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Abstract

In this thesis we are interested in forecasting the monthly average
global temperature anomaly (in ◦C) for January 2020 using data from
the *National Oceanic and Atmospheric Administration* (NOAA).
The data contains 1680 temperature anomalies from January 1880 to
December 2019 and are given in relation to the 20th century average.
By first differencing the data, to obtain weakly stationary behaviour,
three ARIMA models are chosen as candidates to forecast the temper-
ature anomaly for January 2020: one with AR components, one with
MA components and one including both types of components. Their
respective forecasting capabilities are then compared, wherepon the
winner’s residuals are used to model the conditional variance using an
ARCH model. Lastly, a forecast is made and the conditional variance
is used to give a forecast interval. The result is a forecasted tempera-
ture anomaly of 0.989 ◦C, which is a slight decrease compared to the
previous month. However, the forecast interval shows that an increase
is also possible.
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1 Introduction

“Climate change has taken on political dimensions. That’s odd because I don’t see people

choosing sides over E = mc2 or other fundamental facts of science.”

−Neil deGrasse Tyson

As a person living in the 21st century it is almost impossible to not come across the concept of global warming.
With the fast progress and development of social medias it has certainly popped up on many radars. This
has initiated discussions and caused gatherings, whether the people involved believe that humans have an
impact on the global warming or not. Regardless the cause of global warming, there is still a scientific
consensus that global temperatures are rising. See ([1]) for further reading about this.

Figure 1: Illustration of the scientific consensus regarding global warming. Source: [1].

In this thesis we are interested in modelling the evolution of the global temperature. More specifically, we will
try to forecast the average global temperature anomaly for January 2020 using monthly data from January
1880 to December 2019. The data set is taken from the National Oceanic and Atmospheric Administration
organisation (NOAA) and consist of monthly average global temperature anomalies provided with respect
to the 20th century average (1901-2000).

To start of we will make a mean model using an autoregressive integrated moving average model, where the
time series consisting of the average global temperature anomalies is differenced once to create a time series
with time-invariant mean. Three models will be compared: one with only autoregressive parameters (AR),
one with only moving average parameters (MA) and one including both of the preceding. The purpose of
the comparison is to determine if the differenced average global temperature anomaly is best described by an
AR, MA or ARMA process. The forecast accuracy of these models is then measured using a rolling window
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of 1-step-ahead forecasts combined with the root mean squared error (RMSE) and the mean absolute error
(MAE). We will see that forecasting with ARIMA(1,1,2) results in the smallest RMSE and MAE, and is
therefore the model used to forecast the average global temperature anomaly for January 2020.

Lastly, a forecast interval for the temperature anomaly is given. With a McLeod-Li test showing signs of
conditional variance an ARCH(26) model is fitted to the residuals of the ARIMA(1,1,2) model. The forecast
interval is then calculated by using the conditional variance estimation. The result is a forecasted temperature
anomaly of 0.989°C on January 2020, which is smaller than the temperature anomaly for December 2019,
having measured 1.05°C. However, the forecast interval shows that the true anomaly on January 2020 may
in fact be larger than 1.05°C.
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2 Data description

The data set used in this thesis is taken from NOAA ([2]), which is an american scientific agency within the
U.S. department of commerce whose goal is to be a trustworthy authority on climate and historical weather
information. The set consists of monthly average global temperature anomalies (in degrees Celsius) between
January 1880 and December 2019, provided with respect to the 20th century average (1901-2000). Each
anomaly is calculated by using a data set containing the monthly average temperature anomaly for 5° × 5°
grids across land and ocean surfaces. Averaging these grids for each month provides the monthly average
global temperature anomalies ([2]).

The temperature anomalies between January 1880 and December 2019 constitute 1680 observations. For
convenience we will henceforth let {1, 2, .., 1680} be the index set denoting each month, where 1 denotes
January 1880 and 1680 denotes December 2019. Furthermore, all hypothesis tests will be performed at a
five percent significance level.
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3 Theoretical background

The following section goes through the essential theoretical parts needed to perform a time series analysis
of the temperature anomalies. We would like to point out that this section largely consists of parts from the
book Analysis of Financial Time Series, written by Tsay ([3]).

3.1 Theoretical aspects of time series modelling

3.1.1 Mathematical definition of a time series

A time series is a time-ordered series obtained by observing a variable over time, usually over equally spaced
time intervals. Mathematically, a real valued time series is a stochastic process defined by a probability
space (Ω,F , P ) and an index set T , where

• Ω is the set of all possible individual outcomes, ω.
• F is a sigma-algebra containing events given as subsets of Ω.
• P is a function defined on F , assigning probabilities to events.

Consider the function Y (t, ω) : T ×Ω→ R. For each t, this function constitutes a stochastic variable defined
on a probability space (Ω,F , P ). A time series can be seen as a collection of such stochastic variables,
{Yt, t ∈ T}, where Yt is just an abbreviation of Y (t, ω) ([4], p. 1-3) .

3.1.2 Linear time series and white noise

A time series {Yt} is called linear if it can be written as

Yt = µ+
∞∑
i=0

ψiεt−i, (1)

where µ is the expected value of the Yt and {εt} is a white noise series, meaning that it is a sequence of
independent and identically distributed stochastic variables with expected value zero and variance σ2. It
must hold that ψ2

i goes to 0 as i goes to infinity in order for the variance of Yt to be finite. This is important
in order for the time series to be weakly stationary, which is a concept defined in the next section ([3], p. 36).

In this thesis we are only concerned with linear time series and will examine if white noise series are nor-
mally distributed. Henceforth, an index set T will be on the form {1, 2, ..., N}, where N is the number of
observations.

3.1.3 Stationarity

Let {Yt, t ∈ T} be a real valued time series. An important aspect of analysing time series is the assumption
of stationarity. The time series {Yt} is called strictly stationary if the joint distribution of (Yt1 , Yt2 , ..., Ytk )
is time invariant. This means that, for an arbitrary k, the equality

FYt1 ,Yt2 ,...,Ytk
(yt1 , yt2 , ..., ytk ) = FYt1+t,Yt2+t,...,Ytk+t

(yt1 , yt2 , ..., ytk ),

must hold for all indices t1, t2, ..., tk, not necessarily consecutive. Strict stationarity implies that the distri-
bution of Yt is the same for all t in the index set T , which tells us that the expected value and the variance
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of Yt are the same for all t under the assumptions that E(|Yt|) <∞ and E(Y 2
t ) <∞. Since the distribution

function is rarely known in real applications a weaker version of stationarity is often used ([4], p. 3-4).

The time series {Yt} is called weakly stationary if the expected value of Yt and the covariance between Yt
and Yt−l are time invariant. That is if

• E(Yt) = µ is constant,
• Cov(Yt, Yt−l) = γl depends only on l,

with l being an arbitrary integer.

Note that a strictly stationary time series with finite first and second moment is also weakly stationary,
but the converse is not necessarily true. The only exception is when the k-dimensional random vector
Yt1, Yt2, ..., Ytk follows a multivariate normal distribution. In this thesis we will make use of properties
obtained by assuming weak stationarity. For this assumption to hold, it is important that the data fluctuate
with constant variance around the fixed level µ when plotted against time ([3], p. 30). Many time series are
clearly not stationary in practice. Economic indicators often show trends through time, which means that
the mean is time-dependent ([4], p. 4).

3.1.4 Autocorrelation function - ACF

Suppose that we have observed N data points and have the index set T = {1, 2, ..., N}. Recall from the
previous section that the value of γl = Cov(Yt, Yt−l) only depends on the lag, l. The covariance γl is called
the lag-l autocovariance. Similarly, the correlation between Yt and Yt−l is called the lag-l autocorrelation
and is given by

ρl = Cov(Yt, Yt−l)√
Var(Yt) Var(Yt−l)

= E[(Yt − E(Yt))(Yt−l − E(Yt−l))]√
E[(Yt − E(Yt))2] E[(Yt−l − E(Yt−l))2]

= E[(Yt − µ)(Yt−l − µ)]√
E[(Yt − µ)2] E[(Yt−l − µ)2]

,

where we have used the assumption that {Yt} is a weakly stationary time series such that E(Yt) = µ for all
t in the index set. Here, ρl as function of l is called the autocorrelation function (ACF). Weak stationarity
also implies that Var(Yt) = Cov(Yt, Yt) = γ0. Thus we can write the ACF as

ρl = γl
γ0
.

Since the true values of µ and γ0 are not known, the ACF must be approximated with observed data. This
leads to the definition of the lag-l sample autocorrelation,

ρ̂l = γ̂l
γ̂0

for 0 ≤ l ≤ N − 1, (2)

where γ̂l = 1
N

N∑
t=l+1

(yt − ȳ)(yt−l − ȳ) is the lag-l sample covariance, ȳ = 1
N

N∑
t=1

yt is the sample mean and N

is the sample size ([3], p. 30-31).
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3.1.5 Partial autocorrelation function - PACF

Consider a weakly stationary time series {Yt}. The lag-l partial autocorrelation of Yt, φl, is the correlation
between Yt and Yt−l after removing the linear dependence of the intermediate variables Yt−1, Yt−2, ..., Yt−l+1.
Thus, the lag-l partial autocorrelation is given by the correlation between the two following variables.

Variable 1: The variance of Yt that is not explained by Yt−1, Yt−2, ..., Yt−l+1.

Variable 2: The variance of Yt that is not explained by Yt−1, Yt−2, ..., Yt−l+1.

Using ordinary least squares, we can acquire the best linear predictor of Yt and Yt−l by regressing both
variables on Yt−1, Yt−2, ..., Yt−l+1. Denoting these predictors with Ŷt respectively Ŷt−l, the lag-l partial au-
tocorrelation of {Yt} can then be defined as

φl = Cor(Variable 1,Variable 2) = Cor(Yt − Ŷt, Yt−l − Ŷt−l), (3)

with φ0 = 1 and φ1 = ρ1 = cor(Yt, Yt−1). Here, φl as function of l is called the partial autocorrelation
function (PACF) ([5], p. 68-69).

3.1.6 Back-shift operator

The back-shift operator, denoted by B, is an operator that shifts back the time index one unit. Applying it
on a time series {Yt, t ∈ T} yields the lagged series

B{Yt, t ∈ T} = {Yt−1, t ∈ T}.

Since a constant, c, can be seen as a time series with Yt = c for all t, it holds that Bc = c. It is easily verified
that the back-shift operator is a linear operator. Consider a time series {Yt = aXt + bZt + c}, where {Xt}
and {Zt} are two arbitrary time series and a, b and c are constants. Applying the back-shift operator gives

B{aXt + bZt + c} = B{Yt} = {Yt−1} = {aXt−1 + bZt−1 + c}.

Thus it holds that B(aXt + bZt + c) = aBXt + bBZt +Bc, showing that it is a linear operator ([6], p. 202).

3.1.7 Autoregressive model - AR(p)

An autoregressive model, denoted AR(p), is defined by

Yt = ϕ0 + ϕ1Yt−1 + ...+ ϕpYt−p + εt = ϕ0 +
p∑
i=1

ϕiYt−i + εt, (4)

where p is a positive integer denoting the amount of lags Yt depends on and {εt} follows a white noise series.
Thus, the current value in this model is seen as a linear combination of the previous p lags and a random
shock εt. Using the weak stationarity condition we conclude that
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E(Yt) = ϕ0

1− ϕ1 − ϕ2 − · · · − ϕp
. (5)

Using the back-shift operator, B, we can rewrite (4) as

φ(B)Yt = ϕ0 + εt, (6)

where φ(B) = 1− ϕ1B − ϕ2B
2...− ϕpBp is called the AR(p) polynomial. The equation given by φ(B) = 0

is called the characteristic equation. In order for the process to be a weakly stationary we must be able to
write it as a linear combination of the previous shocks where the coefficients constitute a convergent series,
that is on the form of (1). Using (5) to get that ϕ0 = µ(1− ϕ1 − ...− ϕn) we can rewrite (6) as

Ỹt = φ(B)−1εt, (7)

where Ỹt = Yt − µ. Thus (7) is a weakly stationary linear time series if φ(B)−1 has a convergent series
expression in powers of B. This is possible if the solutions of the characteristic equation are greater than
one in modulus. The proof of this is however left out. If a solution to the characteristic equation lies on the
unit circle, the AR(p) process is said to be unit-root nonstationary ([3], p. 37-46).

Note that the autocovariances of a stationary AR process can be obtained through tedious calculations.
These expressions are, however, not of great value to our analysis, but are merely a way to demonstrate that
the series is covariance stationary. Therefore we choose not to write them out.

3.1.8 Moving average model - MA(q)

A time series defined by

Yt = c0 + εt − θ1εt−1 − θ2εt−2 − ...− θqεt−q = c0 +
q∑
i=0

θiεt−i (8)

is called a moving average process of order q and the model is denoted with MA(q). Here, c0 is a constant
and {εt} a white noise series. Just by definition, it is easily seen that the MA(q) model is a linear time
series, since the form of the model follows the one in (1) with ψi = θi for i > 0 and ψ0 = 1.

MA processes, being finite linear combinations of a white noise series, are always weakly stationary. Thus
the first two moments are time invariant. Taking expectation of (8), we get

E(Yt) = c0 +
q∑
i=0

θiE(εt−i) = c0. (9)

Taking the variance of the same equation gives

Var(Yt) =
q∑
i=0

θ2
i Var(εt−i) = (1 + θ2

1 + ...+ θ2
q)σ2. (10)
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Clearly (9) and (10) show that the first and second moment of the time series are time invariant. The same
also applies to γl = Cov(Yt, Yt−l), but we refer to ([3], p. 57-60) for more reading on this topic.

Using the back-shift operator once again, such that Bεt = εt−1, we can rewrite (8) as

Yt = c0 + θ(B)εt,

where θ(B) = (1− θ1B − θ2B
2 − · · · − θqBq) is called the MA(q) polynomial ([3], p. 57-59).

An MA(q) process is said to be invertible if the current error term, εt, can be written as an infinite linear
combination of its past values where the coefficients constitute a convergent series. That is, Yt = c0 +θ(B)εt
can be written as

εt = θ(B)−1Ỹt,

where Ỹt = Yt − c0. An MA(q) process is thus invertible if θ(B)−1 can be represented as a convergent series
in powers of B. This is possible if the roots of the MA(q) polynomial are larger than one in modulus ([5],
p. 71-72).

3.1.9 Autoregressive moving average model - ARMA(p,q)

An ARMA(p,q) model includes both autoregressive and moving average terms, giving more flexibility when
fitting the time series. It has the form

Yt = ϕ0 +
p∑
i=1

ϕiYt−i + εt −
q∑
i=1

θiεt−i,

where p and q are non-negative and {εt} is a white noise series. Using the back-shift operator, we can write
it as

φ(B)Yt = ϕ0 + θ(B)εt, (11)

with φ(B) and θ(B) once again denoting the AR(p) and MA(q) polynomial. It is required that there are no
common factors between the two polynomials, since this implies that the order of p and q can be reduced
([3], p. 66). This is not easily verified in reality but will be assumed to hold throughout the analysis. A
weakly stationary ARMA process has the same expected value as (5), meaning that ϕ0 can be written as
µ(1− ϕ1 − · · · − ϕp). Plugging this in to (11) gives

φ(B)Ỹt = θ(B)εt, (12)

where {Ỹt} = {Yt−µ}. As for the AR(p) process, (12) defines a stationary ARMA(p,q) process if the solutions
to the characteristic equation, (7), all lie outside the unit circle. If the equation has the unit as a solution,
the process is said to be unit-root nonstationary. Correspondingly, the process is called invertible if the roots
of the MA(q) polynomial all lie outside the unit circle ([5], p. 79-80). An important aspect of the stationary
and invertible ARMA(p,q) process is that it can be represented by an infinite AR process by writing (12) as
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φ(B)
θ(B) Ỹt = εt, (13)

which implies that it can be approximated by an AR(p) model process for some p ([5], p. 79-80). We will
return to this when testing for unit-root nonstationarity.

3.1.10 Order of integration - I(d)

To define the order of integration, it is necessary to return to unit-root nonstationarity. Recall that unit-root
nonstationarity is connected to the roots of the AR(p) polynomial. With one as a root to the polynomial,
φ(B) can be written as

φ(B) = ϕ(B)(1−B),

where ϕ(B) is the polynomial of a stationary AR(p− 1) process. Note that the ARMA process

ϕ(B)(1−B)Ỹt = θ(B)εt,

where Ỹt = Yt − µ, is unit-root nonstationary. But defining the time series Wt = (1−B)Ỹt+1 = Ỹt+1 − Ỹt =
Yt+1 − Yt gives us the stationary AR(p− 1,q) process

ϕ(B)Wt = θ(B)εt.

Thus, stationarity is obtained by differencing the series {Yt} once. Similarly, the problem of d roots being
equal to one, φ(B) = ϕ(B)(1 − B)d, is solved by differencing the series d times, that is by letting Wt =
(1−B)dYt. The minimum number of differences required for the time series {Yt} to become weakly stationary
is called the order of integration and is denoted I(d) ([5], p. 11-12).

3.1.11 Autoregressive integrated moving average model - ARIMA(p,d,q)

The ARIMA(p,d,q) model is a combination of the ARMA(p,q) model and I(d). A time series {Yt} is said to
follow an ARIMA(p,d,q) process if

Wt = ϕ0 +
p∑
i=1

ϕiWt−i + εt −
q∑
i=1

θiεt−i, (14)

where p and q specify the order of the ARMA process andWt = (1−B)dYt+1. The inverse of this differencing
is given by

Yt = (1−B)−dWt = SdWt,

where S = (1−B)−1 = 1 +B +B2 + ... and SWt =
∞∑
i=0

Wt−i ([5], p. 11-12).
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3.1.12 Autoregressive conditional heteroscedastic model - ARCH(m)

Conditional heteroscedasticity is present in a time series {Yt} if the conditional variance (or standard devia-
tion) changes with time. In mathematical terms, we consider

σ2
t = Var(Yt|Ft−1),

where Ft−1 is all the information that is available at time t − 1. By modelling the conditional variance
one can improve the accuracy of forecast intervals. Consider an arbitrary ARMA model with conditional
heteroscedasticity. The conditional variance of this model is given by σ2

t = Var(Yt|Ft−1) = Var(εt|Ft−1).
Thus, when modelling the conditional variance of such a model, one makes use of the error terms series
instead of the normal data set. An important aspect of conditional heteroscedasticity being present is that
the conditional variance varies within some fixed range, since it in that case can be seen as a stationary
process([3], p. 109-113).

One model that tries to explain the evolution of the conditional variance is the autoregressive conditional
heteroscedastic model (ARCH). The idea behind ARCH is that the error terms εt are uncorrelated but
dependent through a function of their squared values. The ARCH(m) model is given by

εt = σtut,

σ2
t = α0 + α1ε

2
t−1 + · · ·+ αt−mε

2
t−m =

m∑
i=1

αiε
2
t−i,

(15)

where ut is a white noise series with variance equal to one and σ2
t is the conditional variance. To guarantee

non-negativity of σ2
t the restrictions αi ≥ 0 are imposed. Consider an ARCH(1) process. The unconditional

mean is given by

E(εt) = E(E(εt|Ft−1)) = E(σt E(ut|Ft−1)) = 0,

and assuming stationarity of εt the unconditional variance is given by

Var(εt) = α0

1− α1
,

where we have used Var(εt) = E(ε2
t ) = E(E(ε2

t |Ft−1)) = E(σ2
tE(u2

t )) = E(α0 + α1ε
2
t−1) = α0 + α1 Var(εt)

and required that 0 ≤ α1 < 1 in order to have positive variance. Thus, the ARCH(1) process has a constant
unconditional variance while having a time-varying conditional variance ([6], p. 280-283).

3.1.13 ARIMA-ARCH model

The purpose of ARIMA models is to capture the evolution of the conditional mean, while the purpose of
ARCH models is to do the same with the conditional variance. This gives rise to a two-way model analysing
both the conditional mean and variance, called the ARIMA-ARCH model. It is jointly defined by (14) and
(15), where the error term from the ARIMA model follows an ARCH model. If all the roots of the AR
polynomial lie outside the unit circle, the ARIMA-ARCH process {Yt} is weakly stationary if {εt} is weakly
stationary.

Estimation of the parameters in an ARMA-ARCH model can be done in two steps. First, remove the linear
dependence by estimating the parameters of an ARMA model. Then, using the residuals from the previous
estimation, fit an ARCH model ([6], p. 293-294).
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3.2 Model fitting and selection rules

3.2.1 Maximum likelihood estimate - MLE

Maximum likelihood estimation is the method that will be used to estimate coefficients in our ARIMA models.
The likelihood function plays a central role in this and is defined by

L(θ;x) = f(x; θ). (16)

The likelihood function is seen as a function of the unknown parameters θ and is estimated from a realisation
x of a stochastic variable X. For a shorter notation, we will denote the likelihood function with L(θ).

The maximum likelihood estimate (MLE) θ̂ML of θ is given by

θ̂ML = arg
θ

maxL(θ)

It is often more convenient to look at the log-likelihood function

l(θ) = log(L(θ)),

which is the natural logarithm of the likelihood function. Since the natural logarithm is a strictly monotone
function, it holds that

θ̂ML = arg
θ

max l(θ).

Note that multiplicative constants in the likelihood function turn into additive constants when applying the
natural logarithm, which leads to more straightforward calculations ([7], p. 13-15).

Some statistical packages used in this thesis calculate the likelihood function of ARIMA and ARCH models
using conditional maximum likelihood, and one important note is that the packages use state-space rep-
resentations of ARIMA processes. For interested readers, conditional maximum likelihood is explained in
Appendix A.2. We will not, however, go further into state space representations of ARIMA processes.

3.2.2 Akaike’s information criterion - AIC

There are multiple selection criteria used to determine the order of an ARIMA model. A common choice is
Akaike’s information criterion

AIC = −2l(θ̂ML) + 2k.

Here, l(θ̂ML) is the log-likelihood function evaluated in the MLE and k is the number of estimated parameters.
The model minimising the AIC is chosen ([7], p. 224).

A downside to AIC is that it may perform worse when the number of parameters is large in relation to the
sample size, leading to the selection of a model with too many parameters. This problem gave birth to an
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AIC variant called AICC, which further penalizes models with a large number of parameters. The AICC is
given by

AICC = AIC + 2k(k + 1)
N − k − 1 ,

with N being the sample size. Note that AICC is asymptotically equal to AIC as the sample size goes to
infinity, which means that the AIC and AICC will tend to select the same model for sufficiently large sample
sizes. To avoid the problem of selecting a model with more parameters than necessary we will only make
use of the AICC ([8], p. 66).

3.2.3 Identifying the order of AR(p)

Since the order of a real stationary AR process is unknown, empirical methods can be used to determine it.
It can be shown that the ACF of an AR process goes towards zero as the lag, l, goes to infinity. Thus, the
ACF is not a good way of deciding the order.

The PACF is on the other hand useful. Let

Yt = ϕ0,1 + ϕ1,1Yt−1 + ε1,t

Yt = ϕ0,2 + ϕ1,2Yt−1 + ϕ2,2Yt−2 + ε2,t

Yt = ϕ0,3 + ϕ1,3Yt−1 + ϕ2,3Yt−2 + ϕ3,3Yt−3 + ε3,t

...

be the AR models with an order larger than zero, where ϕi,j is the ith coefficient in an AR(j) model. It
turns out that the lag-l partial autocorrelation, φl, of an AR(p) process is given by ϕl,l. The lag-l partial
autocorrelation, according to the definition in (3), is interpreted as the correlation between Yt−l on Yt after
removing the linear dependence of Yt−l+1, ..., Yt−1. Thus, the PACF for an AR(p) process should in theory
be zero for l > p.

The lag-l sample partial autocorrelation is given by ϕ̂l,l, and is an estimation of ϕl,l obtained by fitting an
AR model of order l. Since the PACF is zero for l > p, the sample PACF should be close to zero for all
l > p. In fact, for a weakly stationary Gaussian AR(p) model it holds that

• ϕ̂p,p converges to ϕp when the sample size goes to infinity
• ϕ̂l,l converges to zero for all l > p,

which are useful points for deciding the order ([3], p. 46-47).

On the hypothesis that the data follow an AR(p) process, the lag-l sample partial autocorrelation, for l > p,
approximately follows a normal distribution with expected value zero and variance 1

N . Thus, individual
PACF values can be tested with H0 : ϕl,l = 0 against H1 : ϕl,l 6= 0 ([5], p. 70).

3.2.4 Identifying the order of MA(q)

Unlike an AR process, the PACF of an MA process does not equal zero for l > q. Instead, the PACF goes
to zero as the number of lags goes to infinity. The ACF, on the other hand, is a useful tool for identifying
the order. For a time series following an MA(q) process it holds that ρq 6= 0 and ρl = 0 for l > q. Thus,
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the sample ACF, given by (2), should not be equal to zero for l = q, but be close to zero for all l > q. We
demonstrate this property for an MA(1) model,

Yt = c0 + εt − θ1εt−1. (17)

Multiplying (17) by Yt−l gives

Yt−lYt = Yt−lc0 + Yt−lεt − θ1Yt−lεt−1. (18)

Using the stationarity condition together with (9) it is easily shown that γl = Cov(Yt, Yt−l) = E(Yt, Yt−l)−
µ2 = E(Yt, Yt−l)− c2

0. Now, taking the expectation of (18) and using the fact that γl = E(Yt, Yt−l)− c2
0, we

get

γ0 = (1 + θ2
1)σ2, γ1 = −θ1σ

2 and γl = 0 for l > 1. (19)

Since the ACF is given by dividing (19) by γ0, this shows that the ACF is equal to zero for l larger than one
([3], 59-60).

A useful fact when looking at the ACF is that with the assumption of {Yt} being an independent and
identically distributed sequence with finite second moment, ρ̂l is asymptotically normal with expected value
zero and variance 1

N for all positive lags. This can be used to test for significant autocorrelations using
H0 : ρl = 0 against the alternative H1 : ρl 6= 0 ([3], p. 31).

3.2.5 Identifying the order of ARMA

First, we would like to point out that this section also applies to ARIMAmodels where the order of integration
has been chosen, since the differenced data follows a stationary ARMA process. Choosing the right value of
d is another topic discussed later.

Both the ACF and PACF are non-informative when it comes to determining the order of an ARMA model.
It can namely be shown that the ACF and PACF of an ARMA process do not cut off at any lag. Instead,
both go to zero as the lag goes to infinity. This is, however, no problem since the ARMA model with lowest
AICC will be chosen.

3.3 Model checking

This section covers methods and tests to check whether a fitted model satisfies the model conditions. Since
weakly stationary processes are sought, it includes tests for autocorrelation, conditional heteroscedasticity
and unit-root nonstationarity.

3.3.1 Ljung-Box test

The Ljung-Box test tests if several autocorrelations of a time series {Yt} are jointly equal zero. The Ljung-
Box test considers the null hypothesis H0 : ρ1 = ρ2 = · · · = ρm = 0 against the alternative hypothesis
H1 : ρi 6= 0 for some i ∈ {1, 2, . . . ,m}. The test statistic is given by

Q(m) = N(N + 2)
m∑
l=1

ρ̂2
l

N − l
,
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where m is the number of joint tests to be performed and ρ̂l is the lag-l ACF as given in (2). Under the
null hypothesis and the assumption that {Yt} is independent and identically distributed with finite second
moment, Q(m) is asymptotically χ2-distributed with m degrees of freedom. Thus the null hypothesis is
rejected if Q(m) > χ2

α(m), where χ2
α(m) denotes the α-quantile of the chi-squared distribution with m

degrees of freedom.

The choice of m is not easily made in practice, and it may affect the performance of the test statistic. Tsay
([3], p. 33) proposes the choice of m ≈ log(N) for a higher power of the test. However, this needs to be
reviewed in the case of seasonal time series since autocorrelations of a certain multiplicity is important.
Since the monthly average global temperature anomalies have monthly seasonality, we have to take this into
consideration.

When testing the residual series belonging to a fitted model, the degrees of freedom have to be adjusted to
m − g, where g is the number of AR and MA coefficients in the model. This is because of the constraints
added to the residual series from fitting the model. The adjustment can be made provided that m ≥ g ([3],
p. 32-33, 50-51).

3.3.2 McLeod-Li test

The McLeod-Li test uses the squared residual series to check for autoregressive conditional heteroscedas-
ticity, called the ARCH effect. This means that the conditional variance at time t is thought to be de-
pendent on the previous squared residuals. The test is performed by using the Ljung-Box statistic on
the squared residual series and following the procedure given in section 3.3.1. Here, the test corresponds
to having the null hypothesis H0 : "No conditional heteroscedasticity" against the alternative hypothesis
H1 : "Conditional heteroskedasticity" ([3], p. 114).

3.3.3 Augmented Dickey-Fuller test

Previously we have considered the case of unit-root nonstationarity, meaning that the AR polynomial has
got at least one root on the unit circle. Unit-root nonstationarity implies that the mean and autocovariances
of the series are time-dependent, which is why ways of detecting this are needed. In reality, unit-root
nonstationarity behaviour is exhibited in stocks, meaning that they for example do not vary around a fixed
level ([5], p. 11). To check if a unit root is present in a time series {Yt} one can use the augmented Dickey-
Fuller test.

To explain the test procedure, consider an AR(p) model Yt = g(t) + ϕ1Yt−1 + ...+ ϕpYt−p + εy, where g(t)
is a deterministic function of time. Earlier we have only considered the case of g(t) = ϕ0 being constant.
Subtracting Yt−1 from both sides, we obtain

Yt − Yt−1 = g(t) + (ϕ1 − 1)Yt−1 + ϕ2Yt−2 + ...+ ϕpYt−p + εt,

which can be rewritten as

Yt − Yt−1 = g(t) + (−φ(1))Yt−1 +
p−1∑
i=1

ai(Yt−i − Yt−i−1) + εt, (20)

where φ(1) denotes the AR(p) polynomial evaluated at B = 1 and ai = −
∑p
k=i+1 ϕk. The existence of a

unit root is equivalent to −φ(1) = 0. Thus, by obtaining the ordinary least squares estimation of −φ(1),
a t-test with H0 : −φ(1) = 0 against the one-sided alternative H1 : −φ(1) < 0 can be performed. These
hypotheses correspond to H0 : "The series is unit-root nonstationary" and H1 : "The series is stationary". If
the null hypothesis can not be rejected, we assume that Yt is I(d) for some d ≥ 1 and perform the same test
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until H0 is rejected. Note that an insufficient amount of lags leads to autocorrelation being present among
the residuals, which is why having the right AR(p) model is essential for the test.

The test is performed using the t-statistic. However, since the series is nonstationary under the null hypothe-
sis, the t-statistic will converge to a nonstandard distribution. To make things more tedious, this asymptotic
distribution changes depending on different cases of g(t). Dickey and Fuller provided three different cases:

Case 1 : The model includes no constant and no trend, meaning that g(t) = 0
Case 2 : The model includes a drift-term but no trend, meaning that g(t) = c0

Case 3 : The model includes a drift-term and a trend, meaning that g(t) = c0 + c1t.

The asymptotic distributions for these cases have been simulated by Dickey and Fuller and are available in
statistical software ([6], p. 246-250). One important observation is that, according to (13), an ARMA model
can be approximated by an AR model, meaning that the test can be applied on ARMA models. However,
the condition for an AR approximation is that the ARMA model is invertible.

For clarity, we finish this section off by giving an example of how an AR(3) model can be rewritten on the
form of (20). Subtracting by Yt−1 gives

Yt − Yt−1 = g(t) + (ϕ1 − 1)Yt−1 + ϕ2Yt−2 + ϕ3Yt−3 + εt.

Using that 0 = ϕ3Yt−2 − ϕ3Yt−2 we rewrite the above as

Yt − Yt−1 = g(t) + (ϕ1 − 1)Yt−1 + (ϕ2 + ϕ3)Yt−2 − ϕ3(Yt−2 − Yt−3) + εt.

Now, using that 0 = (ϕ2 + ϕ3)Yt−1 − (ϕ2 + ϕ3)Yt−1 we get

Yt − Yt−1 = g(t) + (ϕ1 + ϕ2 + ϕ3 − 1)Yt−1 − (ϕ2 + ϕ3)(Yt−1 − Yt−2)− ϕ3(Yt−2 − Yt−3) + εt,

which is on the form of (20).

3.4 Forecasting

Suppose that we are at time point h and that we are interested in forecasting the value Yh+l for some positive
integer l. The index h is called the forecast origin and l the forecast horizon. Denote the forecast of Yh+l
with Ŷh(l) and let Fh be the information available at the forecast origin. Choosing Ŷh(l) as the value that
minimizes the squared error loss function E((Yh+l − Ŷh(l))2|Fh) results in the l-step-ahead forecast of Yt at
forecast origin h,

Ŷh(l) = E(Yh+l|Fh).

The associated forecast error is given by eh(l) = Yh+l − Ŷh(l) ([3], p. 54-55).
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3.4.1 1-step-ahead forecast for ARMA models

Recall that Ŷh(l) is the l-step-ahead forecast of Yt at forecast origin h. In this thesis, we are only concerned
with the 1-step-ahead forecast since the average global temperature anomaly for January 2020 is to be
predicted with data available from December 2019. For an ARMA(p,q) model, the 1-step-ahead forecast is
given by

Ŷh(1) = E(Yh+1|Fh) = ϕ0 +
p∑
i=1

ϕiYh+1−i −
q∑
i=1

θiεh+1−i. (21)

The associated forecast error is eh(1) = Yh+1−Ŷh(1) = εh+1, which implies that Var(eh(1)) = Var(εh+1) = σ2

is the variance of the 1-step-ahead forecast error. If p or q is zero the forecast is given by removing either
the AR or MA terms from (21). The associated forecast error and its variance will however remain the same
([3], p. 55, 62,68)

3.4.2 Measures of forecast accuracy

The evaluation of forecast accuracy for a model requires a summary statistic, which the goal is to minimise.
We will use statistics that measure the errors of the forecast based directly on the deviation of the forecast
from the real value. There are several suggestions on how this statistic should be chosen, and two commonly
used ones are the root mean squared error (RMSE) and the mean absolute error (MAE). Since this thesis
only uses 1-step-ahead forecasts, the RMSE and MAE are given by

RMSE = 1
n

√√√√n−1∑
i=0

(Yt+1+i − Ŷt+i(1))2 = 1
n

√√√√n−1∑
i=0

et+i(1)2 and

MAE = 1
n

√√√√n−1∑
i=0
|et+i(1)2|,

(22)

where n is the number of 1-step-ahead forecasts made ([9], section 3.3.4). There is no consensus on which
statistic is to be preferred, but simulations have shown that the RMSE is more appropriate to use when
errors follow a normal distribution. However, the downside to the RMSE is its sensitivity to outliers, since
these errors have larger impact as a result of being squared ([10]).

3.4.3 Training and test set

An critical aspect of forecasting is the use of genuine forecasts. This means that data which has been used to
fit the model should not be used to determine the accuracy of a forecast. Instead, the accuracy of forecasts
is determined solely on how well the model performs on new data that have not been used in the fitting
process. This brings us to the concepts of training and test sets.

When presented with a data set it is common to divide it into two parts: the training set and the test set.
The training set is used to fit the model, that is to estimate the parameters, and the test set is used to
evaluate the accuracy of the model. Since the test set is not used when determining forecasts, it provides a
better picture of how well the model forecasts new data.([9], section 3.4).
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Figure 2: Illustration of training and test sets. Source: [9].

3.4.4 Rolling window forecast

A common way to test the predictive accuracy of a model is to use a rolling window procedure. This procedure
starts by initially splitting the data into a training set and a test set, with the training set consisting of the
oldest observations. The training set constitutes the first window and is used to fit the model. After the
model has been fitted, the l-step-ahead forecast is calculated. Since the forecasted data is already known,
a prediction error is also calculated. The window is then rolled forward a fixed increment and the same
procedure is performed until an l-step-ahead forecast can no longer be performed. A measure of forecast
accuracy is then used together with the forecast errors to evaluate the predictive accuracy of the model ([11],
p. 313-315, 349-350).

Denote the size of the window with m. This means that the test set consists of N −m observations. Thus,
the use of the rolling window method with 1-step-ahead forecasts leads to N −m forecast errors. In this
thesis, the forecast accuracy is evaluated using the RMSE and MAE given in (22). See Figure 2 for an
illustration of the rolling window forecast, where N = 26, m = 6 and the forecast horizon is equal to one.

Figure 3: Illustration of a rolling window forecast. Windows in blue and forecasted values in red. Source:
[9].

3.5 Software and packages

The statistical computations in this thesis are performed using the programming language R ([12]), version
3.6.2, together with the integrated development environment R studio ([13]), version 1.2.5033. To facilitate
the coding, the package Tidyverse ([14]) is used throughout. Other used packages, which implement the
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theory of model fitting and test the conditions of weakly stationarity, are TSA ([15]), aTSA ([16]), Forecast
([17]) and Rugarch ([18]).

4 Analysis of the average global temperature anomalies
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Figure 4: (a) The average global temperature anomalies and (b) the the differenced anomalies.

Plot (a) in Figure 4 does not have the look of a stationary process, whereas (b) does. The anomalies in
(a) may in fact be trend stationary, but this is nothing we will go further into in this thesis. It becomes
quite clear that the differenced anomalies do not include either a drift or trend. Augmented Dickey-Fuller
tests of the differenced anomalies can be found in Appendix B.1 and will be used in the upcoming section,
4.1. However, in Appendix B.1 we clearly see that the augmented Dickey-Fuller test is significant for every
lag between 1 and 60, which makes it quite reasonable to think that the differenced temperature anomalies
constitute a weakly stationary time series. The differenced data set does at least seem to solve the problem
of a time-dependent mean. Therefore, the differenced temperature anomalies will be used in the analysis
ahead.
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Figure 5: ACF of the differenced temperature anomalies. The blue dashed lines represent a 95% confidence
interval.

Figure 5 above shows that the differenced anomalies have significant autocorrelations at lags 1, 20, 24, 39, 45
and 48. The differenced temperature anomalies’ dependence of previous observations suggests that a time
series model may be suitable.
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4.1 Three model candidates

4.1.1 Integrated AR model
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Figure 6: PACF of the differenced temperature anomalies. The blue dashed lines represent a 95% confidence
interval.

The PACF plot shows significance on several lags and suggests that, for instance, AR(5), AR(20), AR(32)
or AR(47) may be suitable models. Note however, that the significance of some of these PACF values could
be the result of small randomness or measurement errors. The PACF plot indicates a suitable AR model
but is ultimately chosen by AICC since it penalizes models with a large amount of parameters.

The resulting model is an ARIMA(32,1,0) model. See Appendix C.1 for parameter estimations. In order for
this model to be a good fit we need to check whether the conditions on the error terms hold, which translates
to check that the residuals are independent and N(0, σ2) distributed. Recall that this is important for the
augmented Dickey-Fuller test, which requires non-autocorrelated error terms. Figure 7 below shows that the
residuals are not autocorrelated on any of the 60 first lags. This is also confirmed by the Ljung-Box tests in
Figure 18 (Appendix B.2), which show that less than five percent of the tests rejected the null hypothesis of
no autocorrelation. This is to be expected if the null hypothesis is true, and therefore we assume that the
residuals are not autocorrelated.
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Figure 7: ACF of the residuals from ARIMA(32,1,0). The blue dashed lines represent a 95% confidence
interval.

Now it remains to see whether it is reasonable to assume that the residuals are normally distributed. The
theoretical normal distribution plotted on the histogram in Figure 8 is obtained by maximum likelihood
estimation of the residuals obtained from the fitted ARIMA(32,1,0) model.
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Figure 8: (a) Histogram with N(0.00258, 0.00868) density function and (b) standard normal Q-Q plot with
residuals from fitted ARIMA(32,1,0).
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Figure 8 shows that it is reasonable to assume that the residuals follow a normal distribution. The histogram
follows the theoretical density function nicely and the Q-Q plot shows a linear trend with a few outliers.

To end this section, we return to the stationarity assumption of the differenced anomalies. Since the residuals
of the AR(32) model were uncorrelated, we perform the augmented Dickey-Fuller test using 32 lags. Figure
17 in Appendix B.1 shows that the p-value is 0.01 or smaller, meaning that the null hypothesis of unit-root
nonstationarity is rejected and stationarity is assumed.

4.1.2 Integrated MA model

To visually detect the order of an MA process, one can look at the ACF. Figure 5 shows that, for instance,
MA(1), MA(24), MA(39) and MA(44) may be suitable models for the differenced temperature anoma-
lies. However, some of these significant ACFs may be the result of randomness in data. Using AICC an
ARIMA(0,1,26) is chosen. See Appendix C.2 for parameter estimations.

We now check if the residuals satisfy the model conditions. Figure 9 shows insignificant ACFs for all lags
except 58. This could be the result of some randomness in the data. The Ljung-Box tests in Figure 19
(Appendix B.3) show that the null hypothesis of no autocorrelation can not be rejected. Therefore, the
residuals are assumed to be uncorrelated.
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Figure 9: ACF of residuals from ARIMA(0,1,26). The blue dashed lines represent a 95% confidence interval.

To see whether the residuals follow a normal distribution, a histogram with a theoretical normal distribution
density, acquired by fitting the residuals using maximum likelihood, and a normal Q-Q plot is plotted in
Figure 10.
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Figure 10: (a) Histogram with N(-0.00030, 0.00870) density function and (b) standard normal Q-Q plot with
residuals from fitted ARIMA(0,1,26).

The residuals of the ARIMA(0,1,26) model may follow a normal distribution according to Figure 10. The
histogram closely follows the theoretical normal distribution and the Q-Q plot exhibits a linear trend with
only a few outliers (slightly heavy tails).

Recall that an MA process, by definition, is stationary. No test is therefore needed to confirm this condition.

4.1.3 Integrated ARMA model

The order of an ARMA process can not be identified by using ACF and PACF, since neither of them cuts
off at any lag. Solely relying on the AICC results in an ARIMA(1,1,2) model for the temperature anomalies.
See Appendix C.3 for parameter estimations.

One can in Figure 11 see that there may be autocorrelation present among the residuals. This is verified
by the Ljung-Box tests in Appendix B.4 (see Figure 20), where more than fifty percent of the tests rejected
the null hypothesis of no autocorrelation. Autocorrelation among the residuals shows that the mean model
is not able to adequately capture correlation in the data. This may, however, not affect the models’ ability
of forecasting, which is why we will continue using it. An ARCH model may perhaps fix the problem of
autocorrelation if it turns out that the autocorrelation largely can be explained by the autocorrelation of
the residuals’ squared values.
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Figure 11: ACF of residuals from ARIMA(1,1,2). The blue dashed lines represent a 95% confidence interval.

Figure 12 shows that the residuals may follow a normal distribution. As in the two previous sections we
see that the histogram follows the fitted theoretical normal distribution and that the Q-Q plot shows a nice
linear trend, with a few values causing the sample distribution to have slightly heavier tails.
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Figure 12: (a) Histogram with N(-0.00031 , 0.00892) density function and (b) standard normal Q-Q plot
with residuals from fitted ARIMA(1,1,2).

Important aspects of an ARMA model is that both the stationary and invertible conditions hold, meaning
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that the roots of both the AR and MA polynomial are larger than one in modulus. The reader can easily
verify, using the estimations in Appendix C.3, that all real solutions to the MA polynomial are larger than
1 or smaller than -1, both for the ARIMA(1,1,2) and ARIMA(0,1,26) model. Note, however, that the R
package represents the MA(q) polynomial by θ(B) = c0 + θt + θ1B + θ2B

2 + ... + θqB
q instead of the

representation given in (8). In the same manner, it is easily verified that the ARIMA(1,1,2) is stationary,
since the single solution to the characteristic equation is larger than 1. The stationarity condition can also
be argued for by noting that the ARIMA(1,1,2) model can be represented as an infinite AR model and can
thus be approximated by an AR model of larger order, as described in (13). Since the ADF tests in Figure
17 (Appendix B.1) all reject unit-root nonstationarity for large orders of p, the stationarity condition should
hold for the ARIMA(1,1,2) model.

4.2 Selection of the final model

To select which model to use for forecasting of the average global temperature anomaly for January 2020,
we use a rolling window forecast with RMSE and MAE as measures of forecast accuracy. The differenced
temperature anomalies data set contains 1679 data points, of which the last 679 (around 40%) are used as
test data. This implies that the size of each window is 1000 observations. After the model is fitted on a
window, the 1-step-ahead forecast is calculated and the forecast error measured. When the rolling window
has forecasted the 1679th data point, the RMSE and MAE are calculated, and the model minimising these
measurements is chosen as the final model.

The results of the rolling window forecast are found in Table 1.

Table 1: Measures of forecast accuracy for all three candidate models

Model RMSE MAE
ARIMA(1,1,2) 0.08996 0.26199
ARIMA(0,1,26) 0.09036 0.26385
ARIMA(32,1,0) 0.09088 0.26480

Although the differences are not large, Table 1 shows that the ARIMA(1,1,2) model has both the smallest
RMSE and MAE. It is thus selected as the final model.

The RMSE and MAE are measures that compress much information into a single number. It may perhaps
be the case that the ARIMA(32,1,0) model has better forecast accuracy than the chosen model but with one
single forecast being very far off the real value, causing the RMSE and MAE to be larger. For the interested
we have plotted the 1-step-ahead forecasts for each of the three models, see Figure 16 in Appendix A.2,
which shows that the overall performance is similar for all models.

4.3 Forecast of the average global temperature anomaly for January 2020

We have now arrived at the last section of the analysis, which consists of section 4.3.1 and 4.3.2. The first
mentioned section gives a point forecast while the latter gives a forecast interval for the temperature anomaly
for January 2020.

4.3.1 Point forecast

Since the ARIMA(1,1,2) won the rolling window forecast in 4.2, it will now be used to forecast the temper-
ature anomaly for January 2020. Recall that the whole analysis has been carried out using the differenced
temperature anomalies, which is a data set of 1679 observations. This causes us to forecast the 1680th
difference instead of directly forecasting the 1681st temperature anomaly. Now, let {Wt = Yt+1 − Yt, t ≥ 0}
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denote the differenced temperature anomalies, where {Yt, t ≥ 0} are the temperature anomalies and the
1680th difference is given byW1680 = Y1681−Y1680. Given all information up until the 1680th month , F1680,
the 1-step-ahead forecast of W1680 can be written as

Ŵ1679(1) = Ŷ1680(1)− Y1680.

The forecast of the average global temperature anomaly can thus be calculated by

Ŷ1680(1) = Ŵ1679(1) + Y1680, (23)

where Ŷ1680(1) is the 1-step-ahead forecast of the average global temperature anomaly for January 2020,
Y1681. Note that, given F1680, both Y1680 and Ŵ1679(1) are known. Equation (23) can be generalised to
Ŷt(1) = Ŵt−1(1) + Yt with Ft given.

By using (21) to forecast the 1680th differenced temperature anomaly, we get that the forecasted average
global temperature anomaly for January 2020 is given by 0.987.

4.3.2 Forecast interval

It is quite reasonable to think that the forecasted temperature anomaly in the previous section will differ
from the real temperature anomaly by a small amount. To make room for forecast errors, a 95 percent
forecast interval will therefore be given. Using the notation in the previous section we see that the forecast
error of the 1680th differenced temperature anomaly is given by e1679(1) = W1680 − Ŵ1679(1). But from
section 3.4.1 it holds that e1679(1) = ε1680, and thus Var(e1670(1)) = σ2. Using the assumption of normality
and that E(e1679(1)) = 0 we get that

P(−z0.025 <
W1680 − Ŵ1679(1)

σ
< z0.025|F1680) = 0.95 ⇐⇒

P(Ŵ1679(1)− z0.025σ < W1680 < Ŵ1679(1) + z0.025σ|F1680) = 0.95,

where z0.025 is the 0.025-quantile of a standard normal distribution. We conditioned on F1680 since it consists
of all the information available when forecasting Y1681. By writing W1680 as Y1681−Y1680 and using the fact
that Y1680 given F1680 is known, results in the following forecast interval for the average global temperature
anomaly for January 2020.

Y1681 = Y1680 + Ŵ1679(1)± z0.025σ. (24)

However, Figure 13 (a) shows that the squared residuals have seasonal autocorrelation, which means that
conditional heteroscedasticity is present. This is also confirmed by the McLeod-Li test found in Appendix
B.5. The presence of conditional heteroscedasticity makes it reasonable to model the conditional distribu-
tion of {Wt} to achieve greater accuracy of the forecast interval. Using an ARCH model, we replace the
unconditional variance, σ, in (24) by the estimated conditional variance, σ̂1680.
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Figure 13: (a) ACF of the squared residuals and (b) ACF of the squared adjusted residuals from
ARIMA(1,1,2). The blue dashed lines represent a 95% confidence interval.

Model selection using AICC results in an ARCH(26) model. The series { εt

σt
= ut} corresponds to the adjusted

residuals of the ARIMA(1,1,2) model. The ACF plot of the adjusted residuals are given by (b) in Figure
13. With only a few ACF values being significant, the ARCH model may have been able to explain the
conditional variance. McLeod-Li tests of the series { ε

2
t

σ2
t
} can be found in Appendix B.6 and gives the result

of no conditional variance, meaning that our ARCH(26) model largely explains the conditional variance.
However, the problem of autocorrelation still stands, which is seen in the results of the Ljung-Box tests in
Appendix B.7.

Recall, from section 3.1.2, that we want to examine if {ut} are N(0, 1) distributed. By the look of Figure
14, the adjusted residuals may very well be N(0, 1) distributed, although not independent according to the
Ljung-Box tests in Appendix B.7. But since the aim of this section is to model the conditional variance,
we do not look further into the problem of autocorrelation present in the series {ut}. The obtained forecast
interval is plotted in the next section.

31



0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5 5.0
Residuals

D
en

si
ty

(a)

−2.5

0.0

2.5

5.0

−2 0 2
Theoretical quantiles

S
am

pl
e 

qu
an

til
es

(b)

Figure 14: (a) Histogram with N(-0.00004 , 0.99917) density function and (b) standard normal Q-Q plot of
the adjusted residuals from ARIMA(1,1,2)

4.3.3 Results

Replacing σ in (24) with σ̂1680 gives that Y1681 = Y1680 + Ŵ1679(1)± z0.025σ̂1680 conditioned on all available
info up until December 2019 (month 1680). Thus, we have arrived at the results of our analysis. Figure
15, found below, shows the temperature anomalies for a ten-year period, up until January 2020. The black
line shows the real temperature anomalies, the red line shows the 1-step-ahead forecasted anomalies and the
blue lines show the forecast interval. The forecasted average global temperature anomaly for January 2020
is given by 0.989°C and the 95 percent forecast interval is given by 0.989± 0.163°C. Note that the forecast
is smaller than the temperature anomaly measured in December 2019. This does not necessarily mean that
the real temperature anomaly for January 2020 will be smaller than the anomaly for December, since the
forecast interval extends past that value. However, the anomaly will probably not go past the largest peak
reached in March 2016 (month 1635) and will most certainly not be negative.
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Figure 15: 1-step-ahead rolling window forecasts with corresponding 95% forecast interval for ARIMA(1,1,2)
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Discussion

The objective of this thesis was to find an ARIMA-ARCH model that largely describes the movements of the
monthly average global temperature anomalies, so that it could be used to predict the temperature anomaly
for January 2020. Seeing that the global temperature anomaly is difference stationary, we compared the
predictive capabilities of three models: ARIMA(32,1,0), ARIMA(0,1,26) and ARIMA(1,1,2), which were
chosen by AICC. Using a rolling window to acquire 679 1-step-ahead forecasts for each model resulted in the
ARIMA(1,1,2) model having the lowest RMSE and MAE. One can although discuss whether the results in
Table 1 actually show that the forecasting capabilities are different for the three models, since the RMSEs
differ less than one thousandth of a degree Celsius. It may be the case that dividing the time period into
different parts results in different models having best forecasting accuracy. This is something that can be
studied further in the future.

Something that must be taken into account when using the ARIMA(32,1,0) and ARIMA(0,1,26) model is the
problem of overfitting. Including too many parameters may result in the model explaining random variation
in the data on which it is trained, which can lead to misleading forecasts. The question here is if one of
these models overfit the data. It is worth mentioning that we do not have any expertise regarding global
temperature, and can therefore not comment on whether the models are reasonable. Intuitively, however,
it seems plausible that the global temperature may depend on temperatures as long as 2-3 years back. The
fact that the RMSEs for all three models differ by less than one thousandth of a degree shows that the
ARIMA(1,1,2) barely outperforms the other two when it comes to forecast accuracy. Also, recall that the
ARIMA(1,1,2) model was the only model that did not meet model condition of no autocorrelated error
terms. This suggests, once again, that it may be worth looking at the two models even further. Also worth
mentioning is that we fitted AR and MA models with fewer parameters, for example MA(1) and AR(4), but
these always resulted in autocorrelated residuals that were visibly not normally distributed.

When performing a rolling window forecast, one has to think about parameter constancy. One wishes for the
parameters to be constant over time. If that is not the case, the model fitted in each window is not suitable
for those observations. Recall that we decided the number of parameters using AICC on the whole data set
of 1679 differenced temperature anomalies. This does not imply that the same number of parameters are
suitable for each window of 1000 observations. To determine if the parameters are constant over time, one
can use statistical tests. No such test was used in this thesis. Instead, parameter constancy was assumed,
which leaves room for further improvement. One idea is to divide the time period into subperiods and see
whether other models are more suitable.

As a reader, one may notice that every test performed in this thesis uses 60 lags. This is not a conventional
number. Section 3.3.1 tells us that letting the number of lags be equal to log(N) results in higher power of
the Ljung-Box test. The same section also states that this needs to be reviewed when working with seasonal
time series, which is the case with our data set. Since the data set consists of monthly observations, we have
yearly seasonality. It is therefore more important to consider a multiple of the seasonality when choosing lags.
We ultimately chose to use 60 lags, which corresponds to five years, but no statistical/mathematical result
was used for this selection. A simulation study could be performed to decide what multiple of seasonality to
use.

Seasonal autoregressive integrated moving average models (SARIMA) may be of interest since seasonality
is an essential part of the average global temperature anomaly. Perhaps this could help fix the problem of
the autocorrelated residuals and the seasonally autocorrelated squared residuals of the ARIMA(1,1,2) model
(see Figure 13 (a)). An effort to fix these problems with a SARIMA model was made but gave no satisfying
result. Also, lack of time made it hard to look further into these models, which is why they were excluded
from this thesis.

The rolling window forecast performed used 40 percent (679 data points) of all observations as a test set.
There is no convention on what proportion to use as training and test set respectively. But the reasoning
to why 40 percent was chosen is there are many observations available to fit the model in each window, but
also many observations to calculate the RMSE and MAE. A large number of observations leads to more
accurate estimations of the model parameters. In the same way, a large number of observations leads to
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a stabilized RMSE and MAE. Another thing to discuss regarding the RMSE and MAE is that they were
calculated using the differenced temperature anomalies instead of the temperature anomalies. Using the
previously used notation, Wt = Yt+1 − Yt, where t = 1000, 1001, ..., 1679 denotes the forecast origin in the
rolling window, we have

Wt+1 − Ŵt(1) = Yt+1 − Yt − (Ŷt(1)− Yt) = Yt+1 − Ŷt(1).

Here we used that Ŵt(1) = Ŷt(1)−Yt since Yt is known at each step of the rolling window. Hence, by looking
at (22), we see that the RMSE and MAE of the differenced temperature anomalies are equal to the RMSE
and MAE of the temperature anomalies.

One thing to keep in mind regarding the augmented Dickey-Fuller test is that it only tests if 1 is a root to the
AR polynomial. Recall that an ARMA process is unit-root nonstationary if it has a root on the unit circle.
This means that the time series can still be unit-root nonstationary even if an augmented Dickey-Fuller test
rejects the null hypothesis. The case when φ(1) = 0 is especially interesting in time series analysis since it
implies that data can be transformed into stationary data by differencing an appropriate amount of times.
We have searched for sources that consider unit-roots that are not equal to 1, but with no luck. Perhaps
it may be the case that real-life unit-root nonstationarity takes the form of a root equal to 1, but this is
something we have not verified.

Each model created in this thesis contains all parameters smaller than and equal to the order of the model.
The ARIMA(32,1,0), for instance, consists of 32 estimated AR parameters (see Appendix C.1). Note that
some of these are a lot smaller than the other estimates and may be insignificant to the model. A continuation
of this thesis could therefore be to remove insignificant parameters and see if it improves the forecast accuracy
of the model. This can perhaps be done using likelihood ratio tests. One must, however, be careful, since
removing wrong parameters will cause the residuals to be autocorrelated.

The results, shown in Figure 15, are the predictions of our ARIMA(1,1,2)-ARCH(26) for the 120 most recent
observations. No backtest of the forecasting has been done and is something to look at in the future, since it
would put a number on the model’s predictive accuracy. However, Figure 15 shows that the model may be
suitable. It is easily verified that the real temperature anomaly violated the forecast intervals eight times.
This is 0.067 percent of the anomalies. If the model largely explains the data, we expect violations 5 percent
of the times, which is almost the number obtained.

This thesis made use of the ARCH model to model the conditional variance, which resulted in the previously
mentioned ARCH(26) model. One can instead use the GARCH model, which is a generalization of the
ARCH model. By using GARCH it is possible to compare conditional variance models in the same manner
as the comparison of ARIMA models, meaning that one would expect to be able to replace the current
ARCH(26) model with a GARCH model having fewer parameters. Lastly, we want to address that the
assumption of normally distributed error terms could be switched out for t-distributed error terms. When
plotting the residuals of our models against theoretical quantiles of a suitable t-distribution, with degrees of
freedom obtained by maximum likelihood, they show a strong linear trend. Similarly, the histogram nicely
follows the theoretical t-distribution. Fitting the ARCH model with the assumption of t-distributed error
terms may perhaps increase the forecasting accuracy of the models.
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Appendix

Appendix A

A.1 - Conditional maximum likelihood

If y1, y2, ..., yN is a realization of the i.i.d random variables Y1, Y2, ..., YN then (16) can be written as

L(θ) =
N∏
t=1

f(yt; θ),

since the joint density function of N i.i.d variables is given by the product of their marginal densities. This
gives the log-likelihood

l(θ) =
N∑
t=1

log(f(yt; θ)).

For a weakly stationary time series {Yt, t = 1, 2, ..., N} the above does not work since the random variables
are not i.i.d. This can be solved by factorising the joint density as a product of conditional densities and the
density of the initial values, giving

L(θ) =
( N∏
t=p+1

f(yt|yt−1, ..., y1; θ)
)
· f(yp, ..., y1; θ),

where yp, yp−1, ..., y1 are called the initial values. The log-likelihood is thus given by

l(θ) =
( N∑
t=p+1

log(f(yt|yt−1, ..., y1; θ))
)

+ log(f(yp, ..., y1; θ)). (25)

The expression on the right-hand side of (25) is called the exact log-likelihood, the first term is called the
conditional log-likelihood and the second term is called the marginal log-likelihood. In time series modelling
the marginal log-likelihood is not always known, which is why the conditional log-likelihood is sometimes
maximised instead of the exact log-likelihood. Some packages used in this thesis maximise the conditional
log-likelihood, thus giving the estimation

θ̂mle = arg
θ

max
( T∑
t=p+1

log(f(yt|yt−1, ..., y1; θ))
)
.

When {Yt} is a stationary process it holds that θ̂mle and θ̂cmle are consistent and have the same limiting
distribution ([19]).
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A.2 - Rolling window forecasts of the three candidate models
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Figure 16: 1-step-ahead rolling window forecasts of the three candidate models

Figure 16 shows that the forecast accuracy is similar for all three models, meaning that choosing
ARIMA(1,1,2) as the final model is reasonable.

Note that Figure 16 shows temperature anomalies and not differenced temperature anomalies. Table 1 has
been calculated using 1-step-ahead forecasts of the 1001st to the 1679th differenced temperature anomaly.
From these, the 1-step-ahead forecasts of the temperature anomalies for months 1002 to 1680 (June 1963 to
December 2019) were calculated according to section 4.3.1.
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Appendix B - Tests

B.1 Augmented Dickey-Fuller tests
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Figure 17: ADF tests on the differenced anomalies. The red line represents the 5% significance level.

B.2 Ljung-Box tests on the residuals from ARIMA(32,1,0)

The first test is on lag 33 because of the adjustment needed on the degrees of freedom as described in section
3.3.1
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Figure 18: Ljung-Box tests on the residuals from ARIMA(32,1,0). The red line represents the 5% significance
level.

B.3 Ljung-Box tests on the residuals from ARIMA(0,1,26)

The first test is on lag 27 because of the adjustments needed on the degrees of freedom as described in section
3.3.1
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Figure 19: Ljung-Box tests on the residuals from ARIMA(0,1,26). The red line represents the 5% significance
level.
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B.4 Ljung-Box tests on the residuals from ARIMA(1,1,2)

The first test is on lag 4 because of the adjustments needed on the degrees of freedom as described in section
3.3.1
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Figure 20: Ljung-Box tests on the residuals from ARIMA(1,1,2). The red line represents the 5% significance
level.
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B.5 McLeod-Li tests on the residuals from ARIMA(1,1,2)
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Figure 21: McLeod-Li tests on the residuals from ARIMA(1,1,2). The red line represents the 5% significance
level.

B.6 McLeod-Li tests on the adjusted residuals from ARIMA(1,1,2)
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Figure 22: McLeod-Li tests on the adjusted residuals from ARIMA(1,1,2). The red line represents the 5%
significance level.
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B.7 Ljung-Box tests on the adjusted residuals from ARIMA(1,1,2)
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Figure 23: Ljung-Box tests on the adjusted residuals from ARIMA(1,1,2). The red line represents the 5%
significance level.

Appendix C - Chosen models

C.1 Chosen integrated AR model

The chosen model is an ARIMA(32,1,0) meaning that the differenced temperature anomalies is thought to
follow an AR(32) process. The parameter estimations are given below.

ar1 ar2 ar3 ar4 ar5 ar6
-0.44776770 -0.27948749 -0.20142705 -0.14164460 -0.13426001 -0.10614102

ar7 ar8 ar9 ar10 ar11 ar12
-0.09167042 -0.08527427 -0.10543660 -0.09887300 -0.08871388 -0.05150687

ar13 ar14 ar15 ar16 ar17 ar18
-0.05828549 -0.06935403 -0.10117541 -0.13469114 -0.12499148 -0.11309393

ar19 ar20 ar21 ar22 ar23 ar24
-0.07594499 -0.12278973 -0.07121306 -0.07903563 -0.06405753 0.05394477

ar25 ar26 ar27 ar28 ar29 ar30
-0.01565507 -0.03695949 -0.06590007 -0.05925833 -0.07530834 -0.06894953

ar31 ar32
-0.09597243 -0.07119898

C.2 Chosen integrated MA model

The chosen model is an ARIMA(0,1,26) meaning that the differenced temperature anomalies is thought to
follow an MA(26) process. The parameter estimations are given below.
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ma1 ma2 ma3 ma4 ma5
-0.4550497904 -0.0844425513 -0.0439816479 -0.0181713489 -0.0415750846

ma6 ma7 ma8 ma9 ma10
-0.0094386037 -0.0100315399 -0.0159795754 -0.0436524295 -0.0083558854

ma11 ma12 ma13 ma14 ma15
-0.0180164029 0.0195258970 -0.0184652383 -0.0323338196 -0.0304053605

ma16 ma17 ma18 ma19 ma20
-0.0470220964 -0.0209273278 -0.0020013628 0.0228222623 -0.0604306492

ma21 ma22 ma23 ma24 ma25
0.0335017085 -0.0033406368 0.0097967535 0.1032919602 -0.0582621548

ma26 intercept
-0.0462323996 0.0006371056

C.3 Chosen integrated ARMA model

The chosen model is an ARIMA(1,1,2) meaning that the differenced temperature anomalies is thought to
follow an ARMA(1,2) process. The parameter estimations are given below.

ar1 ma1 ma2 intercept
0.874545001 -1.333502962 0.348290782 0.000635113

C.4 Chosen ARCH model

omega alpha1 alpha2 alpha3 alpha4 alpha5
8.239251e-04 1.374345e-01 2.409151e-02 1.580401e-02 2.765260e-08 1.354513e-08

alpha6 alpha7 alpha8 alpha9 alpha10 alpha11
1.494467e-09 1.120753e-07 1.403200e-08 2.809388e-02 1.443350e-02 1.081504e-01

alpha12 alpha13 alpha14 alpha15 alpha16 alpha17
1.385458e-01 1.872188e-01 1.802305e-02 2.500918e-07 2.043691e-08 3.054908e-08

alpha18 alpha19 alpha20 alpha21 alpha22 alpha23
1.187249e-08 2.042502e-08 2.707642e-08 1.091579e-03 4.773964e-02 5.636184e-03

alpha24 alpha25 alpha26
1.067252e-01 8.817107e-02 5.372131e-02
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