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Abstract

Benford’s Law describes how the digits in sets of numerical data

should be distributed. When there is a significant deviation from

Benford’s Law in a data set it could indicate that the data has been

manipulated or made up. This method has been increasingly popu-

lar in recent years for detecting fraud in different areas of interests,

such as accounting, elections, scientific data, etc. The purpose of this

study is to see if we can detect any fraud in some different areas and

how well Benford’s Law performs. Benford’s Law was applied on basic

simulations of common distributions, economic data on EU during the

Greece government-debt crisis, and a simulation from a two candidate

election model. This resulted in large deviations from Benford’s Law

when not expecting it and almost no deviation when it was expected.

Hence we conclude that either the theory of Benford’s Law is incom-

plete so that its appropriate use is still to a large extent unknown, or

that the commonly used hypothesis tests are not oprimal for Benford’s

Law and should be corrected or other tests should be developed for

this purpose.
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Notation

The following notation and definitions will be used throughout this report:

• We will denote the logarithm of x in base 10 with log(x), while the
natural logarithm of x will be notated with ln(x), and logb(x) will
denote the logarithm of x in base b.

• The floor function bxc is defined as the integer nearest x rounded
down.

• Type-I error is the rejection probability of a true null hypothesis and
Type-II error is the non-rejection probability when the null hypothesis
is false.

• A folded normal distribution |N(µ, σ2)| is the distribution such that
given a normally distributed random variable X with mean µ and
variance σ2, the random variable Y = |X| has a folded normal distri-
bution.
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1 Introduction

Intuitively we expect that all digits in a collection of numbers should occur
with equal frequency. That is to say that the first digit should be 1, 2, . . . , 9
with frequency 1

9 , and the second digit, third digit, etc. should take their
value with equal frequencies 1

10 . We do this because we expect that the
digits in a collection of numbers should be random and not follow any spe-
cific pattern. This however is something the astronomer Simon Newcomb
(1881)[1] noticed wasn’t true. His discovery did not have much resonance
and was forgotten until 1938 when the physisist Frank Benford rediscoverd
Newcomb’s result, which since has been known as Benford’s Law. Benford
(1938)[2] collected a great amount of data from different areas so diverse as
numbers of inhabitants of towns, physical measurements, results from sport
leagues, etc. For most of his data he found that the frequency of the first
digit D1 very closely followed the logarithmic law

P(D1 = d) = log

(
1 +

1

d

)
, d = 1, 2, . . . , 9.

After Benford’s paper was published the law got a lot of attention and
people tried to figure out some useful application. That’s when in 1998,
Mark Nigrini [3] proposed that Benford’s Law should be used as an auditing
and accounting tool to detect irregularities of companies data. He found
that most accounting data very closely follow Benford’s Law. However in the
case of accounting fraud this was often not the case. After this discovery the
question whether Benford’s Law could be used in more fraudulent cases was
raised, and has since then been used in many fields like elections, scientific
data and much more. In this paper we are going to test if we can detect
some fraud in a few cases with the help of Benford’s Law. First we are going
to present some mathematical theory behind Benford’s Law and then test
the theory on some basic simulations to see if the theory holds. After that
we are going to test the method on a real dataset, the Greek government-
debt crisis (European Commission, 2010)[10], and also simulate from a two
candidate election model, with fraud introduced, to see if Benford’s Law
actually can detect these frauds.

2 The mathematical theory

In this section we will aim to formally define Benford’s Law and show some
basic results on the involved distributions. Everything stated here is based
on the theory in An introduction to Benford’s Law (Berger and Hill, 2015)[4]
and Benford’s Law: Theory and Applications (Miller, 2015)[5].
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2.1 Significant digits and the significand

Since Benford’s Law is all about the statistical distribution of significant
digits, a natural starting point for any study of Benfors’s Law is the formal
definition of significant digits and the significand (function).

2.1.1 Significand digits

Informally we might say that the first significant decimal digit of a positive
real number x is the first non-zero digit appearing in a decimal expansion
of x. For example the first significant digit of 2021 and 0.2021 are both 2.
The second significant digit is the digit directly following the first significant
digit, so the second significant digit of 2021 and 0.2021 are both 0. More
formally we use the definition in An introduction to Benford’s Law (Berger
and Hill, 2015, p. 11)[4] to define the first significant digit:

Definition 2.1. For every non-zero real number x, the first significant
(decimal) digit of x, denoted by D1(x), is the unique integer j ∈ {1, 2, ..., 9}
satisfying 10kj ≤ |x| < 10k(j+1) for some unique integer k; for convenience
we define D1(0) := 0.

Similarly, for every integer m ≥ 2, we have the the mth significant (deci-
mal) digit digit of x, denoted by Dm(x), is defined inductively as the unique
integer j ∈ {0, 1, 2, ..., 9} such that

10k

(
m−1∑
i=1

Di(x)10m−i + j

)
≤ |x| < 10k

(
m−1∑
i=1

Di(x)10m−i + j + 1

)
for some unique integer k; for convenience we define Dm(0) := 0 for all
positive integers m.

Note that the main difference between the first significant digit D1(x) and
the mth significant digit, is that for any non-zero x, D1(x) is never zero,
whereas the other significant digits may be any integers in the set {0, 1, 2, . . . , 9}.

Example 1.
D1(π) = D1(−π) = D1(10π) = 3,

D2(
√

2) = 4,

D3(
√

2) = 1.

2.1.2 The Significand

The significand function plays a fundamental role in the context of Ben-
ford’s Law. The significand of a real number is its coefficient when it is
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expressed in floating point form (”scientific notation”), formally taken from
An introduction to Benford’s Law (Berger and Hill, 2015, p. 12)[4]:

Definition 2.2. The (decimal) significand function S : R→ [1, 10) is
defined as follows: If x 6= 0 then S(x) = t, where t is the unique number
in [1, 10) with |x| = 10kt for some unique integer k; if x = 0 then, for
convenience, S(0) := 0.

The unique representation of x = S(x) · 10k implies S(x) = x · 10−k. But
for x > 0 it holds that x = 10log x. Therefore we get the following explicit
representation of the significand function valid for all x 6= 0:

S(x) = 10log |x|−blog |x|c. (1)

Since log |x|−blog |x|c removes the integer part of log |x|, and then inverting
it back from the logarithm we get that S(x) ∈ [1, 10), as desired.

Example 2.

S(π) = S(−π) = S(10π) = π ≈ 3.1415,

S
(

1√
2

)
= S

(
10√
2

)
= 10√

2
≈ 7.0711.

Berger and Hill (2015, p. 13)[4] also propose that the significand uniquely
determines the significant digits and vice versa. We can see this relationship
in Proposition 2.1 which follows directly from the Definitions 2.1 and 2.2.

Proposition 2.1. For every real number x,

1. S(x) =
∑

m∈Z+
101−mDm(x)

2. Dm(x) = b10m−1S(x)c − 10b10m−2S(x)c, for every m ∈ Z+

Example 3. It follows from Proposition 2.1 that

S(π) = D1(π) + 10−1D2(π) + 10−2D3(π) + . . . = π ≈ 3.1415

and

D1(π) = bπc = 3

D2(π) = b10πc

Now that we have established some basic tools that we can use, we can start
defining some Benford properties.
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2.2 The Benford property

Benford’s Law is the observation that for many collections of numbers,
whether they are mathematical tables, real-life data or some combination
thereof, the distribution of digits is not uniform as one might expect. They
are heavily skewed to the smaller digits. More specifically they follow a
unique logarithmic pattern. In this section we will formally go through
where this logarithmic pattern comes from.

2.2.1 Relationship to the uniform distribution

We will now introduce randomness into the mathematical model.

Definition 2.3. Let X be a random variable. We say that X satisfies
Benford’s Law if S(X) follows a logarithmic distribution

P(S(X) ≤ t) = log(t), t ∈ [1, 10) (2)

It is easy to see that the logarithmic law (2) holds if and only if the logarithm
of S(X) follows a continuous uniform ditribution on [0, 1]. We can see this
if we substitute log t = s in equation (2). Then we get

P(S(X) ≤ 10s) = s, s ∈ [0, 1).

Upon taking the logarithm we get

P(log(S(X)) ≤ s) = s, s ∈ [0, 1).

Thus we realise that logS(X) follows a continuous uniform distribution on
the interval [0,1].

These observations tell us that we will observe Benford’s Law, if the loga-
rithms of the significands of the observed data are close to a uniform distri-
bution.

2.2.2 Benford’s First Digit Law

Let’s consider the event {D1(x) = d1}. Then from Proposition 2.1 we have

{D1(x) = d1} = {bS(x)c − 10b10−1S(x)c = d1}
= {bS(x)c = d1}
= {d1 ≤ S(x) < d1 + 1}.
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Thus, from the logarithmic distribution (2), we get for a random variable X
that follows Benford’s Law

P(D1(X) = d1) = P(d1 ≤ S(X) < d1 + 1)

= P(S(X) ≤ d1 + 1)− P(S(X) ≤ d1)

= log(d1 + 1)− log(d1) = log

(
d1 + 1

d1

)
= log

(
1 +

1

d1

)
.

Proposition 2.2. The first significant digit of a random variable D1(X)
has the probability function

P(D1(X) = d1) = log

(
1 +

1

d1

)
,

where d1 ∈ {1, . . . , 9}.

In Figure 1 we illustrate a representation of the distribution of the first
significant digit.

Figure 1: Benford’s Law - first significant digit probabilities.

2.2.3 Benford’s General Digit Law

In a similar way as we did to get Benford’s first digit law we get a probability
distribution for all the first k significant digits.

Proposition 2.3. The joint distribution of the first significant digits of a
random variable D1(X), D2(X), . . . , Dk(X) (for every k ∈ Z+) is

P(D1(X) = d1, . . . , Dk(X) = dk) = log

1 +

(
k∑
i=1

10k−idi

)−1 ,
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where d1 ∈ {1, . . . , 9}, and all the other dj ∈ {0, . . . , 9}.

From Proposition 2.3 we can determine the distribution of the kth signifi-
cant digit by taking the marginal distribution. For example, to obtain the
distribution of the second significant digit, we take the marginal distribution

P(D2(X) = d2) =
9∑

k=1

P(D1(X) = k,D2(X) = d2)

=
9∑

k=1

log
(

1 +
(
102−1k + 102−2d2

)−1)
=

9∑
k=1

log

(
1 +

1

10k + d2

)
.

Generalising this we get

P(Dk(X) = dk) =
9∑

i1=1

9∑
i2=0

. . .
9∑

ik−1=0

P(D1(X) = i1, D2(X) = i2, . . . , Dk(X) = dk)

=
9∑

i1=1

9∑
i2=0

. . .
9∑

ik−1=0

log

1 +

(
k−1∑
n=1

(10k−nin) + dk

)−1
=

10k−1−1∑
j=10k−2

log

(
1 +

1

10j + dk

)
,

by noticing in the last step that i1, i2, . . . , ik−1 are the k − 1 first digits in
the number

∑k−1
n=1(10k−nin), so taking the k − 1 sums for each digit is an

iterative way of taking the sum from the lowest to the highest number with
k − 1 digits. We summarize our findings for higher order digits as follows:

Proposition 2.4. The distribution of the kth significant digit of a random
variable Dk(X) (for every k ∈ Z+ \ {1}) is

P(Dk = dk) =
10k−1−1∑
j=10k−2

log

(
1 +

1

10j + dk

)
where dk ∈ {0, . . . , 9}.

In Figure 2 we illustrate a representation of the distribution of the second
(Figure 2a) and the third (Figure 2b) significant digit. Observe that the
distribution of Dk approaches a discrete uniform distribution on {0, . . . , 9}
as k grows.
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(a) Second digit (b) Third digit

Figure 2: Benford’s Law - second and third significant digit probabilities.

2.2.4 When can we expect to find the Benford distribution?

Benford’s Law is still somewhat mysterious and it is not fully clear when a
distribution should follow Benford’s Law or not. However, Durtschi, Hillison
and Pacini (2004, p. 24)[6] suggested a number of criteria as to when the
distribution is expected to follow Benford’s law, and when it is not expected
to follow this law. These criteria are developed for accounting data but they
may indicate when the law is applicable in other fields too.

Distributions that can be expected to obey Benford’s Law:

• Sets of numbers that result from a mathematical combination of num-
bers, so that the result is a merge of two distributions

• Transaction-level data

• On large data sets

• When the mean is greater than the median and the skewness is positive

Distributions that would not be expected to obey Benford’s Law:

• Settings where numbers are assigned sequentially

• Settings where numbers are influenced by human thought

• Accounts with a large number of firm-specific numbers

• Accounts with a built-in minimum or maximum

Empirically, Benford’s Law applies if the distribution being tested fits the
Benford’s Law Compliance Theorem, Smith (1997)[7].
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Theorem 2.1 (Benford’s Law Compliance Theorem). Let P be a random
process generating numbers in base B on the positive real line. Let pdf(g) be
its probability density function of logB(P ), expressed on the base B logarith-
mic number line, and PDF (f) the Fourier transform of pdf(g). The num-
bers generated by P will follow Benford’s law, if and only if, PDF (f) = 0
at all nonzero integer frequencies f .

This is to a large extent satisfied if the distribution is wide (since wide
distributions have a narrow Fourier transform). This means that Benford’s
Law requires that the numbers in the distribution being measured have a
spread of at least an order of magnitude. Without going too much into the
theory of Fourier transform an example of Theorem 2.1 is provided below.

Example 4. Let pdf1(g) and pdf2(g) be the normal distribution probability
density functions with mean µ = −0.25 and standard deviance σg,1 = 0.25
and σg,2 = 0.50 respectively, expressed on the base ten logarithmic number
line. The only difference between pdf1(g) and pdf2(g) is the width. Now
the absolute values |PDF1(f)| and |PDF2(f)| of the Fourier transforms of
pdf1(g) and pdf2(g), when restricted to the positive real line, will be folds of
symmetric normal distributions with standard deviations σf,i = 1/(2πσg,i)
for i = 1, 2. Hence PDF1(f) is going to be twice as wide as PDF2(f)
since σg,1 = σg,2/2, giving us σf,1 = 0.637 and σf,2 = 0.318. In Figure 3
the plots of these functions are illustrated. Both |PDF1(f)| and |PDF2(f)|
smoothly decrease in value with increasing frequency, which is expected.
Now the interesting part to examine is when the Fourier transform curves
drop to values close to zero. In Figure 3b we observe that the curve drops
down to zero shortly after f = 2. So according to Theorem 2.1, ran-
domly generated numbers drawn from the base ten log-normal distribution
Lognormal(−0.25, 0.25) will not follow Benford’s Law. If we instead look
at Figure 3d we see that the curve drops to zero before f = 1. Hence, The-
orem 2.1 indicates that randomly generated numbers drawn from the base
ten log-normal distribution Lognormal(−0.25, 0.5) should follow Benford’s
Law.

2.3 Hypothesis testing

It is of utmost importance in practice to find out whether a data set conforms
to Benford’s Law. To do this we will make use of a goodness-of-fit test. That
is, we have the null hypothesis:

H0 : data conform to Benford’s Law

which we test against the alternative hypothesis:

13



(a) pdf1(g) (b) |PDF1(f)|

(c) pdf2(g) (d) |PDF2(f)|

Figure 3: Illustration of the probability density functions and their Fourier
transform in Example 4

H1 : data do not conform to Benford’s Law.

We can do this in different ways. Here we are going to present a few of
them.

2.3.1 Seperate testing of single digits

The simplest test we can do is to test if there is a significant difference be-
tween the observed frequency p̂d of an event {D1 = d} and the corresponding
probability which should be pd = P(D1 = d) = log(1 + 1/d), as we know
from Proposition 2.2. Testing conformity to Benford’s First Digit Law is
now done for each of the nine possible values of d of D1 separately:

H0 : pd = log(1 + 1/d),

H1 : pd 6= log(1 + 1/d).

Using a z-test statistic we get

14



Td =
p̂d − pd√
pd(1− pd)

√
n, d = 1, 2, . . . , 9

which for a large sample size n is approximately has a standard normal
distribution under the null hypothesis, so H0 is rejected if |Td| > 1.96 for a
significance level of 0.05.

This test should be used with great caution and interpreted with care. Sup-
pose that testing the nine null hypotheses leads to a rejection of only the
hypothesis for d = 1. This is certainly not sufficient to conclude that our
data does not follow Benford’s Law. The overall point is that performing
these tests simultaneously will affect the probability of a Type-II error, due
to multiple testing.

2.3.2 Pearson’s Chi-square test

A commonly used test in statistics is the χ2-test. This test might be more
reliable since it tests all the digits simultaneously. Let

p = (p1, p2, . . . , p9)
t and p̂ = (p̂1, p̂2, . . . , p̂9)

t

be the vectors of the expected probability and the observed frequency of
each digit for the first significant digit respectively, as defined in Section
2.3.1. Then we will have the hypothesis:

H0 : D1 has distribution p and therefore is Benford ,

H1 : D1 has another distribution and therefore is not Benford .

We can then construct the χ2-test

χ2 = n

9∑
d=1

(pd − p̂d)2

pd
.

If our null hypothesis holds χ2 is going to follow a χ2-distribution with 8
degrees of freedom. For a significance level of 0.05, we get a critical level
of 15.51. If the value of χ2 is greater than this value we reject the fit of
Benford’s Law with 95% certainty.

This method can of course also be applied to all the other significant digits,
but then χ2 will follow a χ2-distribution with 9 degrees of freedom because
we have one more digit to consider. Then the critical level is 16.92 for a
significance level of 0.05.
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There is however a drawback with this method. If we have a small sample
size n the statistical power gets low and the test therefore give unreliable
conclusions. The test is very dependent on the sample size.

2.3.3 Kolmogorov-Smirnov test

A way to overcome this is to use a nonparametric goodness-of-fit test. A
powerful nonparametric goodness-of-fit test when the sample size is small is
the Kolmogorov–Smirnov test (or just KS). This test makes use of empirical
distribution function.

Definition 2.4. Given a sample (X1, X2, . . . , Xn) of identically and inde-
pendently distributed random variables with distribution function F (x) =
P (X ≤ x), the empirical distribution function (ecdf) Fn(x) of the
sample is defined by

Fn(x) =
number of sample values ≤ x

n
=

1

n

n∑
i=1

1(Xi ≤ x)

where 1(A) is the indicator function of event A.

The ecdf has many interesting properties, but the most important one is
given in the Glivenko-Cantelli Theorem.

Theorem 2.2 (Glivenko-Cantelli). Let Dn = sup
x
|Fn(x) − F (x)|. Then

lim
n→∞

Dn = 0 almost surely.

Proof idea. For simplicity, consider the case of a continuous random vari-
able X. Fix −∞ = x0 < x1 < . . . < xm−1 < xm = ∞ such that
F (xj) − F (xj−1) = 1

m for j = 1, 2 . . . ,m. Now for all real x there exists
j ∈ {1, . . . ,m} such that x ∈ [xj−1, xj ]. Note that

Fn(x)− F (x) ≤ Fn(xj)− F (xj−1) = Fn(xj)− F (xj) +
1

m
,

Fn(x)− F (x) ≥ Fn(xj−1)− F (xj) = Fn(xj−1)− F (xj−1)−
1

m
.

Therefore

sup
x
|Fn(x)− F (x)| ≤ max

j∈{1,...,m}
|Fn(xj)− F (xj)|+

1

m
.

Since maxj∈{1,...,m} |Fn(x) − F (x)| → 0 a.s. by the strong law of large
numbers, we can guarantee that for any positive number ε and integer
m such that 1

m < ε, we can find N such that for all n ≥ N , we have
maxj∈{1,...,m} |Fn(x)−F (x)| ≤ ε− 1

m a.s.. Combined with the result above,
this implies that supx |Fn(x)− F (x)| ≤ ε for all large enough n with proba-
bility 1, which is the definition of almost sure convergence.
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We can now construct the Kolmogorov–Smirnov statistic

Dn =
√
n sup

t
|Fn(t)− F (t)|.

By the Glivenko-Cantelli Theorem, this statistic converges to 0 with prob-
ability 1 in the limit when n goes to infinity, if the sample comes from the
distribution F (t).

With this statistic we can test the hypothesis that the ecdf equals the cu-
mulative distribution function (cdf) of Benford’s law, i.e.

H0 : P (D1 ≤ t) = F (t) for all t,

H1 : P (D1 ≤ t) 6= F (t) for at least one t,

where the cdf is given by

F (t) =


0 for t < 1,

log(1 + btc) for 1 ≤ t < 9,

1 for t ≥ 9,

which will be a two-sided test and the null hypothesis will be rejected if the
observed Dn is too large. The Kolmogorov-Smirnov test normally assumes
that the sample comes from a continuous distribution, which obviously is
not the case for us. A correction factor for the test was introduced by
Stephens (1970)[8], and this made it possible to get more accurate results.
With this new corrected statistic (in practice only the critical values are
different) Morrow (2014, p. 4)[9] determined a more accurate critical value
of 1.148 for a significance level of 0.05. So we reject the null hypothesis if
Dn is greater than 1.148.

All these types of goodness-of-fit tests can of course be applied on all digits,
and are not restricted to the first digit D1 only. The same procedure applies
when testing the distribution of the kth digit Dk. We can also do the same
for the joint distribution of multiple digits.

3 Benford’s Law on common distributions

According to the theory, as we saw in Section 2.2.4, the distribution have to
span over at least an order of magnitude to follow Benford’s Law. However,
this does not mean that only because a distribution spans over at least an
order of magnitude it will follow Benford’s Law. With this knowledge we
will look how some of the common distributions coincide with Benford’s
Law. The distributions we will consider are:
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• The uniform distribution, U(0, 1000), with density

fU(0,1000)(x) =

{
1, 0 ≤ x ≤ 1000

0, otherwise.

• The normal distribution, N(µ, σ2), with density

fN(µ,σ2)(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , −∞ < x <∞.

• The exponential distribution, Exp(λ), with density

fExp(λ)(x) = λe−λx, x ≥ 0.

We will also investigate how well the distribution of ratios of random vari-
ables having these two distributions approximate Benford’s Law.

3.1 The uniform distribution

Starting with the uniform distribution, we simulate 10 000 random variables
following the uniform distribution defined above. As we see in Figure 4
the empirical distribution of the sample approximately produces a uniform
discrete distribution of the first nine digits. Hence we may conclude that
the uniform distribution and Benford’s Law are incompatible, even though
the uniform distribution spans over many orders of magnitude.

Figure 4: The distribution of the first digit of 10 000 random variables drawn
from the uniform distribution, U(0, 1000).

In spite of this, it is more constructive to consider in more detail the devi-
ation between the simulated relative frequency of the digits and their theo-
retical values to get an impression of the precision which we can expect from
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the simulation study. We do this with help of the hypothesis tests in Section
2.3. As stated there, for the different tests we are going to reject the null
hypothesis that the distribution conforms with Benford’s Law if |Td| > 1.96,
χ2 > 15.51 and D > 1.148 respectively. In general the p-values are better
to present then the test statistics when comparing tests with different scales
with each other. However, the p-values get exceedingly close to 0 and the
p-values would not be exact for the asymptotic approximations of χ2 and
D. Hence, the test statistics will be presented and not the p-values.

In Table 1 we can clearly see that the test statistics are way above the critical
values of the tests. Hence we can conclude that the uniform distribution does
not conform well with Benford’s Law.

Digit Benford Frequency |Td| χ2 D
1 0.30 0.11 41.99 3923.1 26.7
2 0.18 0.12 17.56
3 0.12 0.11 2.70
4 0.10 0.11 4.97
5 0.08 0.11 11.82
6 0.07 0.12 17.99
7 0.06 0.11 22.21
8 0.05 0.10 27.89
9 0.05 0.11 30.41

Table 1: The distribution of the first digit of 10 000 random variables follow-
ing the uniform distribution, U(0, 1000), and the Z, χ2 and KS statistics.

3.2 The normal distribution

For the normal distribution we will consider two different variations of the
mean, µ, and variance, σ2. Firstly we will test the standard normal dis-
tribution, N(0, 1), and secondly we will test the normal distribution with
mean µ = 100 and standard deviance σ = 225. We do this to see if the
mean and variance have any impact on the compatibility. The values in the
second distribution are chosen such that we can expect values of a greater
order of magnitude, which may improve the fit of Benford’s Law, according
to the theory in Section 2.2.4.

Starting with the standard normal distribution, we simulate 10 000 random
variables from the standard normal distribution. As we can see in Figure
5 it is not as easy to see if the standard normal distribution conforms with
Benford’s Law or not. The standard normal seems to fit Benford’s Law quite
well but not really all the way.

For this reason it is important to take hypothesis testing into consideration.
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Figure 5: The distribution of the first digit of 10 000 random variables
following the standard normal distribution, N(0, 1).

Digit d Benford Frequency |Td| χ2 D
1 0.30 0.37 14.60 516.37 6.70
2 0.18 0.12 13.47
3 0.12 0.09 10.81
4 0.10 0.08 6.29
5 0.08 0.08 0.92
6 0.07 0.08 4.34
7 0.06 0.07 3.60
8 0.05 0.06 5.20
9 0.05 0.06 5.00

Table 2: The distribution of the first digit of 10 000 random variables fol-
lowing the standard normal distribution, N(0, 1), and the Z = |Td|, χ2 and
KS statistics.

In Table 2 the test statistics of the Z-, χ2- and KS-test are represented for
the null hypothesis that Benford’s Law holds. As we can see each statistic
is rejecting the null hypothesis with an exception of the Z-statistic for the
fifth digit. This makes us conclude that Benford’s Law doesn’t hold for the
standard normal distribution.

Now, when using the other normal distribution with larger mean and vari-
ance, we expect the distribution to have a better fit than the standard nor-
mal distribution. In Figure 6 it looks like digits 2 and 3 are over-represented
but other than that the simulated data set seems to have quite a good fit,
at least from a visual inspection. The question arises how good the fit is
according to the hypothesis tests.
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Figure 6: The distribution of the first digit of 10 000 random variables
following the normal distribution N(100, 2252).

Digit d Benford Frequency |Td| χ2 D
1 0.30 0.30 0.99 438.10 7.82
2 0.18 0.23 13.23
3 0.12 0.16 9.79
4 0.10 0.10 0.21
5 0.08 0.07 5.18
6 0.07 0.05 7.66
7 0.06 0.04 8.25
8 0.05 0.04 5.88
9 0.05 0.03 5.87

Table 3: The distribution of the first digit of 10 000 random variables fol-
lowing the normal distribution, N(100, 2252), and the Z = |Td|, χ2 and KS
statistics.

A bit surprisingly, we see in Table 3 that the null hypothesis is rejected
by almost all tests, apart from the Z-statistic for the first and fourth digit.
In Figure 6 it seemed that the distribution might have a better fit than
the standard normal distribution. Depending on which test is used we get
different results when comparing the fits of the two normal distributions.
Using the χ2-test for the N(100, 2252)-distribution seems to have a better
fit but if the KS-test is used the opposite is happening. But that is probably
related to the fact that the χ2-test is based on comparing probability func-
tions whereas the KS-tests relies on the closeness of distributions functions.
In any case, both of the distributions reject the null hypothesis to follow
Benford’s Law by a large margin.

21



3.3 The exponential distribution

For the exponential distribution we will consider the case where the rate
is 1, i.e. λ = 1. Hence we simulate 10 000 random variables following the
exponential distribution Exp(1). In Figure 7 we see the distribution of the
first digit. It seems to have a very close fit to Benford’s Law. There are
some digits that are a little bit off. The first is a bit over-represented and
the third, fifth and seventh digits are a bit under-represented.

Figure 7: The distribution of the first digit of 10 000 random variables
following the exponential distribution Exp(1).

Digit d Benford Frequency |Td| χ2 D
1 0.30 0.34 2.48 10.05 1.14
2 0.18 0.17 0.09
3 0.12 0.11 1.52
4 0.10 0.10 0.12
5 0.08 0.07 1.08
6 0.07 0.06 0.37
7 0.06 0.05 1.49
8 0.05 0.05 0.17
9 0.05 0.05 0.64

Table 4: The distribution of the first digit of 10 000 random variables fol-
lowing the exponential distribution, Exp(1), and the Z = |Td|, χ2 and KS
statistics.

In Table 3 the numerical results of the tests are presented. We see that for
the Z-test only the first digit is rejecting the null hypothesis but all the other
tests are keeping the null hypothesis. Hence we conclude both from Figure
7 and Table 4 that the exponential distribution follows Benford’s Law very
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well.

3.4 Ratio distributions

In Section 2.2.4 it is said that we expect to observe a Benford distribution
when the data set is generated from two distributions. So if we simulate
10 000 random variables from a distribution Z = X/Y where X and Y
are independent and follow some distributions, this ratio Z should follow
Benford’s Law. We will test this by letting X and Y follow the distribu-
tions mentioned at the beginning of Section 3, and also that they will have
the same distribution. In Table 5 the results of the χ2- and KS-tests are
presented.

Distribution χ2 D
U(0, 1000)/U(0, 1000) 286.33 4.06

N(0, 1)/N(0, 1) 5.23 0.52
N(100, 255)/N(100, 255) 12.07 0.65

Exp(1)/Exp(1) 5.16 0.85

Table 5: The χ2 and KS statistics of four different ratio distributions, each
distribution simulated from in terms of 10 000 independent random vari-
ables.

As we can see, only the ratio distribution constructed from the uniform
distribution is rejecting the null hypothesis. So it seems that we can expect
a Benford distribution when the data is generated from two distributions,
confirming what we expected. However, although Benford’s Law seems to
hold for many choices of the distributions of X and Y , this is not always
the case.

3.5 Conclusion

In this section we have tested some of the criteria in Section 2.2.4 to see if
they are accurate. What we have seen is that our distributions don’t have to
follow Benford’s Law just because the criteria are fulfilled. All of the distri-
butions tested spread over at least one order of magnitude and are tested on
a large amount of data points. But this did not imply that all the distribu-
tions followed Benford’s Law. As we saw, only the exponential distribution
and the ratio distribution constructed from the normal distribution or the
exponential distribution were close to the Benford distribution. Hence we
can say that the the two criteria result comes from two distributions and
when the mean is greater than the median and the skewness is positive, seem
to hold very well for the distributions that we investigated. Indeed, the ex-
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ponential distribution, Exp(1), is a very positively skewed distribution with
mean 1 and median less than 1.

4 Greece economic fraud

It is well known that the Greece government manipulated their economic
data to the European Union in the beginning of the 21st century (European
Commission, 2010)[10]. They did so to hide the fact that they were in great
debt and thereby breaking the Stability and Growth Pact as well as the
Euro convergence criteria. We want to see if this is something we can detect
with Benford’s Law.

4.1 Data gathering

The economic dataset used in this study comes from the European statistic
agency (Eurostat). Eurostat openly provides high quality statistics for the
European countries. Therefore our observed data is taken from Eurostat’s
database in March 2021, under the data theme ”Economy and Finance”.
Within this data theme our data sets are taken from the categories ”National
accounts”, and ”Government statistics”. From these categories we gather
the following data sets, which are then merged into one single data set:

• Gross domestic product (GDP) and main components - Only the GDP
part.

• Financial balance sheets - Value of the stocks of assets and liabilities
for a country at a specific time point.

• Financial transactions - How the surplus or deficit of the capital ac-
count is financed by transactions in financial assets and liabilities.

• Government deficit/surplus, debt and associated data - The deficit and
debt of the general government sector.

• Government revenue, expenditure and main aggregates - Main revenue
and expenditure items of the general government sector.

These data sets are chosen because they are all associated with public deficit,
public debt and gross national products, which are items used in the evalu-
ations of the Euro convergence criteria. The period of analysis is from 1999
to 2010. The year 1999 is chosen as the starting point because it is the
year Euro became the official currency of the euro area, and the year 2010 is
chosen because it is around this time that the Greek scandal got well known.
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All analysed data are expressed in absolute values in million euros, based
on currency convergence calculated by Eurostat. These data sets contain a
total of 152 single positions per country per year. Unfortunately, in former
years there is a considerable number of missing values and enteries with
value zero, which had to be omitted from the sample. For United Kingdom
only 13 observations per year are available. In total we have 336 samples
of varying size, with an average of 92 observations per sample. The total
sample contains 30 900 observations.

4.2 Results from individual countries

The results of calculating the χ2- and KS-statistics of the individual member
states in EU annually are shown in Table 6. The countries are sorted by
the mean of their χ2 statistics. Hungary, with a mean value of 20.49 shows
the largest deviation from Benford’s Law among the EU countries, closely
followed by United Kingdom with a value of 20.35 and France with a value
of 20.29. The lowest mean value, 8.96, is obtained for Croatia. We can see
that the ranking of the χ2-statistics coincide poorly with the KS-statistics
which are less dependent on sample size. Hence we might suspect that the
sample size can be problematic in our case.

We might expect that Greece would show the largest deviation from Ben-
ford’s Law from the knowledge we have about them manipulating their eco-
nomic data. Still, in the rank of the mean χ2 Greece only appears in eighth
place. In the ranking of the KS-statistics Greece appears at third place with
only the United Kingdom and Malta above it. The reason for this and why
so many countries deviate significantly from Benford’s Law could not only
be due to the sample sizes. Indeed, we only have an average sample size of
92 observations and this makes it hard to rely on the test.

4.3 Result from Greece

In Table 7 the distribution of Greece’s first digit is shown. Surprisingly it
seems to follow Benford’s Law very well, with some exception in the years
2000 and 2010. This is not expected at all and since it is well documented
that Greece has been manipulating its data over these years (European
Commission, 2010)[10]. There might be a Type-II error, since it is quite
common that the Z-statistic tends to be somewhat conservative when used
for testing Benford’s Law. This is also supported by the χ2 statistic which
shows a significant deviation from Benford’s Law for the majority of the
years. Indeed, as stated above the χ2 statistic is probably very dependent
on the sample size, and since the sample size mean over the years are 102.75,
which is not very large, this indicates that Greece indeed violates Benford’s
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Law.

4.4 Conclusion

With these results we cannot conclude that we are detecting any suspicious
activity. This is also more accurate after an email conversation with Eurostat
that took place after the results of this thesis had been obtained. The
staff at Eurostat confirmed that the data had been corrected over the last
ten years, and they were not available to contribute with any older data.
This however explains why we couldn’t find any fraud in Greece’s economic
data. But it still raises the question why so many countries don’t seem to
follow Benford’s Law over the twelve year period. Is it just a coincidence,
something suspicious about the data or is Benford’s Law not as good as a
statistical tool as one might have thought? One possible explanation why so
many countries violate Benford’s Law is that the sample sizes, though not
very large, are still large enough to detect quite small departures from the
logarithmic Benford distribution.

5 Election

Benford’s Law is quite a good tool to detect economic fraudulence, but can
we detect any other kind of fraud with Benford’s Law? A hot topic right
now is fraud in election, especially in the United States where Donald Trump
accused Joe Biden of fraud during the US presidential election of 2020. Here
we will investigate whether we can detect fraud in simulated elections.

5.1 Simulation of a fraud-free election

There are many different ways to go about when simulating an election. In
our case we are mostly interested in how many people vote on each candidate
and not really which candidate that wins or by which margin. So firstly we
want to simulate an election were we are confident there was no fraud, and
then manipulate the result in such a way that the other candidate would have
won. A way to do this is by a so called spatial model[11], first introduced
to elections by Downs (1957)[12], and therefore referred to as Downs model.
The main idea is that voters are identified by ideal points in an Euclidean
”issue” space, candidates take place in that space, and voters vote for the
candidate with smallest Euclidean distance to their ideals.

Let us start our simulation by letting G = 2 be the mean personal income of
the voting age population of the nation. Then suppose that the nation has
290 districts (the number of municipalities in Sweden) where each district d
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has the mean income gd, which is drawn randomly from the folded normal
distribution |N(G, 0.15)|. A voter i, from district d, has an income Vid which
is drawn from the folded normal distribution |N(gd, 2)|. This is because the
income should not take on negative values . Each voter is represented by
opinions of two issues, X and Y , which depend on the voters income. In
order to allow for the possibility that that income policy preferences vary
across districts by unobserved variables, we let βXd, and βY d be the ”impact”
of the income on variables X and Y in district d. The variable βXd is taken
from the distribution N(2, 0.15) and βY d from the distribution N(−1, 0.15).
The reason for different means in these variables is to ensure that our two-
dimensional distribution of policy preferences will not be radially symmetric.
Finally, each voter i in district d, will have the policy preferences determined
by

Xid = βXdVid + uXi

Yid = βY dVid + uY i

where u is a noise term, such that u ∼ N(0, 2). This is because we want to
spread out the voters on the issues.

Now that we know how to simulate the salary and opinions of each voter,
we need to know how many voters there are. To make it easy we assume
that there are 10 000 voters in each district. So in total we will have 2 900
000 voters.

The only thing that needs to be added to the simulation is the candidates.
We know that each candidate wants to gather as many voters as possible.
To do this they will place themselves as close to the ”middle” of the issues
as possible. In particular, if both are exactly in the middle both will get
exactly half of the votes. This is also known as the median voter theorem
which was proposed by Downs (1957)[12]. So in order to make it as realistic
as possible we will place each candidate close to the median of the voters’
ideals. That is, after all the voters policy preferences have been determined
and placed in the issue space we will determine the candidates’ positions,
(XC , YC), in the space by

XC = X̃ + ε,

YC = Ỹ + ε,

where X̃ and Ỹ is the median of all voters opinion in issue X and Y respec-
tively, and ε is a noise term, such that ε ∼ N(0, 1). In Figure 8 we can see
how all the voters are distributed in the issue-plane and then also how the
candidates are placed according to our model.
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Figure 8: Voters and candidates in the issue-plane defined by the issues X
and Y .

Now that we have a quite realistic election model we can apply Benford’s
Law on the data we gather from the simulation. We do this by looking at
the distribution of the second digit of the number of voters of each candidate
among all n = 290 districts. The reason we are looking at the second digit
and not the first, is because the voting result is going to be fairly close to
50%, which means that the vote count for each candidate is going to be
very close to 5000 for each candidate. This means that the vote count is
not going to span over several orders of magnitude. Hence the first digit
of the vote count is not going to follow Benford’s Law, but we expect that
the second digit will. Mebane (2006)[13] was the first to propose that using
the second digits of Benford’s Law to detect election fraud would be more
appropriate.

Using this method with the χ2-test on all the votes in each district, regard-
less of the candidate, on 100 simulated elections we find that for 70 of these
elections the second digit will follow Benford’s Law and for the remaining
30 elections they will not. If we only look at the votes for the wining can-
didate or for the losing candidate we get that it follows Benford’s Law in
74 and 71 of the elections respectively. This indicates that Benford’s Law
might have quite a high chance of committing a Type-I error when used
on elections, a finding which is also supported by Deckert, Myagkov and
Ordeshook (2011)[14], who used a somewhat similar method to show that
Benford’s Law is subject to Type-I and Type-II errors quite frequently when
used on election fraud. But we can still see that for the majority of the time
the vote count seems to follow Benford’s Law.
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5.2 Introducing fraud

There are many ways to introduce fraud into an election. We will however
use two kinds of simple methods to introduce fraud. In the first method we
are going to move uniformly between 5 to 15% of the voters of the winning
candidate over to the losing candidate in a randomly selected subset with
20% of the districts. This will be a quite realistic method since one might
expect that if a candidate will commit fraud they will probably go to a few
districts and manipulate the voting there, to not raise any suspicion. The
second method is a little bit simpler, this time we take the second digit of
the vote count in each district for the winning candidate and subtract 1 from
it, and to not raise any suspicion with the number of voters we add 1 to the
second digit of the vote count in each district for the losing candidate. This
method might not be as realistic as the first method, but it is a method that
might be hard to detect but intuitively most certainly will be detected by
Benford’s Law.

By using the first method of introducing fraud we get that the total voting
count only has a significant deviation from Benford’s Law in 56 of the cases.
This is however a higher fraction of violations of Benford’s Law compared
to the scenario when there was no fraud introduced, but it still means that
we only detect the fraud a little over 50% of the time. This of course is a
very small fraction for a test supposed to detect fraud. If we look at each
candidate separately we don’t get a much better result. We detect suspicious
activities in 54 of the cases for both candidates. This strongly indicates a
large Type-II error which was discussed above and supported by Deckert,
Myagkov and Ordeshook (2011)[14]. However, if we only consider those
elections where the winner actually changes because of the manipulations
in the data the total voting count has a significant deviation from Benford’s
Law in 60% of those elections. This is a slight increase but not by very
much.

Using the second method of introducing fraud we get a somewhat better
result. The total voting count has a significant deviation from Benford’s
Law in 64 of the simulated elections. For each candidate separately we
detect the fraud in 54 respective 55 of the cases. Also when looking at the
conditional case that the winner of the election actually changes because
of the manipulations in the data the total voting count has a significant
deviation from Benford’s Law in 70% of the elections. Hence it seems that
the conditional case makes Benford’s Law more acurate. But there is still a
pretty large uncertainty, and a large risk for committing a Type-II error for
both of the methods.
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5.3 Conclusion and discussion

We found that using Benford’s Law to detect suspicious activities in elections
may be very risky, since we obtained large Type-I and Type-II errors which
leads to unreliable results. This may also be caused by the χ2-test which is
heavily dependent on sample size. With too small a sample size the result
cannot be accurate because the power of the test is too low. If the sample
size is too large a very small deviance would reject the null hypothesis. We
chose 290 districts because that number seemed realistic and was not too
large, but this might as well be too small of a sample size in order to detect
violations of Benford’s Law.

To see if we could get a better result with a larger sample size, we conducted
the same test as above, both for a fraud-free election and an election with
fraud introduced, but with 500 districts instead. With only 210 more sam-
ples the χ2-test cannot handle the larger sample size and rejects the fit of
Benford’s Law in all simulations.

A way to approach the problem worth testing, since it may give a better
result, is to use a different base than 10 for Benford’s Law. The problem
with vote counts is that they don’t span over several orders of magnitude,
so the first digit of Benford’s Law cannot be applied. But if we change the
base of the vote count to a lower base, this problem will be smaller. Since
Benford’s Law for the first digit is base invariant, changing the base such
that the vote count spans over several orders of magnitude we should be
able to apply Benford’s first digit law on the vote count. This way we would
be able to use the statistical tests referred to above and perhaps detect the
fraud more accurately.

6 Discussion

Unfortunately we have not been able to accurately detect some kind of fraud
in this paper. When analyzing the economic data over EU countries we
discovered that according to our goodness-of-fit tests many countries didn’t
seem to follow Benford’s Law very well. In Section 4.4 we discussed what
the reason for this could be, whether there is something suspicious about
this particular dataset, that Benford’s Law isn’t as good as we thought
or that the many rejections of Benford’s Law was just a coincidence. But
after studying simulations of elections it was pretty clear that there are some
problems associated with the χ2-test when used with Benford’s Law. Indeed,
we obtained large Type-I and Type-II errors. This indicates that it is maybe
not Benford’s Law that is wrong, instead it might be the test. It is often the
case with statistical tests that more observations lead to better results. But
in this case we got worse results the more observations we gathered. Also,

32



as we saw in Section 3, some distributions that visually seemed to follow
Benford’s Law was rejected by the tests.

There are some tests that have been established specifically for Benford’s
Law. This includes Cho-Gaines’s distance proposed by Cho and Gaines
(2007)[16] and Leemis’s m test proposed by Lemmis (2000)[15], which were
not used in this paper since we discovered them too late. These tests may
be more appropriate to use in the context of Benford’s Law. The only
problem is that there are not so many studies on these tests, and not much
theory on how and why they should perform well. The only study that has
analyzed these tests is due to Morrow (2014)[9], where he determined the
critical values for the first digit of Benford’s Law. It is something worth
investigating, since, as we saw in this paper, the more commonly used tests
seem to reject Benford’s law too easily when the sample size is large.

In fact, it is reasonable, from the result we got in this paper, to assume that
in most applications the ”theoretical distribution”, q1, . . . , q9, when there is
no fraud, will still have a small departure from Benford’s Law, p1, . . . , p9,
which is detected by the goodness of fit tests with a sufficiently large data
set, no mater how close the qi are to the pi. So instead of using goodness of
fit tests we could define the total variance distance

δn =
1

2

9∑
i=1

|p̂i − pi|,

in order to test the first digit from a data set of size n. This is the fraction
of first digits that have to be changed in order to perfectly match Benford’s
Law. When n tends to infinity, δ converges almost surely to

δ∞ =
1

2

9∑
i=1

|qi − pi|.

Then Benford’s Law should hold approximately whenever δn is less than or
equal to ε > 0 for some prechosen small number ε. Such a test will detect
departures from closeness to Benford’s Law (when δn > ε), not departures
from Benford’s Law itself (which corresponds to δn > C/

√
n for some C

depending on the significance level of the test). This test could be performed
in addition to the null-hypothesis tests.

Another thing which is also worth studying is how good Benford’s Law ac-
tually is at detecting fraud. After Nigrini (1998) [3] proposed that Benford’s
Law could be used as an auditing and accounting tool to detect fraud, it
started being used for detecting all kinds of fraud. But is that really accu-
rate? Can we really use Benford’s Law in more areas than just auditing and
accounting? This is something no one really knows. In fact no one really
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knows why Benford’s Law seems to hold in so many areas. The only thing
we have is a few guesses, as seen in Section 2.2.4. It is something worth not-
ing when using Benford’s Law. We do not know why it works, and therefore
we cannot be fully sure that it works either.

To conclude, Benford’s Law is a very interesting concept and mathematically
very beautiful. But as we have seen in this paper, it is maybe not very
reliable, at least with the theory we have right now. Something we should
strive for is to work on more accurate tests before relying on this law too
much. When that has been done we can apply these new tests and see if we
get any better results.
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