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Abstract

Financial data is known to have non-constant variance, also known
as volatility clustering, or heteroscedasticity. In this thesis we are con-
cerned with the VaR prediction of the GARCH(1,1) model on both
real life data (Nasdaq compsite index), and for a simulated data set.
We will assume both a standard normal and a t-distributed error term
for the innovation, and the model performance will be evaluated by
measuring the fraction of violations, and their independence. For real
life data, both model versions suffer from underestimation of the 95%
VaR, in particular when considering time periods including financial
crises. Both models performs satisfactory on the simulated data, in-
dicating that the modelling and backtesting procedures are working
properly. In general the results seem to favour the GARCH(1,1) model
with conditionally normal error terms over the t-distribution when
predicting VaR.
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1 Introduction
Financial data, and in particular exchange rates or the return of assets tend to be serially uncorrelated over
time, but have historically been characterized by tranquil and volatile periods. As noted by B.Mandelbrot
(1963), it appears that large price changes in the market are usually followed by large changes, and equivalently
in periods of tranquility it can be expected that a calm day is followed by another calm day. This behaviour
of non constant volatility is normally referred to as volatility clustering, or heteroscedasticity.

The phenomenon called volatility clustering may be well known for us today, but traditionally the econo-
metric models assumed a constant one-day forecast variance, which when trying to predict the volatility of
tomorrow may cause the models to either over- or underestimate it. R.Engle (1982) further recognizes the
heteroscedasticity of financial data, and the issues of using unconditional variance in current models, quoting:
“This standard solution to the problem seems unsatisfactory, as it requires a specification of the causes of the
changing variance, rather than recognizing that both conditional means and variances may jointly evolve
over time”. Later in the paper, the model we know today as the ARCH model is suggested, which allow the
innovation to depend on its lagged values, and thus evolve over time as a function of past errors.

The ARCH model was later Generalized by T.Bollerslev (1986), as some empirical applications of the
ARCH-model turned out to require a large amount parameters in the variance equation. Following this, the
extension to the ARCH model was proposed in order to allow for a longer memory and a more flexible lag
structure, which lead to what we today call the GARCH model. What differentiate the GARCH model from
it’s precursor is the inclusion of the lagged conditional variance term itself. Making the model more persistent
to fluctuations of the innovation, while simultaneously allowing for a more parsimonious model.

We want to evaluate the proposed GARCH model and see how well they can fit the selected data by
implementing it on an existing data set. For this thesis we have selected the Nasdaq composite index, which
could be considered as a portfolio of stocks as it is an index following the development of multiple separate
stocks. The model will be fitted to the data, and evaluated through a series of model diagnostics such as the
standardized residuals and coverage tests.

5



2 Theoretical Framework
This section will cover the necessary theory required for the analysis which has been gathered from Tsay -
Analysis of Financial time series 2010 in Chapter 1 and 2 unless otherwise stated.

In most cases when performing financial studies they will involve returns rather than prices of assets. There
are mainly two reasons for this, being that for the general investor returns are a complete and scale free
summary of the investment, and secondly return series are easier to handle due to more attractive statistical
properties.

2.1 Asset returns
Let Pt be the price of an asset at time index t. Holding any given asset from time t − 1 to t results in a
simple gross return defined as

1 +Rt = Pt
Pt−1

.

And corresponding simple net return, or only simple return

Rt = Pt
Pt−1

− 1 = Pt − Pt−1

Pt−1
.

Further we consider that Pt > 0 and Pt−1 > 0 for all t, which means that Pt

Pt−1
> 0. This means that the

gross return has a lower bound 1 +Rt > 0. If we take the logarithm of the simple gross return we receive
what is called the continuously compounded return, or log return defined as

rt = ln(1 +Rt) = ln
(

Pt
Pt−1

)
.

The log return enjoy some advantages over the simple return, e.g. if we consider a multiperiod return, the
log return is simply the sum of the one period log returns involved. Also the log return has more tractable
statistical properties. Thus from here on we will be using the log returns solely in our analysis.

2.1.1 Skewness

The third central moment measures the symmetry of the distribution which is called Skewness, and in
application is used to determine the characteristics of the distribution. The Skewness is defined as

S(x) = E
[

(X − µx)3

σ3
x

]
,

and if we let {x1, x2, ..., xT } be a random sample of X with T observations, the sample Skewness can be
estimated by

Ŝ(x) = 1
(T − 1)σ̂3

x

T∑
n=1

(xt − µ̂x)3.

2.1.2 Kurtosis

The fourth central moment measures the tail behaviour of the distribution, and this measurement is called
Kurtosis. It is defined as
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K(x) = E
[

(X − µx)4

σ4
x

]
and the quantity K(x) − 3 is called excess kurtosis because K(x) = 3 for a normal distribution. If a
distribution has positive excess kurtosis it is said to have fat tails, implying that the distribution tend to
feature more extreme values than a normal distribution, and thus, having fatter tails. A distribution featuring
these characteristics is said to be leptokurtic.

In application this quantity can also be estimated by the sample, and again if we let {x1, x2, ..., xT } be a
random sample of X with T observations, the sample Kurtosis is

K̂(x) = 1
(T − 1)σ̂4

x

T∑
t=1

(xt − µ̂x)4.

2.2 Linear time series
A time series rt is said to be linear if it can be written as

rt = µ+
∞∑
i=0

ψiat−i, (1)

where µ is the mean of rt, ψi the weights of rt and {at} is a sequence of i.i.d. random variables with zero
mean and a well defined distribution. at is often denoted the innovation or shock at time t.

2.2.1 Stationarity

A time series {rt} is said to be strictly stationary if the joint distribution (rt1 , ..., rtk ) is identical to that
of (rt1+t, ..., rtk+t) for all t where k is an arbitrary positive integer. Meaning that the joint distribution is
required to be invariant under time shifts, which can be hard to verify empirically.

Often in application one is more concerned with weak stationarity, and a time series {rt} is said to be weakly
stationary if both the mean of rt and the covariance between rt and rt−`, Cov(rt, rt−`) = γ` are invariant
under time shifts where ` is an arbitrary integer.

2.2.2 White noise

A time series rt can be referred to as a White noise series if {rt} is a sequence of independent and identically
distributed random variables with finite mean and variance. An example of a white noise series is the sequence
{rt} where rt ∼ N(0, σ2), which is called a Gaussian white noise series. What can be said for all white noise
series is that the ACF’s are zero, or in practice, not significantly different from zero, meaning there exist no
correlation between the series and its previous values.

2.2.3 Autocorrelation function (ACF)

If we consider a weakly stationary time series rt where the linear dependence between rt and its past values
are of interest we use the concept of correlation. In this form it is generalized to autocorrelation, and the
correlation between rt and rt−` is called the lag-` autocorrelation of rt. It is usually denoted ρ`, which is
defined as

ρ` = Cov(rt, rt−`)√
Var(rt) Var(rt−`)

= Cov(rt, rt−`)
Var(rt)

= γ`
γ0

where the property of rt being invariant under time shift is used, such that Var(rt) = Var(rt−`). In addition
a weakly stationary series is not correlated if and only if ρ` = 0 for all ` > 0.
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For a given realized sample of returns rt with sample mean r̄ =
∑T
t=1 rt/T , the lag-` sample autocorrelation

is defined as

ρ̂` =
∑T
t=`+1(rt − r̄)(rt−` − r̄)∑T

t=1(rt − r̄)2
.

If rt is a weakly stationary time series that satisfy rt = µ+
∑q
i=1 ψiat−i, where ψ0 = 1 and {aj} is a sequence

of i.i.d. random variables with zero mean, then ρ̂` is asymptotically normal with mean zero and variance
1/T (1 + 2

∑q
i ρ

2
i ) for ` > q as per Bartlett’s approximation, from literature; Box, Jenkins, and Reinsel (2008).

2.2.4 Testing ACF

Previous results from section 2.2.3 can be used in order to test the null hypothesis H0 : ρ` = 0 against the
alternative Ha : ρ` 6= 0 for any given positive integer ` > q. This is done by using the test statistic

z = ρ`√
(1 + 2

∑`−1
i=1 ρ̂

2
i )/T

.

The test statistic z is asymptotically distributed as a standard normal random variable. The decision rule is
to reject H0 if |z| > Zα/2 where Zα/2 is the 100(1− α/2)th percentile of the standard normal distribution.

2.2.5 Ljung-Box test

Ljung and Box proposed another statistic Q(m) in order to jointly test that several autocorrelations of rt are
zero. The null hypothesis H0 : ρ1 = .. = ρm = 0 is tested against Ha : ρi 6= 0 for some i ∈ (1, ...,m). The
statistic is defined as

Q(m) = T (T + 2)
m∑
`=1

ρ̂2
`

T − `

which under the assumption that {rt} is an i.i.d. sequence, this test statistic is asymptotically χ2-distributed
with m degrees of freedom. The decision rule is to reject H0 if Q(m) > χ2

α where χ2
α is the 100(1 − α)th

percentile of the chi-square distribution with m degrees of freedom. It has been suggested through simulation
studies that the choice of m should be proportional to the sample size T through m = ln(T ) as per R.Tsay
(2010 p.33) but during analysis multiple choices of m could be used.

2.2.6 AR Models

Consider a time series data rt with a significant lag-1 autocorrelation. If we would be interested in making
use of the lagged return rt−1 in order to predict rt a simple model that could be used is the Autoregressive
(AR)-model. As we in this case only will be considering the lag-1 autocorrelation this is referred to as an
AR(1)-model which can be written

rt = φ0 + φ1rt−1 + at, (2)

where at is assumed to be a white noise series with mean zero and variance σ2 and one explanatory variable
rt−1. What can be noted from equation (1) is that conditional on the previous return rt−1 it follows that

E(rt|rt−1) = φ0 + φ1rt−1, V ar(rt|rt−1) = V ar(at) = σ2.

What this tells us is that given the past return rt−1 the mean is centered around φ0 + φ1rt−1 with a standard
deviation of σ. As the AR(1)-model only has one parameter and is solely depending on rt−1 this is not always
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sufficient to determine the conditional expectation of rt. Thus this model can be generalized to an AR(p)
model with p > 0 parameters according to

rt = φ0 +
p∑
i=1

φirt−i + at. (3)

2.2.7 MA Models

In order to introduce a MA model we will consider an infinite order AR-model with some parameter constraints.
In theory this infinte-order model we would entertain may be defined as

rt = φ0 + φ1rt−1 + φ2rt−2 + · · ·+ at.

In practice however, this is not realistic due to it containing infinite parameters, and one way to get around
this is by introducing some constraints to the φi’s so they are defined by a finite number of parameters. One
idea of this approach is

rt = φ0 − θ1rt−1 − θ2
1rt−2 − θ3

1rt−3 − · · ·+ at (4)

where the coefficients depend on a single parameter θ1 via φi = −θi1 for i ≥ 1. For the model in equation. (4)
to be stationary we put the constraint that θ1 must lower than 1 in absolute value, as otherwise the series
would explode in value when i goes towards infinity. We can rewrite the model in (4) to compact form as

rt + θ1rt−1 + θ2
1rt−2 + · · · = φ0 + at. (5)

Following this we can also write the model for rt−1 as

rt−1 + θ1rt−2 + θ2
1rt−3 + · · · = φ0 + at−1 (6)

and multiplying equation (6) by θ1 and subtracting the result from equation (5) we then end up with

rt = φ0 (1− θ1) + at − θ1at−1 (7)

which tells us that apart from the constant term φ0(1− θ1), rt is a weighted average of the shocks at and
at−1, hence this model is what we would call a MA(1) model as it only depend on the shocks of today and
yesterday.

This model can extended to include higher order lags if necessary, which is referred to a MA(q) model defined
by

rt = c0 + at − θ1at−1 − · · · − θqat−q.

2.3 Conditional heteroscedasticity models
This section will cover the conditional heteroscedasticity models that will be considered in this thesis. One
keyword for these models are volatility, and specifically volatility for an asset return. We will use these models
as an approach to estimate Value at Risk (VaR) which is a concept that will be introduced in section 2.5.

Even though volatility is hard to observe, there are some characteristics that are quite common. The first
is that volatility tend to come in clusters, meaning that a high volatile trading day is usually followed by
another. Equivalently, it also means that a calm day is usually followed by another calm day. Another
characteristic is that it normally evolves over time, and big jumps are rather uncommon. Finally it also
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appears that volatility does not diverge to infinity, and instead varies within a finite range. Which statistically
speaking means that volatility is often stationary.

It also appears that when it comes to financial data, the volatility seem to react differently to price increases
and drops, which is called the leverage effect. There are some models that attempt to correct for that (for
these leverage effects), such as the EGARCH model, but it will not be considered in this thesis.

2.3.1 Structure of the models

If we let rt be the log returns of an asset at time t we can use the basic idea behind volatility studies that the
time series {rt} is serially uncorrelated, or with some minor correlation but dependent. To introduce volatility
models it is informative to begin by considering a return series rt and it’s conditional mean and variance

µt = E (rt|Ft−1) , σ2
t = Var (rt|Ft−1) = E

[
(rt − µt)2 |Ft−1

]
(8)

where Ft−1 denotes the information set available at time t− 1. As stated in Tsay (2010, pp.111) after some
empirical research the serial correlation is typically weak if it exists at all for an asset return series. If we
assume that rt follows a simple time series model it can be written as

rt = µt + at (9)

in compact form, where the mean equation µt should be simple, such as an AR(p) or MA(q) model. If we
combine the equation (8) and (9) we have

σ2
t = Var (rt|Ft−1) = Var (at|Ft−1) . (10)

As the conditional heteroscedastic models are concerned with the evolution of σ2
t , the goal is to find a dynamic

equation that can describe the evolution of the conditional variance over time.

2.3.2 ARCH Model

It was the first model to provide a systematic framework of modelling volatility and it’s called a Autoregressive
conditional heteroscedastic (ARCH) model. The basic idea of the model is that the innovation at is serially
uncorrelated but dependent. This dependency can be described by a quadratic equation of its lagged values.
Specifically we can write an ARCH(m) model as

at = σtεt, σ2
t = α0 + α1a

2
t−1 + ...+ αma

2
t−m (11)

where εt is a sequence of independent and identically distributed random variables with mean zero and
variance one. And normally in practice it is assumed to follow a standard normal or Student’s t-distribution.

What can be observed from equation (11) is that large past innovations {at−i}mi=1 will result in a large
conditional variance of at which is in line with our previous statement of volatility clustering. However it
should be noted that this does not imply that a large innovation is always followed by another large innovation
but rather that the probability for this to occur is higher.

2.3.3 GARCH Models

The ARCH model may be simple but at times can require many parameters in order to describe the volatility
process adequately. This led T.Bollerslev to propose an extension of the model known as the Generalized
ARCH (GARCH) model. If we let at = rt−µt denote the innovation at time t then it follows a GARCH(m, s)
model if
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at = σtεt, σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j , (12)

where εt is a sequence of independent and identically distributed random variables with zero mean and variance
1 as for the ARCH model. Some further constraints are α0 > 0, αi ≥ 0, βj ≥ 0 and

∑max(m,s)
i=1 (αi + βi) < 1,

where we underline that αi = 0 for i > m and βj = 0 for j > s. These constraints assures that the
unconditional variance of at is finite while still allowing σ2

t to evolve over time. Again as for the ARCH
model εt is often assumed to follow a standard normal or standardized students-t distribution (which are the
assumptions that will be used in this thesis).

The simplest form of a GARCH-model is the GARCH(1,1) where the conditional variance of at will have the
form

at = σtεt, σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1. (13)

2.4 Model selection
Once a certain type of model has been selected we need to determine what order the model should have.
This section will introduce the Partial Autocorrelation function as well as Akaike Information Criteria and
Bayesian Information Criteria which can aid in this selection.

2.4.1 Partial Autocorrelation function (PACF)

The PACF of a stationary time series can be useful when selecting the order of a linear time series model.
The PACF provides the added contribution of the next lag-term in a model. One intuitive way of introducing
this could be considering a set of consecutive AR-models

rt = φ0,1 + φ1,1rt−1 + e1,t

rt = φ0,2 + φ1,2rt−1 + φ2,2 + e2,t

rt = φ0,3 + φ1,3rt−1 + φ2,3rt−2 + φ3,3rt−3 + e3,t

.

.

.

where the terms φ0,p are the constant terms, φi,p the coefficient of rt−i and ep,t the error term of an AR(p)-
model. We note that all the models are in form of a multiple linear regression and can be estimated through
the least-square method. The PACF for a given model is the highest order φ̂p,p which holds the added
contribution of rt−p to rt and the selection of model is made with a cut off where the lag-p+1 PACF is no
longer significant. Let ` > p, then we note that the asymptotic variance of φ̂`,` is 1/T where T denotes the
sample size (as per R.Tsay pp.47) and also that φ̂`,` converges to zero. So when a model is to be selected the
lag-p PACF is computed for a set of AR-models and the cut off is made where the sample PACF is no longer
significant.

In practice, there can be multiple cut offs making the selection not as straightforward, but one could also use
some criteria like AIC or BIC, presented in following section. As well as considering the noise additional
parameters may cause in the model.

2.4.2 AIC and BIC

The theory for this subsection has been gathered from Held & Sabanés Bové (2014, Chapter 7).

Both Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) are likelihood based
methods of evaluating the quality of a model. It is based on the estimated maximum likelihood function
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θ̂ML, where some measure of model complexity is integrated in order to allow for comparison of non-nested
models. For both AIC and BIC this measure will depend on the dimension p of the parameter vector θ. We
define AIC and BIC as

AIC = −2l(θ̂ML) + 2p (14)

BIC = −2l(θ̂ML) + p log(T ) (15)

where in both (14) and (15) p denotes the dimension of the parameter vector, and T in (15) denotes the
sample size. Both criterion are negatively oriented and we select the model which has the lowest value. We
note that both criterion penalizes the number of parameters but BIC also penalizes the number of parameters
based on the sample size T as log(T ) ≥ 2, T ≥ 8. What this means in practice is that if we consider a
situation where we have multiple models with different number of parameters that are close to the truth, we
would like to select the model that is the most parsimonious, i.e. the model with fewer parameters.

An increasing sample size from the unknown population distribution aids in selecting a model that is closer
to the truth, but when using AIC this may lead to overfitting due to the penalty term’s independence of the
sample size while for BIC the complexity penalty increases as the sample size does.

However in practice it is common to use both criterion when selecting a model.

2.5 Value at Risk
This subsection is based on Christoffersen (2012 - chapter 1), and Value at Risk is a measurement that aid in
answering a common question within the business industry: Given a portfolio, what is the loss that will only
be exceeded p · 100% of the time where p denotes the probability that the loss is greater than the Value at
Risk defined as P (Loss > VaR) = p.

As we are concerned with log returns in this thesis and will focus on one-day-ahead forecasts, we can define a
more specific VaR. First let V aRpt+1 denote the p · 100% one day ahead Value at Risk, and consider that our
portfolio consists of only one asset. If we assume that the logreturns are normally distributed with zero mean
and σ2

t variance, then

P(rt+1 < −VaRp
t+1) = p⇔

P(rt+1/σt < −VaRp
t+1 /σt) = p⇔

P(zt < −VaRp
t+1 /σt) = p⇔

Φ(−VaRp
t+1 /σt) = p

(16)

where Φ(·), in this particular case, denotes the cumulative density function (cdf) of the standard normal
distribution. If we then take the inverse of the cdf Φ−1(·) of the preceding equation we get

−VaRp
t+1 /σt = Φ−1(p)⇔

VaRp
t+1 = −σtΦ−1

p

(17)

which yields the one day ahead VaR given a predetermined probability p and the standard deviation of the
asset. It is also possible to compute the VaR for other distributions as well, and where E[rt] 6= 0 which we
show later in equation (22).
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2.6 Forecasting method
To generate a forecast we want to use a rolling window approach where we pre specify the rolling window
length and then perform out of sample predictions based on in sample estimates of our parameters. In our
forecast we will be calculating the one day ahead VaR at each time point t based on the conditional variance
σt and the distribution assumption for our model. As we will be considering two models where the error term
is assumed to follow a standard normal and students-t distribution respectively the conditional standard
deviation will be multiplied with the inverse of the cumulative density function to provide us with the VaR.

To provide an explanatory example of how the rolling window forecast will be used, we consider a data
set Rt = {r1, r2, ..., rT }, T = 1000, containing daily log returns from an arbitrary stock. We assume the
logreturns are normally distributed with mean zero and unconditional variance σ2.

Then we have to decide how many observations we want to forecast, the length of our rolling window, how
often we want to refit the parameters and for what confidence level p we want to calculate the VaR.

Let us determine that we want to forecast 400 observations, use a rolling window length of 300 and to re
estimate the parameters after every prediction. This means that initially, we are going to estimate the
parameter for our model based on {r301, r302, ..., r600}. Given the estimated parameters, and a confidence
level, lets say p = 0.05, we can then predict the one day ahead Value at Risk for observation r600+1 as per

VaRp
600+1 = −σ601Φ−1

0.05.

Once the prediction has been made, the data sample used to estimate the parameters will be moved one step,
and the parameters will be re estimated, now using observations {r302, r303, ..., r601}. This procedure carries
on each day until we reach the end of our observations where we now will have a set of predicted VaR values:
{VaRp

600+1,VaRp
600+2, ...,VaRp

1000}.

These predicted VaR’s can then be used to evaluate our model performance, and how this can be done will
be presented in following section.

2.7 Forecasting evaluation
The theory for this subsection has mainly been taken from Christoffersen (2012 - chapter 13). If any other
sources has been used they will be referred to individually.

Once a model has been selected and fitted to our data it is of interest to make sure this model is performing
well. To make sure this is the case one can use backtesting which can be seen as a final diagnostic check of
the selected model. As mentioned in subsection 2.5, VaR is a measurement which promises that at a pre
decided probability p the actual return rt+1 will only be worse than the VaRpt+1 forecast p · 100% of the times.
Given our time series we define a “hit sequence” of these violations with an indicator function as

It+1 =
{

1, if rt+1 < −V aRpt+1
0, if rt+1 ≥ −VaRp

t+1

The hit sequence return a 1 on days where the predicted VaR was exceeded, and 0 if it was not violated. If
we are using a perfect model we should not be able to predict in advance if the VaR will be violated, meaning
that these violations should simply occur with probability p every day. Thus this hit sequence should be
completely unpredictable and could be described as a sequence of independent Bernoulli variables that takes
the value 1 with probability p. Meaning we can define our null hypothesis as

H0 : It+1 ∼ i.i.d. Bernoulli(p).

which will later be used to evaluate the forecast.

13



2.7.1 Unconditional Coverage testing

We want to test if the fraction of violations obtained from our risk model, call it π is significantly different
than the pre determined fraction p. To do this we write the likelihood of our assumed i.i.d. Bernoulli sequence

L(π) =
T∏
t=1

(1− π)1−It+1πIt+1 = (1− π)T0πT1

where T1, T0 represent the number of 1’s and 0’s from the hit-sequence. π is estimated from π̂ = T1/T , that
is the number of violations divided by the number of observations, also the observed fraction of violations
from the sequence. We can then plug the maximum likelihood estimate back into the likelihood function to
retain the optimized likelihood as

L(π̂) = (1− T1/T )T0(T1/T )T1 .

And under the unconditional coverage null hypothesis we assume that π = p, where p is the determined VaR
coverage rate, we have the likelihood function

L(p) =
T∏
t=1

(1− p)1−It+1pIt+1 = (1− p)T0pT1 . (18)

With these likelihood functions we can then test the null hypothesis with a standard Likelihood ratio test

LRuc = −2ln[L(p)/L(π̂)]

which we know is asymptotically χ2-distributed with one degree of freedom, as the number of observations
goes towards infinity. We added the indexing uc to differentiate the Likelihood ratio tests we will be using.

2.7.2 Independence testing

As mentioned in the previous section, the likelihood ratio assumes that all violations occur independently,
and that each day the probability for the return to be higher than the estimated VaR should be p. The
unconditional coverage testing does not take this assumption of independence into account and only assures
the amount of violations are not significantly different from the expected number.

Instead, if we consider a poor financial model that does not capture the conditional heteroscedasticity to full
extent, we could assume most violations would come in a cluster, as the model would not be able to capture
the increase in volatility. This is clearly unsatisfactory, as the hit-sequence should consist of independent
Bernoulli(p) trials. And if we think in financial terms for a company, it would most likely be worse to have
all violations come at once, rather than scattered over the full period.

So in order to test if these violations occur independently we first consider a situation where the hit-sequence
is dependent. This can be described by a first-order Markov sequence with transition probabilities

Π1 =
[
1− π01 π01
1− π11 π11

]
(19)

where π01 = P (It+1 = 1|It = 0) denotes the probability of tomorrow being a violation given that today was
not, and π11 = P (It+1 = 1|It = 1) in a similar way denotes the probability of tomorrow being a violation
given that today was also a violation. The first-order markov property states that only the outcome of
yesterday matters for the outcome of today. Which means that the matrix in equation (19) covers all possible
transitions.

If we again consider a hit-sequence with T observations, we can write the likelihood function of the first-order
markov process as
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L(Π1) = (1− π01)T00πT01
01 (1− π11)T10πT11

11 , (20)

where Tij , i, j = 0, 1 is the number of observations that given the starting state i, is followed by state j.
Taking the first derivative with respect to π01 and π11, and putting these equal to zero we can solve for the
maximum likelihood estimates

π̂01 = T01

T00 + T01

π̂11 = T11

T10 + T11
.

Recall that by allowing a dependence in the hit-sequence, it corresponds to allowing π01 to be different
from π11. However, under the null hypothesis the violations should occur independently, meaning that
π01 = π11 = π, giving us the transition matrix

Π̂ =
[
1− π̂ π̂
1− π̂ π̂

]
(21)

.

Once this has been established we can test the independence hypothesis by again using a likelihood ratio test

LRind = −2ln[L(Π̂)/L(Π̂1)] ∼ χ2(1).

2.7.3 Conditional Coverage testing

Finally what we want to accomplish is a simultaneous test that can assess whether the VaR violations are
independent and the average number of violations correct for the selected VaR-level. This can be done by
jointly testing for independence and correct coverage by using a conditional coverage test

LRcc = −2 ln
[
L(p)/L

(
Π̂1

)]
∼ χ2(2).

We note that this test combines the null hypothesis from the Unconditional Coverage test with the alternative
hypothesis from the Independence test by using the likelihood in equation (18) with the likelihood established
in equation (20).

2.7.4 Testing for higher order dependencies

The backtesting methods we have defined only bothers to validate the independence for violations in
[V aRpt , V aR

p
t+1], t = (0, 1, 2...T − 1), meaning we can only make sure the validations are not correlated

day by day. However as per Christoffersen (2012 - page 306) we can use the ACF defined in section 2.2.2 to
assess whether there exists dependencies in the hit-sequence or not by plotting it as any lag-` dependency
will then show a rise in ACF plot.

It is also possible to use the Ljung-Box test statistic defined in section 2.2.5 to formally test if the autocorrelation
between lag 1, 2...,m are jointly zero.
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3 Methodology
This section will cover where data was gathered, how models were created and which software was used. The
layout of this thesis, in regards to sections and subsections was inspired by Robert Cedergren - Forecast
evaluation of 1-step-ahead predictions using GARCH(1,1) on the Euro/US Dollar FX Spot Rate (2018).

3.1 Data
The data was downloaded from finance.yahoo.com on 2019− 03− 05 where the Nasdaq Composite Index was
selected providing daily data during the time period 1989-2019. Available for use in the data were multiple
variables, such as Date, Opening Price, Closing Price, Highest Price, Lowest Price and Traded Volume.

The data set contains 7558 observations, and thus 7557 daily log returns as they are computed through
ln
(

Pt

Pt−1

)
where Pt for our analysis has been selected as the Closing price of the day.

3.2 Model building
When building a volatility model there are a few general steps to follow as per Tsay (2010 - page 113).

1. First we want to specify a mean equation by testing for serial dependence in the data with ACF’s and,
if necessary fit a suitable econometric model to remove any linear dependence. Normally for log return
series there are no or minor serial correlation and the mean equation may often be reduced to the
sample mean but there are examples where it’s necessary to fit another model.

2. Once a mean equation has been specified we can use the residuals of the mean equation, i.e at = rt− µt
to test for ARCH effects.

3. If ARCH effects are statistically significant we may specify a volatility model and perform joint
estimations of the mean and volatility equations.

4. Once a model has been fitted check and if necessary adjust it.

3.3 Tools used
This thesis and it’s content such as figures, tables and models has been written and created with the open
end software R and R studio. In particular the packages rugarch, fGarch and forecast has been used for
statistical modelling while some of the figures has been created with the use of ggplot. Coverage testing
functions described in section 2.7 have been created by the author by implementing suggested methods from
Kupiec and Christoffersen.

3.4 Reasoning behind methods chosen
The reasoning in this section was inspired by Chapter 1 in Christoffersen - Elements of Risk Management
(2012).

What drives the corporate firm to interest in risk management when, if we for example look at classic portfolio
theory this tells us that investors can eliminate asset-specific risk by diversification. Which by putting
everything else aside mean the investor does not care about firm-specific risk . Thus not giving any incentive
for a firm to invest resources into risk management. This goes in line with the famous Modigliani-Miller
theorem which says the value of a firm is independent of its financial structure; and should maximize its
expected profits regardless of the risks, since the investor can reduce risk by portfolio diversification.

However in practice, the strict conditions required to uphold the Modigliani-Miller theorem are frequently
violated as it is, as far as I know, not possible to avoid taxes which is one rule the theorem is founded on.

Other more realistic descriptions to why a firm should bother with risk management are

• The cost of bankruptcy. There are both direct costs, and indirect costs and they are large. The real cost
being if an actual bankruptcy occur, and the indirect cost amounting to the fact if an investor consider
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there is a nontrivial possibility of bankruptcy, the potential cost will reduce the current valuation of the
company. Thus, meaning risk management can increase the value of the company by lowering the odds
of not going bankrupt.

• Compensation packages. Due to the nature of humans being to some various degree, risk averse, there
is an implied cost for a risky company to keep human capital and other key employees. Meaning that
the riskier the company, the more compensation would be required in return to stay. Leading us to the
conclusion again that by reducing risk, the cost may be reduced and thus the value of the company.

There seem to be consensus that risk management improve firm performance as researchers have found that
reducing cash flow also leads to reduced costs of capital, allowing for more investment. There seem to be
some evidence from the corporate sector where the benefits of risk management can be clearly seen. While if
looking at some recent studies of the risk management at some of the largest US banks, it appears to be not
as good. On average the risk forecast seem to be overly cautious, while the realized losses far exceed the
risk forecasts. It is also stressed that not only does the losses far exceed the risk forecast, they also occurred
consecutively. This serial dependency is a motivation for development and implementation of tools that can
manage this, and among those tools are the GARCH model, which aim to capture this serial dependency by
conditioning on past volatility.
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4 Analysis
4.1 Data exploration
This section will provide an exploratory introduction to to familiarize the reader with the data and its
properties. The data set consists of the closing price of Nasdaq composite index, from which we have derived
the log returns, in this thesis known as rt which indicates the daily percentage change of the index. Just to
get a grasp of how the index has moved over the times we will display three plots where the closing price, the
log return as well as the squared log return are plotted against time.
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Figure 1: Time plots of a) Nasdaq closing price over time, b) Nasdaq logreturns over time and c) Nasdaq
squared logreturns over time during the period 1989-2018

Figure 1 provides a visual illustration of our data set, showing how the Nasdaq index has moved over time,
daily logreturns and the squared log returns. As many may be familiar with there were some financial
difficulties during 2000-2002 due to the dot-com bubble, as well as the global financial crisis during 2008.
This is well represented in the plots where in plot a) we can see a significant price drop in the stock while
plot b) and c) shows spikes in the logreturn in comparison to the calmer period in between.

As we in this thesis are concerned with modelling the volatility process through GARCH models, these spikes
are of particular interest as they indicate the data contains ARCH-effects, which is the foundation of why
these models are being used. The ARCH effects will be confirmed later through ACF plots and the Ljung-Box
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test, but for the sake of knowledge some further descriptive statistics will be presented.

Mean Variance Standard deviation Skewness Kurtosis
0.00038 2e-04 0.0142 -0.11368 9.65656

Table 1: Statistical properties for the logreturns of Nasdaq index.

Table 1 presents the statistical properties of the log return series {rt}, where we can see that the mean is
approximately zero and slightly negatively skewed. The kurtosis is 9.65656 which means we have an excess
kurtosis of 6.65656 confirming our data being leptokurtic and more fat-tailed than the normal distribution,
thus featuring more extreme values. This does not say anything regarding the data and whether it is serially
correlated or dependent at all, which we need to deal with prior to modelling. If we recall equation (9) and
assume our data can be written as rt = µt + at we can re write this expression as at = rt − µt, where µt
denotes the mean equation. As an initial step, in accordance to section 3.1, we want to test if our data is
serially correlated which will be done by ACF plots and solidified by Ljung Box test.
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Figure 2: ACF and PACF plots for the log returns of the Nasdaq composite index during the time period
1989-2018 of a)ACF plot of the log return serie, b)ACF plot of the squared log return serie, c)ACF plot of
the absolute valued log return serie and d)PACF of the squared log return serie

Figure 2 shows the auto-correlation functions for the log return series and in order for us to make the
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assessment that our data series is serially uncorrelated it should contain the majority of auto-correlation
within the dashed blue lines. Figure 2 a) is however displaying a number of auto-correlations exceeding this
which would violate the assumption that our series is serially uncorrelated. Figure 2 b) which contains the
ACF’s for the squared log return series is indicating a strong existence of an ARCH effect. To further solidify
this statistically we will use the Ljung-Box statistic Q(m) to test the null hypothesis that the first m lags are
serially uncorrelated for both the return series and the squared return series. The selection of how many lags
m to be checked is made through the method mentioned in section 2.2.6, which is m = ln(T ) where T is the
number of observations we have.

Series Q(m) p-value
Log return 22.132 0.008

Squared log return 4249.609 0.000

Table 2: The test statistic Q(m) and p-value for respective series.

Table 2 contains the Ljung-Box statistic and corresponding p-value. Since the p-value < 0.05 we reject the
null hypothesis that the return series {rt} contains no serial correlation. The squared returns show even
stronger correlation with the p-value close to zero which means the series is exhibiting strong ARCH effects.
So, in order to move on with the process of modelling the volatility, we first need to address the fact that
our data is serially correlated. As mentioned in R.Tsay (p.114), the serial correlation for most asset return
series are weak, if any, and it is suggested that building a mean equation would amount to simply remove the
sample mean from the series, if the sample mean would show to be significantly different from zero. To check
if this is the case or not we will use a one sample, two sided t-test under the null hypothesis that the mean
equals zero,

H0 : µ = 0 against Ha : µ 6= 0.

The t-ratio statistic is calculated through

t-ratio =
∣∣∣∣ µ̂− µs/
√
T

∣∣∣∣ = 2.314 > t0.975(T − 1) = 1.96

where µ̂, s, T are the estimated sample mean, standard deviation and population size respectively. The null
hypothesis states that the sample mean equals zero and is rejected at the 95% level but not at the 99% level.
Not disclosed here, but in the Appendix an attempt to remove the serial correlation in the data by simply
subtracting the sample mean from the return series was made. Through the ACF plots in Figure 10, and
the Ljung Box test in Table 18 it was concluded that it was not enough, indicating the mean of the series
is dependent of previous values and thus we will attempt to specify an econometric model that can aid in
removing the serial correlation.

The selection of the econometric model to function as our mean equation has been made through the open
end R software, and in particular the package forecast and method auto.arima. The function uses an AIC
based selection where some initial models are considered and then a step-wise algorithm is used to find the
model with the lowest AIC. After specifying a MA(2) model we will again plot the ACF’s to determine if this
is enough to remove the serial correlation our data previously exhibited. We remind ourselves that we are
examining the residuals of the mean equation, i.e. at = rt − µt where µt = c0 + at − θ1at−1 − θ2at−2 is the
representation of the MA(2) model.

Mean Variance Standard deviation Skewness Kurtosis
-3e-08 2e-04 0.01418 -0.16838 9.55258

Table 3: Statistical properties for the residuals of the fitted MA(2)-model to the logreturns from Nasdaq
composite index.
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A summary of the descriptive statistics for the residual series is presented in Table 3 and we note that the
mean of the residual series is smaller and very close to zero now. Performing a t-test of this series under the
null hypothesis that the sample mean equals zero provides a p-value of 0.999 which is satisfactory. Apart
from that, the variance and standard deviation have not changed much, the data is slightly more negatively
skewed but nothing major and the series still exhibits excessive kurtosis.
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Figure 3: Autocorrelation plots containing the following series: a)residuals of the MA(2) model, b)squared
residuals of the MA(2) model, c)absolute value of the residuals from the MA(2) model, d)PACF of the
squared residuals

Figure 3 holds the ACF plots for the residuals of the mean equation where, if we take a closer look at plot
a), it appears the implementation of the MA(2) model successfully has reduced the serial correlation. The
Ljung-Box test statistic in Table 4 further solidifies the removal of serial correlation as the p-value for the
residual series {rt − µt} is now close to 0.5 and thus, we cannot reject the null hypothesis that data is not
serially correlated at the 95% level anymore. However, as was quite clearly visible in subplot b) and c) from
Figure 3, the Ljung-Box test verifies the presence of ARCH effects from the squared residuals {a2

t}, which
indicates that fitting a heteroscedastic model to the data should be a suitable approach.
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Series Q(m) p-value
Residuals of Mean Equation 8.349 0.492

Squared Residuals of Mean Equation 4298.271 0.000

Table 4: The test statistic Q(m) and p-value for respective series.

4.2 GARCH modelling
As the preparation of the data has been taken care of by implementing a MA(2) model we are now ready
to fit the GARCH(1,1) model. We ended the previous section by establishing it would be a good idea to
fit a heteroscedastic model to the residuals of the mean equation as this series contains the presence of
ARCH-effects. We remind ourselves from equation (13) of the form of the GARCH(1,1) model

at = σtεt, σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

where we will be implementing two separate models where the εt’s are assumed to follow a standard normal
distribution as well as a standard students-t distribution. To motivate the selection of two models with separate
underlying distributions for the error term we can look at Calzolari. G et al. (2014). In the introduction of
the article it is mentioned that the distribution of an asset return series may remain leptokurtic, even after
controlling for volatility clustering. What this means is that even after applying for example a GARCH model
to some arbitrary asset return series, in some cases it still exhibit volatility clustering. This indicates that
the distribution for the conditional variance provided by the model is more light tailed than the distribution
for the innovation. Two methods are mentioned to handle this where the second one consists of specifying a
leptokurtic distribution for the error term, such as the students-t distribution. It is later concluded that the
model with underlying t-distribution provided a better fit than the Gaussian one, and in addition it also
provided more reliable quantiles for VaR calculations.

The degrees of freedom for the students-t distributed error term will not be pre-specified and will be jointly
estimated together with the model. As we have modelled a mean equation for our log returns with the
MA(2) model we can now consider the innovation to be the residual of the mean equation at = rt − µt where
µt = c0 − θ1at−1 − θ2at−2 + at takes the form of the MA(2) model.

Table 5 contains the estimated coefficients, the standard error and their p-values, where we can observe
that all parameters are significant at the 95% level for both models apart for θ2 and α0. For where we have
assumed students-t distributed error terms the parameter θ2 is almost significant, but one could consider
dropping these parameters and evaluate if this would result in an improvement of the model.

MA(2)-GARCH(1,1)-N MA(2)-GARCH(1,1)- t
Parameter Estimate Std Error p-value Estimate Std Error

c0 8e-04 1e-04 0 0.0010 0.0001 0.0000
θ1 0.0462 0.0125 2e-04 0.0475 0.0118 0.0001
θ2 -0.0125 0.0129 0.3318 0.0220 0.0118 0.0615
α0 0 0 0.6603 0 0 0.5739
α1 0.098 0.0456 0.0317 0.0909 0.0385 0.0183
β1 0.8903 0.0532 0 0.9077 0.0355 0.0000
ν - - - 7.1689 1.0119 0.0000

Table 5: Summary of parameter estimations, standard error and p-values of GARCH(1,1) model with normal
and t-distributed error terms of log returns from Nasdaq composite index 1989-2019.

For our two models {εt} is assumed to follow a standard normal respectively students-t distribution with
mean zero and variance 1 and these error terms should behave like a white noise series. If we again remind
ourselves of the representation of the innovations at = rt − µt, and also that at = σtεt in accordance to the
GARCH framework it follows
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at = rt − µt, at = σtεt

⇒ rt − µt = σtεt

⇒ εt = rt − µt
σt

= at
σt

where rt is the observed log return, µt a stochastic value estimated by our MA(2)-model and at is the
innovation consisting of the conditional standard deviation σt and an error term εt. What this means is
that the εt’s can be estimated by ε̂t = at

σt
which is commonly referred to as the standardized innovations and

denoted ã. These innovations will be used for further validating our model and since they should behave like
a white noise series. This can be done by again utilizing ACF plots as well as the Ljung-Box test to verify
there still does not exist serial correlation from standardized innovation series {ãt} as well as verifying that we
successfully have removed it from the squared series {ã2

t}. In the theory section 2.3.3 for the GARCH model
we saw that εt is assumed to have zero mean and variance one. Presented in Table 6 are some descriptive
statistics for the standardized innovations for both models and we note the mean is close to zero and the
standard deviation is also approximately 1 as was suggested in the framework for a GARCH-model.

MA(2)-GARCH(1,1)-N MA(2)-GARCH(1,1)-t
Mean -0.0331412 -0.0576483

Standard deviation 0.9986451 0.99715
Skewness -0.4947936 -0.5513839
Kurtosis 4.5547595 4.8692942

Excess Kurtosis 1.5547595 1.8692942

Table 6: Descriptive statistics for the standardized innovations from both MA(2)-GARCH(1,1)-N and
MA(2)-GARCH(1,1)-t model

After conducting a two-sided t-test where we tested the null hypothesis that the sample mean equals zero

H0 : µ = 0, Ha : µ 6= 0

the statistics -2.885 and -5.026 are derived for the standardized normal and standardized t-distributed
innovations respectively. They are to be compared with the critical value 1.96 when tested at the 95% level,
from which it follows we reject the null hypothesis, even at the 99% level. It appears both models are showing
some negative skewness as well as some excessive kurtosis, which indicates heavy tails, and in particular the
lower tail and will later be verified in Figure 5 with a QQ-plot.

Figure 4 displays the ACF’s for the standardized innovations {ãt} and the squared standardized innovations
{ã2
t} for both models. We see there are some minor serial correlation in the squared series at lag 2 and

10 but it’s not possible to draw any conclusions from the plots only. The Ljung-Box statistic is computed
and presented together with the p-value in Table 7 which confirms these series does not contain any serial
correlation.
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Figure 4: ACF-plots of the Standardized innovations for daily log returns of Nasdaq composite index
1989-2019. Plot a) and b) contains the ACF of the standardized innovation series as well as the squared
standardized innovations of the normal distributed series. Plot c) and d) contains the standardized and
squared standardized innovations for the t-distributed series.

Series Q(m) p-value
MA(2)-GARCH(1,1)-N Standardized residuals 3.906 0.915

MA(2)-GARCH(1,1)-N Standardized squared residuals 11.410 0.244
MA(2)-GARCH(1,1)-t Standardized residuals 5.563 0.777

MA(2)-GARCH(1,1)-t Standardized squared residuals 10.982 0.271

Table 7: Ljung-Box test statistic and corresponding p-value for the standardized residuals and the squared
standardized residuals for both MA(2)-GARCH(1,1)-N and MA(2)-GARCH(1,1)-t models.

As a final examination of our model we will plot the sample quantiles against the theoretical quantiles for
both series. The MA(2)-GARCH(1,1)-N model will be plotted against the theoretical quantiles of the N(0,1)
distribution and MA(2)-GARCH(1,1)-t against the theoretical quantiles for a Students-t distribution with
7.2 degrees of freedom as was estimated for the model. Figure 6 displays the QQ-plots for the standardized
innovations and while we can see that the standardized innovations from both models appear to have heavy
tails in the lower quantile, the MA(2)-GARCH(1,1)-t model seem to be light tailed in the upper quantile.
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Figure 5: QQ-plots for the standardized residuals of the MA(2)-GARCH(1,1)-N and MA(2)-GARCH(1,1)-t
model respectively.

4.3 Forecasting
This subsection will cover the one-day ahead rolling window forecast. It will be performed as described in
section 2.6 where we initially perform an in sample estimation of our model parameters and then use the
rolling window to predict the one-day-ahead VaR. We will be using the entire data sample of 7557 daily log
returns and perform three separate rolling window forecasts with different length for out of sample predictions.
The length of our out of sample intervals will be 1800, 3000 and 6000 trading days in which we will obtain the
VaR. All sample intervals have the same end date but naturally span over different time periods, which are:

• Sample interval with 1800 trading days: 2011-11-02 - 2018-12-28

• Sample interval with 3000 trading days: 2007-01-31 - 2018-12-28

• Sample interval with 6000 trading days: 1995-03-02 - 2018-12-28.

If we recall Figure 1 from section 4.1 we know that during the years 2000-2002 and 2008-2009 we suffered a
global financial crisis which led to increased volatility in the stock market. The shortest interval does not
contain any particular period of extreme volatility, while the medium interval contains one and the longest
two. We remember this for future references as the inclusion of a financial crisis may have some impact on
our models prediction capabilities.

It would be possible to calculate a symmetric prediction interval in order to cover both the maximum and
minimum logreturns for each trading day. But we will be focusing on the lower part of the interval which
probably would be considered more valuable to correctly model in finance. We want to calculate the VaR’s
which in theory should allow us to with a 95% security say that an eventual loss tomorrow will not be greater
than our estimated VaR.

The window length has been selected quite arbitrarily to include 500 observations for each parameter
estimation, and the parameters will be refitted each day prior to calculating the VaR. Figure 6 contains
the plots where in black we can see the realized values of the daily log returns while the plotted line in red
corresponds to the model with a standard normal distributed error term and the line in blue to the models
with standardized t-distributed error term.

If we remember the motivation for including two models with separate underlying distributions, it was
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because in some cases using just a standard gaussian distribution was not enough to account for the volatility
clustering exhibited by the data. If we combine this knowledge with our general knowledge of the students-t
distribution being more fat-tailed than the standard gaussian one, we would expect the predicted VaR’s from
the MA(2)-GARCH(1,1)-t model to be smaller and thus putting the blue line below the red. However this
does not seem to be the case from Figure 6 and as this was not entirely expected and the predicted VaR’s
were gathered from the R-package ‘rugarch’ and package function ‘ugarchroll’ the VaR’s where manually
calculated as well. To manually compute the VaR we followed the steps from equation (16) and (17) where
we swapped the cumulative density function for the students-t instead of the standard normal giving us

VaR0.05
t+1 = µt − σtΨ−1

0.05

√
ν

ν − 2 (22)

where µt and σt denotes the expected value and conditional standard deviation at time t, Ψ−1
0.05 the cumulative

density function for the students-t distribution at the 5% quantile and
√
ν/(ν − 2) is the standard deviation

for a t-distribution with ν degrees of freedom. This has to be multiplied with the quantile of the cdf in order
to standardize the VaR as we want t-distribution to have variance 1.

After calculating the VaR manually we verified that the values provided by the package are indeed correct.
By selecting a more restrictive confidence level for the VaR, such as 99% we find that the the VaR for the
student-t model then exceeds the standard normal model.
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Figure 6: Plots for predicted VaR represented by red and blue line for MA(2)-GARCH(1,1)-N and MA(2)-
GARCH(1,1)-t model respectively where the black line equals the realized log returns. Forecasted intervals
for subplots are a) 2011-11-02 - 2018-12-28, b)2007-01-31 - 2018-12-28 and c)1995-03-02 - 2018-12-28.
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5 Results
In this section the results of the forecasts, including a number of backtests will be presented.

5.1 Backtesting
Backtesting is a method used to measure the prediction capabilites and to evaluate the performance of a
model. The methods used for this section are the ones presented in the theoretical framework in section 2.7,
which we remind ourselves are

• Unconditional Coverage test

• Independence test

• Conditional coverage test

• Testing for higher order dependencies.

In following subsections the results of all tests are presented, however no comments regarding the results will
be presented as we will discuss the models in section 5.2

5.1.1 Unconditional Coverage test

The Unconditional Coverage test measures the fraction of violations. Given the previously defined hit-sequence
It, it is derived from the assumption that this hit-sequence is i.i.d. Bernoulli(p) random variables where
p = 0.05 is the probability used to determine the VaR’s. Under this assumption we can form the null
hypothesis that the fraction of realized values lower than the estimated VaR0.05

t should be equal to 5%, i.e.

H0 : It ∼ Be(p), p = 0.05.

In Table 8 we can see the summarized statistics and critical values from the unconditional test and for both
models we note a trend that the longer the forecasted interval, the worse the model seem to perform. None
of the models, for neither of the forecast intervals pass the test and the null hypothesis of correct fraction of
violations is rejected at the 95% level for all forecasts. If we would chose a more restrictive confidence, such
as the 99% level, the MA(2)-GARCH(1,1)-N model forecast of the shortest interval is not rejected, but only
by a very small margin.

Model Forecast length χ2 Critical value LRuc Statistic p-value
MA(2)-GARCH(1,1)-N 1800 3.84 6.2351 0.0125
MA(2)-GARCH(1,1)-N 3000 3.84 21.8801 2.9× 10−6

MA(2)-GARCH(1,1)-N 6000 3.84 31.9104 1.6× 10−8

MA(2)-GARCH(1,1)-t 1800 3.84 10.1928 0.0014
MA(2)-GARCH(1,1)-t 3000 3.84 30.2501 3.8× 10−8

MA(2)-GARCH(1,1)-t 6000 3.84 40.9805 1.5× 10−10

Table 8: Unconditional coverage testing with the Likelihood ratio statistics for our MA(2)-GARCH(1,1)-N
and MA(2)-GARCH(1,1)-t together with the chisquare critical value and corresponding p-value for each
model and different forecast lenghts.

5.1.2 Independence test

Further more we also want to test whether all violations occur independently of each other or not. This is
done through the Independence test where we evaluate if the violations, where the realized value exceeds the
Value at Risk, are really independent. The reason to why this is important is that the aim of our model is to
capture the volatility by conditioning on the known information set at each given time point. And if the
violations do not occur independently of each other, and come in cluster, then that would imply once we
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observe a violation of the estimated VaR, the following day will not be another violation with the probability
p, but rather some other probability q where q > p, q, p ∈ [0, 1]. This indicates that our model is not
optimal and there should exist another model which could better capture the volatility and thus improving
our prediction capabilities We remind ourselves of the matrices defined in equation (19) and (21) where the
latter contains the null hypothesis defined as

H0 : π01 = π11 = π.

Table 9 contains the likelihood ratio statistics, critical χ2 value and corresponding p-value from the In-
dependence test for our models and the different forecast intervals. We note that at the standard 95%
confidence level, none of the models has the null hypothesis of independent violations rejected. The p-values
are higher than 0.05 for all forecast intervals, even if some are so by just a small margin. This test only
checks for dependency between adjacent days, but we will perform another test in section 5.1.4 to evaluate
the dependency between multiple lags as well.

Model Forecast length χ2 Critical value LRind Statistic p-value
MA(2)-GARCH(1,1)-N 1800 3.84 0.2231 0.6367
MA(2)-GARCH(1,1)-N 3000 3.84 2.937 0.0866
MA(2)-GARCH(1,1)-N 6000 3.84 1.6173 0.2035
MA(2)-GARCH(1,1)-t 1800 3.84 0.241 0.6235
MA(2)-GARCH(1,1)-t 3000 3.84 2.1208 0.1453
MA(2)-GARCH(1,1)-t 6000 3.84 0.6775 0.4104

Table 9: Independence testing with the Likelihood ratio statistics for our MA(2)-GARCH(1,1)-N and MA(2)-
GARCH(1,1)-t together with the chisquare critical value and corresponding p-value for each model and
different forecast lenghts.

5.1.3 Conditional Coverage test

Here, we combine previous results in order to simultaneously test if the fraction of violations are correct, and,
in addition, that they occur independently. Presented in Table 10 we see that none of the models have a
p-value larger than 0.05. This means that the null hypothesis of jointly correct fraction of violations, and
their indepedence are rejected for all model variations. Considering that this test evaluates the combined
performance of the two previous tests, it is not surprising that we reject this hypothesis. This is due to the
fact that neither of the models did pass the conditional coverage test for any forecast interval, and they all
had p-values very close to zero.

Model Forecast length χ2 Critical value LRind Statistic p-value
MA(2)-GARCH(1,1)-N 1800 3.84 6.4581722 0.0395937
MA(2)-GARCH(1,1)-N 3000 3.84 24.8171 4.0835249× 10−6

MA(2)-GARCH(1,1)-N 6000 3.84 33.5277 5.2426691× 10−8

MA(2)-GARCH(1,1)-t 1800 3.84 10.4338219 0.0054241
MA(2)-GARCH(1,1)-t 3000 3.84 32.5139 8.7035479× 10−8

MA(2)-GARCH(1,1)-t 6000 3.84 41.658 8.9966378× 10−10

Table 10: Conditional coverage test with the Likelihood ratio statistics for our MA(2)-GARCH(1,1)-N and
MA(2)-GARCH(1,1)-t together with the chisquare critical value and corresponding p-value for each model
and different forecast lenghts.

5.1.4 Testing for higher order dependencies

As a final diagnostic we will use the Ljung-Box statistic to test the correlation of violations in the hit sequence
between multiple lags instead of only adjacent days [t, t+ 1]. The max lag length considered will again be the
logarithm of the sample size as we established this to be a valid candidate in the theory section 2.2.5.
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Table 11 contains the test statistics together with their critical values and p-values. What can be seen here is
that for both model variations, and all sub intervals except one, the null hypothesis of no serial correlation
cannot be rejected. It is the MA(2)-GARCH(1,1)-N model with the 3000 days forecast interval for which we
cannot reject the null hypothesis of no correlation.

Model Forecast length χ2 Critical value Q(m) p-value
MA(2)-GARCH(1,1)-N 1800 14.78 4.0345 0.8177
MA(2)-GARCH(1,1)-N 3000 15.52 17.9653 0.0216
MA(2)-GARCH(1,1)-N 6000 16.5 12.2515 0.1806
MA(2)-GARCH(1,1)-t 1800 14.78 4.6678 0.7488
MA(2)-GARCH(1,1)-t 3000 15.52 15.0834 0.0577
MA(2)-GARCH(1,1)-t 6000 16.5 9.7512 0.3439

Table 11: Ljung-Box test statistics for our MA(2)-GARCH(1,1)-N and MA(2)-GARCH(1,1)-t together with
the chisquare critical value and corresponding p-value for each model and different forecast lenghts.

5.2 Model discussion
The results from our final models are somewhat inconsistent and not as satisfactory as we would have hoped.
We have quite poor prediction capabilities for both models as noted in Table 8, section 5.1.1 where not a
single forecast for either model have the correct number of violations. It is the MA(2)-GARCH(1,1)-N model
with the shortest forecast interval that holds the best results, but for all of our forecasts, the number of
times the realized value exceed our VaR are far too many, as can be seen in Table 12. Where in contrast to
expectations, the model using an underlying t-distribution underestimated the VaR more frequently.

Model Forecast interval Expected violations Actual violations Fraction
MA(2)-GARCH(1,1)-N 1800 90 114 6.3%
MA(2)-GARCH(1,1)-N 3000 150 209 6.9%
MA(2)-GARCH(1,1)-N 6000 300 400 6.6%
MA(2)-GARCH(1,1)-t 1800 90 121 6.7%
MA(2)-GARCH(1,1)-t 3000 150 220 7.3%
MA(2)-GARCH(1,1)-t 6000 300 414 6.9%

Table 12: Expected number of violations, actual violatons and the corresponding fraction for both MA(2)-
GARCH(1,1)-N and MA(2)-GARCH(1,1)-t models.

Some considerations can be done regarding the performance of our models. One attempt to explain the
performance of our models could be if we recall section 4.3, and in particular the comment “We remember this
for future references as the inclusion of the financial crises may have some impact on our models prediction
capabilities”. This could be one explanation for the poor prediction capability of our models since throughout
the tests, it appears the models performs best for the short interval which does not contain any financial
crisis.

If we compare the results from the Independence test with the test for higher order dependency we find that
the p-value has increased for the forecasts made on the short interval, while the p-values have been lowered
for all forecasts made on the longer intervals. It has even been lowered to the point where we no longer
can reject the null hypothesis of no serial correlation for the MA(2)-GARCH(1,1)-N model forecast on the
forecast interval 3000. What this indicates is that once a violation has occurred, we actually have some added
information that within the following 9 days (the number of lags tested), we can expect another violation
with a higher probability than the desired 5%.

This could perhaps be explained by the memory of the model, i.e the persistence of a previous spike in
volatility not being long enough. This would lead the model to properly estimate the VaR for a day following
a spike, but this conditional volatility would then fall off too fast causing the model to underestimate the
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VaR. However while the persistence of a previous spike in volatility maybe could be good during a financial
crisis following previous argument, this could probably lead to grossly overestimating the VaR during calm
periods. Considering if a spike of high volatility remains significant for the conditional variance for a longer
period of time, the model would be very sensitive for every spike.

To summarize, it seems the suggested models manages to quite adequately capture the heteroscedasticity of
our data, as the null hypothesis is not rejected for any forecast in the Independence test. When adding the
higher order dependency test to check for serial correlation between multiple lags, all forecasts but one passes
the test which strengthen the assumption that the models are able to capture the volatility clustering. No
forecast is however able to pass the conditional coverage test, indicating the models consistently underestimate
the size of the volatility, even if they are able to recognize and account for the clustering.

Since our aim is to evaluate the GARCH(1,1) model we are also going to consider a simulation study where
we can govern the parameters used to create the data set and assure there are, in some sense, no random
events other than the general randomness of leptokurtic data.
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6 Simulation study
As discussed in the previous section, the results from our models are not completely satisfactory. So it would
probably be preferable to make use of another model during periods of extreme volatility such as a financial
crisis, since from our study it appears the standard GARCH(1,1) model does not suffice.

In an attempt to establish some positive results for our model we are going to perform a simulation study.
We will simulate observations from the very same MA(2)-GARCH(1,1) models we estimated for the Nasdaq
log returns and then refit it again using the same techniques as previously. Considering we will apply the
same techniques they will not be presented with the same detail and we will focus on the results instead. As
we will have full knowledge of the true parameter values it will be easier to compare our new estimates with
the true values and draw inference from this.

In order to not confuse our simulated values from our original return series {rt}, from here on we will
refer to the simulated returns as {r̃t}. We are going to simulate two separate return series, one from the
MA(2)-GARCH(1,1)-N model, and one from the MA(2)-GARCH(1,1)-t model and we will differentiate these
as {r̃Tt } and {r̃Nt } where the subscript t denotes the time point and the superscript T,N if the simulated
value was simulated from a process with underlying normal or students-t distribution.

To each return series we are going to fit two GARCH(1,1) models with normal- and students-t distributed
underlying error terms as we did previously. These models will be evaluated in order to assure their goodness
of fit, by both comparing the parameter values to those used for simulating the data, and by looking at the
standardized residuals. The models will also be used to perform out of sample forecasts with the rolling
window method, where the window size will remain at 500 observations, and the parameters will be re
estimated each day.

The same backtesting methods will be applied to the forecasted result

6.1 Simulated data and descriptive statistics
The data is simulated from the exact same parameters that were presented in Table 5 which were fitted from
the entire Nasdaq logreturn set. The simulation was done using the rugarch package ‘ugarchsim’ where the
fitted model is supplied, and a burn in sample length is specified in order for the simulated data to settle
and properly match the model. We have chosen to simulate 7000 observations with a burn-in period of 2000,
meaning the first 2000 simulated values will be discarded.

Figure 7 contains the simulated logreturn series {r̃Tt } and {r̃Nt } where both series appears to have some sort
of volatility clustering as expected.
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Figure 7: Time plots of simulated data from a)MA(2)-GARCH(1,1)-N model and b)MA(2)-GARCH(1,1)-t
model. 6000

We compute the statistical properties for both series which is presented in Table 13. The mean, variance and
standard deviations are very similar for both series, with marginally higher values for {r̃Tt } and both series
are slightly negatively skewed and hold excessive kurtosis. We can compare this with the real data from our
initial study and note that they are very similar, exhibiting approximately the same variance, skewness and
kurtosis. By conducting a t-test we can confirm the mean for both series to be significantly different from 0,
and through ACF plots and the Ljung-Box test presented in Appendix A, it is verified both series exhibit
ARCH effects. The null hypothesis of no serial correlation is rejected for both regular series {r̃Tt } and {r̃Nt },
and their squared values as well.

Series Mean Variance Standard deviation Skewness Kurtosis
{r̃Nt } 7.3e-4 2.1e-4 0.01388 -0.24317 9.69625
{r̃Tt } 9.9e-4 2.7e-4 0.01499 -0.19791 11.77205

Table 13: Statistical properties for the simulated return series.

To adjust for the serial correlation in the logreturn series we again apply the R-function auto.arima. Given
the data, the auto.arima method suggests a MA(2) model to best fit {r̃Nt } while the model suggested for
{r̃Tt } is an ARMA(3,2) model. A combined AR(p)-MA(q) model has not been presented for this thesis and
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considering that our main interest lies in evaluating the performance of the volatility process, in addition to
the knowledge it was actually derived from a MA(2) model, the MA(2) specification is what we will used for
both series.

Once the serial correlation has been adjusted for, we can now consider the residuals of the mean equation to
be the innovation at time t, at = rt − µt. The last step prior to fitting the GARCH(1,1) model is verifying
that the residuals of the mean equation is no longer correlated, whereas the squared residuals still exhibits
ARCH effects. ACF plots for the residuals can be found in Appendix A, Figure 10, while the Ljung Box
statistic and corresponding p-value is presented in Table 14. As the p-values for both regular series are higher
than 0.05, we cannot reject the null hypothesis of no serial correlation, while the squared residuals are still
showing strong ARCH effects, indicating that a GARCH-model could be suitable.

Series Q(m) p-value
{r̃Nt − µt} 6.653 0.66
{(r̃Nt − µt)2} 5606.433 2.2e-16
{r̃Tt − µt} 6.699 0.655
{(r̃Tt − µt)2} 2181.23 2.2e-16

Table 14: The Ljung-Box test statistic Q(m) and p-value for respective series.

6.2 GARCH modelling and forecasting for simulated data
We fit the two separate models with the specifications presented in the previous section, i.e. the MA(2)-
GARCH(1,1)-N and MA(2)-GARCH(1,1)-N model. These specifications will be fitted to each of the simulated
series {r̃Nt } and {r̃Tt }, entailing four models in total. Once the models have been fitted to the simulated data
we want to look at the estimated parameters which we can compare with the parameters from the original
model. In a perfect world we want these parameters to conform considering the simulated data was based on
them. We are also going to look at the standardized residuals to verify the goodness of fit for our models to
the data.

The full Tables containing all estimated parameters, standard errors and p-values for our models, based on
the series {r̃Nt } and {r̃Tt }, can be found in table 20 and 21 in Appendix B. Whereas for clarity, presented in
Table 15, we have singled out the GARCH parameters α0, α1 and β1 from the fitted models, based on the
simulated data, and put them next to the parameter values from where they were simulated. We see that the
estimated parameter values come very close to the real value, in particular for the MA(2)-GARCH(1,1)-t
simulated data.

MA(2)-GARCH(1,1)-N simulated data
Parameter Baseline value GARCH(1,1)-N GARCH(1,1)-t

α0 2.1× 10−6 2.1× 10−6 2.2× 10−6

α1 0.098 0.1084 0.1124
β1 0.8903 0.8798 0.881

MA(2)-GARCH(1,1)-t simulated data
Parameter Baseline value GARCH(1,1)-N GARCH(1,1)-t

α0 1.1× 10−6 9.5× 10−7 9.7× 10−7

α1 0.0909 0.0912 0.0973
β1 0.9077 0.9074 0.9028

Table 15: Estimated parameter values for GARCH(1,1)-N and GARCH(1,1)-t models compared to respective
Baseline value originating from the value used to simulate data.

As we now are familiar with, the standardized residuals ãt = at

σt
should behave like a white noise series and no

serial correlation should remain. To validate that this is the case, the Ljung-Box test statistics for both the
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standardized residuals and the squared standardized residuals are computed for the fitted models. Presented
in Table 16 we find test statistics and corresponding p-value which confirms the standardized residuals does
not contain any significant correlation, nor does the squared residuals.

Presented in Table 16 we find the test statistics and corresponding p-value. All p-values are higher than 0.05,
indicating that neither of the standardized residuals or their squared values contain any serial correlation as
the null hypothesis is rejected for all series.

MA(2)-GARCH(1,1)-N simulated data
Series Q(m) p-value

MA(2)-GARCH(1,1)-N Standardized residuals 10.427 0.305
MA(2)-GARCH(1,1)-N Standardized squared residuals 8.262 0.4935

MA(2)-GARCH(1,1)-t Standardized residuals 10.434 0.304
MA(2)-GARCH(1,1)-t Standardized squared residuals 8.3735 0.4826

MA(2)-GARCH(1,1)-t simulated data
Series Q(m) p-value

MA(2)-GARCH(1,1)-N Standardized residuals 5.882 0.740
MA(2)-GARCH(1,1)-N Standardized squared residuals 6.688 0.656

MA(2)-GARCH(1,1)-t Standardized residuals 6.117 0.715
MA(2)-GARCH(1,1)-t Standardized squared residuals 8.327 0.487

Table 16: Ljung-Box test statistic Q(m) and corresponding p-value for the standardized residuals and the
squared standardized residuals

As it appears the models adequately describe the volatility process, it is now time to perform the rolling window
forecast. Figure 8 contains the results of the forecasts with our models fitted to the MA(2)-GARCH(1,1)-N
simulated data and Figure 9 the forecasts fitted to MA(2)-GARCH(1,1)-t simulated data. The red lines
denote the forecasted VaR from our models with an underlying normal distribution, and the blue to the
VaR from the models with a students-t distribution. If we take a closer look at Figure 8 it appears the
MA(2)-GARCH(1,1)-t model shows a more conservative prediction in VaR. The blue line corresponding to
the MA(2)-GARCH(1,1)-t model lies below the red line with a few exceptions. The same trend is not clear in
Figure 9 containing the predicted VaR from the other subset of simulated data, where the models in periods
seem to provide the more conservative VaR.
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Figure 8: Plots for predicted VaR represented by red and blue line for MA(2)-GARCH(1,1)-N and MA(2)-
GARCH(1,1)-t model respectively where the black line equals the simulated value from a MA(2)-GARCH(1,1)-
N process. Forecasted interval length for subplots are a)1800 b)3000 and c)6000.
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Figure 9: Plots for predicted VaR represented by red and blue line for MA(2)-GARCH(1,1)-N and MA(2)-
GARCH(1,1)-t model respectively where the black line equals the simulated value from a MA(2)-GARCH(1,1)-
N process. Forecasted interval length for subplots are a)1800 b)3000 and c)6000.

6.3 Backtesting simulated data
Due to the extensive amount of Tables needed to show all results from the backtests, only the Conditional
Coverage test is presented immediately in Table 17. The full result from the conditional coverage test, the
unconditional coverage and independence test for all models can be found in Appendix B, Table 21,22 and 23.

The names of the models were abbreviated to save space and so the “MA(2)” part of the model names
were omitted. The name “GARCH(1,1)-N” still implies the same model as specified previously, i.e. “MA(2)-
GARCH(1,1)-N”.
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GARCH(1,1)-N simulated data GARCH(1,1)-t simulated data
Forecast length Model LRcc p-value Model LRcc p-value

1800 GARCH(1,1)-N 0.4532 GARCH(1,1)-N 0.4875
3000 GARCH(1,1)-N 0.7054 GARCH(1,1)-N 0.203
6000 GARCH(1,1)-N 0.471 GARCH(1,1)-N 0.8226
1800 GARCH(1,1)-t 0.1586 GARCH(1,1)-t 0.3151
3000 GARCH(1,1)-t 0.2205 GARCH(1,1)-t 0.0724
6000 GARCH(1,1)-t 0.2284 GARCH(1,1)-t 0.6185

Table 17: Independence testing with the Likelihood ratio statistics for our MA(2)-GARCH(1,1)-N and
MA(2)-GARCH(1,1)-t together with the chisquare critical value and corresponding p-value for each model
and different forecast lenghts.

If we recall the results from our original models, there were not a single one out of the six forecasts for which
the conditional coverage test could not reject the null hypothesis of independent and correct number of
violations. Now, however, we note that all models are accepted and the null hypothesis is not rejected for any
model. The MA(2)-GARCH(1,1)-t model fitted to the GARCH(1,1)-t simulated data at the forecast interval
3000 is almost rejected, but at the 95% level it barely passes the test.

To comment on Tables 22,23 and 24 in Appendix B, the unconditional coverage test in Table 22 verify that
the number of violations for all submodels are within the boundaries of the test, not rejecting any of the
submodels. The Independence test in Table 23 verifies the violations occurs independently of each other for
all models but one, which of course is the same GARCH(1,1)-t model that nearly did not pass the Conditional
Coverage test just mentioned. This is to be expected, as if we recall section 2.7.3 in the theoretical framework
we noted the Conditional Coverage test combines the likelihood of the null hypothesis from the Unconditional
Coverage test with the alternative hypothesis from the Independence test.

By comparing the results from backtesting the forecasts on simulated data, to the ones obtained when
forecasting real life data, it is clear the former present a more satisfactory result. Even if no forecast made on
real life data contained a correct fraction of violations, we did note the performance seemed better for the
short, 1800 observation forecast. The same trend continued when looking at the dependency of violations
where the shorter interval displayed the highest p-values by quite a large margin.

If we take a closer look at the real data and the forecasts in Figure 6, there are some differences in the separate
intervals. If we compare the short interval to the longer, we note that it acts more homogeneous, i.e. it does
not contain as much variability as the data does during the longer intervals, which includes two financial
crises. Seeing this, and taking into consideration that the models with the same specifications performed
better on simulated data we could probably assume that the MA(2)-GARCH(1,1) model works better during
calmer and more homogeneous periods. Even if the simulated data contains heteroscedasticity, we know for a
fact the simulated data is stationary, which is harder to verify for real data. So perhaps it could be that a
more complex model would be required in order to predict real life financial data.
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7 Conclusion
We have been looking at how to fit a heteroscedastic model, in particular the MA(2)-GARCH(1,1) model and
how it can be used in order to make one-day-ahead predictions. In the model we assume the residuals to
follow either a standard normal distribution, or a students-t distribution, thus creating two model versions
for each data set. We use well established tools to evaluate the goodness of fit of our models prior to using
the rolling window approach to calculate predicted Value at Risks. Our predictions are then backtested as a
final diagnostic to evaluate and solidify the suggested models.

These methods are initially applied to a real data set, consisting of the logreturns for the Nasdaq composite
index. We find that the model seem to account for the heteroscedasticity in the series, but it underestimate
the VaR frequently, in particular for time periods including financial crises.

To examine whether the issue lies in the data or the model, two separate data sets are simulated using a
MA(2)-GARCH(1,1) process with the exact same parameter values that was estimated for the model fitted to
the real life data. We fit two MA(2)-GARCH(1,1) models to each simulated data sets, one assuming residuals
to be normally distributed and one assuming residuals to be t-distributed. We find the models to adequately
predict the VaR, as the number of violations are correct and they appear independent of each other. This
indicates that there is nothing wrong with our modelling and backtesting procedures.

So it appears the MA(2)-GARCH(1,1) model, in periods of crisis, do not provide a perfect fit when it comes
to predict the one-day-ahead VaR for real life financial data, and it could be preferable to consider a more
complex model.

In the comparison of assuming the model to follow a standard normal-, or a students-t distribution, it appears
the GARCH(1,1)-N specification is slightly favoured, as in general it seem to provide a more correct fraction
of violations.

It should be stressed though, that this thesis only covers the evaluation of the Nasdaq composite index, and
the results do not apply to all financial data.

8 Further research
This section will cover a selection of topics that could have been investigated further in order to deepen the
analysis and assist in evaluating the performance of the suggested models.

A first thought would have been to evaluate the model at a more restrictive confidence level, as in practice,
the Basel accord stipulate a 99% VaR to measure the market risk. However in my opinion it could have been
a good inclusion, rather than the sole subject of investigation. As by considering a large variety of confidence
levels, it would better capture the differences in the assumed distribution for the models.

I also realized a bit too late through the analysis, that the approach of evaluating the models could have been
better. It would probably have been more interesting and rewarding in terms of performance, to evaluate
different window lengths rather than forecast lengths Because when we only increase the forecast interval, we
will always have the same parameter estimations when predicting VaR for data that is contained within all
intervals.

Some further considerations that could be made is the comparison of models, as the ARCH and GARCH
family offers a wide variety of submodels, such as the IGARCH, EGARCH and GARCH-M models to provide
some examples.

The backtesting methods used in this thesis in order to evaluate the performance of our models amount to
looking at the predicted VaR, which is defined as the conditional lower quantile of the return distribution. If
we recall section 2.7 from the theoretical framework, we defined a hit-sequence

It+1 =
{

1, if rt+1 < −V aRpt+1
0, if rt+1 ≥ −VaRp

t+1
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which returns a 1 if a violation occurs, and 0 else. This sequence should be i.i.d. Bernoulli(p) and we defined
three tests to evaluate this assumption. A key problem with these tests, as mentioned by Berkowitz. J
(2001) is that the hit sequence It only takes on two values, 0 or 1. Also if the models are evaluated at the
more restrictive level, for instance the 99% level stipulated by the Basel accord, it also takes on the value 1
very rarely. He suggests that it could be preferable to use density evaluating methods instead, as quoted:
“Density evaluation methods make use of the full distribution of outcomes and thus extract a greater amount
of information from the available data.” (Berkowitz, 2001, p. 466 ). An intuitive way of seeing this is that
when using the hit sequence, the only information we deduct from a violation is the fact that it happened,
but we do not consider the largeness of it, thus overlooking a lot of information.

The approach for density evaluating methods would amount to using an integral transformation dating back
to at least Rosenblatt (1952), which is then extended by Berkowitz. J (2001). As evaluation method for the
density forecast, Diebold et al. (1998) suggests a less formal, but more revealing approach, which would be to
visually inspect histograms to validate the unconditional uniformity of the density in addition to more formal
tests. It is stressed that more formal tests such as Kolmogorov-Smirnov or Cramer-von Mises alone, do not
hold much value as they do not provide any guidance to why the rejection occurred. However, if we consider
a model that fails to capture fat tails properly, the histogram will exhibit peaks near 0 and 1.

Another topic that could be of interest to research further, and that is often mentioned when discussing
backtesting methods of VaR, is the fact that violations happen very rarely, in particularly when adopting a
more restrictive confidence level. Under the circumstance of limited data, one may expect a very low count
of violations which may cause the finite samples distribution intractable. Dufour. J-M (2005) presents a
Monte-Carlo method, which could aid in controlling the size of test.
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Appendix A
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Figure 10: Autocorrelation plots containing the a)mean corrected series, b)squared mean corrected series,
c)absolute value of the mean correted series, and d)PACF of the squared mean corrected series
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Figure 11: ACF plots of the simulated time series, plot a) and b) contains the series simulated from a
MA(2)-GARCH(1,1,)-N process and plot c) and d) was simulated from a MA(2)-GARCH(1,1,)-t process.
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Figure 12: Plot a) and b) originates from the normally distributed series containing the ACF from the residuals
of the mean equation as well as the squared residuals . Plot c) and d) originates from the t-distributed series
containing the ACF of the residual and squared residuals.

Appendix B

Series Q(m) p-value
{ rt − µ} 22.1316 0.0081
{(rt − µ)2} 4294.9887 2.2e-16
{|rt − µ|} 6513.7305 2.2e-16

Table 18: The Ljung-Box test statistic Q(m) and p-value for the uncorrected simulated series r̃Nt and r̃Tt .

Series Q(m) p-value
{r̃Nt } 33.216 1.1× 10−4

{r̃Nt }2 5607.122 2.2e-16
{r̃Tt } 48.441 0
{r̃Tt }2 2218.44 2.2e-16

Table 19: The Ljung-Box test statistic Q(m) and p-value for the uncorrected simulated series r̃Nt and r̃Tt .

44



MA(2)-GARCH(1,1)-N simulated data
MA(2)-GARCH(1,1)-N MA(2)-GARCH(1,1)- t

Parameter Estimate Std Error p-value Estimate Std Error p-value
c0 8.4× 10−4 1.13× 10−4 1.3× 10−13 8.1× 10−4 1.1× 10−4 8.5× 10−13

θ1 0.0257 0.0124 0.0392 0.0239 0.0125 0.05625
θ2 -0.0263 0.0123 0.0327221 -0.0298 0.0124 0.01622
α0 2.1× 10−6 3.4× 10−7 8.4× 10−10 2.2× 10−6 4.1× 10−7 9.4× 10−8

α1 0.1084 0.0074 0 0.1124 0.0088 0.0000
β1 0.8798 0.0077 0 0.881 0.0088 0.0000
ν - - - 10 0.7453 0.0000

Table 20: Summary of parameter estimations, standard error and p-values of GARCH(1,1) model with normal
and t-distributed error terms of data simulated from a MA(2)-GARCH(1,1)-N process.

MA(2)-GARCH(1,1)-t simulated data
MA(2)-GARCH(1,1)-N MA(2)-GARCH(1,1)- t

Parameter Estimate Std Error p-value Estimate Std Error p-value
c0 8.6× 10−4 1.1× 10−4 0 8.8× 10−4 1.03× 10−4 0
θ1 0.045 0.0128 4.17× 10−4 0.041 0.0123 8.5× 10−4

θ2 -0.0307 0.0125 0.0141278 -0.0314 0.0121 0.0093
α0 9.5× 10−7 1.6× 10−7 6.7× 10−9 9.71× 10−7 2.03× 10−7 1.67× 10−6

α1 0.0912 0.0058 0 0.0973 0.0073 0.0000
β1 0.9074 0.0052 0 0.9028 0.0065 0.0000
ν - - - 7.0623 0.5777 0.0000

Table 21: Summary of parameter estimations, standard error and p-values of GARCH(1,1) model with normal
and t-distributed error terms of data simulated from a MA(2)-GARCH(1,1)-t process.

GARCH(1,1)-N simulated data GARCH(1,1)-t simulated data
Forecast length Model Statistic LRuc p-value Model Statistic LRuc p-value

1800 GARCH(1,1)-N 0.43 0.512 GARCH(1,1)-N 0.287 0.5921
3000 GARCH(1,1)-N 0.58 0.4463 GARCH(1,1)-N 0.986 0.3207
6000 GARCH(1,1)-N 0.0564 0.8123 GARCH(1,1)-N 0.1707 0.6795
1800 GARCH(1,1)-t 1.76 0.1846 GARCH(1,1)-t 0.046 0.8302
3000 GARCH(1,1)-t 2.642 0.1041 GARCH(1,1)-t 1.3367 0.2476
6000 GARCH(1,1)-t 1.1591 0.2817 GARCH(1,1)-t 0.499 0.4799

Table 22: Unconditional coverage test Likelihood ratio statistics for the MA(2)-GARCH(1,1)-N and MA(2)-
GARCH(1,1)-t models fitted to both simulated data sets. Together with corresponding p-value for each
model and different forecast lenghts.
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GARCH(1,1)-N simulated data GARCH(1,1)-t simulated data
Forecast length Model Statistic LRindep p-value Model Statistic LRindep p-value

1800 GARCH(1,1)-N 1.153 0.2829 GARCH(1,1)-N 1.149 0.2838
3000 GARCH(1,1)-N 0.119 0.7301 GARCH(1,1)-N 2.203 0.1377
6000 GARCH(1,1)-N 1.4496 0.2286 GARCH(1,1)-N 0.2198 0.6392
1800 GARCH(1,1)-t 1.922 0.1656 GARCH(1,1)-t 2.263 0.1325
3000 GARCH(1,1)-t 0.382 0.5365 GARCH(1,1)-t 3.9141 0.0479
6000 GARCH(1,1)-t 1.7939 0.1805 GARCH(1,1)-t 0.4617 0.4968

Table 23: Independence testing Likelihood ratio statistics for the MA(2)-GARCH(1,1)-N and MA(2)-
GARCH(1,1)-t models fitted to both simulated data sets. Together with corresponding p-value for each
model and different forecast lenghts.

GARCH(1,1)-N simulated data GARCH(1,1)-t simulated data
Forecast length Model Statistic LRcc p-value Model Statistic LRcc p-value

1800 GARCH(1,1)-N 1.583 0.4532 GARCH(1,1)-N 1.437 0.4875
3000 GARCH(1,1)-N 0.698 0.7054 GARCH(1,1)-N 3.189 0.203
6000 GARCH(1,1)-N 1.5059 0.471 GARCH(1,1)-N 0.3905 0.8226
1800 GARCH(1,1)-t 3.683 0.1586 GARCH(1,1)-t 2.31 0.3151
3000 GARCH(1,1)-t 3.024 0.2205 GARCH(1,1)-t 5.2508 0.0724
6000 GARCH(1,1)-t 2.9529 0.2284 GARCH(1,1)-t 0.9608 0.6185

Table 24: Conditional coverage test Likelihood ratio statistics for the MA(2)-GARCH(1,1)-N and MA(2)-
GARCH(1,1)-t models fitted to both simulated data sets. Together with corresponding p-value for each
model and different forecast lenghts.

46


