
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Comparing Accuracy of Surface Fitting
between Artificial Neural Network and
Interpolation With Cubic Splines

Lav Radosavljević

Matematiska institutionen

Kandidatuppsats 2020:6
Matematisk statistik
Juni 2020

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2020:6

http://www.math.su.se

Comparing Accuracy of Surface Fitting

between Artificial Neural Network and

Interpolation With Cubic Splines

Lav Radosavljević∗

June 2020

Abstract

This paper seeks to simulate a real-life problem of fitting a surface

from observed data with random errors. We will seek to determine

which of two methods, Artificial Intelligence with an Artificial Neural

Network or interpolation with cubic splines, will produce the most

accurate fitting of the surface we have chosen for the simulation. The

measure of accuracy used will be the mean integrated squared error.

In order to examine which method is more appropriate to use un-

der different circumstances we will also vary the learning time for the

Artificial Neural Network as well as the standard deviation of the ran-

dom errors in the data. This goal will be achieved by determining

which method has the lowest mean integrated squared error for dif-

ferent combinations of error standard deviation and learning time for

the Artificial Neural Network.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: val.vic53@yahoo.com. Supervisor: Ola Hössjer, Taras Bodnar.

Contents

1 Introduction 2
1.1 Problem Inspiration . 2
1.2 Problem Description . 3
1.3 Relevance of the Problem . 4

2 Theory 5
2.1 General Simulation Description 5
2.2 Definitions of Important Terms 5

2.2.1 MISE . 5
2.2.2 Stochastic Gradient Descent and Number of Iterations . . 6
2.2.3 Error Standard Deviation 6
2.2.4 Activation Function . 6
2.2.5 Convex Hull . 7
2.2.6 Hadamard Product . 8

2.3 Architecture of the ANN . 9
2.4 Least Squares Estimation of Hyperparameters 9
2.5 Cubic Interpolation . 12

2.5.1 Delaunay Triangulation 12
2.5.2 Estimation of parameters 12

3 Description of Simulation Study 15

4 Results 16

5 Discussion 18
5.1 Discussion of Results . 18
5.2 Why do we use SGD instead of Gradient Descent? 19
5.3 Smoothing Splines . 19
5.4 Histogram of MISEs . 20

1 Introduction

1.1 Problem Inspiration

The idea for this paper came from a concrete engineering problem I had to solve
at a mathematical event at the University of Karlstad, Sweden (link to event
page [1] and to the problem in question [2]). The task was given to my group by
a company called Uddeholms AB that produces steel. They wanted a function
that describes the toughness of a steel ingot they produced as a function of
the width and height of the ingot. They could not produce one ingot for each
possible combination of height and width as this would be extremely expensive.
Instead they gave us the measured toughness for 226 ingots with different values
of height and width. Because the process of producing an ingot is extremely

2

complicated there was no hope of calculating it with the help of physics. In-
stead we decided to use two different numeric methods to obtain the function,
a artificial neural network (or ANN for short) and cubic spline interpolation.
There was disagreement about which method was most appropriate to use, i.e.,
which method was best at predicting the outcome given a limited amount of
computing time. Two important factors that determine this is how accurate
the provided data are (i.e. how much error there is in the companies’ measure-
ments) and how much time we use to fit the hyperparameters of the ANN, as
we cannot use unlimited CPU. I therefore thought it would be appropriate to
perform a simulation study that investigates which of the two methods has lower
MISE (Mean Integrated Squared Error, see Subsection 2.2.1) for different com-
binations of number of iterations and error standard deviation. It is important
to note that I will not be using any data from the event in Karlstad. I will be
simulating data myself in order to see which method is better at interpolating
a 3D surface.

1.2 Problem Description

The aim of the thesis is to investigate which of the two methods is better for
different combinations of error standard deviation and number of iterations. Of
course this will also depend heavily upon the function which is fitted by the
two considered methods. We will only be looking at a very simple function
throughout the thesis, namely the function

f : (0, 1)2 → R , f(x1, x2) = 0.3 +
1

12
ex1+x2 ,

as seen in Figure 1. It is a convex function defined on (0, 1)2. Moreover, it holds
that

inf
(x1,x2)∈(0,1)2

0.3 +
1

12
ex1+x2 = 0.3 +

1

12
e0 ≈ 0.383

and

sup
(x1,x2)∈(0,1)2

0.3 +
1

12
ex1+x2 = 0.3 +

1

12
e2 ≈ 0.916,

so the function assumes relatively small values. We can also easily see that all
its derivatives are continuous.

We want to solve the following problem for a given number of iterations N
used to fit the ANN and a given error standard deviation σ based on a set of
n = 100 training points

(X1,1, X1,2, Y1), (X2,1, X2,2, Y2), ..., (X100,1, X100,2, Y100),

such that

Yi = 0.3 +
1

12
exp (Xi,1 +Xi,2) + εi ∀ i = 1, 2, ..., 100,

where
εi ∼ N(0, σ2)

3

Figure 1: The function f(x1, x2) = 0.3 + 1
12e

x1+x2 for x1, x2 ∈ (0, 1) used in the
simulation study.

are independently and normally distributed error terms. We want to calculate
the MISE for each method and see which one is smaller. This will be done for
N = 104, 105, 106 and σ = 0, 0.01, 0.02, 0.03, 0.04, 0.05, in order to see which
method performs better under which conditions. Our initial suspicion is that

1. The MISE becomes lower for the ANN as N increases

2. The MISE for the ANN becomes relatively smaller compared to that of
the cubic interpolation method as σ increases.

We suspect 1. because the ANN will usually perform better if we allow more
iterations. We suspect 2. because cubic interpolation is prone to over-fitting,
which will make it to perform poorly in particular when we have a large error
standard deviation.

1.3 Relevance of the Problem

The comparison of Artificial Neural Networks with older models such as regres-
sion or interpolation is very common today in various fields of science [3] [4]
[5] [6] [7] [8] [9] [10] [11] [12]. Therefore, the question whether Artificial Neural
Networks, or other forms of machine learning, are preferable to older models is a
highly relevant in modern science and engineering. This paper seeks to perform
this comparison for a special case by simulating a real-world problem.

4

2 Theory

2.1 General Simulation Description

The training data will be such that each point (X1, X2, Y) satisfies

Y = 0.3 +
1

12
eX1+X2 + ε

where ε ∼ N(0, σ2) is normally distributed with expected value 0.

2.2 Definitions of Important Terms

Before I go ahead and formulate the problem that I want to solve I will define a
few terms which one needs to understand the problem and the contents of the
paper.

2.2.1 MISE

MISE is short for ”Mean Integrated Squared Error”. It is a means by which we
quantify how well a curve has been fitted. If we have an unobservable function
f : A→ R and we fit from sample data a function f̂ : A→ R, then

MISE =

∫
E
[
(f(x)− f̂(x))2

]
fX(x)dx,

where x = (x1, x2, . . . , xd) ∈ A (we will be studying the case d = 2) and fX is
the probability density function for the validation points generated to test the
fit of the curve. This quantity is an expected value which we usually cannot
calculate analytically. Instead we use the empirical equivalent given by

M̂ISE =
1

m

m∑
k=1

(f(xk)− f̂(xk))2

for some iid validation points x1, x2, ..., xm with probability density function fX ,
which are not used to fit the function. And if we use sufficiently large values of
m this is a very good approximation [13].

Suppose new observations Y ∗k = f(xk) + ε∗k are generated for each one of test
data points xk, k = 1, . . . ,m, where ε∗k ∼ N(0, σ2) are new error terms, inde-
pendent of the error terms εi of the training data set. The the Mean Squared
Error of Prediction is

MSEP = 1
m

∑m
k=1E[(Y ∗k − f̂(xk))2]

= σ2 + M̂ISE.

Since MSEP only differs from the estimated MISE by a constant σ2, we will use
the latter as performance criterion, since it is easier to compare between data
sets with varying σ.

5

2.2.2 Stochastic Gradient Descent and Number of Iterations

In order to fit hyperparameters from data in an Artificial Neural Network, we
will use a algorithm called Stochastic Gradient Descent (SGD). Suppose we
want to minimise a function Q : Ω→ R, (where Ω is the parameter space of our
fitting method) , such that

Q(ω) =

n∑
i=1

Qi(ω) ∀ ω = (ω1, ..., ωd) ∈ Ω

We can do this by performing the following iteration N times:

ωj = ωj−1 − η∇Qij

where each index ij for j = 1, 2, ..., N is selected with uniform probability from
the numbers 1, 2, ..., n, where n is the number of training data points, and we
have an initial randomly generated guess ω0. When we refer to ”number of
iterations” in this paper, we mean the above number N , i.e the number of
iterations in the SGD algorithm.
The constant η is called the learning rate and it is the step size in the SGD
algorithm. In our case we have chosen the value η = 0.05.

2.2.3 Error Standard Deviation

The error standard deviation σ is the standard deviation for the ”measurement
error” in our study. In other words we assume that each response variable
is observed with an error and that these errors are independent and normally
distributed N(0, σ2).

2.2.4 Activation Function

The activation function is a function used to transform input data inside a neural
network so that the network can be used to approximate non-linear functions.
In our case we have chosen the following activation function

α(x) = sinh−1(x) = ln(x+
√
x2 + 1).

It is important to note that in this paper we will be applying this activation
function elementwise to vectors. What this means is that if

v =

y1
y2
.
.
.
yn

6

Figure 2: Convex hull of a set of points

then

α(v) =

α(y1)
α(y2)
.
.
.

α(yn)

 .

2.2.5 Convex Hull

The convex hull of a set of points X1, X2, .., Xn ∈ R2 is the unique minimal
convex subset of R2 containing all points. Another way of defining the con-
vex hull of X1, X2, ..., Xn is the union of all polygons with corners in the set
{X1, X2, ..., Xn} .

7

Figure 3: ANN with input layer X = (X1, ..., Xd), several hidden layers and
output layer Y = (Y1, ..., Yr). We will be dealing with the case d = 2, r = 1 and
three hidden layers.

2.2.6 Hadamard Product

The Hadamard product is a form of matrix multiplication which is only defined
for matrices of the same dimensions. The Hadamard product between two
matrices of the same dimensions is another matrix of said dimensions where
each element is the product of the two elements in that same position for the two
matrices that we are multiplying. We use the symbol ◦ to symbolise Hadamard
multiplication. In the 3× 3 case, Hadamard multiplication looks like this:a11 a12 a13

a21 a22 a23
a31 a32 a33

 ◦
b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

a11b11 a12b12 a13b13
a21b21 a22b22 a23b23
a31b31 a32b32 a33b33

 .

8

2.3 Architecture of the ANN

Let us describe the architecture of the neural network which we will be using.
This is a neural network with three hidden layers, one input layer and one
output layer. This type of network will have four weights and four biases. We
also have an activation function, which will be α(x) = sinh−1(x) for reasons
that will be discussed later on in the paper. Given this structure we get the
following function

f(x) = α(W5α(W4α(W3α(W2x+ b2) + b3) + b4) + b5),

where W2,W3,W4,W5 are weight matrixes, b2, b3, b4, b5 are bias vectors and
α(·) is applied element-wise as described in Subsection 2.2.4. We now want to
construct a cost function as a function of the weights and biases in the ANN
that will help us estimate the parameters in the weights and biases. We choose
the least squares method of optimisation, which means that the cost function is

C(W2,W3,W4,W5, b2, b3, b4, b5) =

n∑
i=1

‖yi − f(xi)‖2 =

=

n∑
i=1

‖yi − α(W5α(W4α(W3α(W2x+ b2) + b3) + b4) + b5)‖2 ,

given n vectors explanatory variable vectors x1, x2, ..., xn, n response vectors
y1, y2, ..., yn and ‖ · ‖ refers to the Euclidian vector norm. Our least square
estimates are

(Ŵ2, Ŵ3, Ŵ4, Ŵ5, b̂2, b̂3, b̂4, b̂5) = argminC(W2,W3,W4,W5, b2, b3, b4, b5).

2.4 Least Squares Estimation of Hyperparameters

In order to find our estimate we need to minimise the cost function. The total
number of parameters in the cost function is p = |W2| + |b2| + |W3| + |b3| +
|W4| + |b4| + |W5| + |b5| = 2 · 2 + 2 + 2 · 3 + 3 + 3 · 2 + 2 + 2 · 1 + 1 = 26. We
will use the method called Stochastic Gradient Descent described in Subsection
2.2.2. Specifically we use the iterative version of the method. The method finds
the minimum of the following sum:

Q(ω) =

n∑
i=1

Qi(ω).

Let us now think back to our problem. We wish to minimize the function

C(W2,W3,W4, b2, b3, b4) =

n∑
i=1

(yi − f(xi))
2 =

=

n∑
i=1

(yi − α(W5α(W4α(W3α(W2x+ b2) + b3) + b4) + b5))2.

9

We now observe that if we let

ω = (W2,W3,W4,W5, b2, b3, b4, b5)

and

Qi(ω) = (yi − α(W5α(W4α(W3α(W2x+ b2) + b3) + b4) + b5))2,

our fitting of hyperparameters can be solved using stochastic gradient descent.
The only thing we need to do is to find a way of calculating the vector ∇Qi(ω).
In order to do this we will be using the chain rule, so what we observe about
our activation function α(x) = sinh−1(x) is that

α′(x) =
1√

1 + x2
= g(α(x)),

where

g(y) =
1√

1 + sinh(y)2
.

We also introduce the following notation to shorten the derived expressions:

a2 = α(W2xi + b2)

a3 = α(W3α(W2xi + b2) + b3)

a4 = α(W4α(W3α(W2xi + b2) + b3) + b4)

a5 = α(W5α(W4α(W3α(W2xi + b2) + b3) + b4) + b5)

δ5 =
∂Qi
∂b5

δ4 =
∂Qi
∂b4

δ3 =
∂Qi
∂b3

δ2 =
∂Qi
∂b2

Using the chain rule, we get that

δ5 =
∂Qi
∂b5

= −2(yi − a5) ◦ α′(W5a4 + b5) = −2(yi − a5) ◦ g(a5),

where g(·) is applied element-wise to vectors just as α(·) and

δ4 =
∂Qi
∂b4

= WT
5 [−2(yi − a5) ◦ α′(W5a4 + b5)] ◦ α′(W4a3 + b4) =

= WT
5 [−2(yi − a5) ◦ g(a5)] ◦ g(a4) = WT

5 δ5 ◦ g(a4).

10

Using the same logic of chain differentiation, we get that

δ3 = WT
4 δ4 ◦ g(a3)

and
δ2 = WT

3 δ3 ◦ g(a2).

Now that we have calculated the gradient for all biases, it is time to calculate
it for the weights, that is to say

∂Qi
∂Wj

for all j = 2, 3, 4, 5. We observe that

∂Qi
∂W5

= [−2(yi − a5) ◦ α′(W5a4 + b5)]aT4 = [−2(yi − a5) ◦ g(a5)]aT4 = δ5a
T
4

and

∂Qi
∂W4

= [WT
5 [−2(yi − a5) ◦ α′(W5a4 + b5)] ◦ α′(W4a3 + b4)]aT3 =

= [WT
5 [−2(yi − a5) ◦ g(a5)] ◦ g(a4)]aT3 = δ4a

T
3 .

Using the same logic of chain differentiation, we also get that

∂Qi
∂W3

= δ3a
T
2

and
∂Qi
∂W2

= δ2x
T
i .

So we have found a way to calculate a2, a3, a4, a5 and δ2, δ3, δ4, δ5. Hence,
using the above equations, we can perform the iteration

ω := ω − η∇Qij (ω)

by performing the following iterations:

b5 := b5 − ηδ5

b4 := b4 − ηδ4
b3 := b3 − ηδ3
b2 := b2 − ηδ2

and
W5 := W5 − ηδ5aT4
W4 := W4 − ηδ4aT3
W3 := W3 − ηδ3aT2
W2 := W2 − ηδ2xTi .

And this process is repeated for 104, 105 or 106 iterations.

11

2.5 Cubic Interpolation

Now we want to describe the process by which we interpolate our surface given
100 points in R3. The constraints are that the surface has to go through all
points

(X1,1, X1,2, Y1), (X2,1, X2,2, Y2), ...(X100,1, X100,2, Y100),

and it has to be a C2-surface. We will be using the built-in MATLAB func-
tion ”griddata” and its built-in option ”cubic” for this purpose. This function
performs the cubic interpolation in two steps, Delauney triangulation and esti-
mation of parameters. As I could not find a clear answer on what algorithm is
used for estimating the parameters in the case of 100 points, I will just include
the code for griddata in the appendix and explain how it can be done for one
example with 4 points.

2.5.1 Delaunay Triangulation

Delaunay triangulation is a way in which we divide the convex hull of the points

(X1,1, X1,2), ..., (X100,1, X100,2) ∈ R2

in triangles such that none of the points (Xi,1, Xi,2) is strictly inside the cir-
cumcircle of any of the triangles. I do not now exactly which algorithm is used
to perform this division in griddata, but I found a good paper [14] where two
appropriate algorithms are described. It is guaranteed that there exists a unique
way of performing Delaunay triangulation as long as there are no three points
on a line or four points on the same circle. Because we generate our points on
(0, 1)2 according to a uniform distribution, the probability that three of them
are on a line or four of them are on a circle is 0.

2.5.2 Estimation of parameters

When we have finished the Delaunay triangulation we want to assign to each
triangle Ti a cubic polynomial

pi(x1, x2) = a
(i)
0 +a

(i)
1 x1+a

(i)
2 x2+a

(i)
3 x21+a

(i)
4 x1x2+a

(i)
5 x22+a

(i)
6 x31+a

(i)
7 x21x2+a

(i)
8 x1x

2
2+a

(i)
9 x32.

Now we have to fit all parameters a
(i)
k so that the obtained surface goes through

all n = 100 training points and is a C2-surface. As we can see there are 10
unknown parameters for each triangle. I will show how this is done in a case
where we have 4 points

(X1,1, X1,2, Y1), (X2,1, X2,2, Y2), (X3,1, X3,2, Y3), (X4,1, X4,2, Y4)

and 2 triangles
T1, T2.

12

Figure 4: Example of a Delaunay triangulation with 100 points

13

Figure 5: A Delaunay triangulation with 4 points and 2 triangles

14

If we look at Figure 4 we see that we want to fit 2 polynomials p1, p2, one for
each triangle, in such a way that the obtained surface goes through all 4 points
and is a C2-surface. The points A and C in figure 4 give us that

p1(X1,1, X1,2) = Y1

p2(X3,1, X3,2) = Y3.

The points B and C give us, under the constraint that the interpolated surface
has to be a C2-surface, that

p1(X2,1, X2,2) = p2(X2,1, X2,2) = Y2

∇p1(X2,1, X2,2) = ∇p2(X2,1, X2,2)

Hp1(X2,1, X2,2) = Hp2(X2,1, X2,2)

and
p1(X4,1, X4,2) = p2(X4,1, X4,2) = Y4

∇p1(X4,1, X4,2) = ∇p2(X4,1, X4,2)

Hp1(X4,1, X4,2) = Hp2(X4,1, X4,2).

We can see that the above equations are linear equations with unknown pa-

rameters a
(i)
k . The points A and C give us one linear equation each, and the

points B and D give us 2 + 2 + 3 = 7 linear equations each. So in total we have
2 · 1 + 2 · 7 = 16 linear equations. But because we have 2 triangles and therefore

two polynomials with 10 coefficients a
(i)
k each, this means that we have 16 linear

equations and 20 unknowns. And because the data is generated randomly we
can be sure to find at least one solution with probability 1. I do not know
which exact method is used to choose a solution. One possibility is to chose the
solution that minimizes the sum

9∑
k=0

2∑
i=1

[a
(i)
k]2.

3 Description of Simulation Study

As we know the goal is to calculate the M̂ISEANN and M̂ISEINTER for
σ = 0, 0.01, 0.02, 0.03, 0.04, 0.05 and where the number of iterations in the

ANN is 104, 105 and 106 respectively. In order to calculate M̂SPEANN and

M̂ISEINTER for each one of the 18 combinations of error standard deviation
and number of iterations for the ANN, we will simulate 18 data sets, with 500
data sets each, that will be used to calculate the desired quantities for all com-
binations. The simulation for a given number of iterations and error standard
deviation starts by drawing randomly and independently 500 data sets with

n+m = 200 points, all of which are in (0, 1)2. Let (X
(σ,N,K)
i,1 , X

(σ,N,K)
i,2) be ith

point in data set number K. The first n = 100 points in each data set will be

15

used for estimating the hyperparameters in the ANN and the coefficients in the
cubic interpolation. Therefore we simulate them independently according to a
uniform distribution on the set (0, 1)2. After that we simulate another m = 100
points independently according to a uniform distribution on the convex hull of
the previous n = 100 points. This is done because the last m = 100 points will

be used for testing the two methods and calculate their respective M̂ISE and
using 2D-interpolation for predicting values is only useful inside the convex hull

of the training data. Now let M̂ISE
(σ,N)

INTER and M̂ISE
(σ,N)

ANN be the calculated

M̂ISE for the two methods with error standard deviation σ and number of

iterations N . Let further M̂ISE
(σ,N,K)

INTER and M̂ISE
(σ,N,K)

ANN be the calculated

M̂ISE
(σ,N)

INTER and M̂ISE
(σ,N)

ANN for data set number K. We define

M̂ISE
(σ,N)

INTER =
1

500

500∑
K=1

M̂ISE
(σ,N,K)

INTER

and

M̂ISE
(σ,N)

ANN =
1

500

500∑
K=1

M̂ISE
(σ,N,K)

ANN .

Now let f̂
(σ,N,K)
INTER : Ω(σ,N,K) → R and f̂

(σ,N,K)
ANN : Ω(σ,N,K) → R, where Ω(σ,N,K)

is the convex hull of the n = 100 points

(X
(σ,N,K)
1,1 , X

(σ,N,K)
1,2), (X

(σ,N,K)
2,1 , X

(σ,N,K)
2,2), ..., (X

(σ,N,K)
100,1 , X

(σ,N,K)
100,2),

be the surface that we obtain from data set number K with error standard
deviation σ and number of iterations N for interpolation and ANN respectively.
Then by definition it follows that

M̂ISE
(σ,N,K)

INTER =

200∑
k=101

(
f
(
X

(σ,N,K)
k,1 , X

(σ,N,K)
k,2

)
− f̂ (σ,N,K)

INTER

(
X

(σ,N,K)
k,1 , X

(σ,N,K)
k,2

))2
and

M̂ISE
(σ,N,K)

ANN =

200∑
k=101

(
f
(
X

(σ,N,K)
k,1 , X

(σ,N,K)
k,2

)
− f̂ (σ,N,K)

ANN

(
X

(σ,N,K)
k,1 , X

(σ,N,K)
k,2

))2
.

4 Results

Let us now look at the estimated MISE for each method and for all combinations

N = 104, 105, 106

and
σ = 0, 0.01, 0.02, 0.03, 0.04, 0.05.

16

Figure 6: Plot of the M̂ISE for Cubic Interpolation and ANN, with different
number of iterations, as a function of the error standard deviation σ.

Table 1: M̂ISE for the Artificial Neural Network

N = 104 N = 105 N = 106

σ = 0.00 8.9 · 10−4 1.5 · 10−4 7.4 · 10−7

σ = 0.01 8.6 · 10−4 1.7 · 10−4 1.4 · 10−5

σ = 0.02 9.7 · 10−4 1.9 · 10−4 4.9 · 10−5

σ = 0.03 1.0 · 10−3 2.4 · 10−4 9.4 · 10−5

σ = 0.04 9.9 · 10−4 3.1 · 10−4 1.5 · 10−4

σ = 0.05 1.1 · 10−3 3.5 · 10−4 2.4 · 10−4

17

Table 2: M̂ISE for the Cubic Interpolation Method

σ = 0.00 1.7 · 10−6

σ = 0.01 7.1 · 10−5

σ = 0.02 2.7 · 10−4

σ = 0.03 6.1 · 10−4

σ = 0.04 1.1 · 10−3

σ = 0.05 1.7 · 10−3

Table 3: Which Method is Better for Different Cases?

N = 104 N = 105 N = 106

σ = 0.00 CUBIC CUBIC ANN
σ = 0.01 CUBIC CUBIC ANN
σ = 0.02 CUBIC ANN ANN
σ = 0.03 CUBIC ANN ANN
σ = 0.04 ANN ANN ANN
σ = 0.05 ANN ANN ANN

In Figure 6 we can see the plot of the M̂ISE as a function of σ for the three
different cases N = 104, N = 105 and N = 106, each with a separate colour.

We also have the plot of the M̂ISE for the cubic interpolation method as a
function of σ in the same graph. Table 1 and Table 2 are the raw data for

the M̂ISE that is used in the graph for the ANN and the cubic interpolation
method respectively. Table 3 shows which method is more appropriate to use
for different combinations of N and σ, i.e., it answers whether

M̂ISE
(N,σ)

ANN < M̂ISE
(N,σ)

INTER or M̂ISE
(N,σ)

ANN > M̂ISE
(N,σ)

INTER.

A detailed discussion of the obtained results is provided in Section 5.1.

5 Discussion

5.1 Discussion of Results

What we see is that both our suspicions (see end of Subsection 2.2) have been
fulfilled. Most likely this is due to the fact that the cubic spline method requires
us to estimate a very large number of parameters which will lead to over-fitting
and thus larger MISE when the error standard deviation increases. As we can
see in Figure 3, a great number of triangles is formed with Delaunay triangula-
tion for 100 points, and each of these will require us to estimate 10 parameters

18

each in order to satisfy the constraints of the algorithm for interpolation with
cubic splines. One of the constraints is that the obtained surface has to go
through all of the data points which will lead to a much larger MISE when σ
grows.

Furthermore we see that the ANN with N = 106 performs better than the
cubic interpolation method for all values of σ. The problem is that it takes
several hours to perform 106 iterations for the SGD algorithm. Therefore we
can conclude that the most desirable model would be one which does not have
the problem of over-fitting, while at the same time we do not need several hours
to fit the parameters of the model.

One other interesting observation is that if we look at the case N = 106 in
figure 6, we can see that it there is a tendency towards over-fitting i.e. the
MISE rises heavily in response to a rise in error standard deviation. Indeed,
one might suspect that the cases N = 107 or N = 108 might perform worse for
large values of σ than the case N = 106. This suspicion is confirmed by the
literature [15], which says that it is not desirable to have too long a training
time because it can lead to over-fitting and therefore worse predictions.

5.2 Why do we use SGD instead of Gradient Descent?

The Gradient descent algorithm provides an alternative approach to the Stochas-
tic Gradient Descent Algorithm to fit the model by the ANN. The Gradient
Descent algorithm could possibly yield the same or better result as the SGD
algorithm, but with lower computational time. We have that

Q(ω) =

100∑
i=1

Qi(ω) =⇒ ∂Q

∂ω
=

100∑
i=1

∂Qi
∂ω

.

We already have the method for calculating ∂Qi

∂ω for all i described in Subsection
3.4. Therefore we can use the gradient descent algorithm by performing the
recursion

ωj = ωj−1 − η∇Q(ωj−1).

Using this summation, I implemented the Gradient Descent algorithm to solve

the same problem, but the result was unsuccessful, as the calculated M̂ISE was
very high. When I looked in the literature, I found that the Gradient Descent
algorithm is so far unsuccessful for problems where the number of training data
points n is large [16]. Because n = 100 in our case, that might explain why we
it is preferable to use the Stochastic Gradient Descent algorithm instead of the
Gradient Descent Algorithm.

5.3 Smoothing Splines

As was mentioned in Subsection 5.1, we want a method that avoids over-fitting
while at the same time does not require several hours of time to fit the param-

19

Figure 7: ANN, Histogram of Estimated MISE for N = 104 and σ = 0.02

eters of the model. A way of obtaining this is by using smoothing splines. The
method finds the fitted the function f̂ : (0, 1)2 → R from data by minimizing
the value of

100∑
i=1

(Yi − f̂(Xi,1, Xi,2))2 + λ

∫ 1

0

∫ 1

0

[H(f̂(x, y))]dxdy.

The coefficient λ is a coefficient for determining how much we will penalise lack
of smoothness. Here we can see that if λ = 0 we will obtain the minimum value
from our cubic interpolation method because in that case

Yi = f̂(Xi,1, Xi,2) ∀ i = 1, 2, ..., 100.

If λ → ∞ the problem is reduced to multiple linear regression. So some inter-
mediate value of λ must be chosen.
This is a topic for further study as it may be a method that both avoids over-
fitting and is computationally cheap. I have also found good literature on the
topic. [17]

5.4 Histogram of MISEs

I have looked at the histograms of the MISEs for each pair of N and σ i.e. for the
500 data sets that we generate for each such pair. In general it can be said that
the ANN method has a fat right tail whereas the cubic interpolation method has
a more bell-shaped histogram. A histogram of the MISEs for the case N = 104

and σ = 0.02 are shown for the ANN and for the cubic interpolation method in
Figure 7 and Figure 8 respectively.

20

Figure 8: Cubic Interpolation, Histogram of Estimated MISE for N = 104 and
σ = 0.02

References

[1] url: https://www.kau.se/MIMM-day.

[2] url: https : / / www . kau . se / files / 2019 - 11 / Interpolation % 5C %

20Problem.pdf.

[3] Barenya Bikash Hazarika, Deepak Gupta, Mohanadhas Berlin, et al. “A
Comparative Analysis of Artificial Neural Network and Support Vector
Regression for River Suspended Sediment Load Prediction”. In: First In-
ternational Conference on Sustainable Technologies for Computational In-
telligence. Springer. 2020, pp. 339–349.

[4] Milica Arsić et al. “Prediction of Ozone Concentration in Ambient Air Us-
ing Multilinear Regression and the Artificial Neural Networks Methods”.
In: Ozone: Science & Engineering 42.1 (2020), pp. 79–88.

[5] Panagiotis Barmpalexis et al. “Application of Multiple Linear Regression
and Artificial Neural Networks for the Prediction of the Packing and Cap-
sule Filling Performance of Coated and Plain Pellets Differing in Density
and Size”. In: Pharmaceutics 12.3 (2020), p. 244.

[6] Mumtaz Ali and Ravinesh C Deo. “Modeling wheat yield with data-
intelligent algorithms: artificial neural network versus genetic program-
ming and minimax probability machine regression”. In: Handbook of Prob-
abilistic Models. Elsevier, 2020, pp. 37–87.

21

[7] Aditya Rana et al. “Predicting Blast-Induced Ground Vibrations in Some
Indian Tunnels: a Comparison of Decision Tree, Artificial Neural Network
and Multivariate Regression Methods”. In: Mining, Metallurgy & Explo-
ration (2020), pp. 1–15.

[8] Bulent Ekiz et al. “Comparison of the decision tree, artificial neural net-
work and multiple regression methods for prediction of carcass tissues
composition of goat kids”. In: Meat science 161 (2020), p. 108011.

[9] Ali Komeilibirjandi et al. “Thermal conductivity prediction of nanofluids
containing CuO nanoparticles by using correlation and artificial neural
network”. In: Journal of Thermal Analysis and Calorimetry 139.4 (2020),
pp. 2679–2689.

[10] Jakub Horák, Petr Šuleř, and Jaromır Vrbka. “Comparison of neural net-
works and regression time series when predicting the export development
from the USA to PRC”. In: International Scientific Conference

”
Con-

temporary Issues in Business, Management and Economics Engineering”.
2019.

[11] Mingjun Li and Junxing Wang. “An empirical comparison of multiple lin-
ear regression and artificial neural network for concrete dam deformation
modelling”. In: Mathematical Problems in Engineering 2019 (2019).

[12] Wen-Jing Niu et al. “Comparison of multiple linear regression, artificial
neural network, extreme learning machine, and support vector machine in
deriving operation rule of hydropower reservoir”. In: Water 11.1 (2019),
p. 88.

[13] Wolfgang Hardle. “Approximations to the mean integrated squared er-
ror with applications to optimal bandwidth selection for nonparametric
regression function estimators”. In: Journal of multivariate analysis 18.1
(1986), pp. 150–168.

[14] Der-Tsai Lee and Bruce J Schachter. “Two algorithms for constructing a
Delaunay triangulation”. In: International Journal of Computer & Infor-
mation Sciences 9.3 (1980), pp. 219–242.

[15] Gilbert Strang. “Linear Algebra and Learning from Data”. In: Wesley-
Cambridge Press, 2019. Chap. VI.5.

[16] Gilbert Strang. “Linear Algebra and Learning from Data”. In: Wesley-
Cambridge Press, 2019. Chap. VI.5.

[17] B.W Silverman P.J Green. Nonparametric Regression and Generalized
Linear Models: A roughness penalty approach. Chapman and Hal, 1994.

Appendix

The code used for ANN with three hidden layers

I borrowed segments of this code from my solution to a homework assignment
in the course MM7024 with Professor Zhaojun Bai.

22

1 f o r b la = 0 :5
2 mises1 = [] ; %vecto r where the 500 MISEs f o r the cubic

method are s to r ed
3 mises2 = [] ; %vecto r where the 500 MISEs f o r the ANN are

s to r ed
4 N = 10000; %number o f i t e r a t i o n s
5 sigma = bla ∗0 . 0 1 ; %e r r o r standard dev i a t i on
6 f o r temp = 1:500
7 x1 = rand (1 ,100) ;
8 x2 = rand (1 ,100) ;
9 y = 0.3+exp (x1+x2)/12+normrnd (0 , sigma , 1 , 1 0 0) ;

10 [xq , yq] = meshgrid ((0 : 1 0 0 0) ∗0 .001 , (0 : 10 00) ∗0 .001) ;
11 vq = gr iddata (x1 , x2 , y , xq , yq , ’ cub ic ’) ; %s u r f a c e i s

i n t e r p o l a t e d
12 vq = vq ’ ;
13

14 W2 = 0.5∗ randn (2 , 2) ;
15 W3 = 0.5∗ randn (3 , 2) ;
16 W4 = 0.5∗ randn (2 , 3) ;
17 W5 = 0.5∗ randn (1 , 2) ;
18 b2 = 0.5∗ randn (2 , 1) ;
19 b3 = 0.5∗ randn (3 , 1) ;
20 b4 = 0.5∗ randn (2 , 1) ;
21 b5 = 0.5∗ randn (1 , 1) ;
22

23 eta = 0 . 0 5 ; % l e a r n i n g ra t e
24 f o r counter = 1 :N %
25 k = randi (100) ; %point i s chosen randomly
26

27 x = [x1 (k) ; x2 (k)] ;
28

29 a2 = act (x ,W2, b2) ;
30 a3 = act (a2 ,W3, b3) ;
31 a4 = act (a3 ,W4, b4) ;
32 a5 = act (a4 ,W5, b5) ;
33

34 d5 = der (a5) . ∗ (a5−y (k)) ;
35 d4 = der (a4) . ∗ (W5’∗ d5) ;
36 d3 = der (a3) . ∗ (W4’∗ d4) ;
37 d2 = der (a2) . ∗ (W3’∗ d3) ;
38 % r e c u r s i o n
39 W2 = W2 − eta ∗d2∗x ’ ;
40 W3 = W3 − eta ∗d3∗a2 ’ ;
41 W4 = W4 − eta ∗d4∗a3 ’ ;
42 W5 = W5 − eta ∗d5∗a4 ’ ;
43 b2 = b2 − eta ∗d2 ;

23

44 b3 = b3 − eta ∗d3 ;
45 b4 = b4 − eta ∗d4 ;
46 b5 = b5 − eta ∗d5 ;
47 end
48 MISE1 = 0 ;
49 MISE2 = 0 ;
50 count = 0 ;
51 whi le count < 101
52 i = randi (1000) ;
53 j = randi (1000) ;
54 i f ˜ i snan (vq (i , j)) %checking i f generated po int i s

i n s i d e the convex h u l l
55 MISE1 = MISE1 + (vq (i , j)−(0.3+exp ((i+j) ∗0 .001)

/12)) ˆ2 ;
56 MISE2 = MISE2 + (f (W2,W3,W4,W5, b2 , b3 , b4 , b5 , i

∗0 .001 , j ∗0 .001)−(0.3+exp ((i+j) ∗0 .001) /12)) ˆ2 ;
57 count = count +1;
58 end
59 end
60 MISE1=MISE1/100 ;
61 MISE2=MISE2/100 ;
62 mises1 = [mises1 MISE1] ;
63 mises2 = [mises2 MISE2] ;
64

65 end
66 bla
67 medel1 = mean(mises1)
68 medel2 = mean(mises2)
69 end
70

71 f unc t i on va l = f (W2,W3,W4,W5, b2 , b3 , b4 , b5 ,x , y)
72

73 z =[x ; y] ;
74 a2 = act (z ,W2, b2) ;
75 a3 = act (a2 ,W3, b3) ;
76 a4 = act (a3 ,W4, b4) ;
77 va l = act (a4 ,W5, b5) ;
78 end
79

80 f unc t i on y = act (x ,W, b)
81

82 y = as inh (W∗x+b) ;
83

84 end
85

86 f unc t i on g = der (y)

24

87 g = 1 ./ s q r t (1+ s inh (y) . ˆ 2) ;
88 end

MATLAB code of cubic interpolation for built-in function
griddata

1

2 f unc t i on [xq , yq , vq] = gr iddata (vararg in)
3 %GRIDDATA I n t e r p o l a t e s s c a t t e r e d data − g e n e r a l l y to

produce gr idded data
4 % Vq = gr iddata (X,Y,V, Xq,Yq) f i t s a s u r f a c e o f the form

V = F(X,Y) to the
5 % s c a t t e r e d data in (X, Y, V) . The coo rd ina t e s o f the

data po in t s are
6 % de f ined by the ve c t o r s (X,Y) and V d e f i n e s the

corre spond ing va lue s .
7 % gr iddata i n t e r p o l a t e s the s u r f a c e F at the query

po in t s (Xq,Yq) and
8 % retu rns the va lue s in Vq . The query po in t s (Xq, Yq)

g e n e r a l l y r e p r e s e n t
9 % a gr id obtained from NDGRID or MESHGRID, hence the

name GRIDDATA.
10 %
11 % Vq = gr iddata (X,Y, Z ,V, Xq, Yq, Zq) f i t s a hyper−s u r f a c e

o f the form
12 % V = F(X,Y, Z) to the s c a t t e r e d data in (X, Y, Z , V) .

The coo rd ina t e s o f
13 % the data po in t s are de f ined by the v e c to r s (X,Y, Z)

and V d e f i n e s the
14 % correspond ing va lue s . g r iddata i n t e r p o l a t e s the

s u r f a c e F at the query
15 % po int s (Xq, Yq, Zq) and re tu rn s the va lue s in Vq .
16 %
17 % Vq = gr iddata (X,Y,V, xq , yq) where xq i s a row vecto r

and yq i s a
18 % column vector , expands (xq , yq) v ia [Xq, Yq] =

meshgrid (xq , yq) .
19 % [Xq, Yq, Vq] = gr iddata (X,Y,V, xq , yq) r e tu rn s the

g r id coo rd ina t e s
20 % arrays in add i t i on .
21 % Note : The syntax f o r i m p l i c i t meshgrid expansion o f (

xq , yq) w i l l be
22 % removed in a fu tu r e r e l e a s e .
23 %
24 % GRIDDATA(. . . , METHOD) where METHOD i s one o f

25

25 % ’ nearest ’ − Nearest ne ighbor i n t e r p o l a t i o n
26 % ’ l i n e a r ’ − Linear i n t e r p o l a t i o n (d e f a u l t)
27 % ’ natura l ’ − Natural ne ighbor i n t e r p o l a t i o n
28 % ’ cubic ’ − Cubic i n t e r p o l a t i o n (2D only)
29 % ’ v4 ’ − MATLAB 4 gr iddata method (2D only)
30 % d e f i n e s the i n t e r p o l a t i o n method . The ’ nearest ’ and ’

l i n e a r ’ methods
31 % have d i s c o n t i n u i t i e s in the zero−th and f i r s t

d e r i v a t i v e s r e s p e c t i v e l y ,
32 % whi le the ’ cubic ’ and ’ v4 ’ methods produce smooth

s u r f a c e s . Al l the
33 % methods except ’ v4 ’ are based on a Delaunay

t r i a n g u l a t i o n o f the data .
34 %
35 % Example 1 :
36 % % I n t e r p o l a t e a 2D s c a t t e r e d data s e t over a

uniform gr id
37 % xy = −2.5 + 5∗ g a l l e r y (’ uniformdata ’ , [2 0 0 2] , 0) ;
38 % x = xy (: , 1) ; y = xy (: , 2) ;
39 % v = x .∗ exp(−x.ˆ2−y . ˆ 2) ;
40 % [xq , yq] = meshgrid (−2 : . 2 : 2 , −2 : . 2 : 2) ;
41 % vq = gr iddata (x , y , v , xq , yq) ;
42 % mesh (xq , yq , vq) , hold on , p lo t3 (x , y , v , ’ o ’) , hold

o f f
43 %
44 % Example 2 :
45 % % I n t e r p o l a t e a 3D data s e t over a g r id in the x−y

(z=0) plane
46 % xyz = −1 + 2∗ g a l l e r y (’ uniformdata ’ , [5 0 0 0 3] , 0) ;
47 % x = xyz (: , 1) ; y = xyz (: , 2) ; z = xyz (: , 3) ;
48 % v = x .ˆ2 + y .ˆ2 + z . ˆ 2 ;
49 % d = − 0 . 8 : 0 . 0 5 : 0 . 8 ;
50 % [xq , yq , zq] = meshgrid (d , d , 0) ;
51 % vq = gr iddata (x , y , z , v , xq , yq , zq) ;
52 % s u r f (xq , yq , vq) ;
53 %
54 % See a l s o s c a t t e r e d I n t e r p o l a n t , GRIDDATAN, MESHGRID,

NDGRID, DELAUNAY,
55 % INTERPN.
56

57 % Copyright 1984−2015 The MathWorks , Inc .
58

59 narginchk (5 , 9) ;
60

61 numarg = narg in ;
62 method = ’ l i n e a r ’ ;

26

63 i f i s c e l l (vara rg in {numarg})
64 e r r o r (message (’MATLAB: gr iddata : DeprecatedOptions ’)) ;
65 e l s e i f i s c h a r (vararg in {numarg}) | | (i s s t r i n g (vararg in {

numarg}) && i s s c a l a r (vararg in {numarg}))
66 method = vararg in {numarg } ;
67 method = lower (method) ;
68 numarg = numarg−1;
69 end
70

71 i f ˜any (strcmp (method , { ’ n ea r e s t ’ , ’ l i n e a r ’ , ’ na tura l ’ , ’
cub ic ’ , ’ v4 ’ }))

72 e r r o r (message (’MATLAB: gr iddata : UnknownMethod ’)) ;
73 end
74

75 i f numarg == 5
76 numdims = 2 ;
77 e l s e i f numarg == 7
78 numdims = 3 ;
79 e l s e
80 e r r o r (message (’MATLAB: gr iddata : InvalidNumInputArgs ’))

;
81 end
82

83 f o r i =1:(2∗numdims)+1
84 i f (i ˜= (numdims+1) && ˜ i s r e a l (vararg in { i }))
85 e r r o r (message (’MATLAB: gr iddata :

InvalidCoordsComplex ’)) ;
86 e l s e i f ˜ i snumer ic (vararg in { i })
87 e r r o r (message (’MATLAB: gr iddata : Inva l id InputArgs ’)

) ;
88 end
89 end
90

91

92 f o r i =1:numarg
93 i f ndims (vararg in { i }) > numdims
94 e r r o r (message (’MATLAB: gr iddata : HigherDimArray ’)) ;
95 e l s e i f (i s s p a r s e (vararg in { i }))
96 e r r o r (message (’MATLAB: gr iddata : Inva l idDataSparse ’

)) ;
97 end
98 end
99

100 i f numarg == 5
101 % p o t e n t i a l l y 2D v a l i d a t e the data
102 % The xyzchk gene ra t e s a meshgrid − support f o r t h i s

27

w i l l be removed
103 % in a fu tu r e r e l e a s e .
104 x = vararg in {1} ;
105 y = vararg in {2} ;
106 v = vararg in {3} ;
107 xq = vararg in {4} ;
108 yq = vararg in {5} ;
109 [msg , x , y , ˜ , xq , yq] = xyzchk (x , y , v , xq , yq) ;
110 i f ˜ isempty (msg) , e r r o r (message (msg . i d e n t i f i e r)) ; end
111 i nputargs = {x , y , v , xq , yq } ;
112 e l s e i f numarg == 7
113 % P o t e n t i a l l y 3D, check support f o r the method
114 i nputargs = vararg in ;
115 i f strcmp (method , ’ cub ic ’)
116 e r r o r (message (’MATLAB: gr iddata : CubicMethod3D ’)) ;
117 e l s e i f strcmp (method , ’ v4 ’)
118 e r r o r (message (’MATLAB: gr iddata : V4Method3D ’)) ;
119 end
120 end
121

122 switch method
123 case ’ nea r e s t ’
124 vq = useSca t t e r ed In t e rp (inputargs , numarg , method

, ’ n ea r e s t ’) ;
125 case { ’ l i n e a r ’ , ’ na tura l ’ }
126 vq = useSca t t e r ed In t e rp (inputargs , numarg , method

, ’ none ’) ;
127 case ’ cub ic ’
128 vq = cubic (x , y , v , xq , yq) ;
129 case ’ v4 ’
130 vq = gdatav4 (x , y , v , xq , yq) ;
131 end
132

133 i f nargout<=1, xq = vq ; end
134

135 %
−−

136

137 f unc t i on [x , y , v] = mergepoints2D (x , y , v)
138

139 % Sort x and y so d u p l i c a t e po in t s can be averaged
140

141 %Need x , y and z to be column v ec to r s
142 sz = numel (x) ;
143 x = reshape (x , sz , 1) ;

28

144 y = reshape (y , sz , 1) ;
145 v = reshape (v , sz , 1) ;
146 myepsx = eps (0 . 5 ∗ (max(x) − min (x))) ˆ(1/3) ;
147 myepsy = eps (0 . 5 ∗ (max(y) − min (y))) ˆ(1/3) ;
148

149

150 % look f o r x , y po in t s that are i n d e n t i c a l (with in a
t o l e r a n c e)

151 % average out the va lue s f o r these po in t s
152 i f i s r e a l (v)
153 xyv = b u i l t i n (’ merges impts ’ , [y , x , v] , [myepsy ,

myepsx , I n f] , ’ average ’) ;
154 x = xyv (: , 2) ;
155 y = xyv (: , 1) ;
156 v = xyv (: , 3) ;
157 e l s e
158 % i f z i s imaginary s p l i t out the r e a l and imaginary

par t s
159 xyv = b u i l t i n (’ merges impts ’ , [y , x , r e a l (v) , imag (v)

] , . . .
160 [myepsy , myepsx , In f , I n f] , ’ average ’) ;
161 x = xyv (: , 2) ;
162 y = xyv (: , 1) ;
163 % re−combine the r e a l and imaginary par t s
164 v = xyv (: , 3) + 1 i ∗xyv (: , 4) ;
165 end
166 % give a warning i f some o f the po in t s were d u p l i c a t e s (

and averaged out)
167 i f sz>numel (x)
168 warning (message (’MATLAB: gr iddata : Dupl icateDataPoints ’

)) ;
169 end
170

171 %
−−

172

173 f unc t i on vq = useSca t t e r ed In t e rp (inargs , numarg , method ,
emeth)

174

175 % Reference (nearest , l i n e a r) :
176 % David F . Watson , ” Contouring : A guide to the

a n a l y s i s and d i s p l a y
177 % of s p a c i a l data ” , Pergamon , 1994 .
178 %
179 % Reference (natura l) :

29

180 % Sibson , R. (1981) . ”A b r i e f d e s c r i p t i o n o f natura l
ne ighbor

181 % i n t e r p o l a t i o n (Chapter 2) ” . In V. Barnett .
I n t e r p r e t i n g

182 % Mul t i va r i a t e Data . Ch iches te r : John Wiley . pp .
21−−36.

183

184 i f numarg == 5
185 F = s c a t t e r e d I n t e r p o l a n t (i n a r g s {1} (:) , i n a r g s {2} (:) ,

i n a r g s {3} (:) , . . .
186 method , emeth) ;
187 vq = F(i n a r g s {4} , i n a r g s {5}) ;
188 e l s e i f numarg == 7
189 F = s c a t t e r e d I n t e r p o l a n t (i n a r g s {1} (:) , i n a r g s {2} (:) ,

i n a r g s {3} (:) , . . .
190 i n a r g s {4} (:) , method , emeth) ;
191 vq = F(i n a r g s {5} , i n a r g s {6} , i n a r g s {7}) ;
192 end
193

194 %
−−

195

196 f unc t i on vq = cubic (x , y , v , xq , yq)
197 %TRIANGLE Triangle−based cubic i n t e r p o l a t i o n
198

199 % Reference : T. Y. Yang , ” F i n i t e Element S t r u c t u r a l
Ana lys i s ” ,

200 % Prent i c e Hall , 1986 . pp . 446−449.
201 %
202 % Reference : David F . Watson , ” Contouring : A guide
203 % to the a n a l y s i s and d i s p l a y o f s p a c i a l data ” ,

Pergamon , 1994 .
204

205 % Triangu late the data
206

207 [x , y , v] = mergepoints2D (x , y , v) ;
208

209 dt = de launayTr iangu lat ion (x , y) ;
210 scopedWarnOff = warning (’ o f f ’ , ’MATLAB: t r i a n g u l a t i o n :

EmptyTri2DWarnId ’) ;
211 restoreWarnOff = onCleanup (@() warning (scopedWarnOff)) ;
212 dtt = dt . Connec t i v i tyL i s t ;
213 i f isempty (dtt)
214 warning (message (’MATLAB: gr iddata : EmptyTriangulation ’)

) ;

30

215 vq = [] ;
216 re turn
217 end
218

219 t r i = dt . Connec t i v i t yL i s t ;
220 % Find the e n c l o s i n g t r i a n g l e (t)
221 s i z = s i z e (xq) ;
222 t = dt . po intLocat ion (xq (:) , yq (:)) ;
223 t = reshape (t , s i z) ;
224

225 i f (i s r e a l (v))
226 vq = cubicmx (x , y , v , xq , yq , t r i , t) ;
227 e l s e
228 vre = r e a l (v) ;
229 vim = imag (v) ;
230 vqre = cubicmx (x , y , vre , xq , yq , t r i , t) ;
231 vqim = cubicmx (x , y , vim , xq , yq , t r i , t) ;
232 vq = complex (vqre , vqim) ;
233 end
234

235 %
−−

236

237 f unc t i on vq = gdatav4 (x , y , v , xq , yq)
238 %GDATAV4 MATLAB 4 GRIDDATA i n t e r p o l a t i o n
239

240 % Reference : David T. Sandwell , Biharmonic s p l i n e
241 % i n t e r p o l a t i o n o f GEOS−3 and SEASAT a l t i m e t e r
242 % data , Geophys ica l Research Lette r s , 2 , 139−142 ,
243 % 1987 . Desc r ibe s i n t e r p o l a t i o n us ing value or
244 % grad i en t o f va lue in any dimension .
245

246 [x , y , v] = mergepoints2D (x , y , v) ;
247

248 xy = x (:) + 1 i ∗y (:) ;
249

250 % Determine d i s t a n c e s between po in t s
251 d = abs (xy − xy . ’) ;
252

253 % Determine weights f o r i n t e r p o l a t i o n
254 g = (d . ˆ 2) .∗ (l og (d)−1) ; % Green ’ s func t i on .
255 % Fixup value o f Green ’ s func t i on along d iagona l
256 g (1 : s i z e (d , 1) +1:end) = 0 ;
257 weights = g \ v (:) ;
258

31

259 [m, n] = s i z e (xq) ;
260 vq = ze ro s (s i z e (xq)) ;
261 xy = xy . ’ ;
262

263 % Evaluate at reques ted po in t s (xq , yq) . Loop to save
memory .

264 f o r i =1:m
265 f o r j =1:n
266 d = abs (xq (i , j) + 1 i ∗yq (i , j) − xy) ;
267 g = (d . ˆ 2) .∗ (l og (d)−1) ; % Green ’ s func t i on .
268 % Value o f Green ’ s func t i on at zero
269 g (d==0) = 0 ;
270 vq (i , j) = g ∗ weights ;
271 end
272 end

32

