployed
individuals the fraction of individuals with an income less than 60% of the
median. and the fraction of individuals with an income above 200% of the
median, in each municipality.

Study aim

This study is aimed to find a model based on the multiple linear regression
approach. To be able to get the best-fitted linear regression model that can
reliably be used to predict future data on the number of female borrowers, we
need to examine some assumptions that will be mentioned in the next section
’Problem Statement’ and modify the model in order to avoid violations of
it.

Problem Statement

To reach the aim of this study, we take a look at the issues that need to be
solved. The study was carried out in order to answer the following questions:

1. Test the following five assumptions, which need to be satisfied when
using the linear regression model, to produce a best-fitting model for
the data:

� The regression function is a linear combination of the independent
variables.

� There is no collinearity between independent variables.
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� There are no outliers in the data.

� Error terms have a constant variance.

� Residuals follow the normal distribution.

2. To find a best-fitted regression model and use this model in order to
predict the percentage of next year’s female borrowers from CSN.

Limitations

The population surveyed in each municipality included individuals ranging
in age from 18 to 65 years. The data was divided into two groups of male and
female borrowers, to evaluate it. This yielded similar results for males and
females in the initial analysis. To avoid duplication of analysis, we therefore
decided only to study female borrowers. The number of people who are
considered unemployed in this research is primarily due to the number of
people registered with the Swedish Public Employment Service. There might
be more unemployed, in any municipality, whose names are not registered
there. As a result, this unregistered unemployment is not included in the
analyses of this thesis. The variable ’Educated’ was selected only from those
who had at least one year of academic education at the university.

Outline of this thesis

This thesis is organized as follows: In Section 2 we outline some theory
of the simple and multiple linear regression models. This is followed by a
presentation of the student loan data set in Section 3, and a validation of
the linear regression model for this data set in Section 4. The selected model
is presented in Section 5, and after that Section 6 concludes. Finally, some
of the tables and graphs are gathered in the appendix.
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2 Theory

In this section, we describe the theory behind the statistical methods used in
this research. Most of the theoretical concepts and methods in this section
are taken from [1] and [2].

2.1 Linear Regression Models

Regression analysis is a powerful statistical method for analyzing data. The
method is used for examining the linear relationship between a dependent
variable and one or more independent variables. Two types of linear regres-
sion exist, simple linear regression, and multiple linear regression.

In a simple linear regression model, we can show the effect of one indepen-
dent variable X on a dependent variable Y . If we instead have two or more
independent variables X = (X1, X2, X3, . . . , Xp) to predict the outcome of
a dependent variable Y , the model is referred to as multiple linear regression.

In this thesis regression analysis was used with simple and multiple linear
regression models to show the effect of the independent variables (namely
the fraction of educated individuals, unemployed individuals, individuals with
Income < 60% of median and individuals with Income > 200% of median)
on the dependent variable, the fraction of female borrowers (Women.Loan).

2.2 Simple Linear Regression

The simple linear regression model [1] looks like the following:

Yi = β0 + β1Xi + εi, i = 1, . . . , n, (1)

where the random error term εi is assumed to be independent and normally
distributed with a mean of 0 and variance of σ2. The parameter β0 is the
intercept and β1 the slope of the line in the model. In simple linear regression
analysis, β1 is one of the most important quantities. If the value of β1 is
close to 0, there is no or little relationship between the independent and
dependent variables. If the value of β1 is large (positive or negative), on the
other hand, it indicates a strong relationship. Since β0 and β1 are unknown,
we need to estimate these parameters in order to fit the line (equation 1) to
our data. For this purpose, we used the Least squares method, which will
be explained further in section 2.4. First, we will take a look at the Pearson
correlation coefficient (r), since it used in the formula for the Least squares
method.

6



2.3 Pearson Correlation Coefficient (r)

The Pearson correlation coefficient (r) is a measure indicating the degree of
correlation between two variables. Depending on different conditions, the
Pearson correlation coefficient [3] is represented either by ρ or r. We use ρ
if it measured in a population, and r when it measured in a sample. In this
thesis we use sample data, so the correlation coefficient can be defined as
follows:

r = 1
n−1

n∑
i=1

xi−x̄
Sx
· yi−ȳSy

, (2)

where the sample size is as n, whereas x̄ and ȳ are the mean values of
x1, . . . , xn and y1, . . . , yn respectively in the sample and Sx, Sy are the
standard deviations of these two data sets:

Sx =
√∑n

i=1(xi−x̄)2

n−1 , Sy =
√∑n

i=1(yi−ȳ)2

n−1 . (3)

The correlation coefficient value is in a range −1 ≤ r ≤ +1. Different
values of r give different results. If the correlation between the two variables
is r = 0, then there is no relationship between them. If r = 1 we have
maximum (perfect) positive correlation, whereas if r = −1 the relationship
between the two variables is maximal (perfect) and negatively correlated.

2.4 Least Square Method

To estimate the unknown parameters βj , where j = 0, 1 in the (simple) linear
regression model, we used the (ordinary) least squares method in order to
compute estimates β̂j of these two parameters. This is done by minimizing
the difference between the observed variables and the regression line. In the
least squares method the residual ei is defined for each of the observations
i = 1, . . . , n. A residual measures the distance between an observed value
and the fitted line, and it can be obtained as follows [9]:

ei = yi − ŷi, (4)

where yi is the observed value and ŷi the predicted value. If the fitted
regression line passes through the observed value, the residual is zero at
that point. We square the residuals in the least square method to estimate
β̂j .

SSR =
n∑
i=1

e2
i =

n∑
i=1

(yi − ŷi)2. (5)

The best-fitted parameter β̂j is obtained when the sum of squared residuals
(SSR) is minimized. This is obtained by finding the partial derivatives of
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SSR with respect to both β̂0 and β̂1 and set them equal to zero. We get the
regression estimated equation:

β̂0 = arg min
β0

n∑
i=1

(yi − β̂0 − β̂xi)2 = arg min
β0

n∑
i=1

e2
i , (6)

β̂1 = arg min
β0

n∑
i=1

(yi − β̂0 − β̂xi)2 = arg min
β0

n∑
i=1

e2
i . (7)

By solving these two equations, it can be seen that β̂0 and β̂1 are defined
for ordinary least squares as follows:

β̂0 = ȳ − β̂1x̄, (8)

β̂1 =

n∑
i=1

(xi−x̄)(yi−ȳ)

n∑
i=1

(xi−x̄)2
= Cov(x,y)

var(x) = r
Sy
Sx
, (9)

where r is the Pearson correlation coefficient, in the calculation of β̂1. We
see from equation (9) that β̂1 is equal to the sample covariance between x
and y divided by the variance of x, such that the higher covariance between
x and y is, the higher the slope will be.

2.5 Hypothesis Testing

In the last section, we described how to estimate the parameters in the (sim-
ple) linear regression model with the (ordinary) least-squares method. For
the regression model we have the opportunity to use a statistical hypothesis
to test, e.g., if β1, is significantly different from zero [which discussed in
section 2.2.] A statistical hypothesis is a claim of a theory [1]. This will be
applied for hypothesis testing, which is a way to assess the validity of the
claim, the null hypothesis, against a counterclaim, the alternative hypothesis,
using sample data. To calculate the validity of the hypothesis a test statis-
tic will be used. A linear hypothesis is used when the test intends to find
out if there is a linear relationship between the regression parameters, for
instance that β1 is significantly different from zero. In the case of multiple
linear regression, we have the option to test if one or j independent variables
(j=1,. . . ,p) have any effect on the dependent variables, equivalent to test
that βj is significantly different from zero.

The two statistical hypotheses we will consider for the multiple linear
regression model are:

� Null hypothesis (H0): The null hypothesis, H0, says that there is no
statistical significance between Xj and Y
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H0 : βj = 0 (10)

� The alternative hypothesis (H1): The alternative hypothesis, H1 or
Ha, is the opposite situation of the null hypothesis. By rejecting the
null hypothesis, we use the alternative hypothesis. It assumes that the
response Y is affected by Xj , and there is a relationship between the
two variables.

H1 : βj 6= 0 (11)

Hypothesis testing determines whether to accept or reject a claim H0 about
a model, based on the study sample by comparing the level of significance
with the P-value.

P-value and Significance Level

The P-value is the probability of getting the test results at least as extreme
as the results observed during the test, with the assumption that the null
hypothesis is correct. By using the P-value, we can find out what the
probability is that the result was obtained under the null hypothesis. We
can compare the P-value to the significance level α. The significance level is
defined as the pre-chosen probability of rejecting the null hypothesis when
it is true. If the P-value is less or equal to the significant level α the result is
statistically significant, and we can reject the null hypothesis H0 and accept
alternative hypothesis H1. If instead of P-value is bigger then α, it gives a
non-significantly result, and we accept the null hypothesis.

Test Statistic

In a hypothesis test, a test statistic is calculated from sample data and
used to determine whether to reject the null hypothesis. It compares the
data from the sample with the results expected under the null hypothesis.
Such as it measures the degree of agreement between the data and the
null hypothesis, to determine whether to reject the null hypothesis or not.
Since the true distribution of the test statistics is unknown, we have the
sampling distribution of the test statistic under the null hypothesis known
as the null distribution. For instance, for a t-test, the test statistic has a
t-distribution under the null hypothesis βj = 0 that independent variable
Xj has no association with the response variable Y . The test statistic is
used to calculate the P-value. If the test statistic becomes too extreme
(too small/large depending on the alternative hypothesis), the test’s P-value
becomes small enough to reject the null hypothesis. In this case, the data
shows strong evidence against the assumptions of the null hypothesis.
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T-Test

Assuming σ is unknown, the test statistic [12] used to test the null hypoth-
esis βj = 0, (10), is a t-statistic T . When using the linear regression t-test
to sample data, we need to know the standard error of the estimate of the
slope, the slope of the regression line assumed under the null hypothesis, and
the degrees of freedom. The t statistic compares the difference between the
estimated value of the slope and its assumed null value, with the standard
error and follows, under the null hypothesis, a t-distribution. The t-statistic
is defined as follows for the null hypothesis that the effect parameter of Xj

is βj :

T =
β̂j−βj
SEβ̂j

∼ t(n− 2). (12)

The standard error of the β̂j can be calculated as follows:

SEβ̂j =

√
SSR/(n−2)√
n∑
i=1

(Xji−X̄j)2
,

(13)

where SSR is defined in equation (5), Xji is the value of Xj for observation
i and X̄j =

∑n
i=1Xji/n .

For a chosen significance level (α), we can find the rejection region that
corresponds to that value under the null distribution. If the null hypothesis
is true:

P (−tα/2,n−2 < T < tα/2,n−2) = 1− α. (14)

The null hypothesis rejected if the P-value is less then α.

2.6 Multiple Regression Model

Let’s now look at Multiple Linear Regression [13] that we have touched
upon before, an extension of simple linear regression, were we have a vec-
tor (X1i, . . . , Xpi) of independent variables, instead of a single independent
variable Xi, for every observation i. Just like in Simple Regression we have
n observations, each with p different independent variables. For each ob-
served value Y of the response, it will be predicted as a linear function of
the different independent variables:

Yi = β0 + β1X1i + β2X2i + . . .+ βpXpi + εi, i = 1, 2, 3, . . . , n, (15)

where the error terms εi ∼ N(0, σ2) are independent and identically dis-
tributed (i.i.d).
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As an example we have the statistical method using all the four
independent variables, used in this thesis, Xi = (1, X1i, X2i, X3i, X4i) at
the same time, to predict the outcome of a dependent variable Yi. This is
defined as following:

Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + εi (16)

where Yi is the dependent variable (Women.Loan), X1i the first independent
variable (Unemployed), X2i the second independent variable (Educated),
X3i the third independent variable (Income < 60%), X4i the fourth
independent variable (Income > 200%), β0 the intercept, βj the effect
parameter of independent variable j = 1, 2, 3, 4, and n = 290 the
number of observations.

It is also possible to write the multiple linear regression model (15) in matrix
form:

Y = Xβ + ε, (17)

where β = (β0, . . . , βp)
T is the vector of regression parameters,

X = (XT
1 , . . . ,X

T
n )T the design matrix, Y = (Y1, . . . , Yn)T the response

vector, and ε = (ε1, . . . , εn)T a vector of error terms. The least squares
estimator of the parameter vector is then written as:

β̂ = (XTX)−1XTY . (18)

2.7 Linear Regression Assumptions

Linear regression has many applications in everyday life. One of the
advantages of this method is the ability to predict response variables for
the future. To be able to get the best-fitted multiple linear regression model
for the data that is reliable, we need to examine some underlying assump-
tions before fitting a model to data [2]. All of these assumptions must be
satisfied so that we can fit the model with confidence, and if the assumptions
are not satisfied, we must account for the model violations by adjusting the
model.

Here are five assumptions that are needed to be satisfied, to produce a
well-fitting model:

1. The regression function is a linear combination of the independent
variables.

2. There is no collinearity between independent variables.

3. There are no outliers in the data.
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4. Error terms have a constant variance.

5. Residuals follow the normal distribution.

Test the Assumptions

In this next part of the theory, we are looking further into the assumptions
regarding the linear regression model that we just mentioned in the list
above.

2.7.1 1-Linearity: The regression function is a linear combination
of the independent variables.

The relationship between the dependent variable and the independent
variable(s) should be linear and additive [1]. Since an additive relationship
tells us that the effect of Xj on Y is independent of other variables. If
the relationship is non-linear, the regression algorithm of the linear model
will be inefficient, since it will not capture the actual trend or the response
variable mathematically.

With simple linear regression, we can show the effect of an independent
variable on a dependent variable and identify the linear relationship between
them. We can investigate the relationship between two numerical variables
by using a scatter plot, with the dependent variable along the vertical axis,
and the independent variable along the horizontal axis.

2.7.2 2-Multicollinearity: There is no collinearity between
variables.

Collinearity is known as the condition when two independent variables are
highly linearly related. When an independent variable is a linear function
of two or more independent variables, it referred to as multicollinearity.
A high degree of multicollinearity among the independent variables in a
regression model will lead to problems with fitting the model. The results
will be difficult to interpret since the relationship between each independent
variable and the dependent variable will not be estimated independently.
This leads to a decline in the accuracy of the estimated coefficients, and
the statistical power of the model is reduced. If independent variables are
exactly linearly related, it is called perfect multicollinearity.

Variance Inflation Factor (VIF)

To detect multicollinearity, we can use VIF values for each independent
variable [1]. Mathematically the VIF value, for an independent variable
Xj is equal to the variance of β̂j for the given model (with collinearity)

12



divided by the variance of β̂j for a model where Xj is uncorrelated with the
other independent variables. VIF for independent variable Xj is obtained
by dividing one by the tolerance:

VIFj = 1
1−R2

j
= 1

Tolerancej
, (19)

here R2
j is the coefficient of determination when regressing Xj against the

other independent variables. The VIF value should be as small as possible,
VIF< 10 and Tolerance> 0.1 are acceptable. If the VIF value is higher than
10, there is high collinearity between Xj and the other independent variables
and further investigation is needed.

2.7.3 3-Outliers: There are no outliers in the data

In linear regression, an outlier is an observation with a large residual. In
other words, it is a data point that differs fundamentally from the other
observed data. One or more outliers will cause significant differences in the
regression analysis. An outlier can indicate a sample abnormality, data entry
error, or some other problem. One problem of the existence of the outlier is
that it can affect the mean square error (MSE) of the parameter estimates,
which we use in most parts of the analysis [10].

An observation is called influential when omitting that observation will
fundamentally change the estimates of the regression coefficients. Influence
can be a product of Outlyingness and Leverage, which will be explained
in the next section. Leverage measures ’unusualness’ of the p independent
variables for an observation, and it is one out of several different methods
we will look at now, through which we will identify influential observations.

Leverage

How much an independent variable deviates from its mean is the measure-
ment of Leverage. In other words, leverage measures how far an observation
on the independent variables is from the mean of the independent variables.
A high leverage could have unusual effects on the estimation of regression
coefficients [16]. A point with high Leverage is an observation with an ex-
treme value on an independent variable. The Leverage formula in the special
case of simple linear regression (p = 1) is:

hii = 1
n + (xi−x̄2)

n∑
j=1

(xj−x̄)2
,

(20)

where n is the number of observations. More generally, for multiple linear
regression with p independent variables it is possible to extend this definition
of hii, as the ith diagonal element of the hat matrix H = X(XTX)−1XT .
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When we have observations with Leverage hii > (p+1
n ), they should be

carefully examined. Observations with high Leverage will have Leverage
scores. Some possible rules of thumb for declaring an observation i as a
leverage point are the following lower bounds of hii: (2× p+1

n ) if the sample

size exceeds 30 or (3× p+1
n ) if the sample size is lower than 30 [15]. In this

analysis, we use the rule hii > (2× p+1
n ).

Studentized deleted residuals

Studentized deleted residuals [10] is a way to detect outliers. The method
refits the regression model with n − 1 observations after deleting an
observation from the model, one at the time. The observed response values
to the fitted values based on the models with the ith observation deleted,
will then be compared. The plot of the studentized deleted residuals include
the deleted residual divided by its estimated standard deviation.

By using the studentized deleted residuals, we can identify possible outlier
observations in the model. A studentized residual is:

ti = Deleted residual of observation i
An estimate of its standard deviation , (21)

which is equivalent to:

ti = di
s(di)

= ei√
MSEi(1−hii)

, (22)

where di = yi − ŷ(−i) is the residual of the deleted observation, s(di) is
the standard error and hii is the leverage of that observation, whereas
MSEi = SSRi/(n − p) is an estimate of the variance σ2 of the error terms
when observation i is deleted from the sum of squares [8]. The observation is
removed in order to determine how the model behaves without this
potential outlier. If an observation has a studentized deleted residual of
absolute value higher than 3, it may be an outlier, and we must consider it
in the next steps of the regression analysis.

Standardized deleted residuals

This method [9] is very similar to the studentized residual. The difference
is that here, MSE is based on all observations. The studentized residuals
method is more effective than the standardized residuals method. The latter
residuals are defined as:

ri = ei
s(ei)

= ei√
MSE(1−hii)

, (23)

where ei is the ordinary residual, defined in (4), s(ei) the standard error of
that residual and MSE = SSR/(n− p− 1) = σ̂2 an estimate of the variance
σ2 of the error terms, with SSR the sum of squared residuals (5).
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Cook’s Distance

Cook’s Distance [18] is a general criterion for identifying influential data.
This criterion combines residue information and leverage information. The
minimum value of Cook’s DistanceDi of observation i is zero, whereas higher
values indicate that observation i influences the prediction of the response
values of all the other observations. The Cook’s distance of observation i is
defined as:

Di = r2
i ·

hii
p+1 , (24)

where ri is the standardized residual in (23), and hii the leverage, defined for
p = 1 in (20) and more generally below that equation. A value of Di larger
than > 4

n signifies an influential observation and this should be accounted
for in the next steps of regression analysis.

2.7.4 4-Homoscedasticity: Error terms have a constant variance.

Homoscedasticity means that we have the same variance (V ar(εi) = σ2) of
the error terms of the linear regression model, regardless of the values of
the independent variables [2]. If the error term does not have a constant
variance, we call it heteroscedasticity and have V ar(εi) = σ2

i .

Breusch-Pagan and Koenker Score test

We use the Breusch-Pagan and Koenker score to tests for homoscedasticity
in a linear regression model. By using these two methods, we can demon-
strate whether the variance of the errors of the regression model is dependent
on the values of the independent variables or if heteroscedasticity is present
[14]. The test statistic LM of the Breusch-Pagan test is

LM = nR2, (25)

where n is the number of observations, and R2 the coefficient of
determination when the squared residuals e2

i in (4) are regressed against a
set of q independent variables that model possible heteroscedasticity. Under
the null hypothesis of homoscedasticity, the distribution of LM is chi-square
with q degrees of freedom.

Koenker Score test

The studentized version of Breusch-Pagan is the Koenker Score test; this
test holds its null size better than other tests. If the test statistic has a
P-value less than 5%, then the null hypothesis of homoscedasticity rejected,
and heteroscedasticity assumed. In this case, the violation appears, and we
should transform the data and also rebuild the model as described in the
section of Transformation [14].
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2.7.5 5-Normality: Residuals follow the normal distribution.

One of the most critical assumptions in the least-squares method is that the
error terms should be normally distributed with E(εi) = 0 and a
variance V ar(εi) = σ2. Using the following two methods, we examined
the normality of the model [2].

Shapiro Wilk Test

To test the normality assumption of the error terms, we can use the Shapiro
Wilk test. The test assesses the null hypothesis indicating that the collection
e1, . . . , en of residuals (4) from a fit of the multiple linear regression model
comes from a normally distributed population. The test statistic is:

W =
(
n∑
i=1

aie(i))
2

n∑
i=1

(ei−ē)2
, (26)

where e(i) is the ith smallest residual from the fit of the regression model,
ē = (e1 + . . . + en)/n = 0 when an intercept is included in the model,
(a1, . . . , an) = mTV −1/C, where m = (m1, . . . ,mn)T and V is the mean
vector and covariance matrix of the order statistics of an i.i.d. sample of
size n from standard normal distribution, whereas C =

√
mTV −1V −1m.

The null distribution of W is determined by Monte Carlo. To have a normal
model, the P-value the Shapiro Wilk test should be larger than 5%.

Kolmogorov Smirnov Test

The Kolmogorov Smirnov test is used to determine whether observations
from a sample of size n follow a given distribution F . We may apply this
test to the standardized residuals r1, . . . , rn, defined in (23), and with F the
standard normal distribution N(0, 1). The empirical distribution function
Fn of the standardized residuals is defined as:

Fn(x) = 1
n

n∑
i=1

I[−∞,x](ri), (27)

where the indicator function is:

I(−∞,x](ri) =

{
1, ri ≤ x,
0, ri > x.

(28)

If supx is the supremum of the set of real numbers x, we have for a given
cumulative distribution function F (x), the Kolmogorov-Smirnov statistic
such as:

D∞ = sup
x

[Fn(x)− F (x)]. (29)
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2.8 Transformation of Data

In the situation that we have a violation of one or more assumptions
treated in Section 2.7, we might have to transform data. If the response
variable grows exponentially as a function of some linear combination of the
independent variables, we need to transform the dependent variable with
the logarithm in order to change the model to increase linearly instead of
exponentially. In that case we can use linear regression to specify a model
([11]).

log Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + εi. (30)

Inverse Logarithm(Anti-Log)

We fit the new regression model (30) with the log.Women.Loan variable in
the Transformation section. Then we also need to transform the data back
at the end of the calculation, in order to resume the original scale [11].

2.9 Variable Selection for Model Building

In the previous section, we have assumed that the independent variables
included in the model are of importance. We have focused on the theory
about the violation of the assumptions of linear regression and techniques
to guarantee that the functional form of the model was correct. We will,
in this section, acknowledge the method of choosing those variables that
explain the data most easily. There are a few methods to select significant
independent variables for a multiple regression model. Here we will present
two different approaches, the Entry method, and Stepwise procedures.

2.9.1 Entry Method

The method, also known as the standard method, is a procedure for
independent variables selection where all variables in the model are included
in one single step.

2.9.2 Stepwise Procedures

We will introduce three stepwise procedures, where the algorithms are based
on AIC (Akaike’s Information Criterion). AIC is a score used to test how
well a model fits the data, without over-fitting. AIC score is defined as

AIC = 2p− 2 log(L̂), (31)

where L̂ is the maximized likelihood for the fitted model and p the number
of estimated regression parameters in the model.
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Description of the stepwise procedures:

� Forward Selection: In the forward selection method, we start with
no variables in the model and then add one independent variable at a
time to the model, in each step producing the model with smallest AIC,
until no additional independent variables lead to a further reduction
of the AIC criterion. .

� Backward Elimination: In the Backward Elimination method, all
independent variables are first entered into the model and then
removed from the model individually by the criteria of the largest
decrease of the AIC-value. The algorithm stops when such a removal
does not lead to a better fit.

� Stepwise Regression: In the stepwise model, each independent variable
is added to the model step by step and then removed if it is
non-significant.

The stepwise regression method is a combination of the backward
elimination and forward selection techniques. We use the entry method
in the first model when we examine the data, and then later we use a
stepwise selection method to create a new model.

2.10 Goodness of fit of the model

2.10.1 Coefficient of Determination (R2)

The Goodness of fit of the model can determined in various ways, such as
testing whether the residuals of the regression fit have the prescribed prop-
erties [3]. Two other quantities that we can use to decide how well a model
fits data are the Coefficient of Determination R2 and the adjusted R2. For
the fitted model to explain the dependent variable, it must have a sufficiently
large R2. This quantity R2 corresponds to the fraction of the variance of
the dependent variable that is explained by the independent variables. As
the explanatory factor is closer to one, the more successful is the model
in predicting the dependent variable, and the fitting power of the model is
enhanced. The values of the coefficient of determination fall within a range
0 ≤ R2 ≤ 1. For simple linear regression R2 is essentially a squared value
of the coefficient of correlation r of Section 2.3, and it demonstrates the
percentage of variation in Y caused by the single independent variable X.
A similar interpretation of R2 is possible for multiple linear regression, with
R2 the square of a multiple correlation coefficient between the dependent
variable and all p independent variables. A higher R2 value corresponds to
a more optimal model.
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We can define R2 as follows:

R2 = SSE
SST = 1− SSR

SST = 1−

n∑
i=1

(yi−ŷi)2

n∑
i=1

(yi−ȳ)2
, (32)

where SSR is the residual sum of squares in (5), SSE is the explained sum
of squares and SST = SSE + SSR the total sum of squares.

2.10.2 Adjusted (R2)

The R2
adj indicates how much the dependent variable varies due to the inde-

pendent variables. An addition of new independent variables always leads
to that the coefficient of determination R2 increases, possibly causing a false
increment of the ratio due to overfitting, when the added independent has
no effect. The R2

adj method corresponds to a criterion which does not create
an incorrect increase when additional non-significant independent variables
are added to the model. This method modifies the non-adjusted coefficient
of determination by considering variations due to overfitting, explained by
the independent variables affecting the dependent variable. Moreover, the
small difference between R2 and R2

adj is an adjustment for the number of
degrees of freedom n − p − 1 of the residuals. The exact definition of the
adjusted coefficient of determination is

R2
adj = 1−

SSR
n-p-1
SST
n-1

= 1− SSR
SST

(n-1)
(n-p-1) = 1− (1−R2)(n-1)

n-p-1 , (33)

where p is the number of regression parameters and n is the number of
observations.

2.10.3 Prediction

We use the fitted regression model in order to predict the values of the
dependent variable that correspond to new values of the independent
variables. By plotting the predicted value against the observed value for
the dependent variable, we look at the value of R2

adj and R2 to decide if they
indicate a relatively acceptable fit of the model.

Suppose the log transformed model (30) is used for our data set of female
student loan borrowers. After predicting the log response, by taking the
inverse logarithm of the obtained predictions, we may predict the percentage
of the future female borrowers in all municipalities.
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3 Data Description

IBM SPSS [17] software is used to perform the statistical analysis in this
thesis. The data is provided by CSN [4] , Statistiska Centralbyr̊an SCB
[5], and the Swedish Public Employment Service [6] . We used data from
year 2015 for the regression analysis, and to predict the future fraction of
borrowers, we used data from year 2016.

Table 1: The descriptive statistics of the data in the year 2015
Variable Variable Number of Minimum Maximum Mean Std. Deviation
Type Name observations n Statistic Statistic Statistic Statistic

Dependent Women.Loan 290 1,19 8,90 2,3621 0,92689

Independent Unemployed 290 2,30 15,20 7,7359 2,83898
Educated 290 11,37 46,79 19,4747 6,06225
Income < 60% 290 5,50 29,00 14,5497 4,10610
Income > 200% 290 1,20 36,60 5,7076 3,92927

The number of observations in this study is based on the number of
Swedish municipalities (n = 290) and there is no missing data. The
dependent variable Women.Loan refers to the fraction of women, in each
municipality, with a loan from CSN, whereas the four independent
variables correspond to the fraction of women within each municipality that
are unemployed, are educated, have a low Income (< 60%) and have a high
Income (> 200%) respectively.

In Table 1, we introduce all the variables (dependent and independent) with
a descriptive statistics summary. For further information, see Table 19 and
20 in the appendix. There the five municipalities with highest and lowest
incomes, along with their values, are presented in Table 19. In Table 20
the five municipalities with highest and lowest middle (median) income are
displayed.

The reason for including the variable ’Educated’ is that although there is
no reason to believe that all educated individuals necessarily received loans,
there might still be a positive association between the fraction of educated
individuals and the fraction of borrowers. Regarding this variable ’Educated’
we considered individuals with at least one year of academic study as
educated.

According to the information available at the SCB and the Swedish
Public Employment Service, students are not considered unemployed [7],
and therefore one might expect that the fraction of unemployed (the value
of ’Unemployed’) is associated with the fraction of women with a loan from
CSN. We considered ’Income > 200%’ (at least twice as much as the 100%
median income) and ’Income < 60%’ (less than 60% of the median income)
as two separate independent variables. The reason was that many students
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are typically enrolled in full-time studies and therefore cannot have a high
income. For this reason, one might expect a positive (negative) association
between Income < 60% (Income > 200%) and the fraction of borrowers.
However, if many individuals study part of full time, these two associations
may also go in the other direction.
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4 Checking model assumptions of the regression
model and transformation

As described in Section 2.7, we will examine the five mentioned assumptions
as follows in this section:

4.1 Linearity

Simple Linear Regression

The first assumption we examined, in order to get the best-fitted regression
model, was the linearity. We used simple linear regression to develop four
models with the dependent variable ’Women.Loan’ against each one of the
four independent variables, to see if the regression models were linear or
non-linear.

Scatterplots of the four independent variables against the dependent vari-
able ’Women.Loan’ are shown in Figures 11 to 14 on Pages 44 to 45 in the
appendix, were they indicate that the models are linear. The four fitted
simple linear regression models were the following:

Model 1: Ŷi = 2.39− 0.004(Unemployed)i,
Model 2: Ŷi = 0.36 + 0.1(Educated)i,
Model 3: Ŷi = 2.77− 0.03(Incom < 60%)i,
Model 4: Ŷi = 2.02 + 0.06(Income > 200%)i,

where Yi = Women.Loani corresponds to the fraction of female borrowers
in municipality i.

Table 2: This table gives a summary of four distribution diagrams of simple
linear regressions of independent variables against the ’Women.Loan’
dependent variable. The standardized coefficients refer to parameter
estimates where each independent variable has been rescaled to a variance
of 1.

Coefficient Summary

Standardized
Unstandardized Coefficients Coefficients

Model β Std.Error β R2 R2
adj t P-value

1 (Intercept) 2,393 0,158 15,099 0,000
Unemployed -0,004 0,019 -0,012 0,000 -0,003 -0,208 0,836

2 (Intercept) 0,363 0,136 2,665 0,008
Educated 0,103 0,007 0,671 0,451 0,449 15,376 0,000

3 (Intercept) 2,769 0,200 13,880 0,000
Income < 60% -0,028 0,013 -0,124 0,015 0,012 -2,120 0,035

4 (Intercept) 2,021 0,093 21,702 0,000
Income > 200% 0,060 0,013 0,253 0,064 0,061 4,445 0,000

Table 2 summarizes the four simple linear regression models in which only
one independent variable is included. The variables ’Educated’,
’Income < 60%’, and ’Income > 200%’ were statistically significant at
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the 5% level while the ’Unemployed’ model had a P-value of 0.836 > 5%,
indicating that the relationship between the variables of ’Women.Loan’ and
’Unemployed’ were non-significant.

4.2 No Collinearity

4.2.1 Pearson Correlation

In this section we investigate the correlations between all pairs of variables,
the dependent variable as well as the four independent variables .

Table 3: The Pearson correlation demonstrating a significant correlation
between ’Educated’, ’Income < 60%’, ’Income > 200%’ and ’Women.Loan’,
and a non-significant correlation between ’Unemployed’ and ’Women.Loan’

Correlationsc

Women.Loan Unemployed Educated Income < 60% Income > 200%

Women.Loan Pearson Correlation 1 -0,012 0,671** -0,124* 0,253 **
P-value (2-tailed) 0,836 0,000 0,035 0,000

Unemployed Pearson Correlation -0,012 1 -0,388** 0,657** -0,527**
P-value (2-tailed) 0,836 0,000 0,000 0,000

Educated Pearson Correlation 0,671** -0,388** 1 -0,588** 0,782**
P-value (2-tailed) 0,000 0,000 0,000 0,000

Income < 60% Pearson Correlation -0,124* 0,657** -0,588** 1 -0,693**
P-value (2-tailed) 0,035 0,000 0,000 0,000

Income > 200% Pearson Correlation 0,253** -0,527** 0,782** -0,693** 1
P-value (2-tailed) 0,000 0,000 0,000 0,000

**. Correlation is significant at the 0.01 level(2-tailed)
*. Correlation is significant at the 0.05 level (2-tailed).
a correlation is statistically significant if its P-value (2-tailed) < 0.05.
c. Based on n = 290 observations.

The correlations between the variables are presented in Table 3. It shows
the significance between the four independent variables (namely ’Unem-
ployed’, ’Educated’, ’Income < 60%’ and ’Income > 200) and the variable
’Women.Loan’. The only variable that had a non-significant correlation with
the dependent variable was ’Unemployed’ with correlation r = −0.012 and
a P-value of 0.836.

The highest correlation coefficient for ’Women.Loan’ was related to the
variable ’Educated’ with r = 0.671. The positive and significant correla-
tion coefficient indicated that the municipalities with more educated females
received more loans than other municipalities.
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4.2.2 Multicollinearity

In the previous section, we used the Pearson correlation coefficient to study
the relationship between pairwise variables. We will now investigate multi-
collinearity, which occurs when two or more independent variables are highly
correlated. We have to do this before the variable selection; thus, stepwise
regression does not perform as well with multicollinearity present. Multi-
collinearity will be measured in terms of the VIF value.

Table 4: Results of fitting a multiple linear regression model in order
to check multicollinearity in data using the VIF and tolerance indices, where
VIF < 10 and Tolerance > 0.1 are acceptable. For the standardized
coefficients the independent variables have been rescaled so that their
variance is 1.

Coefficientsa

Unstandardized Coefficients Standardized Coefficients Collinearity Stat
Modell β Std. Error β t P-value Tolerance VIF

(Intercept) -1,293 0,246 -5,265 0,000
Unemployed 0 ,018 0,015 0,055 1,182 0,238 0,552 1,811
Educated 0,189 0,009 1,235 22,209 0,000 0,380 2,629
Income < 60% 0,041 0,012 0,180 3,297 0,001 0,394 2,535
Income > 200% -0,132 0,015 -0,559 -8,880 0,000 0,297 3,364

a.Dependent Variable: Women.Loan
Method:Entry

Table 4 shows that all the variables imported to the model have VIF less
than 10; therefore, the problem of multicollinearity in the model is not
severe. In this table, if we look at the ’Unemployed’ variable, we observe
that tolerance is 0.552; this means that if we run a multiple regression with
the ’Unemployed’ variable as a dependent variable in Table 4, then we have
R2 = 0.448. This corresponds to a value 1− 0.448 = 0.552 of 1−R2, which
is the same as the tolerance of this variable shown in Table 4. As a result,
we realized that there is no severe collinearity between the variables in the
model.

Multiple Regression

Furthermore, multiple regression between the dependent and independents
variables, listed in Table 4, shows that the ’Unemployed’ variable was the
only non-significant variable in the model with a P-value of , 238 > 5%,
whereas the other variables were statistically significant at significance
level 0.05.

The fitted multiple regression model formulated as follows:

Ŷi = −1, 293 + 0, 018(Unemployed)i + 0, 189(Educated)i + 0, 041(Income < 60%)i − 0, 132(Income > 200%)i (34)

The adjusted coefficient of determination of the model in Table 5
is R2

adj = 66%, and the coefficient of determination is R2 = 67%. Because
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this value is close to 1 and the difference between these values is meager, it
demonstrates that the model fits data reasonably well.

Table 5: Goodness-of-fit summary, with information about correlation,
coefficient of determination and adjusted coefficient of determination of the
multiple regression model from Table 4

Model Summaryb

Model R R2 R2
adj Std. Error of the Estimate

1 0.815a 0,665 0,660 0,54040

a. Predictors: (Intercept), Income > 200%, Unemployed, Income < 60%, Educated
b. Dependent Variable: Women.Loan

Until now, we have examined the linearity in simple linear regression,
correlation, multicollinearity, and multiple regression between dependent
and independents variables. In the next section, we will investigate
observations from all municipalities to test if there are any outliers in the
data.

4.3 Diagnostic of outliers

In this section, we investigated the presence of outliers by using these three
methods:

1. Outlier

2. Leverage

3. Cook’s distance

Note that we did not delete any detected outliers from the observations in
this section.

Before we begin to study outliers, Table 6 presents residual statistics. It
summarizes the nature of the residuals and predicted values from the model
of Table 4, which give a better understanding of the distribution of values
that the model predicts. Moreover, by studying Table 6 we can predict
the existence of outliers by observing the range of the standardized deleted
residuals ri.

Table 6: Residual Statistics: The minimum, maximum and standard
deviation of the residuals, from the model fit of Table 4

Parameters Min Max Mean Std. deviation n

Predicted Value 0,864 7,110 2,362 0,756 290
Deleted residual -1,317 2,410 0,000 0,537 290
Std. Predictive Value -1,982 6,283 0,000 1,00 290
Std. deleted residual -2,437 4,460 0,000 0,993 290

Dependent Variable: Women.Loan (percentage of borrowers in each municipality)
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In order to find whether we have outliers or leverage data points, we look at
the standardized, deleted residuals ri. Because the value of the maximum
4.46 of the standardized residuals is larger than 3.29, we know that we have
an outlier in the data.

4.3.1 Outliers

In order to find outliers, we use a histogram of the studentized deleted
residuals ti, plotted together with a standard normal density curve. As
shown in Figure 1, about five observations were outside central region of the
standard normal density curve.

Figure 1: A relatively normal distribution of the studentized deleted
residuals ti, with SD≈ 1 and Mean≈ 0 is observed. At the right tail of
the distribution, several outliers are found.
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Table 7: Casewise diagnostics for the municipalities with a studentized
deleted residual absolute value higher than 2

Casewise-Diagnosticsa

Case Number Municipality Studentized Deleted Residuals Women.Loan Predicted Value Residual

30 Heby 2,093 2,65 1,531 1,115
31 Tierp 2,313 2,90 1,668 1,236
32 Uppsala 4,059 7,32 5,252 2,071
51 Linköping 3,442 6,51 4,718 1,788
84 Kalmar 2,801 5,34 3,856 1,482
97 Staffanstorp -2,216 1,85 3,029 -1,180
104 Lomma -2,339 2,15 3,378 -1,229
118 Lund 3.699 8.90 7,110 1,785
126 Simrishamn -2,038 1,50 2,596 -1,093
188 Hammarö -2,487 2,25 3,563 -1,317
274 Ume̊a 4,793 7,76 5,351 2,410

a. Dependent Variable: Women.Loan

Table 7 demonstrates the number of studentized deleted residuals with with
an absolute value higher than 2. Based on the municipalities, we have eleven
observations with their absolute studentized deleted residuals higher than 2.
Four of the municipalities (i.e., Ume̊a, Uppsala, Lund, and Linköping) had
their studentized deleted residual values higher than 3, indicating the high
degree of their outlyingness.

4.3.2 Leverage

We examined the leverage values in order to find data with high potential
effects. Figure 2 demonstrates the leverage values hii against the studentized
deleted residuals. The municipality Danderyd had the highest value for the
leverage and likely had an effect on the regression coefficient estimates.

Figure 2: The scatterplot of leverage values against the studentized deleted
residuals. Gray points represent the municipalities. The highest leverage is
for the Danderyd municipality.
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In general, points whose leverages that are greater than 2(p+ 1)/n must be
considered with caution. The leverage values we need consider in this study
are higher than 2(4 + 1)/290 = 0.034. Table 8 shows leverage values for all
ten observations with values higher than 0.034. Therefore, they need to be
further investigated.

Table 8: Municipalities with leverage values larger than 0.034.
Case Number Municipality Statistic

15 Danderyd 0,332

118 Lund 0,164

22 Lidingö 0,122

192 Årjäng 0,106

185 Eda 0,080

117 Malmö 0,077

14 Täby 0,074

274 Ume̊a 0,064

32 Uppsala 0,057

21 Solna 0,053

4.3.3 Cook’s distance

In order to identifying highly influential data, Figure 3 demonstrates a
plot of Cook’s values against the studentized deleted residuals. The Lund,
Danderyd, Ume̊a and Uppsala municipalities showed the highest values for
the Cook’s distance and in Table 8 they were also among the municipalities
that showed the most considerable influence on the regression model.

Figure 3: A scatter plot of Cook’s distance values against the studentized
deleted residuals. Gray points in the plot represent the municipalities. The
highest values of the Cook’s distance are observed for the Lund, Danderyd,
Ume̊a and Uppsala municipalities.
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The threshold for Cook’s distance is 4/n; therefore, points with values
greater than 4/290 = 0, 014 along the vertical axis for this data set are
is considered to be highly influential.

Table 9: Cook’s distances. A list of observations with influence values higher
than 0, 014.

Case Number Municipality Cook’s distance

118 Lund 0,525

15 Danderyd 0,396

274 Ume̊a 0,308

32 Uppsala 0,201

51 Linköping 0,098

117 Malmö 0,056

104 Lomma 0,045

192 Årjäng 0,040

21 Solna 0,032

84 Kalmar 0,029

Table 9 demonstrates Cook’s values for the top ten observations. As can
be noticed, each one of these ten observations has a Cook’s distance greater
than 0.014; hence, they should be further investigated.

4.3.4 Combination of residual data, leverage and Cook’s distance

We combined all the outliers we identify, with all three previous methods
listed in Table 10. This was done in order to compare all the outliers we
found.

Table 10: Outlier statistics: Comparison of influential level of the outlying
municipalities in a combined table based on all three outlier detection
methods.

Case Number Municipality Stud. Deleted Residual Cook’s.Distance Centered Leverage Value

14 Täby . . 0,074

15 Danderyd . 0,396 0,332

21 Solna . 0,032 0,053

22 Lidingö . . 0,122

30 Heby 2,093 . .

31 Tierp 2,313 . .

32 Uppsala 4,059 0,201 0,057

51 Linköping 3,442 0,098 .

84 Kalmar 2,801 0,029 .

97 Staffanstorp -2,216 . .

104 Lomma -2,339 0,045 .

117 Malmö . 0,056 0,077

118 Lund 3,699 0,525 0,164

185 Eda . . 0,080

188 Hammarö -2,487 . .

192 Årjäng . 0,040 0,106

274 Ume̊a 4,793 0,308 0,064

The conclusion of Table 10 is that the Ume̊a, Lund, and Uppsala
municipalities are considered to be outliers by all three methods.
Moreover, according to Cook’s and leverage indicators, the Danderyd and
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Lund municipalities are highly influential. We must therefore examine these
observations more carefully in the transformation Section 4.6 to see if there
exists an outlier in the data even after we transform the dependent variable.

4.4 Homoscedasticity

The method used to study the variation of variance is to inspect the
standardized residuals ri and plot them the predicted values. Figure 4 shows
a plot of the standardized values of the residuals against the predicted values.
The variance increases somewhat with the increase of predicted values.

Figure 4: Scatter plot of standardized regression residual ri against predicted
values. (Red hollow squares represent municipalities)

4.4.1 Breusch-Pagan and Koenker tests

We use the Breusch-Pagan and Koenker tests to calculate the probability
that the error term εi has constant variance. If the P-value is less than 5%,
then we say that the homoscedasticity assumption has been violated and
the model has heteroscedasticity or if it is homoscedastic.

Table 11: Breusch-Pagan and Koenker tests, testing if the model is
Homoscedasticity or Heteroscedasticity

Breusch-Pagan and Koenker test statistics and P-values

Test LM P-value

BP 160,797 0,000

Koenker 81,153 0,000

If P-value < 5%, reject the null hypothesis of homoscedasticity.
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Table 11 shows that the Breusch-Pagan and Koenker tests both give a
P-value of 0, 000 < 5%, which means that the error terms show signs of
heteroscedasticity and do not have a constant variance. We need to
re-examine this assumption later in the transformation Section 4.6.

4.5 Normality

One of the properties of the the most commonly used linear regression
model is that the error terms follow the normal distribution. Table 12 shows
descriptive statistics of the residuals. By looking at the table, we obtain
important information about the unstandardized residuals.

The standard normal distribution with a symmetrical shape has a skewness
and kurtosis equal to zero, but the residuals have skewness of 0.627 and a
kurtosis 2.018, which indicates that the residuals are not normal.

Table 12: Descriptives statistics showing information about the
unstandardized residuals of the model fit from Table 4

Descriptive
statistic Std. Error

Unstandardized Residual Mean 0,0000000 0,03151323
95% Confidence Interval for Mean Lower Bound -0,0620245

Upper Bound 0,0620245
5% Trimmed Mean -0,0152979
Median 0,0119347
Variance 0,288
Std. Deviation 0,53665094
Minimum -1,31713
Maximum 2,41025
Range 3,72738
Interquartile Range 0,69278
Skewness 0,627 0,143
Kurtosis 2,018 0,285

4.5.1 Kolmogorov-Smirnov and Shapiro-Wilk

We can also use the Kolmogorov-Smirnov and Shapiro-Wilk tests to verify
the normality of the residuals. Table 13 demonstrates these two normality
tests of the residuals.

Table 13: Using the Kolmogorov-Smirnov and Shapiro-Wilk tests to test the
normality of the residuals, obtained from the model fit of Table 4.

Kolmogorov-Smirnov Shapiro-Wilk
Statistic df P-value Statistic df P-value

Unstandardized Residual 0,047 290 0,200* 0,971 290 0,000

*. This is a lower bound of the true significance.

The result in Table 13 demonstrates that the Shapiro-Wilk test with a
P-value of 0, 000 < 5% rejects normality of the residuals, whereas the
Kolmogorov-Smirnov test with a P-value of 0, 200 > 5% did not reject the
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null hypothesis of normally distributed residuals.

We can, for further study of the normality, look at the normality of the
residuals in Figure 5, the histogram of the unstandardized residuals based
on the frequency of the residuals that fall into different bins. This plot shows
that the histogram of the residuals has a normal shape and the residuals are
approximately normally distributed with an approximate mean of zero and
an approximately standard deviation of 0.54. However, a few data points
at the right tail of the distribution were outside the concerned range and
appear to be outliers.

Figure 5: Bell-shaped histogram of the non-standardized residual values,
from the model fit of Table 4, and a normal density curve. The figure
indicates that the error terms are almost normal with SD ≈ 0, 54 and
mean ≈ 0, 00

Figure 6 shows the expected values of the normal distribution plotted against
the ordered unstandardized residuals, with a reference line for normality
plotted. The figure shows that, at the end of the line of the plot, the
observations Ume̊a, Uppsala, Linköping, and Kalmar were far from the
normal reference line, thus revealing non-normality of the residuals.
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Figure 6: The normal Q-Q plot for unstandardized residuals: The
observations should mostly be placed along a straight line to be normal.
Probabilistic outliers at the end of the plot are distant from the the straight
line.

4.6 Transformation

In this section, we re-examined the assumption of violations discussed in the
previous section. We realized that the effect of the ’Unemployed’
variable was non-significant in the full multiple regression model. More-
over, in Section 4.3, some observations showed more leverage than others.
Additionally, the homoscedasticity assumption in Section 4.4 and the nor-
mality assumption of the error terms in Section 4.5 were violated. Thus, to
modify the model, we used the log-linear transformation and transformed
the dependent variable by a logarithm and re-developed a new model.

Table 14 shows the new multiple regression model of the transformed
dependent variable against independent variables with a non-significant
result for the independent variable ’Income < 60%’ with a P-value of 0, 529.
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Table 14: The multiple regression coefficient summary of ’log.Women.Loan’,
based on a logarithmic transformation of the dependent variable. For the
standardized coefficients the independent variables have been rescaled to
have a variance of 1.

Coefficient Summary
standardized

Method:Enter Unstandardised Coefficients Coefficients

Model β Std.Error β t P-value

1 Intercept -0,105 0,039 -2,724 0,007
Unemployed 0,008 0,002 0,163 3,188 0,002
Educated 0,024 0,001 1,105 17,946 0,000
Income < 60% 0,001 0,002 0,038 0,630 0,529
Income > 200% -0,015 0,002 -0,459 -6,591 0,000

Table 14 can be summarized in terms of the following regression formula:

log Ŷi = −0, 105 + 0, 008(Unemployed)i + 0, 024(Educated)i + 0, 001(Income < 60%)i− 0, 015(Income > 200%)i, (35)

where Yi = Women.Loani is the fraction of female borrowers in
municipality i.

In the previous section, we had three assumptions which were violated, now
we re-examine them with the new model in order to see if their violation is
fixed or not in the new model.

4.6.1 Transformation step 1: There are no outliers in the data

Figure 7: Transformation: The scatterplot of leverage values against
standardized deleted residual values with the transformed model of
’log.Women.Loan’. Gray points represent municipalities. The most
considerable amount of leverage is observed for the Danderyd municipality.
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Figure 8: Transformation: The scatter plot of Cook’s distance values
against the standardized deleted residuals for the transformed model of
’log.Women.Loan’. Gray points represent municipalities. The largest value
of the Cook’s distance is observed for the Danderyd municipality.

By fitting the log model, it was found that the Danderyd observation was
an outlier (see Figures 7 and 8).The Danderyd municipality had the highest
income (’Income > 200%’), and the women receiving a loan there were
relatively small in number, so we excluded this observation as an outlier
from the data.

4.6.2 Transformation step 2: Error terms have a constant vari-
ance

In order to check if the problem of violations of the assumption of
homoscedasticity is solved, with the new model, we perform the
Breusch-Pagan and Koenker tests again.

Table 15: Breusch-Pagan and Koenker tests, for testing whether the error
terms have a constant constant variance (homoscedasticity).

Breusch-Pagan and Koenker test statistics and P-values

LM P-value

BP 4,685 0,321
Koenker 5,820 0,213

If P-value is less than 5%, the homoscedasticity assumption is rejected.

As a result in Table 15, we have a Breusch-Pagan P-value of , 321 > 5%
and Koenker’s score P-value of , 213 > 5%. Because both of the tests are
significant at the 5% level, the error terms are assumed to have a constant
variance and the homoscedasticity model is chosen. Figure 15, on page 46,
shows a scatterplot of this model.
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4.6.3 Transformation step 3: Residuals follow a normal distribu-
tion

The last violated assumption was the normality of the error terms, which is
closely related to normality of the residuals. Hence we re-examined whether
the normality problem of the residuals was solved after using the new model.

Table 16: Transformation: Test of the normality of the residuals with the
Kolmogorov-Smirnov and Shapiro-Wilk tests for the fitted log.Women.Loan
model

Kolmogorov-Smirnov Shapiro-Wilk
Statistic df P-value Statistic df P-value

Unstandardised Residual 0,059 289 0,017 0,990 289 0,056

The results in Table 16 demonstrate that the Kolmogorov-Smirnov test
with a P-value of 0.02 < 5% and the Shapiro-Wilk test with a P-value of
0.06 > 5% lead to different conclusions at significance level 5%, although
none of the two tests reject normality of the residuals at significance level
1%. These results reveal that the obtained model was desirable concerning
goodness of fit. As observed in Figure 9, the standardized residuals
approximately follow a normal distribution.

Figure 9: The histogram demonstrates approximate normality of the
standardized residuals. The data almost follows a normal distribution with
SD ≈ 1 and mean ≈ 0.
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5 Final result and Discussion

5.1 The Best-Fitted Model

In section 4, we examined all five assumptions investigated in this thesis in
order to get the best-fitted model. Some of the assumptions were violated,
but we modified them in Section 4.6. As a result, we have a linear
regression model, the parameter estimates of which result in the best-fitted
model.

The regression function is linear, and there is no collinearity between the
independent variables. The error terms have an approximately constant
variance, and the residuals follow a normal distribution; one of the observa-
tions is deleted because it is an outlier, and in the new regression model we
use 289 observations instead of 290.

Now, we can, with better confidence, search for the best-fitted submodel
with the logarithmic dependent variable, all independent variables, and 289
observations.

5.1.1 Multiple Linear Regression

We use the stepwise regression model in order to find the best-fitted
regression model. The regression coefficients in Table 17 shows that among
the four measured independent variables, three variables ( namely
’Educated’, ’Income > 200%’ and ’Unemployed’) were associated with the
logarithm of the percentage of female borrowers.

Table 17: The regression model found with the stepwise method, with
the independent variable Income < 60% non-significant.

Coefficientsa

Standardized
Method:Stepwise Unstandardized Coefficients Coefficients

Model β Std.Error β t P-value Tolerance VIF

Step: 1 Intercept 0,063 0,020 3,184 0,002
Educated 0,015 0,001 0,666 15,132 0,000 1.000 1.000

Step: 2 Intercept -0,011 0,019 -0,586 0,558
Educated 0,025 0,001 1,124 17,928 0,000 0,380 2,631
Income > 200% -0,022 0,002 -0,582 -9,279 0,000 0,380 2,631

Step: 3 Intercept -0,083 0,027 -3,037 0,003
Educated 0,024 0,001 1,103 17,873 0,000 0,377 2,655
Income > 200% -0,18 0,003 -0,477 -7,024 0,000 0,311 3,218
Unemployed 0,008 0,002 0,163 3,610 0,000 0,703 1,423

a. Dependent Variable: log.Women.Loan

Table 17 displays those nested submodels whose regression coefficients are
significant (P-value < 0.05 for the last included independent variable). This
indicates that the third and largest submodel is able the predict the
dependent variable the best. The regression coefficients listed in Table 17,
shows that of the four independent variables measured, the three variables
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’Educated’, ’Income > 200%’, and ’Unemployed’ of the third submodel are
included in order to predict the percentage of borrowers.

The fitted model must have a high R2 in order to be able to explain the
dependent variable well. The closer the coefficient of explanation is to one,
the more the quality of the fit of the model increases, and the better the
prediction of the dependent variable behaves as a function of the
independent variables.

Table 18 demonstrated that in each step, the independent variables entered
into the model by their level of importance, and the adjusted R2 for the best
fitted model is 0.587. This indicates that the model fits well with 58.7% of
the changes in the logarithm of the percentage of female borrowers, explained
by the three independent variables that entered into the model.

Table 18: Summary, for the models of Table 17, in terms of the coefficient of
determination.

Model Summaryd

Model R R2 R2
adj Std. Error of the Estimate

Step: 1 0, 666a 0,444 0,442 0,09837

Step: 2 0, 757b 0,572 0,569 0,08639

Step: 3 0, 769c 0,591 0,587 0,08463

a. Predictors: (Intercept), Educated
b. Predictors: (Intercept), Educated, Income > 200%
c. Predictors: (Intercept), Educated, Income > 200%, Unemployed
d. Dependent Variable: log.Women.Loan

The judgments about the strength and role of each of the three variables
in explaining the dependent variable can be obtained from the standardized
regression coefficients (β). Because these values are standardized, they allow
for comparison in order to find the relative contribution of each independent
variable.

According to the obtained standardized coefficients, the ’Educated’ variable
with the estimated beta coefficient of β̂j = 1.103 had the most strong direct
relationship to the logarithm of the percentage of borrowers in each
municipality, which means that this variable can be considered as the most
informative independent variable regarding the percentage of borrowers.
Thus, while keeping other independent variables constant, a higher
percentage of the ’Educated’ variable in each municipality leads to an
increased percentage of borrowers.
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Following this variable, the ’Income > 200%’ variable with a standardized
estimated regression coefficient β̂j = −0.477 had the second highest associ-
ation with the percentage of borrowers. This indicates that, while keeping
the rest of the independent variables constant, if the percentage of wealthy
individuals in each municipality is enhanced the percentage of borrowers will
be reduced.

The third most significant variable in the regression model was ’Unemployed’
with β̂j = 0.163. If the other variables are kept constant, the percentage
of borrowers is expected to increase as the ’Unemployed’ value increases in
each municipality.

The regression equation, which can be used for estimating the percentage of
borrowers, in each municipality is as follows:

̂log.Women.Loani = −0, 083 + 0, 024(Educated)i − 0, 018(Income > 200%)i + 0, 008(Unemployed)i (36)

We can use it to predict the percentage of borrowers in each municipality.
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5.1.2 Prediction of loan recipients in 2016

In order to evaluate the regression model, the percentage of Women.Loan
recipients from each municipality in 2016 is predicted using the regression
model in equation (36).

By entering the values of the independent variables, including the
percentage of ’Educated’, the percentage of ’Income> 200%’, and the
percentage of ’Unemployed’ in each municipality in the formula, we can
predict the log-percent of borrowers in 2016. Then we exponentiate and
convert these numbers into percentage of borrowers.

The plot of the actual values against the predicted values is
demonstrated in Figure 10. The coefficient of determination values in this
model are R2 = 0.737 and R2

adj = 0.736, which is indicative of a relatively
acceptable predictive ability of the model.

Figure 10: The distribution chart of the observed values of the percentage of
women borrowers in 2016 for 289 municipalities against the corresponding
predicted values in per cent. The continuous line represents the fitted line
of the regression, and blue spots are the municipalities.

Table 21 on page 43 shows the values of the independent variables, the actual
values of the percentage of female borrowers, and the predicted values for
ten of the municipalities.
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6 Conclusion

Given the importance of estimating the percentage of borrowers in each
municipality for better planning for the coming years, the purpose of this
study was to estimate the percentage of female borrowers using the multiple
linear regression model. Also, the relative importance of different variables
affecting the percentage of female borrowers was studied.

For this purpose, we used data from the year 2015 in each Swedish
municipality, including information of four independent variables that
correspond to the fraction of women that are educated (’Educated’), are
unemployed (’Unemployed’), have a low income (’Income < 60%) and have
a high income (’Income > 200%’) respectively. The correlation coefficients
were used to examine the pairwise relationship between the variables. The
three variables of Education, Income > 200%, and Income < 60% had a
significant relationship with the percentage of female borrowers.

The distribution of the dependent variable against each of the independent
variables was investigated using scatterplots. In the first step, multiple linear
regression with all independent variables was fitted. The results indicated
that the ’Unemployed’ variable was non-significant in the model.
Investigation of the assumptions of the regression model also showed that
some of the municipalities were outliers and more influential than others.

The variance of the residuals was higher for values of the predicted
percentage of female borrowers above five per cent than for the values less
than five. The normality assumption of the residuals was also violated. Due
to the problems mentioned earlier, the independent variables were fitted
instead to the logarithm of the dependent variable. By fitting this model,
it was found that the ’Income < 60%’ variable was non-significant, and
moreover we found that the observation Danderyd was found to be an
outlier that was removed from data.

The new model was fitted using stepwise regression. According to the results
of this procedure, the most important variable in the regression model was
’Education’, revealing that a higher number of educated individuals in each
municipality gives a higher number of borrowers, which is not surprising.

The second most significant independent variable, after the ’Education’
variable, was the ’Income > 200%’ variable, having a negative correlation
with the percentage of borrowers. Because the higher the percentage of
wealthy individuals in each municipality is, a larger fraction of these indi-
viduals naturally do not need loans. This observation reinforces that the
result is reasonable and correct.
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Finally, in order to confirm the fitted model, we used data from 2016 in
order to predict the percentage of female borrowers in each municipality.
The results showed that the model was able to predict the percentage of
borrowers in a satisfactory way.
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7 Appendix

Table 19: The table demonstrates the five highest and lowest observations
(municipalities) in each variable from the data of 2015.

Dependent Variable: Min % Max %

Yi Women.Loan Haparanda 1,19 Lund 8,90
Askersund 1,20 Ume̊a 7,76
Årjäng 1,28 Uppsala 7,32
Kiruna 1,28 Linköping 6,51
Filipstad 1,34 Kalmar 5,34

Independent Variables: Min % Max %

X1i Unemployed Danderyd 2,30 Landskrona 15,20
Knivsta 2,50 Södertälje 15,20
Vaxholm 2,50 Malmö 15,00

Öckerö 2,60 Lessebo 14,30
Vallentuna 2,60 Eskilstuna 13,90

X2i Educated Munkfors 11,73 Lund 46,79
Filipstad 11,80 Danderyd 41,78
Dorotea 11,81 Solna 41,73
Eda 12,14 Stockholm 39,03
Årjäng 12,27 Uppsala 38,15

X3i Income < 60% of Middle Income Täby 5,50 Årjäng 29,00
Nykvarn 5,60 Eda 27,90

Öckerö 5,70 Dals-Ed 24,70
Lomma 5,70 Haparanda 23,80
Ekerö 5,80 Malmö 23,10

X4i Income > 200% of Middle Income Munkfors 1,20 Danderyd 36,60
Dorotea 1,40 Lidingö 26,00
Vilhelmina 1,40 Täby 22,90
Hällefors 1,60 Nacka 19,70
Norsjö 1,80 Vaxholm 18,80

Table 20: The table demonstrates the five highest and lowest observations
(municipalities) for the Middle Income 2015 variable

Variable Min SEK/Year Max SEK/Year

Middle Income Eda 181,05K Danderyd 660,75K
Årjäng 181,60K Lidingö 454,45K
Åsele 188,45K Täby 367,30K
Haparanda 190,40K Nacka 354,50K
Vilhelmina 190,40K Vaxholm 349,70K

Table 21: The summary of the data for 2016, used to predict the percentage
of female borrowers in each municipality this year.

Case number Municipality Unemployed Education Income > 200% Predict Inverse-Log Residual

1 Uppsala 6.1 24.08 8.3 4 2.53 0.32
2 Vallentuna 2.5 26.11 11.4 3.7 2.35 -0.20

3 Öster̊aker 3.4 25.42 13.3 3.3 2.12 0.28
4 Värmdö 3.5 25.29 13.6 3.2 2.08 0.14
5 Järfälla 8.3 27.15 9.1 4.8 3.03 -0.27
. . . . . . . .
. . . . . . . .
. . . . . . . .
286 Lule̊a 6.5 30.39 6 6 4.01 0.26
287 Pite̊a 6.1 21.60 4.4 4.1 2.59 0.25
288 Boden 8.8 23.34 4 4.8 3.04 -0.72
289 Haparanda 13.6 13.30 1.9 3.1 2.05 -1.03
290 Kiruna 4.4 18.33 4.5 3.2 2.08 -0.74
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Figure 11: A scatterplot of the dependent variable ’Women.Loan’ against
the ’Unemployed’ independent variable. The points are randomly scattered,
and no significant relationship is observed with R2 = 1.498E− 4.

Figure 12: A scatterplot of the dependent variable ’Women.Loan’ against
the ’Educated’ independent variable. A positive linear relationship is
observed with R2 = 0.451.
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Figure 13: A scatterplot of the dependent variable ’Women.Loan’ against
the ’Income < 60%’ independent variable. A negative linear relationship is
observed with R2 = 0.015.

Figure 14: A scatterplot of the dependent variable ’Women.Loan’ against
the ’Income > 200%’ independent variable. A positive linear relationship is
observed with R2 = 0.064.
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Figure 15: Homoscedasticity Scatterplot of predicted values against
standardized residuals for the new model with a log-transformed dependent
variable
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