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Abstract

In this thesis, the predictive ability of two types of insurance pric-

ing models is compared. We use cross-validation on the mean squared

error for measuring this. The analysis is based on actual insurance

data from the nineties. The main focus is on the value of replacing

linear expressions used in a classical generalized linear model with so-

called smoothing splines. If the replacement leads to lower prediction

errors, this will help insurance companies provide customers with more

fair prices. Unfortunately, we cannot conclude anything significant. It

does, however, seem like the more advanced model has a slight edge

on the simpler model when it comes to modeling variables with many

levels and seemingly continuous behavior.
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1 Introduction

Goal

This thesis aims to compare classical generalized linear models with
generalized additive models on actual insurance data, for predicting claim
amounts and claim severity.

Generalized linear models (GLM) are a class of models with a rich
associated theory and are used in many applications. They date to the
seventies but were used a long time before that, according to Agresti in
[Agresti, p.116]. Generalized additive models (GAM) is a more recent
generalization of the GLM:s, introduced in the eighties, see [Ohlsson, p. 102].
Details of similarities and differences are discussed in the theory chapter.

The aim is to compare the predictive ability of these models relative
to each other. We will be predicting claim amounts and claim severities, two
terms appearing in non-life insurance. The structure of the comparison is
first to create GLM models, as good as possible, and then corresponding
GAM models, using a large subset of our total data. Using these models,
we predict the claim amounts and claim severities on a small subset of the
data. The mean squared error of prediction is then calculated. That way, we
measure predictive ability and avoid false conclusions caused by overfitting
or insufficient measures.

Purpose

If GAM models outperform GLM models, it would be good news for insurance
companies, allowing them to better price insurance contracts, hopefully
resulting in lower prices for customers. The two model types are similar in
many senses, which will be described in the theory section. In general, it
is hard to find guidelines for when a GAM would be better than a GLM.
Nevertheless, considering that Esbjörn Ohlsson added a GAM chapter to
his book and described them as “powerful,” in [Ohlsson, p. vii], it seems
reasonable that GAM-models have some perks.
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Data

We have a dataset on motorcycles. The data comes from the years 1994-1998
and is adjusted for inflation. The source is Wasa Insurance, which nowadays
belongs to Länsförsäkringar. It consists of 64500 rows, each corresponding to
an insurance policy. For each policy, we have several factors, as well as the
number of claims and (average) claim severity. In table 1 below is an excerpt
from the data.

Table 1: First 10 rows (insurance contracts) of data

O. Age Gender Zone V Class V. Age B Class Duration Claim # Severity

0 M 1 4 12 1 0.18 0 0
4 M 3 6 9 1 0.00 0 0
5 K 3 3 18 1 0.45 0 0
5 K 4 1 25 1 0.17 0 0
6 K 2 1 26 1 0.18 0 0
9 K 3 3 8 1 0.54 0 0
9 K 4 3 6 1 0.00 0 0
9 M 4 4 20 1 0.50 0 0

10 M 2 3 16 1 0.15 0 0
10 M 4 2 17 1 0.52 0 0

• Age (of the owner). In years, with totally 82 levels

• Gender Female or Male

• Zone Geographical zone, 7 levels

• Vehicle-class Type of vehicle, depending on power and weight. 7
levels

• Age (of the vehicle) In years, with totally 81 levels

• Bonus-class Grading policyholders from 1 to 7, depending on how
accident-prone they have been in the past. 1 being the most likely to
have an accident, 7 being the least likely.

• Duration How long the policy has been active. We will use these
weights for the claim frequency analysis.

And the following response variables:

• Claim Frequency The number of claims for the policy.

• Claim Severity The average claim cost. When modeling this, we
will condition on the number of claims, using the claim frequency as
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weights.

We will see later, in the modeling chapter, how some levels of the categorical
variables are joined, and some variables even removed, to find the most
suitable model. A few observations are removed since their duration is zero.

2 Theory

Tariff analysis

What follows is an introduction to the terms and notations used in the book
by Esbjörn Ohlsson. We will begin by looking at the underlying assumptions
of the model building. The goal is to understand the terms used when pricing
insurance policies. The premium itself is based on different properties. These
are:

• Properties of the policyholder: Such as age, if a person, or type of
industry, if a company.

• Properties of the Insured object: What type of object to be insured,
how old is it, what safety precautions exist.

• Properties of the geographical region: Country, urban or rural.

For example, insuring a motorcycle may cost differently for an old female
living in Stockholm, compared to an 18-year-old male living in Luleå. The
type of motorcycle, as well as the age, will probably inflect the price. With
data on previous claims, we can see claim numbers and average claim size.
This allows us to compare different policies and their prices relative to each
other.

The whole table of the relative difference between premiums, based on
properties of the premiums, is called a tariff. In the table, age and gender
are categorical variables whose combinations make up the tariff cells. Below
is an explanation of the terms in a tariff.
Duration is the total amount of time the particular insurance is active for
this cell
Number of claims is the total number of occurred incidents for this cell
Claim frequency Number of claims normalized with regards to Duration,
in some time unit
Claim severity Is the average cost per claim
Pure premium Claim frequency times claim severity
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Table 2: Dummy example of insurance data

Age Gender Duration Claim number Claim Frequency Severity

1 1 1 3 3.0 12500
2 1 10 5 0.5 1330
3 1 5 5 1.0 992
1 2 20 100 5.0 702
2 2 50 0 0.0 0
3 2 10 2 0.2 24000

Above is the table itself. There was not space enough for the pure premium,
but it is easily calculated by multiplying claim frequency with claim severity.
In table 2, a row represents an insurance contract. It has been active for the
time stated in the duration column. The claim number column tells how
many injuries have occurred during the duration. Dividing the number of
claims by the duration gives the claim frequency. The technical details of
claim settlements and similar features have not been taken into concern.

In building our statistical models, we adopt some assumptions to work with.
Esbjörn Ohlsson uses the following three assumptions:

1: Independence between insurance policies
This not entirely realistic assumption states that the outcomes of all two
different policies are independent. We could see this violated if two insured
persons collide with their motorcycles.

2: Independence in time
This means that outcomes of policies are assumed independent of previous
and later outcomes. For example, we believe the number of accidents an
insured person will have during a year to be independent of how many
accidents the person had the previous year.

3: Homogenenity within cells
This means that you and your similarly-aged neighbor are assumed to be
identical if buying the same vehicle.

Without these assumptions, it would be necessary to account for time-
dependence and correlation between insurance policies, which likely would
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be extremely messy to model. With these assumptions, we may use GLM
models, a popular class of models that is easily modeled in R.

If we had enough data, we could model every cell on its own. This is hardly
ever the case, so we need a way to model data despite having few observations
in some cells. We achieve this using a multiplicative model. There will be
some base level, and changing the policy conditions should then change
the price of the policy. For example, let us say we have 7 regions, 2 age
categories(young/old), and 2 vehicle categories(light/heavy). The relative
price for a policy is

µi,j,k = γ0γ1iγ2jγ3k,

where the second factor depends on region, the third factor on age and the
fourth and vehicle category. We set a base level, for example, a young person
with a lightweight vehicle living in Stockholm. Then the last three factors
are all set to 1. Should the person live in another region, the relative price
goes up and down depending on the γ1i-for that region. This is the simplest
case where we assume independence between factors. This is not always the
case.

The goal of the tariff analysis is mainly to determine the prices of the cells
relative to each other. Later on, we will model the number of claims, but
when testing the prediction error, we will focus on the number of claims
between aggregated cells. The main reason for this is that accidents are
rare, so even the most accident-prone people are unlikely to experience an
accident in a given year. So a good predictor would be setting all cells to zero.
However, such a model would not be useful when pricing insurance premiums.
To still test the predictive ability, we will be looking at the cells relative to
each other instead. In practice, this means aggregating over some variables
and comparing the mean squared errors of prediction for the different models.
Above we took an arbitrary base level, but the baseline cell is traditionally
one with considerable exposure,[Agresti, p. 268].

One way to go about this problem is by using the mentioned multiplicative
model, where we begin by assuming we have no interaction between our
variables, i.e., that explanatory variables are independent. Then, our estimate
for some cells pure premium can be expressed as a product of k+1 factors,
when we have k explanatory variables. An easy way to consider interactions
is by including another factor, for interaction. So if we believe age and region
interact, we include a factor depending on the levels of the other two variables.
This loss of independence means that changing from one region to another
will cause one effect, changing from one age to another one effect, but doing
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both changes may not have an effect equal to multiplying those two effects.
Digging deeper into this multiplicative model isn’t necessary since we will be
using the more advanced GLM models, containing the basic multiplicative
model described as a special case.

Cross-Validation

Later on, we will compare our models’ predictive ability using cross-validation.
The idea is to split the data into training and test data. The model is then
built on the training data, and the mean squared error is calculated on the
test data. This protects us from mistaking overfitting for having a truly good
fit.

Deviance, AIC and ML-fitting

Letting l(y, θ) be the log-likelihood function of a distribution, we denote with
D the deviance function. It is defined in [Agresti, p119] as,

D(y, θ̂0) = −2(l(y, θ̂0)− l(y, θ̂s)),

comparing the likelihood of our data y with parameter estimates θ̂0 with
that of the saturated model (as many parameters as data points). Given a
model the saturated model has the greatest likelihood, meaning that the
deviance is always positive. The deviance is one way of measuring how well
a model fits data.

Maximum likelihood-fitting builds on the idea of finding the most likely set
of parameters, given a model. This is done by maximizing the likelihood
function. Often this has to be done numerically. One way of doing this
is, as in [Wood, p.76] by Newton-Rapson applied on the derivative of the
log-likelihood, equivalent to iterating according to

θ̂k+1 = θ̂k − f ′′(xk)
−1
f ′(xk),

where f ′(xk) and f ′′(xk) are the gradient and hessian of the log-likelihood.
When this converges, we will have the most likely estimates for our model.

We also note that the Akaike information criterion (AIC) for a model is given
by

AIC = 2p− 2l(y, θ̂0),
where p is the number of parameters. So the AIC increaseas if the model has
many parameters and decreases with a good fit. In a comparison between
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models, a low AIC is attractive[Wood, p.77]. As the models are built, later
on, AIC, together with visual analytics, is used as the selection criterion.

Generalized Linear Models

There are many situations where classical linear regression is insufficient.
For example, the data may not be normally distributed. Furthermore, it is
sometimes beneficial to model something other than the mean of the random
variables. If we believe that the logarithm of the mean can be expressed as a
linear function of some explanatory variables (as in the multiplicative model),
GLM offers a way to handle this. The generalization is two-folded:

· The observations belong to the exponential dispersion family, which among
its special cases contains the normal distribution.

· The transformed mean is a linear function of the predictor variables

All models from this class have three components, described below

Random Component The random component of a GLM defines the
probability/density function of the response variable Yi. The distribution is
assumed to belong to the exponential dispersion family. There are several
variations of this. Or rather, degrees of generalization. Agresti uses a special
case of Ohlsson, who in turn uses a special case of the one used in Wood.
The one we will use is the one used in Esbjörn Ohlsson’s book, [Ohlsson,
p. 17, 2.1]:

fYi(yi, θi, φ) = exp

(
yiθi − b(θi)

φ/wi
+ c(yi, φ, wi)

)
,

where Yi is the response variable of cell i. We see that each Y has a unique
parameter θi and one parameter φ which is shared among all estimators. The
involved symbols are:

yi: The i:th of our n observations.

Yi: The response variable of the i:th observation. Assumed to follow the
density function given.

θi: The canonical parameter.

φ: The dispersion parameter.

wi: The duration/exposure. In our case, this is the duration of an insurance
contract.
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b(·): The cumulant function. Assumed to be twice continuously differentiable,
with invertible second derivative.

c(·): A function, independent of the canonical parameter.

Systematic component The systematic component of the GLM relates
a linear predictor of the explanatory variables to each subject i. We have
for each subject i that ηi =

∑
j
βjxij , where the η:s connect to the random

components through the link function.

Link component With the mean of the each subject being µi, the link
function g(·) is such that g(µi) = ηi =

∑
j
βjxij .

In words, we believe our data comes from a random variable Y belonging to
some exponential dispersion family, and that the transformed mean can be
expressed as a linear combination of some variables.

Example 1 With linear regression under the classical standard assump-
tions, each Yi has the normal density function 1√

2piσ2
exp(− (yi−µi)2

2σ2 ). We

may rewrite this as exp(yiµi− 1
2µi

2− 1
2y

2
i

σ2 + log( 1√
2piσ2

)) = exp(yiµi+b(µi)
σ2 +

c(yi, σ2, wi)), which belongs to the exponential dispersion family, with all du-
rations equal to 1, and canonical parameter θi = µi and dispersion parameter
φ = σ2. The link function is the identity function, so that µi =

∑
j
βjxij .

So the classical linear regression belongs to the GLM class of mod-
els. The two most relevant for this thesis are the ones with Poisson and
gamma distribution. For clarity, those are derived as well, in example 2 and 3.

In our modeling, We assume the number of claims to be Poisson distributed
(Xi), but we need to take the duration (wi), i.e, how long the policy has
been active, into account when modeling claim frequency (Yi = Xi

wi
). For

this purpose, Esbjörn Ohlsson defines the relative Poisson variable, [Ohlsson,
p.19, 2.3].

Definition 1: Relative Poisson variable.
Let Xi be a poisson distributed variable with mean wiλi, for real numbers
wi, λi. Then Yi = Xi

wi
has frequency function(for yi such that wiyi is an
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integer):
e−wiµi

wiµi
wiyi

(wiyi)!
and is said to be relative poisson distributed. In our case Xi is the number
of claims and Yi the claim frequency.

We continue by noting that the relative Poisson variable belong the the
exponential dispersion family.

Example 2 Rewriting the frequency function in definition 1 as

e−wiµi
wiµi

wiyi

(wiyi)!
= exp(−wiµi + wiyi · log(wiµi)− log(wiyi!))

= exp((yilog(µi)− µi)
1/wi

+ yiwilog(wi)− log(wiyi!))

= exp((yilog(µi)− µi)
1/wi

+ c(wi, yi))

we see that it indeed belongs to the GLM-family, with θi = log(µi), φ = 1.

Example 3 The claim severity is traditionally modeled as a weighted gamma
distribution, where the weights are the number of claims[Ohlsson, p.20]. This
means that if our response is yi we believe this to be the mean of wi different
gamma distributions (representing injury claims) with parameters α, β. More
formally, we model

Yi = Yi1 + ..+ Yiwi

wi
∈ Ga(wiα,wiβ),

where the last step follows due to properties of the gamma distribution. The
gamma function belongs to the dispersed exponential distribution, making it
a GLM.

When we later model using GAM:s, we will use these same distributions.
The only thing that changes is the systematic component.

This theory is relatively recently developed. The most common models had
been known before[Agresti, p.116], but tying the theory together makes it
possible to generalize, for example, the ML-estimation. So the ML-estimation
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is done on the general case, and for a specific model, we simply input the
parameters and have a method for ML-estimation on any GLM-model. The
technicalities behind fitting a GLM-model are in the appendix.

Splines

Splines are functions common when interpolating and smoothing. They
consist of piecewise polynomials. Given an interval we wish to interpolate or
smooth, this interval is divided into subintervals. Let us for formality say
that we want a spline over the interval [a,b]. Consider

a = x0 ≤ x1, ... ≤ xn = b,

so that the union of the subintervals

[x0, x1], [x2, x3], ..., [xn−1, xn]

is exactly [a,b]. Further, for each of the k intervals, we define a polynomial Pi
on the interval [xi, xi+1]. The spline is then the function taking values P0(x)
when x is in [x0, x1], P1(x) when x is in [x1, x2] and so on, until Pk−1(x)
when x is in [xk1, xk]. The points x0, x1, .., xk are called the knots of the
spline. In figure 1 below is an example of a cubic spline(in red) fitted to
some data. The points represent observations and the red line is the spline.

2 4 6 8 10

2
4

6
8

10
12

14

Cubic Splines on dummy data

Figure 1: A cubic spline (in red) fitted to some data points
x

y
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The spline has to satisfy some restrictions, such as having continuous values
and continuous derivatives. In plot 2.1 above, we had a cubic spline, which
must satisfy being twice continuously differentiable over the interval. We had
ten observations, and they were all used as knots, implying that the spline
passed through all the observed points. This gives a perfect fit and deviance
equal to zero. However, in practice, when using GAM:s, we turn to penalized
smoothing splines. Then we penalize with regards to the smoothness of the
spline, with smoothness defined as∫ b

a
(f ′′(x))2dx.

This is illustrated and more formally described in the next section. In
particular, equation (1) on page 15 shows the balance between the goodness
of fit and smoothness.

Returning to the creating of splines, note that the spline passing through the
observed points is not a necessary condition. To achieve more smoothness,
we have to abstain from some of the goodness of fit. In the package we
will use later, the k knots are chosen so that they have an equal number
of points between them, as described by Wood in [5]. Once the k points
are chosen, the cubic spline is selected based on a combination of a good
fit to the data and wiggliness. To actually determine the coefficients of the
piecewise polynomials would require us to dig deeper into the theory which
is given in [Ohlsson, p. 108]. Instead of doing that, the mgcv R package is
used for modeling with splines. The package is described in the appendix.

Generalized additive models.

Some variables have a huge range of possible values. One approach we will
use when modeling such variables is categorizing the data. In the best of
worlds, the observations in the same category are similar and, hopefully, we
have enough data to properly estimate the parameters. This is not always
the case. Furthermore, even if possible, finding suitable categories can be
a time-consuming job. For this purpose, the Generalized additive models
are introduced. The idea is to fit continuous functions for the variables
where we feel that categorizing is not sufficient. There are many ways to do
this. We will restrict ourselves to cubic splines, which turn out to satisfy
some attractive properties. In practice, this means replacing the systematic
component of the GLM with a similar, more general expression. We recall
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from previously the look of the systematic component,

ηi =
∑
j

βjxij .

With the GAM generalization, this becomes

ηi = β0 + f1(xi1) + ...+ fJ(xiJ).

In our data, modeling with splines will be of interest only on the vehicle age
and age parameters, which will render a model like, in the case where we do
not account for interaction terms:

ηi = β0 + f1(xi1) + f2(xi2) +
J∑
j=3

βjxij .

Once we do account for the interaction between gender and age, we will do
this by having two separate functions, where gender decides which function
to use. To find the functions, we need some restrictions. We have at our
hands the observed values {x1j}, to which we want to find a smooth function
f1. Smoothness means here that it is two times continuously differentiable.

Smoothness is not all that matters. It is necessary to have a good fit to data.
Needing a measure taking into regard both the deviance and the smoothness
of the function, a suitable option is, [Ohlsson, p. 104, eq. 5.4]:

∆(f1) = D(y1, µ1) + λ

∫ b

a
(f ′′(x))2dx. (1)

The first term is the deviance, while the second term measures the variability
of the function f. The λ decides how we balance between small variability
and a good fit. For a given model, in figure 2 below is shown how the result
depends on λ. We see how a growing λ fits the data less and less, but instead,
become smoother and smoother.
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Smoothness vs variability
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Figure 2: Cubic splines fitted to data, with varying degrees
of smoothness, quantified by smoothing parameter λ. The
plots were made using code found in [Wood, p. 169].

But we need a value for λ. There are several ways of doing this, and none
is very easy. The conceptually easiest method, which according to [Wood,
p. 269] may also be the best, is slow, but works on the idea of applying
Newton’s method to find the optimal λ. This requires computing the model
for each iteration, and a measure (Generalized approximate cross-validation
in our case, which is out of the scope of this thesis) on the model for each λ,
to determine when to convergence the is sufficient.

3 Model building
In this chapter, we will start by looking at claim frequency. We will analyze
the data and build two types of GLM:s. In the first one, we create levels for
the variables using visual inspection, and then remove some levels and even
entire variables, with AIC as a measure of model strength. In the second
model, we proceed similarly. However, the variables with a massive number
of levels, age of the owner, and age of the vehicle, are treated differently.
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They are divided into about 20 levels each, with each level corresponding to
a 5-year interval. These two models are then compared to a GAM, which
is identical, apart from that the owner age and vehicle age, as well as the
interaction between owner age and gender, are modeled with cubic splines.

A similar approach is used for claim severity, with some minor differences in
which variables to include. We will be looking at plots and tables to compare
and try to understand the results. Our model building is not perfectly
executed here, but that is not very important since we are interested in the
effect of the GAM difference and not optimization of the total prediction.

Claim Frequency

Modeling

If we include all variables in the original format with all variables, the number
of cells is vast. In particular, the owner’s age and the vehicle age have many
levels. This means that if we proceed with the data in this form, the number
of parameters will be large. While that will give a good fit to the data, the
parameter estimates will be insecure, and the good fit likely the result of
overfitting. Our first step is thus to eliminate the number of parameters.
Visual analysis of the data can be of help here, as well as AIC. To get
started, I will divide the two largest categories into approximately equally
sized smaller levels. Then I will analyze the AIC and see if I can fuse some
levels. The reason for preferring fewer levels and fewer variables is that the
standard error of our estimates becomes smaller, making sure we include less
noise.

Below, in figure 3, is a graphical analysis before we start modeling the claim
frequency.
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Graphical inspection of data
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Figure 3: Distribution of claim frequency over the different
levels, for each of the variabels. We can see that young people
have higher claim frequency than old people (plot 1), and
that men have higher claim frequency than women (plot 6).

In the top middle graph, the data hints about Zone 4,5,6 being similar. Fusing
the levels into one resulted in a lower AIC. Similarly, bonus class levels 6
and 7 look similar, and also there the AIC was lowered by fusing the levels.
A few more of these AIC-lowering merges were made. On top of that, the
AIC of submodels was tested, by leaving one variable out at a time, and
then comparing AIC. It turned out the Bonus Class was either confounding
with some variable or plainly unnecessary. Either way, it was left out. This
part of the modeling was not very structured, which is forgivable since our
primary goal was not to find an optimal model but to compare GAM and
GLM models.

We are now ready to model GLM and GAMs for claim numbers. Before
proceeding, the data is split into test and training data. The training data is
a randomized sample containing 80 percent of the original observations, and
the remaining observations are in the test set.
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Claim frequency results

With the models at hand, MSEP was calculated and is presented in Table 3
below.

Table 3: Mean Squared Error of Prediction

GLM GAM GLM 2
132.17 131.27 131.63

Where GLM is

log(µi) = log(wi) +
6∑
j=0

βjxij + β25xi2xi5,

with xi0 being equal to 1 for all i:s, making β0 the intercept. All variables
are categorical, coded using dummy variables. Coding in dummy variables
means that the parameter βj and corresponding xij for observation i, are
vectors. If the numbers of levels of the categorical variable xij is N, these
vector have length N-1. Let us say that N = 6. Then observation i belonging
to category 1 in the j variable corresponds to xij = (0, 0, 0, 0, 0). Category
2 corresponds to xij = (1, 0, 0, 0, 0), category 3 to xij = (0, 1, 0, 0, 0),.. and
category N (i.e. 6) to xij = (0, 0, 0, 0, 1). The elements of βj vector are what
we estimate in this model.

GLM 2 is

log(µi) = log(wi) +
6∑
j=0

βixij + β25xi2xi5.

It is identical in model type and variables included, but the levels are
different. Specifically, what separates the two GLM models are the different
levels of the age and vehicle age variables.

GAM is

log(µi) = log(wi) +
4∑
j=0

βixij + f(xi5) + f(xi6) + f(xi2, xi5),

so that we have replaced the linear terms for vehicle age and owner age with
smooth functions, and the interaction between age and gender with a smooth
function. In practice, this corresponds to having two smoothing splines for
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owner age and letting the gender determine which one to use. This means
we could equally well write the model without the f(xi5). For a comparison
between the models, see the table 4 below.

Table 4: Comparison between models

Name Code GLM GLM_2 GAM

Gender xi2 2 levels 2 levels 2 levels
Zone xi3 4 levels 4 levels 4 levels
V. Class xi4 3 levels 3 levels 3 levels
O. age xi5 4 levels 16 levels Continuous
V. age xi6 3 levels 15 levels Continuous

This result in table 3 is not a very good one, and not very telling either. A
model setting all claims to zero would likely have been better at predicting
claim numbers. The reason for this is that injuries are so rare. So we need
some other way of evaluating the GAM model. One idea that comes to mind
is looking at the aggregated variables for each involved variable and then
look at that MSEP. This way, we will have fewer cells and thus more injuries
in each cell. In the table below, the MSEP is displayed for each variable
separately. For example, with the gender variable, the value was calculated
by aggregating the total number of predicted claims over males and women
and then calculate the mean squared error of this prediction for each model.
So the value displayed in table 5 is the sum

(predicted male injuries- actual male injuries)2+

(predicted female injuries- actual female injuries)2.

Similarly, the MSEP for owner age is calculated as a sum of 82 terms, one for
each age represented in the data. The difference between these and the values
in table 3 is that table three is the sum of several thousands of observations,
one for each cell. Here, in table 5, we have the same cell predictions as in
table 3, but we have aggregated over variables.

Table 5: MSEP over aggregated categories

GLM 1 GAM GLM 2

Owner Age 227 175 208
Zone 355 364 382
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GLM 1 GAM GLM 2

Vehicle Class 230 233 239
Vehicle Age 205 135 175
Gender 382 401 417

These results indicate that the easiest models work slightly better than the
GAM at the variables with few levels, but that the GAM works better at
owner age and vehicle age. At the vehicle age, the GAM is far better. To
possibly understand these results, we look at the spline created for vehicle
age, and the splines for age on men and age on women.

In figure 4 we compare this to the corresponding estimates made by the
GLM:s.

Visualization of the models
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Figure 4: Above are GAM splines followed by GLM param-
eter estimates underneath. The splines are surrounded by
yellow confidence bands. These are constructed with stan-
dard errors. For each point on the spline, a point is added
two standard errors above and two standard errors below the
point[Wood 6]. They hint about the preciseness of the splines.
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We see that the scales of the splines are significantly smaller than the
corresponding GLM estimates. A probable explanation lies in the different
intercepts for the GAM model and the GLM 2 model. The difference is
about 11.5, which, together with the penalization of the splines (preventing
it from diving so radically at the higher ages), could perhaps explain this
difference. Nonetheless, this scale difference is not something we will examine
further. Apart from the scale difference, the owner age plots for GLM 2
seems to peak unreasonably early, considering the age limit for motor vehicles
in Sweden. The explanation for this is that most ages (even toddlers) have
some insurance contracts, but not all (see table 1). So the beginning and the
end of the x-axis are improper. This error was discovered late and will not
be corrected.

Disregarding that, we can see that the overall trend is similar between the
splines and the GLM 2 estimates of owner age. It peaks around twenty and
then falls slowly.

This is hard to interpret, but we can notice the difference between the Vehicle
effect in GLM2 and GAM. The GAM has a smooth looking curve, while the
GLM 2 is bumpy. The main thing distinguishing the Vehicle age is the sparse
number of observations in higher age categories. Considering how the GAM
predicted the vehicle age better, it seems like the vehicle age benefits from
the penalization. It thus seems like vehicle age has a high variation even
within categories.

Claim severity

Moving on the claim severity, the procedure will be identical to that of claim
frequency. We start by looking at data, followed by modeling and then
compare the models.

Modeling

In the same way as in figure 3, we look at the data. This time, in figure 5,
the y-axis represents claim severity rather than claim numbers.
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Graphical inspection of data
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Figure 5: Distribution of claim severity over the different levels.

In figure 5, we can see that new and really old vehicles people have higher
claim severity than old but not vintage vehicles. Furthermore, the age seems
to have no effect. After more formal testing using AIC, models were built.
Most notably, the owner age variable had no effect and was left out.

Claim severity results

In table 6 below, we again look at the MSEP. This time for claim severity
instead of claim numbers.

Table 6: Mean Squared error of Prediction, claim severity

GLM GAM GLM 2
212702364795 207525252439 207431300908

To get a better overview, the values relative to each other are compared in
table 7.
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Table 7: Relative values of MSEP

GLM GAM GLM 2
1.02 1 1

In the previous section, we did not put much value on the total MSEP. Now,
computing MSEP makes more sense. Rather disappointingly, none of the
models seemed significantly better than any of the other.

We proceed by looking at some aggregated cases, as in the claim frequency
section.

Table 8: MSEP over aggregated categories. For each variable,
the model with the lowest MSEP is given value 0, and the
other are expressed in PPM:s over this value. (To increase
readability)

GLM 1 GAM GLM 2

Owner Age 117924 25397 0
Zone 0 1634133 1067152
Vehicle Class 0 230138 22672
Vehicle Age 84092 32319 0
Gender 0 685496 548710

In table 8 above, we see how the GAM model fails to model any variable the
best. Recalling that GAM performed excellently at Vehicle age in the claim
frequency case, this is unexpected. To hopefully gain an understanding of
why we look at the vehicle age spline in figure 6 below.

Visualization of GAM and GLM 2
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Figure 6: The spline from the game model and the corre-
sponding parameter estimates from the GLM 2 model. r

In figure 6, the spline resembles plot 5 in figure 5, which is reasonable. The
scale between the graphs in figure 6 is different, but the curves have similar
ups and downs. The GLM models take a dive at the end. While the spline
does not follow that dive, the yellow area is large, implying a large standard
error.

What we have compared here is the claim frequency and claim severity
separately. In practice, we would perhaps be the most interested in the pure
premium. That means that we should use the predicted claim numbers as
weights rather than the given data. Since our main focus is to experiment
with the GAM model, the calculation of pure premiums is omitted.

4 Results

Claim numbers

Next, we compare relative values for the other variables as well, by aggregating.
This time, however, we consider the test data and not the training data, as
we did above.
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Table 9: Predicted number of claims

Actual number of claims 122
GLM-prediction 145.29
GAM-prediction 145.67
GLM2-prediction 146.13

To begin with, we note in table 9 that both models significantly overestimate
the true number of claims, and GAM is worse in this regard. This problem is
probably not something any model could do much about; it is just the result
of randomness.

Claim severity

Table 10: Predicted total cost of injuries (conditioned on the
true number)

Actual total cost 3363204
GLM-prediction 3407042
GAM-prediction 3320240
GLM2 3343553

With the sum of costs of all claims, displayed in table 10, all three models
perform about as good as the others.

5 Discussion
The Mean Square Error used was weak, and we were not able to conclude
anything significant or make any precise statements. More efforts could
have been made to find a better GAM—different kinds of training points, or
perhaps different degrees of penalization. We could have looked at relativities
as well, which is the industrial standard. However, with our disappointing
results, it did not seem worthwhile. The GAM showed promise on the Claim
Severity but did not impress on Claim numbers. With that, examining pure
premium did not feel purposeful since they depend on Claim Severity. It
would, though, have made the work more complete and realistic.

On the other hand, considering that the models except for one case are pure
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multiplicative, we could perhaps have gotten better results by more carefully
looking at each variable. Also, we did not have use for such rich data. Since
the goals were to examine the value of GAM and penalization and smoothing,
it could have sufficed with aggregating over age and only looking at that. We
did, however, see some interesting trends by using many variables, that the
GAM performed well on complicated variables, but failed hard on those with
few levels. Kind of like golfer who delivers beautiful hole in ones mixed with
flunking easy puts.

Simulation

Judging by these results, it seems like a scenario where GAM potentially
is significantly better is when, for some variable in the training data, it is
dense in some interval and non-dense in some intervals. For example, we
have much data for when the variable is equal to certain values, but for some
values, almost no data, throughout the data. A dummy example regarding
motorcycles could be if we believe different years had different trends and
that some years were inspected, and some were not. For example, maybe
some federal institute examines motorcycles of a certain brand thoroughly
every five years, and lightly otherwise. Perhaps they look at 20 brand new
motorcycles every five years, and on other years only three motorcycles. This
would probably cause a regular GLM model focusing on deviance overfitted,
and instead benefit from penalized interpolation (since there is an underlying
trend), as in GAM.

Or, we might believe that damage from storm claims get more and more
severe the more up north in Sweden you live. We would then have a lot of
data from urban areas such as Skövde and Stockholm, but in other parts of
the country, the number of people living there is significantly smaller. That
could give rise to a scenario where we have an underlying trend, rich data
for some values on the explanatory variable, and almost no data on other
values of the explanatory variable.

To construct this example, let us say we have the simple model log(µ : i) =
α + f(xi) and compare this to log(µ : i) = α + βxi, y is gamma. x range
from 1 to 100. To get y:s, we simulate 100 sets of gamma parameters. There
should be some trend for the models to catch up on. To make this as simple
as possible, I will simulate 100 sets of parameters, order them after mean,
and simply say that’s the order. We will consider these 100 parameter sets
to be the true values. For each set of parameters, there is a corresponding
gamma distribution with some mean. This mean is displayed in red, in the
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plot below. From these, we will simulate samples of observations for each of
the 100 sets. The mean of the samples are the dots in the plot below.
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In the plot above, we have observed the means of values simulated from a
gamma distribution with mean according to the red line. So at x-value 37,
we have simulated from the gamma distribution with the 37:th smallest mean
(whose value is given by the red line at x=37), and the dot is the mean of
these simulated values. The red line is thus by definition increasing, while
some earlier dots have larger values than later dots, due to the nature of the
simulation.

Simulated values compared with true means
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Figure 8: The predicted values compared to the means.
In the centralized plots, the means (displayed in red in
the upper plots) has been subtracted from the predictions.

In the upper plots of figure 8, we see how the predictions compare to the
means(in red). The lower plots show the same predictions around 0, to
better display the structure of the errors. We see how the errors for both
models behave similarly, but that the GAM errors are smaller. Now we
try to measure these errors, by calculating the true mean squared error of
prediction. This means subtracting the gamma means from our predicted
means and taking the sum of these squares.

Table 11: Mean squared error for the models, with simulated
data

Object MSE

GLM-model 1.484
GAM-model with penalization 0.985
GAM-model without penalization 1.115

As can be seen in table 6, the GAM was much better. One might argue
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that this is not the most realistic simulation, which it is not, but at least
it demonstrated how penalized regression can greatly reduce errors. One
could further argue about how it exists penalized GLM models which are not
GLM:s and that this is not very revolutionary, but we have not examined
that in this thesis, so result is still exciting.

Conclusion

My conclusion is that GAM can work well on advanced variables, but require
careful analysis, since fitting them require more computer resources. In the
insurance industry, this could perhaps account for computing relativities for
suitable variables separately (if independence is plausible), and then include
them in the final tariff. This way, we will get the GLM model’s reliability on
simple variables, and GAM flexibility on the more advanced ones.

6 Appendix

Fitting a GLM-model

For given data and a chosen model, we need a way to estimate the parameters.
The ML-estimates have attractive properties and are traditionally used. It
can rarely be done by exact methods. One rather uses numerical methods,
such as the Newton-Rapson method. We will do that below, using the
exact same approach as in Wood, [Wood, p.105]. Let us assume we have
an N-dimensional vector Y of independent responses, where each element Yi
belongs to the dispersed exponential family with density function fθi

(yi) .
We have the mean vector µ, defined so that µ = E[Y ] We believe that

g(µi) = Xiβ.

The indepence between respones implies the likelihood function is given by

L(β|y) =
n∏
i=1

fθi
(yi),

giving a log-likelihood of

l(β) =
n∑
i=1

log(fθi
(yi)) =

n∑
i=1

(
yiθi − b(θi)

φ/wi
+ c(yi, φ, wi)

)
.

For Newton-Rapson we need the gradient and the hessian.

∂l

∂βj
= 1
φ

n∑
i=1

wi

(
yi
∂θi
∂βj
− b′i(θi)

∂θi
∂βj

)
,
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repeated chain rule use gives

∂θi
∂βj

= dθi
dµi

∂µi
∂βj

= dθi
dµi

dµi
dηi

∂ηi
∂βj

.

Now, remembering that ηi = g(µi) and that g(·) satisfies certain regularity
conditions, it follows that g−1(η) = µi has derivative 1

g′(g−1(ηi)) = 1
g′(µi) , and

similarly, since µ = E[Y ] = b′(θ), dθi
dµi

= 1
b′′(θi) . By the definition of Xi,

∂ηi
∂βj

= Xij .

This together gives
∂θi
∂βj

= Xij

g′(µib′′(θi))
.

Now this inserted to the original expression gives

∂l

∂βj
= 1
φ

n∑
i=1

yi − b′i (θi)
g′ (µi) b′′i (θi) /wi

Xij .

More tedious calculations give that the second derivative becomes

∂2l

∂βj∂βk
= − 1

φ

n∑
i=1

XikXijα (µi)
g′ (µi)2 b′′i (θi)/wi

,

with

α(µi) = 1 + (yi − µi)
(
d b′′i (θi)/wi

dµi
/(b′′i (θi)/wi) + g′′(µi)

g′(µi)

)
.

To make this more compact, define a diagnoal matrix V = diag(vi) where
vi = wiα(µi)

g′(µi)b′′i (θi) , allowing us to rewrite the hessian as −XTV X
φ . Finally,

setting G = diag(g′(µi)/α(µi)), gives the gradient of the log likelihood as
XTV G(y − µ)/φ. The multivariate Newton Raphson iteration now becomes:

β[k+1] = β[k] + (XTV X)−1XTV G(y − µ)

= (XTV X)−1XTV
(
G(y − µ) +Xβ[k]

)
.

Now, setting the expression in the right brackets to a vector z, where then

z =
(
G(y − µ) +Xβ[k]

)
⇒ zi = g′(µi)(yi − µi)/α(µi) + ηi.
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The Newton-Raphson iteration step now becomes = (XTV X)−1XTV z, we
can be recognized as the solution to the problem of finding the weighted least
squares estimator of beta by minimizing

n∑
i=1

wi(zi −Xiβ)2.

This allows us to find the ML-estimates using an iterative re-weighted least
square algorithm, and it goes:

Starting with
µ̂i = yi, η̂i = g(µ̂i),

the algorithm proceed with
1. Compute

zi = g′(µ̂i)(yi − µ̂i)/α(µ̂i) + η̂i, wi(β̂) = wi · α(µ̂i)/(g′(µ̂i)2b(µ̂)′′).

2. Minimize the weighted least square sum with regards to β, then update
the vectors

η̂ = Xβ̂, and the ML-estimates µ̂i = g(η̂i)−1.

until the change in deviance is sufficiently close to zero, or some similar test.

Fitting the GAM given lambda

Fitting a GAM is very similar to fitting a GLM model. The difference is the
last step of the iteration, where we instead of just minimize a weighted least
square, minimize [Wood, p. 251]

‖z−Xβ‖2W +
∑
j

λjβ
>Sjβ.

This looks a little simpler than it is, X and β are extended here, to account
for the smooth factors as well. So in principle, the idea is the same, but
performing it becomes more advanced and is skipped here.

Estimating lambda

According to [Wood, p. 269], the most reliable method for estimating λ is
to use Newton-Raphson. This requires, for each outer iteration, a penalized
weighted reiterated least squares iteration to find the estimates corresponding
to the iteration. This means we need the hessian and gradient the expression
we minimize. As one might imagine, this is not a little cumbersome, so this
procedure is left out.
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The mgcv package

The mgcv (Mixed GAM Computation Vehicle) package is built by Simon
Wood and was released in conjunction with his book [3]. Simon Wood is a
professor in Statistics at the University of Bristol and has strong interest in
GAM models. He has an h-index of 53. The package is availaibe on CRAN.
It contains the GAM function used for building our GAM models in chapter
3, as well as the functionality to plot the splines afterward.
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