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Abstract

Data that is too uncertain to be reported as specific numbers is
reported as censored. Censored data is generally very common from
chemical analyses, so the manipulation of censored data plays a key
role in statistical analysis of such data. The Swedish National Moni-
toring Programme for Contaminants (SNMPC) manipulates censored
data by substitution; our main idea is to use imputation by censored
regression instead. We show that this idea is viable and has relevance
to real SNMPC data. We present its mathematical basis; formulate
conjectures; outline the design, purpose and implementation of our
simulation experiments; and report and discuss our experimental re-
sults. In our main experiments, substitution and imputation by cen-
sored regression are used to generate distinct manipulated datasets.
From these datasets, estimates and predictions and their variance,
squared-bias, and MSE are computed and reported. Our main finding
is that imputation by censored regression generally results in much
lower squared-bias than results from substitution.
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1 Introduction

1.1 General statement of our goals
The Swedish National Monitoring Programme for Contaminants (SNMPC)
(Danielsson, Faxneld, and Soerensen 2020) in freshwater biota has various goals
and large scope.

The SNMPC goals that are most relevant for this study are:

• “To estimate the current levels and normal variation of various contami-
nants in marine biota [. . . ]”

• “To monitor long-term time trends and estimate the rate of changes
found.”

Datasets collected through environmental monitoring programs such as SNMPC,
invariably contain censored data. Censored data arises from censoring, which
means that observed numerical measurements are changed into censored values
prior to the data being reported. Here is an illustrative example: the observed
value 0.0001 is reported as the censored value < 0.001. Censoring can be done
for various reasons and in various contexts. The key principle is that censoring
is applied to measurements that are too uncertain to be reported numerically.

SNMPC describe their approach thus “[. . . ] concentrations reported as being
below the Level Of Quantitation (LOQ). Such values are included in the analysis
as if they were true observations with a value of LOQ√

2 . Due to the arbitrariness
of this procedure, any results based on series with a high rate of values below
LOQ should be interpreted with caution” (Danielsson, Faxneld, and Soerensen
2020).

Such substitution methods have also been criticised in the research literature.
For example, (Helsel 2006) found that substitution methods have low robustness
(i.e their performance is highly situational); they wrote: “Substituting values
for nondetects should be used rarely, and should generally be considered
unacceptable in scientific research. There are better ways.”

Broadly speaking, the goal of this study is to establish a less arbitrary approach
for manipulating censored data and evaluate it against the SNMPC’s approach.

Manipulation of censored data can be done by omission, or by replacement
by data that is either fabricated by substitution or imputed from a statistical
model. The distinction between substitution and imputation has been made
clear (Helsel 2012): “Substitution is NOT imputation, which implies using a
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model such as the relationship with a correlated variable to impute (estimate)
values. Substitution is fabrication.” Since omission is also known to generally
produce bias (Helsel 2012), our prior understanding is that imputation is
generally the best approach for manipulation of censored data.

Dozens of contaminants are monitored in the SNMPC, among these are poly-
chlorinated biphenyls (PCBs). Since PCBs are widely distributed, and have
similar chemical and physical properties, we conjecture that the concentrations
of different PCBs are correlated.

Let us denote a PCB with censored data as C and a fully observed PCB as F ;
our main idea is to use the censored regression C on F to impute the censored
data. The viability of this idea, and its relevance in relation to SNMPC, is
outlined in Section 1.2. The mathematical basis for imputation by censored
regression is presented in Section 1.3.

Although imputation by censored regression is a general method with wide
applicability, the application we focus on in this study is long-term time trends
for the concentration of polychlorinated biphenyls (PCBs) in marine biota, as
monitored by SNMPC. PCBs are synthetic chemicals used in manufacturing
processes, especially as plasticizers, insulators and fire retardants. PCBs are
widely distributed in the environment, degrade very slowly, bioaccumulate in
biota to high concentrations, and can be harmful to human health. PCBs
are one of the 12 classes of persistent organic pollutants initially included in
the Stockholm Convention in 2001 (Vanden Bilcke 2002). These properties of
PCBs illustrate both the importance for society of environmental monitoring
programmes such as SNMPC, and our rationale for choosing to focus on this
application of our statistical methods.

1.2 Exploratory Data Analysis (EDA)
We begin by performing EDA, and model fitting, from the large dataset pcb.csv,
which was provided from SNMPC. This dataset has 5056 observations of 18
variables; these variables include: measured concentrations of seven PCBs
(CB28, CB52, CB101, CB118, CB138, CB153, CB180); YEAR (1984-2017); an ID
for each observation; and nine other variables such as species and age.

Our exploration of this dataset found that:

• The most recent 15-year period 2003-2017 had sufficient relevant, consis-
tent data, so we will focus solely on this time period.

• It is reasonable to model the observed PCB concentrations as log-normal
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distributed.

• The data for CB153 had no censored values, whereas CB28 data had the
highest proportion of censored values; this proportion was 0.34. Every
such censored value is known to lie within the interval (0,LOQ). However,
more than 10 different LOQ values are used for censoring different CB28
observations in the dataset.

• Species is clearly a confounding variable for the association between
CB153 and CB28, so we will focus solely on observations from herring
(since this was the species for which there were most observations). No
other variable showed clear evidence for confounding.

From this basis, we create our test dataset T from the original dataset pcb.csv
by first removing all variables except YEAR, CB28, and CB153, and then removing
every observation that contained at least one missing value. We then replace
the concentrations of CB28, and CB153 by their logarithms (with base e), which
we denote throughout as y = log(CB28) and x = log(CB153). This means
that we view every observation of y and x as having an approximately normal
distribution, and the censored y values as laying in the half-open interval
(−∞, log(LOQ)). We then remove all observations except those from herring
species, all observations prior to 2003, and all censored observations and then
re-index 2003 as “year zero”. We choose to remove censored data because our
EDA is only for the purpose of checking feasibility, so we are not aiming for
precise estimates. The resulting dataset is our test dataset T .

From T , we fit a linear model for the regression Y on X, and note that the
adjusted R-squared equals 0.96. This indicates that y and x are strongly
correlated in our test dataset, which means that they are most likely strongly
correlated in the SNMPC dataset.

We also fit a model to our test dataset T for the regression X on A, which gave

E(X|A) = −2.91 + β̂AA (1)

where β̂A = −0.02. The corresponding fitted model for the regression Y on X
is

E(Y |X) = −3.18 + 0.79X (2)
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the residual standard error was equal to 0.1 from both models.

1.2.1 Designing our simulation studies from our EDA findings

In our EDA, we found that:

• CB153 is fully observed (0 % censored), 34 % of the CB28 values are
censored, and multiple LOQ values are used in the SNMPC dataset.

• the distribution of concentrations of each PCB is approximately log-
normal,

• y = log(CB28) and x = log(CB153) are strongly correlated; moreover,
y and x show a similar rate of decrease throughout the 15-year period
(results omitted).

These findings show that our method of choice (imputation by censored re-
gression) is viable, and relevant in relation to SNMPC. The centre-piece of
our work will be simulation studies because these will allow us to generate
uncensored data and apply censoring, so that we obtain censored data whilst
also knowing the underlying true values. Our simulations will be designed to
be relevant for the SNMPC data. In particular, for all i:

• xi and yi will have a normal distribution.

• The association between xi and ai is given by (1), the association between
yi and xi is given by (2).

However, the multiple LOQ values used in the SNMPC data raise issues beyond
the scope of our study, so we will make two simplifying assumptions throughout:

• There is precisely one LLOQ value per simulated dataset. Note that we
denote the censoring threshold for y as LLOQ, where LLOQ = log(LOQ),
which corresponds to the threshold LOQ for CB28. Note also that this
correspondence is one-to-one.

• Type II censoring is used. This means that we determine LLOQ by
censoring a fixed proportion, which we denote as cprop, of all observed
yi values. Concretely, LLOQ = (cprop × 100)th percentile of all yi

values, which means (for example) that we denote LLOQ = median(y)
as cprop = 0.5.

The variable parameters for our simulations will be βA, cprop, and σ, where
σ2 = V ar(yi|xi) for all i. Further implementation details for our simulations
are presented in Chapter 2.
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1.3 Imputation by censored regression
This method combines the two concepts regression imputation and censored
regression; these concepts are outlined in the following two sub-sections.

1.3.1 Regression imputation

Suppose we have a dataset D with n observations and two associated variables
x and y, of which c of the observations are complete. Suppose also that the
other n− c observations of D are incomplete since whilst x is fully observed, y
is missing. Therefore

D = {(x1, y1), (x2, y2), . . . , (xc, yc), (xc+1,NA), . . . , (xn,NA)}

where NA represents a missing value.

Performing regression imputation for dataset D means that we first find the
regression equation

y = αX + xβX (3)

for Y onX based on the c complete observationsDc = {(x1, y1), (x2, y2), . . . , (xc, yc)}.
We then impute each of the missing observations {yc+1, . . . , yn} by substituting
the corresponding x value into the regression equation.

This is illustrated in Figure 1 below for the case where there are 45 complete
observations shown as black dots, and two incomplete observations (x46, y46) =
(−5.00,NA) and (x47, y47) = (−3.50,NA), shown as green vertical lines. The
imputed values y46 = αX − 5.00βX = −7.12 and y47 = αX − 3.50βX =
−5.91 are shown as red horizontal lines. Thus the completed dataset is
C = Dc ∪ {(−5.00,−7.12), (−3.50,−5.91)}.
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Figure 1: The green lines show incomplete observations (x is known, y is missing).
The blue squares show the corresponding data points imputed from the regression
line, whilst the red lines show the imputed y values

In general, the main advantage of regression imputation is that it uses informa-
tion known about the association between x and y to impute information about
y. The main disadvantage is that the imputed values all lie on the regression
line so the resulting completed dataset has unrealistically low variance. Further
discussion of the pros and cons of regression imputation lies outside the scope
of this report.

1.3.2 Censored regression

To say that an observation is censored means that its value is known to lie
within a certain closed or half-open interval. Let y∗i denote the ith observation
prior to it being observed. If, for all i ∈ {1, 2, . . . , n}, yi = y∗i for y∗i > a,
and yi = a for y∗i ≤ a, we say that y is left-censored at a. Similarly if,
yi = y∗i for y∗i ≥ b, and yi = b for y∗i ≥ b, we say that y is right-censored at b.

We will focus solely on left-censored data and denote the censoring threshold
as LLOQ (rather than a).

Suppose we have a dataset D with n observations and two associated variables
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x and y, and that there are no missing values. Suppose also that whilst all n
observations of x are fully observed, only f of the observations of y are fully
observed, and the remainder are left-censored at LLOQ. Therefore

D = {(x1, y1), (x2, y2), . . . , (xf , yf ), (xf+1,LLOQ), . . . , (xn,LLOQ)}

where the f full observations have been assigned the subscripts 1, 2, . . . , f .

If we assume that the y∗i each have a normal distribution with mean = µ and
variance = σ2, then the yi have the corresponding distribution, truncated at
LLOQ. This illustrated in Figure 2 for LLOQ = µ − σ; the green and red
regions show the assumed distribution of the uncensored observations, and of
the true values for the censored observations, respectively.

µ − 3σ µ − 2σ µ − σ µ µ + σ µ + 2σ µ + 3σ
y

Figure 2: Truncated normal distribution

In the censored regression context, each observation y∗i is assumed to have a
normal distribution with mean

µiX
= αX + βXxi (4)

and variance σ2, where αX and βX are the intercept and slope parameters for
the regression Y on X.
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The corresponding probability density function is

f(y∗i ) = exp[(−1/2)((y∗i − µiX
)/σ)2]

σ
√

2π
which we can write as

f(y∗i ) = φ((y∗i − µiX
)/σ)

σ
(5)

where µiX
is given by (4), and φ is the pdf of a normal distribution with

mean = 0 and variance = 1.

The probability that y∗i is censored equals

P (y∗i ≤ LLOQ) = Φ((LLOQ− µiX
)/σ)

where Φ is the cdf of a normal distribution with mean = 0 and variance = 1.

Every y∗i is either censored or not. We will use the indicator variable, where
Ii = 1 and Ii = 0 denote that yi is censored, and not censored, respectively.
Moreover, we assume that yi are all independent, which means that the joint
likelihood over all observations is the product of the density functions for all yi.
This gives us the likelihood function L

L =
n∏

i=1

[(1/σ)φ((yi − µiX
)/σ)]1−Ii × Φ((LLOQ− µiX

)/σ)Ii

 (6)

So the log-likelihood function is

log(L) =
n∑

i=1

(1−Ii)[log(φ((yi−µiX
)/σ))−log(σ)]+Ii×log[Φ((LLOQ−µiX

)/σ)]


(7)

We will use the censReg() function from the censReg package (Henningsen
2012) in R to maximise this log-likelihood function to obtain the maximum
likehood estimates α̂X , β̂X and σ̂. Note that the censReg package calls the
maxLik package (Henningsen and Toomet 2011) to perform the likelihood
maximisation step.
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Recall that for regression imputation the missing values were imputed by

ŷi = E(Y |X = xi) = α̂X + β̂Xxi = µiX
(8)

where V̂ ar(ŷi) = σ̂2 and ŷi ∼ N(α̂X + β̂Xxi, σ̂
2).

To perform imputation by censored regression, we substitute every censored
observation (xi, yi) by its imputed value (xi, ŷi), where

ŷi = E(Y |X = xi, Y < LLOQ) (9)

using equation (8) from (Donald R. Barr and E. Todd Sherrill 1999) gives

ŷi = −σ̂ exp[((−1/2)(µiX
− LLOQ)/σ̂)2]

[1− (Φ(µiX
− LLOQ)/σ̂)]

√
2π

+ µiX
(10)

where µiX
is given by (4).

In our practice, we use the etruncnorm() function from the truncnorm R
package to calculate every such estimate for yi. We will refer to this imputation
model as censReg1, since it is based on censored regression with one predictor
variable. We will also study imputation from the censored regression of Y on the
two predictors X and A, which we will denote as censReg2. The mathematical
formulation for censReg2 corresponds to that presented above for censReg1,
except that we model each observation y∗i as from a normal distribution with
mean

µiX,A
= αX,A + βXxi + βAai (11)

and variance σ2.

This means that the likelihood function for the censReg2 model is given by
substitution of (11) into (6). Consequently, maximisation of the corresponding
log-likelihood function gives the maximum likehood estimates α̂X , β̂X , β̂A and
σ̂. This means that the censored yi are imputed by ŷi, which is obtained by
substitution of (4) by (11) into (10).

In summary, our MLE calculations use the values of the uncensored data,
the censoring proportion, and the formula for the assumed distribution. The
resulting parameter estimates have the maximum likelihood of giving these
values, and this censoring proportion, under this assumption.
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1.3.2.1 The distribution of imputed values from censReg1 Recall
that for left-censored data it is known that yi < LLOQ. Suppose that we
remove this condition and use (8) instead of (9) for the imputed values; we will
call this naive approach censReg1naive.

We show (in Figure 3) the distribution of the ML estimates for yi from il-
lustrative dataset, using the censReg1 and censReg1naive approaches. Our
purpose is to illustrate our conjecture that the censReg1naive approach pro-
duces significantly higher squared-bias than censReg1. We will later verify this
conjecture quantitatively through simulation studies.

For clarity, in Figure 3, we have displayed every data point of D as uncensored.
However the true value is unknown for all yi < LLOQ, when we view this
data as censored. We choose cprop = 0.5. In Figure 3, the red line shows
y = E(Y |X = x), the green line shows y = E(Y |X = x, Y < LLOQ), and
the blue line shows y = LLOQ. We have selected two observations for which
yi ≤ LLOQ and drawn black vertical lines through them. We denote these data
points as (xI1, yI1) and (xI2, yI2). For these points, the green squares show the
(xI1, ŷI1) and (xI2, ŷI2) imputed from y = E(Y |X = x, Y < LLOQ), whilst the
red squares show the corresponding imputations from y = E(Y |X = x). We
see that the green and red squares lie at the intersection of each black line with
the green and red curves, respectively. We also see that the green line stays
below y = LLOQ for all x, which means that ŷi < LLOQ for every imputation
from y = E(Y |X = x, Y < LLOQ). However this is not true for the red line;
in fact, we see ŷI2 > LLOQ imputed from y = E(Y |X = x, Y < LLOQ), which
contradicts the fact that yI2 < LLOQ was observed. We have thus illustrated
why it is necessary to condition on bothX = x and Y < LLOQ) and verified the
plausibility of equation (10). We will later verify this conjecture quantitatively
through simulation studies. We will use censReg1naive to denote such naive
imputations from y = E(Y |X = x) from now onwards.
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Figure 3: Imputation from censReg1 (green) and censReg1naive (red)

1.4 Data manipulation
1.4.1 Overview

For each simulation study, we will first generate “uncensored datasets” with
three fully observed variables Y , X, and A. From each of these, we will apply
Type II left-censoring to Y to get the corresponding “censored dataset”. We
will then apply each data manipulation approach to the censored data to obtain
the corresponding “manipulated dataset”. Every approach will give a distinct
manipulated dataset.

Our imputation by censored regression approaches censReg1, censReg2, and
censReg1naive were presented in Section 1.3.2.

Recall that the approach used by SNMPC is substitution by LOQ√
2 , which is

the most commonly used substitution value in the research literature that
underpins this report. The second most commonly used value is LOQ

2 . The
largest possible value that can be used for substitution is LOQ, since the values
that are observed to lie within the interval (0, LOQ) are left-censored at LOQ.
So we will test the three approaches that use the substitution values LOQ, LOQ√

2
and LOQ

2 ; we name these subst1, subst2, and subst4, respectively. We choose
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these names because LOQ = LOQ√
1 and LOQ

2 = LOQ√
4 . We choose these values

because LOQ
2 < LOQ√

2 < LOQ, so we can compare results from the substitution
value that SNMPC uses with one lower and one higher value. Note that for our
simulation studies we will use the corresponding logarithmised values LLOQ,
LLOQ− log(

√
2), and LLOQ− log(2), respectively.

We will also test the omit approach, in which the censored observations
are omitted. Note that the number of observations is unchanged by every
imputation-based or substitution-based approach, whereas it is lowered by the
omit approach.

1.4.2 Conjectures

1.4.2.1 Bias produced by the omit approach Omission of censored
observations is illustrated in Figure 4, in which the LLOQ is again shown as
a blue horizontal line. The regression lines from the uncensored dataset, and
the corresponding smaller manipulated dataset, are shown in green and red
respectively. Since x and y are correlated, points that lie below the blue line are
more likely to lie in the lower left of the figure and more likely to lie below the
regression line. Since the omit approach removes all such points, the resulting
red line is above the green one on the left of the figure and thus has a smaller
slope. This illustrates the basis for our conjecture that the omit approach will
generally produce relatively high squared-bias.
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Figure 4: The regression lines for the uncensored dataset, and for the smaller
manipulated dataset, are shown in green and red, respectively

1.4.2.2 The best choice of substitution value depends on the cen-
soring proportion cprop The following plot is the same as Figure 3, except
that it illustrates the subst1, subst2, and subst4 approaches instead of
censReg1naive. Moreover, whilst the right-most vertical line has been drawn
through the same data point as before, a new data point was chosen for the
other vertical line. For each of these two points, their values after manipulation
by subst1, subst2, subst4 and censReg1 are shown by blue, red, yellow and
green points, respectively.
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Figure 5: Data manipulation by subst1 (blue), subst2 (red), subst4 (yellow),
and censReg1 (green) for cprop = 0.5

Our next illustration (Figure 6) is the same as the previous one, except that
cprop = 0.2 and cprop = 0.7 are used and data manipulation is not displayed
for any individual data points. We see that the censored data points lie closest
on average to LLOQ for cprop = 0.2 whereas they are closest on average to
LLOQ− log(2) for cprop = 0.7; moreover, we saw from the previous plot that
they are closest on average to LLOQ−log(

√
2) for cprop = 0.5. For this dataset,

this shows that as the value of cprop increases, the relative amount of squared-
bias from subst1, subst2, and subst4 will be higher, intermediate, and lower,
respectively. This illustrates our conjecture that fabrication by substitution
generally has lower robustness than imputation by censored regression.
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Figure 6: The effect of a higher, and a lower, value of cprop on data manipulation
by subst1 (blue), subst2 (red), subst4 (yellow), and censReg1 (green)

1.4.2.3 The effect of the strength of correlation between Y and X
The value chosen for the variable parameter σ determines the strength of
correlation for the regression Y on X. The larger the value of σ, the weaker is
this correlation.

We make two conjectures regarding the value of σ.

• The performance of imputation-based approaches will be decreasingly
good for increasing values of σ because the information about Y given
by X is more noisy.

• The squared-bias from subst1, subst2, and subst4 will generally be
relatively lowest for small, intermediate and high relative values of σ
respectively.

Our rationale is that as σ increases, the mean of the unknown true y values
of the censored data decreases; this can be seen by analogy with the result
(Weisstein 2020) that

E(Y ) = σ
√

2√
π

for a half-normal distribution defined by Y = |X| where X ∼ N(0, σ2).
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2 Implementation of our simulation study

2.1 Dataset generation
2.1.1 Generation of uncensored datasets

Guided by the findings of the EDA we presented in Section 1.2, we generate
our uncensored datasets as follows (at every iteration):

1. We will also always simulate a 15-year period; we will use
A ∈ {0, 1, 2, . . . , 14} to denote year.

2. For every year, we will generate the same number of observations for Y
and X, we will call this number the sample size N .

3. We generate all xi from

xai
= −2.91− βAai + eai

(12)

where i ∈ {1, 2, . . . , N} denotes the ith observation, and the noise is modeled as
normally distributed with mean = 0 and variance = 0.12, i.e. ei ∼ N(0, 0.12).

4. We generate all yi from

yi = −3.18 + 0.79xi + εi (13)

where εi ∼ N(0, σ2).

Every resulting uncensored dataset has N observations for X and Y for every
year, so in total there are 15N observations, where each observation is for the
three variables Y , X, and A.

2.1.2 Generation of censored datasets

We generate every censored dataset from the corresponding uncensored dataset
in accordance with the principles outlined in Section 1.3.2. This means that
we use y∗i instead of yi, where y∗i refers to the ith observation prior to it
being observed. We determine LLOQ by censoring a fixed proportion, which
we denote as cprop, of all observed yi values. This means every censored
dataset that we generate has 15N × cprop censored yi, and 15N × (1− cprop)
uncensored yi observations. Recall that LLOQ = (cprop× 100)th percentile of
all yi values, which means that the value of (LLOQ|cprop) is constant and thus
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independent of A. This means that after yi has been observed and left-censoring
at LLOQ has been applied, we have yi = y∗i if y∗i > LLOQ and yi = LLOQ if
y∗i ≤ LLOQ for every censored dataset.

2.1.3 Generation of incomplete datasets

We then generate the incomplete dataset by removing all yi such that yi =
LLOQ from the corresponding censored dataset.

2.1.4 Generation of manipulated datasets

We will also obtain a distinct manipulated dataset from every data manipulation
approach, as described in Section 1.4.1.

2.2 Calculation of results
2.2.1 Calculation of baseline results

We obtain baseline results, which we call the best results, for the estimation
of β and for the prediction of E(Y |A = a) for a ∈ {0, 1, 2, . . . , 14} from the
uncensored dataset. Substitution from (12) into (13) gives

yi = −3.18 + 0.79(−2.91− βAai + ei) + εi (14)

= −3.18 + 0.79(−2.91)− 0.79βAai + 0.79ei + εi (15)

= α + βai + εi (16)

where α = −3.18 + 0.79 × −2.91 = −5.4789, and β = 0.79βA. Also εi =
0.79ei + εi, where ei ∼ N(0, 0.12) and εi ∼ N(0, σ2).

We obtain the parameter estimates α̂ and β̂ by fitting a simple linear regression
model using the lm() method in R. The best results for β̂ are given by (17),
(18), and (19).

MSE(β̂) = E[(β − β̂)2] (17)

[bias(β̂)]2 = (E[β̂]− β)2 (18)
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Var(β̂) = E[(β̂ − E[β̂])2] (19)

We obtain the prediction of E(Y |A = a) for a ∈ {0, 1, 2, . . . , 14} from

E(Y |A = a) = α̂ + β̂a (20)

We call the MSE, squared-bias, and variance, for every such prediction, the
best results.

2.2.2 Calculation of results from every data manipulation approach

We perform the same calculation as described in the previous section to obtain
the corresponding results for every data manipulation approach. The only
difference is that we start with the corresponding manipulated dataset instead
of the uncensored dataset. All estimation results are presented in tables and
all prediction results are displayed as graphs in Chapters 3 and 4.

2.2.3 Calculation of results from the censored dataset without data
manipulation (censReg0)

Our censReg0 approach differs from the censReg1 approach in the choice of
predictor variable for the model for the maximum likelihood estimation step.
We have seen that the censReg1 approach uses Xi as the predictor for this
step. The censReg0 approach uses Ai as the predictor instead for this step.

The same mathematical steps as in Section 1.3.2 yield the log-likelihood function

log(L) =
n∑

i=1

(1−Ii)[log(φ((yi−µiA
)/σ))−log(σ)]+Ii×log[Φ((LLOQ−µiA

)/σ)]


(21)

where µiA
= α + βai.

This function is the same as (7), except that µiA
is used in place of µiX

. However,
the key distinction is that the parameter estimates α̂ and β̂ are found directly
from the maximisation of (21) without any imputation step. We then obtain
the censReg0 results from equations (17), (18), (19), and (20).

Our censReg0 approach is designed to test our conjecture that since |βX | = 0.79
is much greater than |βA|, censReg0 will result in estimates and predictions
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with higher variance than from censReg1. The results from the censReg0
approach are presented in Chapters 3 and 4, together with those from the other
approaches.
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3 Results from our screening experiments
In this chapter we describe and present results from our screening experiments,
from which we determine appropriate values for the number of iterations per
simulation, the sample size, and the variable parameters β, σ, and cprop.

We also select appropriate data manipulation approaches for our main exper-
iments by obtaining results for the MSE, squared-bias, and variance of the
estimates of β from the following data manipulation approaches:

• the three substitution approaches subst1, subst2, subst4.

• the three imputation by censored regression approaches censReg1,
censReg2, and censReg1naive

• the omit approach.

We will also obtain our baseline results (best), and results from the censReg0
approach

We will present the results from our main experiments in Chapter 4. The
results from our screening experiments are presented in the remainder of this
chapter in tables; these results are pre-multiplied by 107 and then rounded,
to make them easier to read and compare. Results for MSE and variance are
rounded to one decimal place, whilst squared-bias is rounded to two decimal
places.

3.1 Selection of the number of iterations per simulation
Our results from preliminary experimentation (results not shown) indicated
that the percentage error of estimates of β was inversely proportional to the
square root of the number of iterations used to generate the datasets. This
percentage error was approximately 2% and 0.7% for 1000 and 10000 iterations,
respectively. We will therefore use 1000 iterations for simulation runs for our
screening experiments, and 10000 iterations for our main experiments.

3.2 Determination of appropriate sample size
We will first obtain results from datasets with different sample sizes in order to
decide an appropriate sample size to use in all of our subsequent simulations.

The parameter values {cprop = 0.3, βA = −0.02, σ = 0.1} are based on
estimates from our test dataset (Section 1.2). This dataset has approximately
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100 observations per year for Y andX from herring in years 2003-2017. However
these observations are from various locations and have differences for various
other variables such as age, fat-percentage etc., which means that any statistical
analysis which controls for such variables would have a smaller sample size.

We will test sample sizes that differ by a factor of 2: we do this by generating
datasets by simulation using 10000 iterations, with sample sizes 50, 25, 12 and
6 respectively. Since our estimate σ = 0.1 is from the test dataset, for which
mean(sample size) ≈ 100, and we wish to simulate smaller samples sizes, we
choose a higher value for σ whilst leaving the other parameter values unchanged.
This means that we will perform four simulations, all of which run for 10000
iterations and use parameters {cprop = 0.3, βA = −0.02, σ = 0.3}, whilst the
value of sample size equals 50, 25, 12, and 6, respectively.

3.2.1 Results for various sample sizes

The variance of estimates of β from all approaches, from simulations with
sample sizes 50, 25, 12, and 6, is shown in the columns of the following table.

ss=50 ss=25 ss=12 ss=6
omit 47.2 101.8 218.9 470.2
subst2 85.8 174.8 371.4 745.5
subst1 38.5 78.7 167.7 336.3
censReg1 67.6 137.6 292.7 585.5
censReg2 73.3 149.9 317.7 636.0
censReg0 73.4 149.9 317.9 636.7
best 71.8 136.1 286.6 565.4
subst4 166.4 339.0 718.7 1442.3
censReg1naive 44.0 88.3 188.3 375.0

Table 1: Variance (×107) of estimates for sample sizes 50, 25, 12, and 6

The following table is the same as the previous one, except that it shows the
squared-bias of the estimates of β.
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ss=50 ss=25 ss=12 ss=6
omit 626.33 630.80 625.92 628.98
subst2 16.36 18.13 19.69 15.94
subst1 224.61 221.39 217.86 227.11
censReg1 0.01 0.01 0.03 0.09
censReg2 0.02 0.01 0.02 0.12
censReg0 0.02 0.01 0.03 0.13
best 0.12 0.12 0.03 0.16
subst4 532.51 547.36 558.59 531.49
censReg1naive 69.48 66.68 67.15 70.29

Table 2: Squared-bias (×107) of estimates for sample sizes 50, 25, 12, and 6

3.2.2 Our rationale for choosing sample size = 12

Allowing for random error from using only 10000 iterations, we see (from
Tables 1 and 2) that the squared-bias is independent of sample size, whereas
the variance is inversely proportional to sample size. Moreover since the
bias-variance decomposition

MSE = Bias2 + Variance

always holds, we need not look at the MSE values for the purpose of choosing
sample size.

Recall that we found that the standard error of the estimates is inversely
proportional to the square root of the number of simulation iterations, so we
have three factors to balance:

• We want our results to be potentially applicable for real data.

• We want sample size to be sufficiently large to avoid MSE being dominated
by variance alone.

• We want the number of iterations to be sufficiently large that our estimates
have sufficiently low standard error.

We therefore decide to use sample size = 12 for all of our subsequent experi-
ments.
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3.3 Selection of data manipulation approaches for fur-
ther study

We will now use simulations with just 1000 iterations for all eight approaches
(and also for our reference results best) to estimate β for four sets of parameter
values. We will hold βA = −0.02 fixed. We will use “low” and a “high” value
for each of cprop and σ. Concretely, {(0.1, 0.1), (0.7, 0.1), (0.1, 0.5), (0.7, 0.5)}
will be used for {(cprop, σ)} respectively.

3.3.1 Variance of estimates from all approaches

The following table shows the variance of estimates from each approach for our
low-low, high-low, low-high, and high-high combinations of values for cprop
and σ, respectively.

Low-Low High-Low Low-High High-High
omit 44.0 67.8 584.4 870.2
subst2 80.9 87.3 697.1 322.0
subst1 42.8 9.3 564.9 120.6
censReg1 48.3 74.7 661.8 766.9
censReg2 48.8 96.8 673.7 1134.9
censReg0 48.7 102.8 673.7 1135.5
best 50.0 50.0 775.2 775.2
subst4 157.2 270.5 886.1 666.1
censReg1naive 43.3 78.7 518.3 845.3

Table 3: Variance (×107) of estimates for low-low, high-low, low-high, and high-high
combinations of values for cprop and σ

3.3.2 Squared-bias of estimates from all approaches

The following table is the same as the previous one, except that it shows the
squared-bias of the estimates of β.
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Low-Low High-Low Low-High High-High
omit 150.57 1345.67 232.84 1248.68
subst2 247.54 62.60 1.11 515.59
subst1 19.49 1252.76 44.65 1198.68
censReg1 0.00 0.04 3.80 0.45
censReg2 0.00 0.13 3.93 0.39
censReg0 0.00 0.17 3.98 0.43
best 0.00 0.00 1.68 1.68
subst4 1287.53 2623.28 20.90 116.45
censReg1naive 31.29 25.19 137.95 90.67

Table 4: Squared-bias (×107) of estimates for low-low, high-low, low-high, and
high-high combinations of values for cprop and σ

3.3.3 MSE of estimates from all approaches

The following table is the same as the previous one, except that it shows the
MSE of the estimates of β.

Low-Low High-Low Low-High High-High
omit 194.6 1413.4 816.7 2118.0
subst2 328.4 149.8 697.5 837.3
subst1 62.2 1262.1 608.9 1319.2
censReg1 48.3 74.7 665.0 766.6
censReg2 48.7 96.8 676.9 1134.2
censReg0 48.6 102.9 677.0 1134.7
best 50.0 50.0 776.1 776.1
subst4 1444.6 2893.5 906.1 781.9
censReg1naive 74.6 103.8 655.7 935.2

Table 5: MSE (×107) of estimates for low-low, high-low, low-high, and high-high
combinations of values for cprop and σ

3.3.4 Our rationale for selecting subst1, subst2, subst2, censReg1,
censReg2, and censReg0 for further study

We see that there is a much bigger difference between different approaches in
the amount of squared-bias than in the amount of variance. We will therefore
focus primarily on the results for squared-bias; we will use terms such as high
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and low to compare the relative amount of squared-bias from our different
approaches.

We see from Table 4 that the amount of squared-bias is very high from:
subst1 for {(cprop, σ)} = {(0.7, 0.1), (0.7, 0.5)}; subst2 for {(cprop, σ)} =
{(0.7, 0.5)}; subst4 for {(cprop, σ)} = {(0.1, 0.1), (0.7, 0.1)}. However, all
three substitution approaches also have low squared-bias for at least one set of
parameter values. This is intriguing and merits further investigation.

For all four parameter value sets, the squared-bias from censReg1, censReg2,
and censReg0 is very low; moreover it is clearly higher from censReg1naive,
which verifies our conjecture from Section 1.3.2.1.

The squared-bias from omit is generally very high for all combinations of values
for cprop and σ.

We therefore exclude the two approaches omit and censReg1naive from our
main experiments and include all other approaches. We will use best as our
baseline results throughout.

3.4 Selection of parameter values
We will select values for the variable parameters βA, σ and cprop with two
goals in mind:

• Relevance for SNMPC.

• Testing the conjectures stated in Section 1.4.2.

We will begin use the parameter values {cprop = 0.3, βA = −0.02, σ = 0.3}
that we used in Section 3.2.1. We will first hold {cprop = 0.3, σ = 0.3} fixed
and test the four values {−0.02,−0.04,−0.08,−0.16} for βA. We will then hold
{cprop = 0.3, βA = −0.02} fixed and test the four values {0.1, 0.3, 0.5, 0.7} for σ.
We will then hold βA = −0.02 fixed and test the four values {0.1, 0.3, 0.5, 0.7} for
cprop. However, we will hold σ = 0.5 fixed at this higher value. Our rationale
is based on the conjectures we stated in Section 1.4.2.1 and Section 1.4.2.2. We
reason that the relative performance of imputation-based approaches will be
worse at this higher σ value, which will give substitution approaches a better
chance to remain competitive at the highest values for cprop.
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4 Results from our main experiments
We present results from our main experiments for the estimation of β and
predictions of E(Y |A = a) for a ∈ {0, 1, 2, . . . , 14} from our chosen data
manipulation approaches, together with the corresponding best (baseline)
results.

This chapter will have three main sections 4.1, 4.2, and 4.3, which each show
the results for four chosen values for β, σ, and cprop, respectively. Every
main section will have three sub-sections for variance, squared-bias, and MSE,
respectively. Every sub-section has a table for results from estimates of β from
every approach.

In Sections 4.1 and 4.2, the sub-sections for variance and squared-bias each
have three figures, each with four graphs, showing these results for predictions.
The three figures show results for the purpose of comparing the imputation-
based approaches(censReg1 and censReg2), the substitution-based approaches
(subst1, subst2, and subst4), and the generally best performing approach
of each type (censReg1 and subst2), respectively. Section 4.3, and the sub-
sections for MSE (4.1.3, 4.2.3, and 4.3.3), each have one figure, each with four
graphs, showing results of predictions from censReg1 and subst2, exclusively.

In addition, the variance and squared-bias of predictions from censReg0 is
shown in the relevant figures of Sections 4.1.1 and 4.1.2, respectively. Regret-
tably, as a result of a technical error, these figure legends denote censReg0 as
censReg0impute.

Please note that throughout this chapter:

• All results are obtained from simulations with 10000 iterations, and
sample size = 12.

• All of the results for estimates are displayed pre-multiplied by 107 and
then rounded in every table. MSE and variance are rounded to one
decimal place, whilst squared-bias is rounded to two decimal places.

• All of the results for predictions are shown as graphs with MSE, squared-
bias, or variance on the y-axis and year on the x-axis for the simulated
15-year period.

• Every figure has four graphs, which each show the results for one of
the four chosen parameter values for the corresponding parameter. This
presentation format is designed to allow us to more easily see the effect
of each parameter.
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We will discuss all of our results in Chapter 5.

4.1 Results for various values of βA
For all our simulations in this section, these parameters are fixed: cprop = 0.3,
σ = 0.3, whilst βA is given the four values: −0.02,−0.04,−0.08,−0.16.

4.1.1 Variance of estimates and predictions

The following table shows the variance of estimates of β from every approach
for βA equal to −0.02,−0.04,−0.08,−0.16, respectively.

-0.02 -0.04 -0.08 -0.16
subst1 166.7 178.3 225.0 305.9
subst2 367.3 351.3 316.7 323.1
subst4 709.9 643.8 470.5 355.2
censReg1 288.9 315.9 362.8 449.5
censReg2 314.1 325.8 364.5 449.7
censReg0 314.4 326.2 365.4 452.7
best 289.4 280.8 288.0 285.3

Table 6: Variance (×107) of estimates for βA = −0.02,−0.04,−0.08,−0.16

The following three figures show the variance of predictions from imputation-
based approaches, from substitution-based approaches, and from censReg1
and subst2, respectively.
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Figure 7: The effect of the value of βA on the variance of predictions from
imputation-based approaches
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Figure 8: The effect of the value of βA on the variance of predictions from
substitution-based approaches
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Figure 9: Comparison of the effect of the value of βA on the variance of predictions
from censReg1 and subst2

4.1.2 Squared-bias of estimates and predictions

The following table shows the squared-bias of estimates of β from every approach
for βA equal to −0.02,−0.04,−0.08,−0.16, respectively.

-0.02 -0.04 -0.08 -0.16
subst1 226.07 860.84 3056.08 9626.60
subst2 16.03 49.12 37.98 285.91
subst4 530.96 1879.80 4570.78 4134.17
censReg1 0.03 0.01 0.02 0.20
censReg2 0.06 0.02 0.02 0.20
censReg0 0.06 0.02 0.03 0.24
best 0.01 0.01 0.06 0.17

Table 7: Squared-bias (×107) of estimates for βA = −0.02,−0.04,−0.08,−0.16

The following three figures show the squared-bias of predictions from imputation-
based approaches, from substitution-based approaches, and from censReg1
and subst2, respectively.
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Figure 10: The effect of the value of βA on the squared-bias of predictions from
imputation-based approaches
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Figure 11: The effect of the value of βA on the squared-bias of predictions from
substitution-based approaches
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Figure 12: Comparison of the effect of the value of βA on the squared-bias of
predictions from censReg1 and subst2

4.1.3 MSE of estimates and predictions

The following table shows the MSE of estimates for βA equal to
−0.02,−0.04,−0.08,−0.16, respectively.

-0.02 -0.04 -0.08 -0.16
subst1 392.7 1039.1 3281.0 9932.5
subst2 383.3 400.4 354.7 609.0
subst4 1240.7 2523.5 5041.3 4489.3
censReg1 288.9 315.8 362.8 449.6
censReg2 314.1 325.8 364.4 449.9
censReg0 314.4 326.2 365.4 452.8
best 289.4 280.7 288.1 285.4

Table 8: MSE (×107) of estimates for βA = −0.02,−0.04,−0.08,−0.16

The following figure shows the MSE of predictions from censReg1 and subst2.
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Figure 13: Comparison of the effect of the value of βA on the MSE of predictions
from censReg1 and subst2

4.2 Results for various values of σ
For all our simulations in this section, these parameters are fixed: cprop = 0.3,
βA = −0.02, whilst σ is given four values: 0.1, 0.3, 0.5 and 0.7 respectively.
Note that the results for σ = 0.3 appear in the previous section; they are
duplicated here to allow us to see the effect of the value of σ more easily.

4.2.1 Variance of estimates and predictions

The following table shows the variance of estimates from every approach for σ
equal to 0.1, 0.3, 0.5, 0.7, respectively.
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0.1 0.3 0.5 0.7
subst1 31.5 166.7 432.7 855.6
subst2 124.2 367.3 728.3 1258.9
subst4 320.7 709.9 1172.9 1815.9
censReg1 51.7 288.9 761.3 1520.5
censReg2 54.8 314.1 831.1 1657.3
censReg0 55.7 314.4 831.0 1657.7
best 48.9 289.4 744.6 1484.1

Table 9: Variance (×107) of estimates for σ = 0.1, 0.3, 0.5, 0.7

The following three figures show the variance of predictions from imputation-
based approaches, from substitution-based approaches, and from censReg1
and subst2, respectively.
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Figure 14: The effect of the value of σ on the variance of predictions from imputation-
based approaches
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Figure 15: The effect of the value of σ on the variance of predictions from
substitution-based approaches
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Figure 16: Comparison of the effect of the value of σ on the variance of predictions
from censReg1 and subst2
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4.2.2 Squared-bias of estimates and predictions

The following table shows the squared-bias of estimates from every approach
for σ equal to 0.1, 0.3, 0.5, 0.7, respectively.

0.1 0.3 0.5 0.7
subst1 211.64 226.07 224.49 222.70
subst2 809.08 16.03 10.13 40.14
subst4 5103.18 530.96 74.25 5.07
censReg1 0.00 0.03 0.01 0.02
censReg2 0.01 0.06 0.01 0.01
censReg0 0.01 0.06 0.01 0.01
best 0.00 0.01 0.02 0.35

Table 10: Squared-bias (×107) of estimates for σ = 0.1, 0.3, 0.5, 0.7

The following three figures show the squared-bias of predictions from imputation-
based approaches, from substitution-based approaches, and from censReg1
and subst2, respectively.
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Figure 17: The effect of the value of σ on the squared-bias of predictions from
imputation-based approaches
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Figure 18: The effect of the value of σ on the squared-bias of predictions from
substitution-based approaches
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Figure 19: Comparison of the effect of the value of σ on the squared-bias of
predictions from censReg1 and subst2
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4.2.3 MSE of estimates and predictions

The following table shows the MSE of estimates from censReg1 and subst2
for σ equal to 0.1, 0.3, 0.5, 0.7, respectively.

0.1 0.3 0.5 0.7
subst1 243.1 392.7 657.1 1078.3
subst2 933.2 383.3 738.4 1298.9
subst4 5423.9 1240.7 1247.0 1820.8
censReg1 51.7 288.9 761.3 1520.4
censReg2 54.8 314.1 831.1 1657.2
censReg0 55.7 314.4 830.9 1657.5
best 48.9 289.4 744.5 1484.3

Table 11: MSE (×107) of estimates for σ = 0.1, 0.3, 0.5, 0.7

The following figure shows the MSE of predictions from censReg1 and subst2.
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Figure 20: Comparison of the effect of the value of σ on the MSE of predictions
from censReg1 and subst2
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4.3 Results for various values of cprop

For all our simulations in this section, these parameters are fixed: σ = 0.3,
βA = −0.02, whilst cprop is given four values: 0.1, 0.3, 0.5 and 0.7 respectively.
Note that the results for cprop = 0.3 appear in the previous section; they are
duplicated here to allow us to see the effect of the value of cprop more easily.

4.3.1 Variance of estimates and predictions

The following table shows the variance of estimates from every approach for
cprop equal to 0.1, 0.3, 0.5, 0.7, respectively.

0.1 0.3 0.5 0.7
subst1 774.3 432.7 305.2 170.3
subst2 1034.0 728.3 683.1 419.9
subst4 1366.9 1172.9 1270.4 820.0
censReg1 960.5 761.3 913.2 954.5
censReg2 978.0 831.1 1157.2 1426.7
censReg0 980.6 831.0 1160.3 1444.6
best 845.0 744.5 845.0 845.0

Table 12: Variance (×107) of estimates for cprop = 0.1, 0.3, 0.5, 0.7

The following figure shows the variance of predictions from censReg1 and
subst2.
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Figure 21: Comparison of the effect of the value of cprop on the variance of
predictions from censReg1 and subst2

4.3.2 Squared-bias of estimates and predictions

The following table shows the squared-bias of estimates from every approach
for cprop equal to 0.1, 0.3, 0.5, 0.7, respectively.

0.1 0.3 0.5 0.7
subst1 32.87 224.49 661.37 1104.24
subst2 0.02 10.13 128.58 444.91
subst4 29.69 74.25 9.23 80.21
censReg1 1.02 0.01 0.38 14.88
censReg2 1.10 0.01 0.08 15.83
censReg0 1.16 0.01 0.04 15.57
best 0.47 0.02 0.47 0.47

Table 13: Squared-bias (×107) of estimates for cprop = 0.1, 0.3, 0.5, 0.7

The following figure shows the squared-bias of predictions from censReg1 and
subst2.
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Figure 22: Comparison of the effect of the value of cprop on the squared-bias of
predictions from censReg1 and subst2

4.3.3 MSE of estimates and predictions

The following table shows the MSE of estimates from every approach for cprop
equal to 0.1, 0.3, 0.5, 0.7, respectively.

0.1 0.3 0.5 0.7
subst1 799.4 657.1 963.5 1272.9
subst2 1023.7 738.4 804.8 860.6
subst4 1382.9 1247.0 1267.0 892.0
censReg1 951.9 761.3 904.5 959.9
censReg2 969.3 831.1 1145.7 1428.3
censReg0 972.0 830.9 1148.7 1445.7
best 837.0 744.5 837.0 837.0

Table 14: MSE (×107) of estimates for cprop = 0.1, 0.3, 0.5, 0.7

The following figure shows the MSE of predictions from censReg1 and subst2.
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Figure 23: Comparison of the effect of the value of cprop on the MSE of predictions
from censReg1 and subst2
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5 Discussion of results
In Section 5.1, we will give general comments that are true for all (or almost
all) ten parameter value sets we used in our main experiments.

In Sections 5.2, 5.3, and 5.4, we will discuss the effect of βA, σ, and cprop on
the results, respectively.

We will give our concluding remarks in Section 5.5.

5.1 General comments
A common feature of the graphs showing the variance of predictions (Figures
7-9, 14-16, 21) is that they all have an approximately parabolic “U” shape, with
higher variance at each end of the time period than in the middle of the period.
This is in accordance with our prior expectations because this is generally the
case for the variance of predictions from fitted linear regression models.

It is also generally the case that the squared-bias of estimates and predictions
from substitution-based approaches is much higher than from imputation-based
approaches. This can be seen from Tables 7, 10, and 13, and it really jumps
out from Figures 12, 19, and 22, since the curves for censReg1 in those figures
are indistinguishable from the horizontal axis.

A common feature of the graphs showing the squared-bias of predictions from
substitution-based approaches (Figures 11, 18, 22) is that they almost all show
increasing squared-bias as year increases. The only minor exceptions are seen
in Figure 11 for βA equal to −0.08 and −0.16.

We see from Tables 2 and 4 that the squared-bias of estimates from omit
is generally very high, which supports our conjecture from Section 1.4.2.1
(that omit gives generally high squared-bias). Moreover these results tables
also show that the squared-bias from censReg1naive is very much higher
than from censReg1, which supports our conjecture from Section 1.3.2.1 (that
censReg1naive gives higher squared-bias than censReg1).

The following statements regarding the variance of estimates are supported by
every relevant table entry of Chapters 3 and 4 (see Tables 1, 3, 6, 9, and 12).
The variance of estimates from

• censReg1 is lowest, out of all imputation-based approaches.

• censReg0 and censReg2 is generally very similar.
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• subst1 is lowest, and is highest from subst4, out of all substitution-based
approaches.

Thus these results support our conjecture from Section 2.2.3 (that censReg0
gives estimates and predictions with higher variance than censReg1). Moreover,
censReg2 gives higher variance than censReg1; this makes sense because it
agrees with the general principle that a model with more predictors will typically
give higher variance. We reason that the information about the correlation
between Y and A is carried by the correlation between Y and X encoded by
the censReg1 approach, which renders the additional predictor of censReg2
redundant for reducing squared-bias, which means that the higher variance
from censReg2 is also reflected in higher MSE.

The last bullet point can be explained by the fact that for all uncensored data
y ≥ LLOQ, and since it is also the case that LLOQ− log(2) < LLOQ− log(

√
2),

then the gap between the uncensored data and the substituted data is largest
for subst4 and smallest for subst1. We reason that this results in highest
variance from subst4 and lowest variance from subst1. We also reason that
the same logic would also hold for other possible substitution values; the larger
the gap between this value and LLOQ, the larger the resulting variance.

5.2 The effect of βA on results
5.2.1 From imputation-based approaches

We see from Section 4.1.1 that the variance from censReg1 is slightly lower than
from censReg0 and censReg2 for the lowest value of βA and at the beginning
and end of the 15-year period. Moreover, there is no visible difference in the
variance from these three censored regression approaches for higher values of
βA and/or for years in the middle of the 15-year period. This makes sense
since censReg1 does not use A as a predictor variable, whereas these other two
approaches do, so we would expect the relative performance of censReg1 to
decrease as the value of |βA| increases.

5.2.2 From substitution-based approaches

5.2.2.1 Variance Table 6 shows that the subst1 approach gives estimates
with increasing variance as |βA| increases, whereas the opposite is true for
subst4. We also see from Figure 8 that the variance of predictions is highest
from subst4 and lowest from subst1 in general, and that the difference between
these decreases as |βA| increases. The squared-bias from all substitution-based
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approaches generally increases as |βA| increases, and as year increases. This all
makes sense since we are using a constant LLOQ value for the whole 15-year
period for every dataset. We are also always using the fixed value αA = −2.91,
and a variable but always negative parameter value for βA. Moreover, the
definition of |βA| tells us that the rate of decrease of E(Y |A = a) as a increases
is larger for larger values of |βA|. This all means that the proportion of yi

that are censored each year increases with year, and that this rate of increase
increases as |βA| increases; moreover the mean of the true values of the censored
data also decreases with year at an increasing rate as |βA| increases. This
explains why subst1 gives predictions with increasing variance as year increases,
whereas the opposite is true for subst4 by the same reasoning.

5.2.2.2 Squared-bias and MSE The subst1 approach is designed as a
reference that gives biased estimates, since it substitutes y values that are
observed to be below LLOQ with the LLOQ value itself, so the substituted
values will never be smaller than the unknown true y values. From the same
reasoning as is given in Section 5.2.2.1, we expect the squared-bias from
subst1 to increase as |βA| increases, which is precisely what these results show.
In contrast, the squared-bias from subst4 first increases from |βA| = 0.02
to |βA| = 0.08 and then decreases for |βA| = 0.16. This suggests that the
substitution value LOQ− log(2) is lower than the true values on average for
|βA| = 0.02 but not lower for the highest value |βA| = 0.16. This conclusion is
also supported by the fact that the squared-bias from subst2 is much lower
than that from subst1 or subst4, which suggests that the true values of the
censored data mostly lie between LLOQ and LOQ− log(2) for these sets of
parameter values. From the results for predictions from substitution-based
approaches, we see the same trend that we saw for the estimates, i.e. the relative
amount of squared-bias from subst1 increases as |βA| increases, whereas the
opposite is true for subst4.

5.3 The effect of σ on results
We first compare the squared-bias of estimates from our three substitution-
based approaches (see Table 10). The squared-bias from subst4 decreases
greatly as the value of σ increases, whereas the squared-bias from subst1
is relatively independent of the value of σ. The squared-bias from subst2
again follows a trend intermediate between that of subst1 and subst4, since
it decreases from σ = 0.1 to σ = 0.5 and then increases for σ = 0.7. Our
interpretation is that this can be attributed to the fact that the censored y
values lie closer on average to LLOQ for smaller values of σ, and further away
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for larger values. The low squared-bias from subst4 for σ = 0.7 indicates that
the true y values for the censored data lie close to LOQ− log(2) on average
for this parameter value. These results are consistent with our conjecture from
Section 1.4.2.3.

We already know that the squared-bias from the imputation-based approaches
is much lower than from substitution-based approaches. Moreover, the variance
from the imputation-based approaches is much higher than the corresponding
squared-bias, which means that any statements we make about variance also
apply to MSE, and vice versa. We see from Table 10 that all three imputation-
based approaches gave lower MSE of estimates than all three substitution-based
approaches for both σ = 0.1 and σ = 0.3. However this is not the case for larger
values of σ, which we attribute to the fact that the corresponding variance
from imputation-based approaches increases greatly as σ increases.

Of the substitution-based approaches, subst1 gave lowest MSE of estimates
for all values of σ, with the sole exception that subst2 gave slightly lower
for σ = 0.3. In fact, subst1 even gave lower MSE of estimates than best for
σ = 0.5 and σ = 0.7 because the lower variance from this approach more than
compensated for the higher squared-bias.

Our conjecture from Section 1.4.2.3 (that imputation-based approaches will
perform decreasingly well for increasing σ values) is clearly supported by the
results from Sections 4.2.1 and 4.2.3. More specifically, these approaches all
give estimates with low squared-bias for all σ values we used, but the variance
increases greatly as σ increases.

5.4 The effect of cprop on results
Recall that these results for predictions were reported exclusively for the
censReg1 and subst1 approaches, whereas for estimates the results from all
approaches were reported. Moreover, we have already made general comments
about variance, and about the lower squared bias from imputation-based than
from substitution-based approaches in Section 5.1.

We therefore focus on discussing the results from Section 4.3 in relation to
our conjecture from Section 1.4.2.2 (that the best substitution-based approach
depends on the value of cprop). Of the substitution-based approaches, the
squared-bias of estimates from subst2 is lowest for cprop equal to 0.1 and
0.3, whereas it is lowest from subst4 for larger values of cprop; moreover, it
increases greatly as cprop increases, from subst1 and subst2. These results
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broadly follow the same pattern that is illustrated in Figure 6, and are consistent
with our conjecture.

5.5 Concluding remarks
Our simulation studies were designed on the basis of our EDA from the SNMPC
datasets. All of our results show that imputation-based approaches generally
give much lower squared-bias than substitution-based approaches.

However, we see from Table 11 that as σ increases, which corresponds to
decreasing strength of correlation between Y and X, the variance (and thus
MSE) from imputation-based approaches increases steeply. This exemplifies
the purpose of imputation: to use information from the correlation of X and
Y to impute (estimate) censored y values from fully observed x values. Larger
σ values mean that this information is more noisy, which results in higher
variance.

The models fitted to our test dataset in Section 1.2, and represented by (1) and
(2), both have residual standard error equal to 0.1. We therefore reason that
the correlation of X and Y is sufficiently strong for imputation by censored
regression to be the method of choice for manipulation of censored SNMPC data.
If it would have been the case that the SNMPC datasets used a single LOQ
value, then our results indicate that SNMPC could benefit from changing from
their substitution-based approach to an imputation-based approach. However
since the SNMPC datasets use multiple LOQ values, our findings are too
limited in scope to be directly applicable for SNMPC. Our findings nonetheless
constitute a solid foundation upon which a more nuanced understanding can
be developed through further investigation.
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