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Abstract

We compare the three tree-based gradient boosting methods XGBoost,
LightGBM and CatBoost for binary classification tasks. We compare
these by AUC scores and training time on data sets simulated from a
logistic regression model with varying number of instances, categorical
features and different degrees of cardinality in these categorical features.
We use Bayesian hyperparameter optimization for hyperparameter tun-
ing for all boosting methods and data sets. The goal of the study is
to bring some light to why the performance of these boosting methods
varies when they are applied to real-world data. This is of importance
since gradient boosting growths ever more popular for binary classifica-
tion tasks, but also because the relationship between the performance of
these methods and different data characteristics is poorly researched at the
moment. Furthermore we exchanged different components in the boost-
ing methods to identify which parts that cause the variation in results,
the goal here was to get a deeper understanding of how these methods
work. For simulation scenarios with a high number of instances (100.000)
and no categorical features of high cardinality, XGBoost and CatBoost
was more accurate than LightGBM. For scenarios with a lower number
of instances or with categorical features of high cardinality, CatBoost
proved the most accurate, however when both number of instances was
high and the cardinality of categorical features was high, LightGBM was
equally accurate to CatBoost. When comparing components we found
that gradient-based one-side sampling increased the speed for all scenar-
ios, but accuracy was compromised for small data sets with categorical
features. Exclusive feature bundling reduced training time when used
with one-hot encoded categorical features of high cardinality. We found
no significant difference in accuracy or training time between leaf-wise and
level-wise splitting. Weighted quantile sketch improved the accuracy of
histogram search. Naive target statistics increased accuracy for data sets
with high cardinality categorical features and large number of instances
when compared to one-hot encoding, this effect was reversed when num-
ber of instances was small, in both cases naive target statistics decreased
training time. Similarly, ordered target statistics increased accuracy for
all data sets with high cardinality categorical features, this however came
at the cost of higher training time.
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1     Introduction

Modern binary tree-based boosting classification methods have proven to be the most 
accurate binary classification methods to date in a multitude of applications [2], 
ranging from email spam detection [3] to prediction of kidney disease or epileptic 
seizure [24]. However no single tree-based boosting classifier ends up on top in all 
applications, rather several studies show that the preferred method depends on the data 
at hand, where for example CatBoost was shown to be the most accurate to predict 
whether or not a person will click on an advertisement [3], but when predicting if a 
flight will be delayed LightGBM proved the most accurate [20]. The evermore 
widespread use of these classification methods justifies knowledge in how the tree-
based boosting classification methods performance depends on data characteristics, 
which in turn hopefully can yield more detailed guidelines to the choice of method 
given data, but it might also provide important information for developers. The 
majority of research that have been conducted thus far has a pure empirical approach 
where different tree-based boosting classification methods are applied to real-life data, 
for the most part, these studies do not attempt to explain why the performance of these 
methods vary concerning the data, but rather simply states a number of performance 
metrics. There are exceptions however, Al Daoud [4] experiments with propotion of 
missing data using a home credit data set and finds that LightGBM is more accurate 
than XGBoost and CatBoost regardless of level of missing data, but also that the 
difference between LightGBM and the other two is smaller when proportion of missing
data is high, possible giving a clue to the varying results of other studies. Dorogush et 
al. [6] finds that Catboost achieves higher accuracy on eight data sets all with a high 
propotion of categorical features. Anghel et al.[1] finds that training time is reduced 
more for XGBoost when using GPU instead of CPU for computation. 

To the best of our knowledge there has been no pure theoretical approaches to map the 
relationships between these methods performances and data characteristics, possible 
due to the complex and black-box nature of the methods. There has been a number 
simulation studies that attempts to explore  performance for different tree-based binary 
classification methods for varying data characteristics, for example Hamza et al.[11] 
demonstrates that random forest performance is less affected by noise than bagging 
classifcation Trees or arcing boost. However neither of these studies include 
LightGBM or CatBoost. 
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By simulating data sets one can change the data sets in a predictable and controlled 
way, hence it is possible to disentangle the relationship between the data characteristics
and performance. This thesis aims to expand the understanding of the relationships 
between these methods performance and data characteristics further by simulating data
sets with varying numbers of categorical features, varying cardinality within these 
categorical features and finally number of instances. These are easily identifiable data 
characteristics in most data sets, if we can uncover how these data characteristics 
affects relative performance for the three methods it might yield some useful 
guidelines for users. For a deeper understanding of the causes of our results we will 
also use these boosting methods with and without different components.

1.1 Dictionary, Machine Learning – Statistics

This is a short machine learning – statistics dictionary with terms that are central in this
essay. 

instance – observation

feature – explanatory variable

target value – dependent variable

label – categorical dependent variable  

2. Theoretical Framework

2.1 Machine learning classification methods

Machine learning techniques create models by applying iterative functions on data 
without explicitly programmed instructions (this process is referred to as training). Let

 be a data set with  instances, where  and  will denote explanatory variables 
(features) and response variables (labels) for instance . Classification machine 
learning techniques uses a subset  of  for training to create a function that maps  
to labels  that is . The aim of these methods is to find a function 
(classifier)  that as accurately as possible categorizes (classifies) instances when the 
function is applied outside of the training data set, this is not necessarily the function 
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that most accurately classify the training data itself (see the bias-variance trade-off 
section). 

To compare classifiers a second part of the data set is used as a validation data set . 
The classifier will then take the feature values of the instances in the validation data set

 as input variables to produce estimated labels . Different accuracy measurements 
can now be computed using estimated labels    and the actual labels  in the 
validation data set. The remaining data will be used in a tests data set , used for an 
unbiased evaluation of the final model.

2.2 Bias-Variance Trade off

Although we will compare classification methods in this essay, these methods use 
likehood-based regression base learners as a sort committee to classify instances (we 
will cover what this mean in more detail soon), throughout the essay we will discuss 
how these base learner regressors can be affected by bias and variance. There has never
been any widely accepted strict definition of the bias-variance decomposition for 
likehood-based estimators, in this thesis however we will use definitions from 
Domingos (2000) [5] as these can be applied to the log-loss function, this is the loss 
function used for all models in this thesis. We can write the log loss function as:

Where  is the total number of instances in the data set. We can also write the loss 
function with regards to only one instance:

This is the more simple representation that we will use for the rest of the essay. There 
are three types of errors a regression model can suffer from, these are bias, variance 
and noise. In machine learning the term bias is used to explain the inability of a model 
to correctly fit the training data, that is to say, the model is inaccurate already after the 
training stage. With the log loss as loss function we define bias as:

Here  is the prediction that minimizes  and

, where in turn   denotes that the expectation is taken 
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for all possible values of  weighted by their probabilities and  denotes that 
expectations are taken with respect to the training data sets, that is with respect to the 
predictions  produced while training on data set . An example of a model that could 
suffer from bias could be a linear regression model that has only linear terms and is 
applied to a data set with a quadratic relationship between features and labels. Since 
the model is not able to capture the relationship we call it underfit. 

If a model’s performance is systematically reduced when applied to other data than the 
training sets, the model suffers from variance error.  Typically this occurs when a 
model is highly fitted to the training set, capturing its characteristics in too much detail,
hence capturing too much of the noise in the training set. We define variance as (using 
log loss):

An example of a model that might be prone to variance error could be a linear 
regression model that applies terms making up a single variable fifth-degree 
polynomial to capture the relationship between some feature values and its 
corresponding target values in a training data set with only five instances. This model 
would capture all of the variances in the model although much of it could be due to 
omitted variables or noise. When this model is applied to other data than the training 
set its estimation would suffer from error not only due to noise in the data set it is 
applied to, but also due to the noise of the training data set that it carries with it, hence 
it is said to be overfit. This trade-off between bias and variance in linear regression is 
demonstrated in Figure 1 in the end of this section. Lastly, noise is unexplained 
variation within a data sample and hence this error source is irreducible. Noise can be 
written as:

When choosing or tuning machine learning models, usually a stage is reached where 
the bias cannot be reduced without increasing the variance and vice versa. This is a 
reoccurring pattern for machine learning models since the low bias more flexible 
models use much local information to achieve low bias but low variance less flexible 
models need to average over larger regions to not capture too much noise and achieve 
their low variance.

Unmodified CART trees typically end up very close to the high variance side of the 
bias-variance spectrum [9]. To balance the model's various node splitting stopping 
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conditions have been introduced. Another common measure to balance the models is 
pruning algorithms, these algorithms re-evaluate the branches of already grown trees 
by some complexity penalty function that takes both purity gain and complexity of the 
branches as input variables, and then removes the branch if some criterion is not met. 

2.3 Computation Cost

For users of classification methods not only accuracy is of importance but also 
computation costs. We will also see in the later parts of the theory section that tree-
based boosting methods compromises between accuracy and computation cost, it is 
therefore important to take computation cost into account when comparing these 
methods. More specifically we will consider time complexity in form of training time 
(the time it takes to build the model) in this thesis. Time complexity is compared by the
number of required elementary operations  to run an algorithm.  Since worst case and 
average case computational cost is generally hard to derive, in this essay we will make 
use of the upper asymptotic bound when calculating computation cost, we denote this 
with as . We will denote upper asymptotic bound for accuracy with  to avoid 
confusion. 

2.4 Regression CART trees

Although classification gradient boost methods perform classification tasks, they do 
not rely on classification trees (this is a common misconception). Instead, classification
gradient boost methods uses an aggregate score from regression trees to predict class. 
How this works in detail will be explained in later sections of the thesis. 
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Figure 1: The curve to the left captures too much of the noise in the data, which it will carry with it when 
used for future predictions. The middle curve does not capture the relationships in the data, while the last 
curve uses just enough local information to capture the relationship without capturing too much noise.



In its most formal sense CART trees works by recursive binary partitioning of the 
training data feature space  into disjunct regions  where every partitioning is 
parallel with a feature in the feature space. The partitioning of a region is based on the 
minimization of a splitting criteria , which in turn is a function of target values  and 
predicted target values . When used for prediction, instances will be sorted by the 
same parallels created using training data. Finally a prediction will be assigned to the 
instances given by an output function  which in turn is a function of the training 
instances sorted to the region .

In this thesis we will use the far more commonly used terms associated with the tree 
models intuitive structure of trees (hence the name). The rest of this section will give a 
more detailed explanation of CART trees using this imaginary structure and its 
associated terms.

2.4.1 Usage of regression trees for prediction

The subsequent binary splitting is based on only one feature at the time. The sorting 
can be based on both continous or categorical features. In the case of continous values 
an inequality is given such that  or , (here  denotes instance,  a 
specific feature and  is constant). In the case of categorical features the sorting will 
be based on if  where  is some categories all in feature . This sorting 
process can be envisioned as a tree-shaped structure where the first sorting takes place 
at the top of the tree (root node), depending on  the procedure will continue down 
the tree on the left or the right side. The next step can be either in the form of a leaf, in 
which case a target value estimate  will be assigned to the instance or in the form of a 
node in which case the procedure will continue down the tree on the left or right side 
of the node, again depending on the outcome. Eventually, the procedure reaches a leaf 
and a final target value estimate will be assigned to the object.

2.4.2 Growth of regression CART trees

When a CART tree is created, for each node (starting at the root node) the split among 
all possible univariate splits in which the two subsequent nodes will be the “purest” by 
some impurity measure will be selected, or equivalently some splitting criteria  will 
be minimized with regards to the split options. A simple example of such splitting 

criteria is the mean squared error ,  the boosting methods used in this thesis

uses a splitting criteria similar to the mean squared error which will be derived in the 
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XGBoost section. In the case of continuous predictors, all possible split points will be 
considered. Likewise, in the case of categorical features all possible combinations of 
categories will be evaluated. In the creation of nodes sequential to the target node, the 
splitting criteria will be minimized for the subset of the training data that corresponds 
to the respective criteria of preceding nodes, in other words we are minimizing locally 
such that:

where  is possible split points in  and  denotes node (or region) that will occur to 
the left of the node as a result of the split and  will be its equivalent to the right. 
When an optimal split has been found, a stopping condition check will be performed, if
the stopping conditions (see parameter section) are satisfied the split will be canceled 
altogether and the node in question will instead become a leaf, this leaf will predict a 
target value by some output function  which in turn is a function of the instances that 
has been assigned to the leaf. The output function used in the boosting methods in this 
thesis will be derived from the definition of gradient boost in the gradient boost 
section. Figure 2 and 3 below shows how decision trees splits the data set into subset 
by the features in the data set. Figure 2 shows partitioning in the probability space 
while Figure 3 shows partitioning in the tree representation. 
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Figure 2: Partioning of the two-
dimenstional feature-space by 
value a and b for feature 1 and 
value c for feature 2.

Figure 3: Tree structure corresponding to partitions shown in Figure 
1.



2.5 Boosting

Boosting methods are ensemble meta-algorithms that combine several weak learners to
create a strong learner. A weak learner in this context would be some model that 
predicts dependent variables better than pure chance. The aim is then to construct, 
using the weak learners, a strong learner that is more accurate than the weak learners 
individually. The boosting methods used in this thesis uses CART trees of different 
variations as weak learners and gives every CART tree a weighted say in a final 
classification. In other words, these boosting methods fit an additive expansion in a set 
of CART trees and this will be written as:

          (1)

Here  denotes tree,  will be the expansion coefficients,  represents the basis 
functions I.e CART trees where  will be its parameters (i.e  and , not to be 
confused with hyperparameters).

Ideally, we would like to proceed by fitting equation (1) by choosing  and theta to 
minimize some loss function  averaged over a training data set with  instances (here 
overfitting would be controlled by choosing  appropriately). This minimization 
problem could then be written on the form:

                                         (2)

However often this is a computationally costly task, instead, the boosting methods 
covered in this thesis make use of forward stagewise additive modeling.

2.5.1 Forward Stagewise Additive Modeling

By using forward stagewise additive modeling it is often possible to find an 
approximate solution to equation (2). Instead of solving (2), an FSAM approximate 
solution to (2) starts by the computationally cheap problem of finding the most 
accurate standalone CART tree. That is we will find:
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The following steps will be to add additional CART trees  whose coefficients
  and parameters  will be chosen so that the summed predictions of the two 

CART trees will be as accurate as possible by some loss function. In other words the 
parameters will depend on the previous CART trees ( ) so that  
however for the sake of simplicity we will still refer to the parameters as . Using these
notations the next steps will be to find: 

                          (3)

This process of adding new cart trees to the expansion will continue until some 
predetermined  is reached:

Where:

2.6 Gradient Boosting

Gradient Boost is a numerical method for optimizing the forward stagewise additive 
modeling process. This method has similarities to the gradient descent method (hence 
the name), they are both greedy methods that aim to minimize some loss criteria at 
every step without taking other steps into account. Both methods achieve this in an 
additive fashion, adding a term (in the gradient descent case) or a basis function 
multiplied by a coefficient (in the FSAM case) to all previous terms or basis functions. 
The basis functions in FSAM can therefore be considered analogous to the negative 
gradients in gradient descent.

The FSAM minimize the loss function by adding a tree instead of the gradient
. Since the gradient  is only defined at the training data

points ,  using  would cause overfitting. Instead every tree we add 
will use the current residuals for each instance as the dependent variable which we 
want to predict, in this manner every new tree that we add will prioritize instances that 
the previous trees has failed to categorize correctly, thus one can say that each added 
tree compensate for the inaccuracy of previous trees. We can now derive an output 
function  and splitting criteria   that optimizes this aim, however in this thesis we

will not derive  as we will not use basic gradient boost, the boosting methods used 
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in this thesis uses a splitting criteria which is derived similarly, the derivation of this 
splitting criteria can be found in the XGBoost section. On the other hand   is used 
by all boosting methods in this thesis and will deviate only with regards to 
regularization terms, for this reason it will derived here and we will denote it simply as

 in the remaining part of this thesis.

Since the weighted summarized prediction of all prior trees  gives us our 
predicted  value, we will denote this in log odds form as , we will also introduce 

 which is  expressed in plain probability. For gradient boost binary 

classifiers the most commonly used loss function is the log loss function, this is also 
the only loss function used in this thesis. This loss function can be written as a function
of  and :

        

We want every added tree to minimize the global loss function in (3) and hence we can
derive the output function by finding:

By removing the summation sign for clarity and by second order Taylor approximation
we get:

Now deriving the right hand side with respect to  and setting the equation equal to 
zero to find the minimum:

Finally solving for  gives:

                                                    

(equation 4)      
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That is  is the ratio of the negative gradient of the log loss function and the Hessian of
the log loss function. For the remaining part of the thesis we will denote this gradient 
and the corresponding Hessian . To find the splitting criteria  we must find  and .

We have that   and by the derivation of the Sigmoid function 

in the appendix we find that . By using these derivations and the 

chain rule we get:

(5)

Using the equations from the derivation of the gradient we can find the Hessian by:

(Equation 6)

Finally equation (4),(5) and (6) gives:                   

(7)

2.7 XGBoost

The theory in this section largely follows that of Chen & Guestrin (2016) [3]. XGBoost
is a gradient boost method, it differs from the basic gradient boost by that it adds a 
complexity penalizing term to equation (3) to prevent overfitting. XGBoost also differs
from earlier gradient boost methods in its implementation, allowing it evaluate more 
potential splits for the same computation cost. This will be covered in the end of this 
section, however we will exclude XGBoost features that are not relevant to the topic of
this essay (handling of missing data, out of core computation etc.), instead we will 
focus on aspects that may affect general performance or performance with regards to 
categorical features or number of instances. Expected effects will be discussed in more 
detail as we introduce the other boosting methods as we are interested in XGBoost 
from a comparative perspective. Some XGBoost features will be covered in the 
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parameter section since they depend on parameter selection but also because 
LightGBM and CatBoost happens to share these parameter features.

For  number of leaves in the tree  and output  in leaf  (here  is obtained by 
applying local instances in ), the complexity penalizing term can now be written as:

                                   

Where  and  are regularization terms. Equation (3) can now be rewritten as:

      (8)

In addition XGBoost makes use of Taylor expansions up to the second order gradient 
to approximate loss reduction when evaluating candidate trees in the forward stagewise
additive modeling process, these approximate loss reductions are less computationally 
costly as after the first order gradient  and second order gradient  has been 
calculated loss reduction for all candidate trees can be calculated using only these 
values multiplied with constants. In turn this enables XGBoost to include a larger 
number of candidate trees without increasing computation cost. With Taylor expansion
for loss reduction approximation around , equation (8) will be rewritten as: 

                       

From this equation we can derive the optimal greedy splitting criteria (see the appendix
for this derivation):

(Equation 9)

Where the first term represents the similarity score of the left leaf created by the split, 
the second term represents the right leaf in a similar matter and the third term represent
similarity score for the unsplit leaf resulting from not performing a split. 

XGBoost (and LightGBM) uses (9) as splitting criteria, however if the value of the 
equation is less than zero for all potential splits the split will not be conducted. Splits 
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are conducted in level-wise order, this means that every level of the tree is finished 
before starting a next level starting from the leftmost node, this is shown in Figure 4 
below. 

2.7.1 Weighted Quantile Sketch

The full description and proof of approximation errors and computation cost for 
weighted quantile sketch would need several pages and will not be covered here since 
there is no obvious reason to suspect that weighted quantile sketch would effect 
performance with regards to any of the data characteristics that we study in this thesis. 

For large data sets, it is often infeasible to evaluate all candidate split points. To reduce 
computation cost XGBoost makes use of histogram-based split finding to reduce the 
number candidate split points to be evaluated. This is done by a form of categorization 
of continuous data, more specifically only a lower number of split points that will be 
evenly distributed across the data will be evaluated and used as candidates.

More formally, for the multi-set  where  
denotes features and  second order gradient of the instance  we have the rank 
function:
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Figure 4: XGBoost’s splitting order with some example values. The node with 
green framing is the active node in evaluation, frameless nodes has already been 
evaluated, while yellow-framed nodes have not yet been evaluated.



(10)

(10) gives the proportion of instances whose feature value  is smaller than . 

The quantile sketch method will create summaries (bins) of size  where  is a 

parameter. A merge operation will be performed on these bins which gives 
approximation error  where  and  are approximation errors for 
respective summary. Finally a prune operation reduces the number of elements in the 
summeries to  where  is a parameter which further increases the approximation 

error from  to . 

This method achieves that for each candidate split point  such that for 
an approximate factor :

The method described thus far was developed before the release of XGBoost. What is 
unique for XGBoost however is that the method was adopted to handle weighted data 
sets, which is a necessity when applying it to tree-based boosting ensemble methods as
instances are weighted by their residuals. This gave XGBoost an advantage as 
histogram search could be used without compromising accuracy as much as in earlier 
gradient boosting methods. The full description of this implementation can be found in 
the appendix section of the XGBoost documentation. 

2.7.2 Column Block for Parallel Learning

This section will be brief since all our three boosting methods happens to use column 
blocks for parallel learning and thus it is of less interest from a comparative 
perspective, it is however a core difference between our methods and earlier 
generations of gradient boosting methods. 

XGBoost stores data in in-memory units called blocks, one block per feature is created 
and in each block, the instances will be sorted by the corresponding feature value. In 
this manner, the data only need to be sorted once before training and can be reused in 
all later iterations. Sorting the data based on feature values enables linear scanning for 
finding optimal splits, this is a less computationally costly register allocation approach 
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than those used by older tree-based boosting methods. Besides, XGBoost performs 
split finding of all leaves collectively, hence after a single scan over a block’s 
similarity scores with regards to the corresponding feature will be calculated for all 
possible splits in the tree rather than at a single potential split.

2.7.3 XGBoost and Categorical Features

At it’s core a computer relies on binary code, this means that all operations we want a 
computer to perform must be expressed in zeros and ones. The most common way to 
encode categorical features in statistical software is by one-hot encoding, by one-hot 
encoding every category  in a categorical feature  will be treated as an independent 
categorical feature . Instances will then have the value one for the categorical 
feature that responds to the category it belonged to in the original categorical feature

, for all other categorical features  stemming from  the instance will have the 
value zero. XGBoost does not distinguish these variables from other numerical 
variables. The effect of this encoding will be that splits can be done only with regards 
to one category at each node, this reduces potential split points, especially when the 
categorical feature has high cardinality (many categories). Since node splitting is done 
greedily potential combinations of categories within a categorical feature which may 
have had the lowest score by the splitting criteria will not be evaluated (due to 
regularization parameters), and accuracy will be compromised as a result. In addition, 
computation cost is increased since there will be more features to search through, 
computation cost can also be increased because of the depth that the tree must reach in 
order to reach sufficient accuracy, this is demonstrated in Figure 5 in the end of this 
section. Exactly how computation cost is effected is difficult to predict theoretically 
since XGBoost ignores features which have not been used in splitting during previous 
iterations. 

There are alternative methods to encode categorical features (all problematic in it’s 
own way), however one-hot encoding is the most commonly used [17], to demonstrate 
XGBoost in it’s most common implementation we will therefore use one-hot encoding 
for XGBoost’s categorical features in this essay. We will sometimes refer to one-hot 
encoding as OHE.
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2.8 LightGBM

The theory in this section largely follows that of Ke et al. (2017) [13]. LightGBM 
builds on the XGBoost method but does not use weighted quantile sketch and also 
applies the following modifications.

2.8.1 Leaf-Wise Tree Growth

Rather than building the trees level-wise as XGBoost, LightGBM growths trees by 
taking all available nodes into account and splits the one that reduces the loss function 
the most, this is shown in Figure 6 at the end of this section. LightGBM does this by 
minimizing the loss function globally instead of locally at each node. When no 
parameters such as maximum depth for XGBoost or maximum leaves for LightGBM 
are used and no pre-pruning is used, these two growth orders will evaluate the same 
nodes for potential splitting only in a different order, and hence the two methods will 
result in the same tree. However, when there are restrictions to tree size the growth 
process might stop prematurely and therefore the two methods might yield different 
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Figure 5: The tree has to be grown deep in order to sort out category a,b,c etc. from
one-hot encoded categorical feature C. The tree becomes more costly from a 
computation perspective due to the depth, but it is also likely that tree won’t grow 
this deep as sorting by a single category likely reduces the loss function less than 
sorting many categories in one single step, categorical features will therefore have 
a too low priority in the splitting process. 



trees. In these cases, leaf-wise tree growth tends to result in less biased trees simply 
because more potential splits will be considered to minimize the loss function.

2.8.2 Gradient-based One-Side Sampling

In order to reduce computation cost LightGBM trains on a randomly selected subset of 
the training data for tree creation. This is done by sorting the instances by their 
gradients and selecting the top  of the data, and then selecting  
instances randomly from the remaining part of the training data. In order to reduce the 
alteration of the original data distribution the  randomly selected instances 

will all be multiplied by  , this amplifies their influence to proportionally represent

the subset they were randomly selected from.  In this essay we will use the default 
values  and .

By using gradient-based one-side sampling LightGBM growths trees on a smaller 
number of instances while still making sure that the most undertrained 
instances(highest gradient) will be present in this subset of the full training set. 
Instances with large gradients have a larger influence in the splitting process, therefore 

     23

Figure 6: LightGBM’s splitting order with some example values. The 
node with green framing is the active node in evaluation, frameless 
nodes has already been evaluated, while yellow-framed nodes have not 
yet been evaluated. The tree will build new levels before previous levels
are finished if this leads to a larger decrease in the loss function. 



by letting this part of the original data set be represented in full detail while the less 
influential low gradient instances are represented by an approximate distribution 
gradient-based one-side sampling achieves a favorable trade-off between accuracy and 
computation cost.

When using gradient-based one-side sampling the splitting criteria (equation 13) must 
be rewritten. By removing the unsplitt leaf,  and  for convenience, and let  denote 

some region, let  denote the sums of all Hessians in region , let  

denote splitting point by some feature value, equation (13) using gradient-based one-
side sampling can then be rewritten as:

Where the first term represents similarity score in the left node resulting from the split 
and the second term represents it’s counterpart to the right.  denotes the high gradient
subset and  the randomly selected subset. 

In the appendix we show that it is possible to derive that the approximation error 
approaches zero as number of instances approaches infinity, hence we expect that the 
bias stemming from the approximation error will be lower for large data sets.

We will use LightGBM both with and without gradient-based one-side sampling since 
both configurations are popular, but also because we want to evaluate what effect this 
component has on LightGBM. We will refer to LightGBM with gradient-based one-
side sampling as LightGBM-GOSS and LightGBM without gradient-based one-side 
sampling as LightGBM-GBDT where GBDT stands for gradient based decision tree. 

2.8.3 Exclusive Feature Bundling

In many applications a large number of the available feature values are sparse, this 
means that most instances has the value zero for the specific feature. In addition many 
of the sparse feature values tend to be mutually exclusive, when a number of features 
are mutually exclusive no instance takes a non-zero value for more than one of these 
features. In this essay we will not simulate any such sparse and mutually exclusive 
features, however when categorical features of high cardinality (many categories) is 
one-hot encoded it happens to result in mutually exclusive sparse features. For this 
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reason Exclusive Feature Bundling might make LightGBM more suitable for one-hot 
encoded categorical of features of high cardinality.  Exclusive Feature Bundling works 
by merging of exclusive features by first adding offsets to the feature values so that 
values from different features ends up in different bins during the histogram search, for
example for features  where  takes values in the range  and  

takes values in the range  an instance with  will be assigned value
 in the merged feature column, while another instance with  will be 

assigned value  etc.  

Potential feature candidates for bundling are found by creating a list of all features 
where they are sorted  by their non-zero value count, the features will then be treated in
descending order where they will be merged with another feature or an already existing
bundle if the fraction of conflicting is lower than . How  is determined is not stated 
anywhere in LightGBM’s documentation. In cases where there is several bundling 
options where the fraction of conflicting is lower than , the option with lowest 
fraction of conflicts will be chosen.  

The computation cost for histogram building is reduced with exclusive feature 
bundling from  to  where  and  denotes number of 
features and bundles respectively.  We expect that exclusive feature bundling 
contributes to faster computations for one-hot encoded categorical features when these 
are of high cardinality, to test this component we will use LightGBM with and without 
exclusive feature bundling when using one-hot encoded categorical features. 

2.8.4 Naive Target Statistics For Grouping of Categorical Features

Treatment of categorical variables is omitted in the LightGBM documentation paper, 
this section uses information from LightGBM’s official website [8] and second hand 
information [12]. 

LightGBM attempts to solve the problematic relationship between categorical features 
and one-hot encoding. It does so by sorting categories  within categorical feature  by:

  

That is each category is sorted by an approximation to the splitting critera itself, 
summed over all instances in the category. A split can be performed based on these 
estimated values. There is  possible binary partitions among these values, 
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however Fisher[8] finds that we only need to evaluate  splitting points to find the 
optimal split. 

When splitting categories in this manner the LightGBM algoritm is not limited to 
splitting with regards to only one category at the time, also since the optimal split is 
found using a psuedo target value optimal split points is found much like in manually 
computed gradient boost. 

While the above solution might appear as perfect, it does introduce a new problem, 
namely it causes target leakage. When we compute  we are using  which is the 
target of , this leads to a conditional shift as  differs for training and test data. 
The inaccuracy due to the conditional shift is likely to be less severe when we have a 
large number of instances in  since the difference between  and

 that is caused by noise is likely to be smaller due to the law of large 
numbers, but also because the bias stemming from using  to calculate  will be 
smaller since  will make a smaller proportion of . 

The computation cost for estimating all naive target statistics for all instances with 
regards to one categorical feature is  while finding the optimal split among these 
target statistics costs [7]. These computations has to be made at every 
node for every categorical feature. To overcome this high cost LightGBM groups 
categorical features into clusters, thus compromising accuracy further. 

2.9 CatBoost

Information about CatBoost is obtained from CatBoost’s documentation [18] unless 
otherwise stated. Recommended (and default) parameters differs depending on CPU or
GPU is used for training computation. In this essay we use CPU on training for all 
boosting methods, however it should be noted that CatBoost might have performed 
differently if GPU was used.
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2.9.1 Oblivious Splitting

CatBoost does not perform splitting with regards to individual nodes, instead CatBoost
performs splitting with regards to entire levels in a tree, also CatBoost does not use any
parameter similar to . The splitting criteria (9) therefor has to be rewritten as:

Where  is some level. Oblivious splitting is shown in tree format in Figure 7 at the 
end of this section.

The CatBoost developers argues that oblivious splitting reduces variance since it uses 
the entire data set for each split, and not just local information, the idea is that if a split 
can achieve a low score by the splitting criteria only locally at a few regions it is based 
on less instances and hence it will be more likely to be based on noise. Also the trees 
will be balanced in the sense that there will be no shallow nodes, all estimates will be 
based on an equal amount of splits. Since bias will be increased due to the inability of 
oblivious splitting to capture local information it is difficult to predict whether 
oblivious splitting will increase or decrease accuracy compared to level-wise or leaf-
wise splitting. There are however some empirical evidence that the net effect on 
accuracy is positive, Lou et al. [17] finds that oblivious splitting achieves higher 
accuracy than level-wise splitting in five different data sets, an empirical bias-variance 
analysis is also provided which confirms that oblivious splitting causes higher bias, but
also that variance is reduced more than bias is increased hence achieving a more 
favorable bias-variance trade-off. Similarly Ferov Modrý [7] find that oblivious 
splitting outperforms level-wise splitting when used for document retrieval for search 
engines. To the best of our knowledge there has been no empirical and comparative 
studies between oblivious splitting and leaf-wife splitting. 

While it may be obvious that computation cost per tree level is lower when we only 
conduct one split per level, it is less obvious how oblivious splitting affects 
computation cost overall since we will likely need a deeper tree to achieve the same 
accuracy. 
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Figure 7: CatBoost’s splitting order with some example values. The node with green 
framing is the active node in evaluation, frameless nodes has already been evaluated, 
while yellow-framed nodes have not yet been evaluated. All nodes that are on the same
level in the tree has the same sorting criteria.

2.9.2 Ordered Target Statistics For Grouping of Categorical Features

To circumvent the target leakage caused by naive target statistics CatBoost creates 
random permutations  of the instances in the data set. Each instance  is now 
assigned an individual target statistics using the instances prior to instance  in a 
permutation such that  and:

          

Where  is a constant between zero and one and  is a prior belief ( ). Since the 
estimation of  suffers for high variance (especially for instances  which have a 
low ), CatBoost sets  and uses the average of the three estimates from the 
three permutations to get the final predictions . By using these target statistics 
CatBoost avoids conditional shifts and in contrast to LightGBM, CatBoosts categorical
treatment achieves:

Therefore we expect that CatBoost can achieve a higher accuracy also for data sets 
with categorical features that has high cardinality. 

Using  computation cost for updating  will be  (compared to  for 
LightGBM). However these statistics only need to be computed once before building 
each tree, remember that in LightGBM categorical target statistics needs to computed 
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at every node. CatBoost however does not cluster categories which brings computation
cost up again, in this sense perhaps one can say that CatBoost trades its newfound 
efficiency for accuracy instead of speed. The reasons for expecting higher accuracy 
with CatBoost when categorical features with high cardinality features is present is 
therefore twofold, CatBoost handling of categorical features does not cause a 
conditional shift and it does not rely on clustering. 
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2.10 Summary of Expectations

Table 1: Summary of expected effects

Feature XGBoost LightGBM CatBoost Expected effect

Level-wise
splitting

Yes No No Lower accuracy

Leaf-wise splitting No Yes No  Improved accuracy

Oblivious splitting No No Yes Improved accuracy

Weighted Quantile
Scetch

Yes No No
Better cost-

accuracy trade-off

Column blocks for
parallel learning

Yes Yes Yes Decreased cost

Exclusive Feature
Bundling

No Yes No
Decreased cost for
high cardinal OHE

cat. features 

Gradient-Based
One-Side
Sampling

No Yes No
Decreased accuracy

for smaller N,
decreased cost

Untreated (OHE)
categorical

features
Yes No No

 Inaccurate for cat.
features (esp. high

cardinality)

Naive target
statistics for cat.

features
No Yes No

Inaccurate for cat.
features (esp. high

cardinality)

Ordered target
statistics for cat.

features
No No Yes

Accurate for cat.
features (esp. high

cardinality)
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To summarize the summation, we expect that CatBoost’s relative accuracy will 
increase when the proportion of categorical features increases or when the cardinality 
of these are increased. Overall accuracy is difficult to predict since LightGBM and 
CatBoost likely has splitting methods in their favor, while XGBoost might benefit from
weighted quantile sketch.

When comparing components we expect that gradient-based one-side sampling will 
decrease LightGBM’s accuracy for small , and decrease training time for all . We 
also expect that exclusive feature bundling will decrease LightGBM’s training time 
when using one-hot encoding for categorical features of high cardinality. We expect 
leaf-wise splitting to achieve a higher accuracy than level-wise splittng, we will not 
test oblivious splitting as its comparative performance has been well studied.  
Weighted quantile sketch will likely give a better trade-off between accuracy and 
computation cost than basic histogram search. Finally we expect ordered target 
statistics to achieve a higher accuracy than one-hot encoding for scenarios with 
categorical features, we expect this effect to especially strong for features of high 
cardinality. The effect of naive target statistics is more difficult to predict as it trades 
the inaccuracy stemming from one-hot encoding to inaccuracy stemming from 
condition shifts. Albeit for different reasons computation cost is expected to be 
increased for all three methods when categorical variables (esp. high cardinality) are 
introduced. 

3. Simulation Setup

Since this will be the first simulation study comparing these boosting methods based 
on the given variations in data characteristics we will use logistic regression models 
where the continuous features will be normally distributed, this is a common 
simulation setting. It is important to note however that results might differ depending 
on what settings are used, hence results and conclusions from this study can not 
necessarily be generalized to other settings. To fully map the relationship between 
these three boosting methods and performance with regards to categorical features and 
number of observations more simulation studies are needed, “Simulation studies reveal
points of light on a landscape, but can not illuminate the entire landscape”-Patrick 
Royston. 

In an attempt to increase the external validity somewhat we will use several iterations 
of all our simulation models, letting all random elements be regenerated for each 
iteration and then use averages of all iterations as final results. In this manner we are 
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less prone to use for example some beta coefficients that happens to favor or disfavor a
certain boosting method or some combination of boosting method and data 
characteristics. 

We will simulate 300 data sets using logistic regression models in a  
setting by 20 iterations. For each iteration data sets will vary with respect to number of 
categorical features, number of instances and finally we will simulate four variations of
data sets with sparse categorical features. Continuous feature values  will be 

simulated from a -distribution for each instance  and feature , coefficients  
for continuous features will be generated using the continuous uniform distribution

, these coefficients are generated once before simulation and will be used for 

all data sets in that iteration. Categorical feature values  will be drawn from a 
categorical distribution with five categories, probability of instance  belonging to 

category  will be generated using probabilities , we will let the 

coefficients for categorical variables be  -distributed where  denotes 
categorical feature, and  category. Sparse categorical feature values  will be 

generated similarly using  and  with coefficients

 for  and  for . After all features has been generated for an instance, a 
label variable (0 or 1) will be assigned to the instance, the probabilities of these will be 
given by the model equation itself.  For the first three models we will create data sets 
of sizes ,  and , while data sets BS and CS will 
simulated using only  and . For  as  and  as  we 
have the model equations:

A

B

C
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BS

CS

4. Modeling

4.1 Hyperparameters

XGBoost, LightGBM and CatBoost share most of their hyperparameters, in total there 
is more than onehundred hyperparameters for each of these boosting methods, however
most of these hyperparameters are rarely used for parameter tuning. In this section we 
will cover some hyperparameters that is commonly part of hyperparameter 
optimization processes or whose values are often chosen to be something other than 
default values. How we use the parameters in this essay will be given within 
parentheses where BHO will denote that the parameter will be part of the Bayesian 
hyperparamer optimization (see the next section). Our three boosting methods uses 
different names for these hyperparameters, we will use the XGBoost names. All 
hyperparameters used to control overfitting can also cause underfitting if values are not
balanced, this will not be explicitly stated.

N  um  ber of  _estimators (BHO)  

Determines number of trees for the model, lower values prevents overfitting as every 
tree that is added reduces the sum of residuals for instances and hence captures the 
training data in more detail. 

Eta (BHO)

Determines learning rate, low values makes the model less prone to overfitting by 
shrinking the weights on each step. 
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M  in  imum   child weight   (=  1  )  

Determines the minimum sum of weights of all instances required in new nodes 
resulting from a split.  High values prevents overfitting as leafs with a low sum of 
weights might be very specific to the training data. 

M  ax  imum   depth   (BHO)  

Determines maximum depth of trees. Low values prevents overfitting as this prevents 
the tree to grow deep and capture the training data in too much detail.

Mi  nimum   s  plit gain   (BHO for XGBoost and LightGBM)  

Makes the node splitting more conservative by subtracting a regularization term from 
the splitting critera, it is represented by  in (9). This prevents overfitting as only splits 
with a higher gain will be conducted. Catboost does nat have this parameter. 

C  olsample_by_tree (BHO)  

Determines the fraction of features(columns) to be randomly selected for each tree.

Lambda (BHO for CatBoost, =1 for XGBoost and LightGBM)

Adds the regularisation term   to the denominators to all three gain ratios in (9). Since
 will have the same value for all nodes, nodes with fewer instances will likely be 

affected more. 

4.2 Bayesian Hyperparameter Optimization

We will leave parts of the proof of Bayesian hyperparameter optimization (BHO) to 
other papers, as a full proof would likely require all too many pages [23].

BHO makes use of a probabilistic model which maps sets of hyperparameters to 
probabilities of score intervals using a surrogate function. 

Using XGBoost and data set  (the first data set generated from simulation 
model ) as an example, we have that the hyperparameters that we will use in the 
BHO is number of estimators, eta, maximum tree depth, minimum split gain and 
column sample by tree, these have respective domains , , , , and  
where domain values are given by Table 2. The hyperparameter space for XGBoost is 
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now given by . Let  denote XGBoost 

with some combination of hyperparameters . Let  denote the 
AUC score that  achieves on validation data set  using data set  for training. 
The hyperparameter optimization problem using tenfold cross-validation is then to 
maximize the blackbox function:

In order to maximize this function by BHO we first introduce two theorems. 

Theorem 1

The joint probability density of the multivariate normal (Gaussian) distribution is 
given by:

          (11)   

Here  is a mean vector of length ,  is a symmetric positive definite covariance 
matrix with dimension . With the shorthand notation  we can 
write the jointly normal random vectors  and  as:

Using these notations the marginal distribution of  and the conditional distribution 
of  given  will be given by:

and:

which can be written as:

                 (12)
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Proof of this theorem can be found for example at section 9.3 in von Mises 1964 [28]. 

Theorem 2

Using the notations from theorem 1, the product of two normal distributions with mean
vectors and covariance matrices  is given by:

                       (13)

Where:

,  and:

(Equation 14)

Equation 14 can be proven by inserting (11) and (13) into (12) and verifying equality. 

To construct the prior distribution we first chose a mean function  from which we
can make a mean vector by evaluating different hyperparameter combinations . 
Similarly we obtain a covariance matrix by evaluating each pair of points  and by 

a covariance function . The resulting prior distribution on
 will now be given by:

(15)

Here  denotes , ,
 and

. 

After observing  for some , we can now infer the value  at some not yet 
evaluated point . With  and  the prior over  is given 
by (15). By Bayes theorem the posterior distribution will be obtained from:
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Where  is a normalizing constant (see page 19 in Rasmussen and Williams[28] 
for details). By theorem 1 and 2 we can write  as:

                 

Where  and

. 

To find the next evaluation point an acquisition function is used, all possible  will be 
evaluated by the acquisition function and the  with highest score will be the next 
evaluation point. After this point has been found and evaluated it will be added to ,
hence updating the posterior distribution, the process is then repeated with the updated 
posterior. In our case we will use the expected improvement as acquisition function, 

we will set its exploration parameter to the recommended value  and it can then be 

written as:

    

Here  is the highest AUC score observed so far,  and  represents the 
cumulative and probability density functions for the normal distribution, finally  is 
given by:

We have chosen expected improvement as acquisition function because in contrast to 
measures of the probability of improvement it takes the magnitude of the potential 
improvement into account, it does so by letting the standard deviation of a point have a
large influence on the score, in this manner regions of  where there is much 
uncertainty gets a higher priority, if we were to use  probability of improvement it is 
likely that the process will stuck in already well explored regions. 

The mean function  will be set to zero (without any loss in generality [22]). As 

covariance function  we will use the Matérn  kernel:
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Here  denotes the characterics lentgh and is given by n-th root of the volume of , 
where n is the dimension of .  represents the Euclidean distance:

                                              

The Matérn  kernel is a commonly used as covariance function when optimizing 

gradient boost hyperparameters. The Matérn kernel is a generalization of the normal 
radial basis function, where in turn the normal radial basis function can be described as
a method to measure similarity between points in normal distributions. 

4.3 Hyperparameter tuning

The parameter tuning will be done using bayesian hyperparameter optimization(BHO),
this method has proven to be more efficient regarding time and accuracy than grid 
search and random search [21]. The effectiveness of BHO will help us to ensure that 
every model will be represented with at least close to optimal settings. 

Another reason for using BHO is that it relies less on its parameters than grid search or
random search to find accurate models. Similarly to grid search and random search 
BHO also relies on a limited parameter space as input, however due to the 
effectiveness of BHO the parameter space can be chosen to be very large and thus in 
our case it would be very unlikely that the optimal combination of parameters would 
exist outside of the chosen parameter space.

More specifically we will use the BayesianOptimazation[8] library with a Gaussian 

process using 8 random starting points, 10 iterations and a Matérn -kernel which is 

often considered a standard choice [16].

In the selection of hyperparameter used in BHO we take insperation from Anghel et al. 
[1]. However we will make one important deviation, Anghel et al. chooses to not 
include the hyperparameter minimum split gain in their optimization, possible in an 
attempt to standardize the optimization process as CatBoost lacks this hyperparamer. It
is our notion however that in the optimization search for XGBoost and LightGBM 
including minimum split gain is a popular choice, our testing confirms that replacing 

     38



the lambda hyperparameter with minimum split gain in the BHO improves accuracy, 
we are therefore using this regularization parameter instead of lambda for XGBoost 
and LightGBM. In our opinion a fair comparison can not be made excluding crucial 
hyperparameters, if XGBoost and LightGBM’s performance is positively affected by 
the use of minimum split gain instead of lambda this highlights an important strength 
in hyperparameter options whose effect should ideally be included in the overall 
results. Also since we do not rely on quite as strong hardware (and therefore use fewer 
BHO iterations) we will reduce the search span for lambda and minimum split gain, it 
is unlikely that an optimal combination would exist outside this search span even in 
our reduced form. 

The hyperparameter space explored by BHO is shown in the table below.

Table 2: Hyperparameter space for BHO

Method No. of 
estimators

Maximum 
tree depth

Lambda Minimum 
split gain

Eta Colsample 
by tree

XGBoost [16,1000] [2,14] 1 [0,10] [0.01,1] [0.01,1]

LightGBM [16,1000] [2,14] 1 [0,10] [0.01,1] [0.01,1]

CatBoost [16,1000] [2,14] [0,10] – [0.01,1] [0.01,1]

All models are evaluated using 10-fold cross-validation.

5. Evaluation

5.1 Evaluation Metrics

Area under the curve (AUC)

To measure accuracy we will use AUC, AUC measures the probability that a randomly 
chosen instance with label value one will be ranked higher (assigned a higher 
probability of being an instance with label value 1one) than a randomly chosen 
instance with label value zero. 
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With  as the set of instances with actual label value equal to zero and  as it’s 
converse, AUC can be expressed as:

Here  is some set of instances which all have been classified by some classification 
method as either one or zero. 

Training time

We will measure computation cost in form of training time, this will include 
hyperparameter search and  cross-validation.

5.2 Cross-Validation

For our evaluation metric , label vector  and estimated label vector  we have 
the expected test error , cross-validation is a resampling procedure used
to estimate this error. The procedure starts by randomly assigning the data sample into

 folds of roughly equal size. Successively each of these folds will be used as a 
validation set while remaining sets will be used as training sets, the procedure goes on 
until all folds have been used as a validation set. Let  be the total number of 
instances, then for each  and each  where  is all folds except  the expected test 
error will be calculated as:

Where  is the estimation of  when  has been used as training set. Finally, the 

cross-validation score is calculated as:

The cross-validation estimates will depend on how we choose the parameter . By 
choosing a  that is large relative to  we get a test error estimate that has a low bias, 
however since the  training sets will be more similar to each other we will instead be 
more prone to higher variance, that is the estimates themselves will be inaccurate when
applied to new data. We will choose  to balance between these effects.
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6. Results

6.1 AUC

Table 3: AUC score in descending order for each method and scenario

AUC A B C

N=1000

CatBoost:   
 0.92915 (0.0211)

LightGBM-GOSS:  
0.91004 (0.0243)

XGBoost: 
0.90534 (0.0256)

LightGBM-GBDT:
0.90186 (0.01994)

CatBoost: 
0.93241 (0.0228)

LightGBM-GBDT:
0.89512 (0.0371)

XGBoost: 
0.89259 (0.025)

LightGBM-GOSS: 
0.87462 (0.035)

CatBoost: 
0.94156 (0.0202)

XGBoost: 
0.90493 (0.038)

LightGBM-GBDT:
0.8978 (0.0358)

LightGBM-GOSS: 
0.85848 (0.0488)

N=10.000

CatBoost: 
0.97344 (0.0034)

XGBoost: 
0.9692 (0.0047)

LightGBM-GOSS: 
0.96278 (0.0093)

LightGBM-GBDT:

0.96006 (0.0073)

CatBoost: 
0.97267 (0.0054)

XGBoost: 
0.97105 (0.0036)

LightGBM-GOSS:
0.96239 (0.0099)

LightGBM-GBDT:
0.95976 (0.0084)

CatBoost: 
0.97906 (0.0063)

XGBoost: 
0.97335 (0.0089)

LightGBM-GOSS:
 0.96988 (0.0087)

LightGBM-GBDT:
0.9678 (0.0109)

N=100.000

CatBoost: 
0.98923 (0.0019)

XGBoost: 
0.98897 (0.0016)

LightGBM-GBDT:
0.98116 (0.0089)

LightGBM-GOSS: 
0.9786 (0.0069)

XGBoost:
 0.98966 (0.0015)

CatBoost: 
0.98922 (0.002)

LightGBM-GOSS:
 0.98136 (0.0064)

LightGBM-GBDT:
0.98016 (0.0046)

CatBoost: 
0.99193 (0.0017)

XGBoost: 
0.99067 (0.0032)

LightGBM-GBDT:
0.97906 (0.0208)

LightGBM-GOSS: 
0.97632 (0.0141)

Number of categorical features increases when moving from left to right in the table, number of
instances increases when moving from the top to the bottom.
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Table 4: AUC score in descending order for high cardinality scenarios. The B
scenario is showed for comperative purposes.

AUC B BS CS

N=1000

CatBoost: 
0.93241 (0.0228)

LightGBM-GBDT:
0.89512 (0.0371)

XGBoost: 
0.89259 (0.025)

LightGBM-GOSS: 
0.87462 (0.035)

CatBoost: 
0.8045 (0.0149)

XGBoost: 
0.68437 (0.059)

CatBoost(OHE): 
0.62138 (0.0427)

LightGBM-GOSS(OHE): 
0.59336 (0.0474)

LightGBM-GOSS(OHE)
No EFB: 

0.59275 (0.0512)
LightGBM-GBDT:

0.53618 (0.0456)
LightGBM-GOSS: 

0.50543 (0.0245)

CatBoost: 
0.80374 (0.022)

XGBoost: 
0.68003 (0.0602)
CatBoost(OHE): 
0.59208 (0.0381)

LightGBM-GOSS(OHE)
No EFB: 

0.58375 (0.0483)
LightGBM-GOSS(OHE):

0.57871 (0.0423)
LightGBM-GBDT:

0.53009 (0.0411)
LightGBM-GOSS: 

0.52332 (0.0347)

N=100.000

XGBoost:
 0.98966 (0.0015)

CatBoost: 
0.98922 (0.002)

LightGBM-GOSS:
 0.98136 (0.0064)

LightGBM-GBDT:
0.98016 (0.0046)

LightGBM-GBDT:
0.98331 (0.0039)

LightGBM-GOSS: 
0.98151 (0.0058)

CatBoost: 
0.98093 (0.002)

XGBoost: 
0.97574 (0.0041)
CatBoost(OHE):
 0.9732 (0.0036)

LightGBM-GOSS(OHE):
0.96323(0.0081)

LightGBM-GOSS(OHE)
No EFB: 

0.96179 (0.0061)

LightGBM-GOSS: 
0.99008 (0.0021)

CatBoost: 
0.98851 (0.0037)

LightGBM-GBDT:
0.98818 (0.0038)

XGBoost: 
0.98396 (0.0027)

LightGBM-GOSS(OHE):
0.97964 (0.0072)
CatBoost(OHE): 
0.97788 (0.0059)

LightGBM-GOSS(OHE)
No EFB: 

0.97683 (0.012)

Number of categorical features of high cardinality increases when moving from left to right in
the table, number of instances increases when moving from the top to the bottom. OHE

represents one-hot encoding, EFB represents exclusive feature bundling
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6.2 Training Time

Table 5: Training time in seconds, in ascending order for each method and
scenario

Training Time A B C

N=1000

XGBoost: 
16.5

LightGBM-GOSS:
 58.1

LightGBM-GBDT:
65.5

CatBoost: 
152.5

XGBoost: 
17.5

LightGBM-GOSS: 
49.2

LightGBM-GBDT:
53.7

CatBoost: 
355.4

XGBoost: 
14.1

LightGBM-GOSS:
 46.4

LightGBM-GBDT:
52

CatBoost: 
422.2

N=10.000

XGBoost: 
58.86

LightGBM-GOSS: 
63.8

LightGBM-GBDT:
101.9

CatBoost: 
183.2

XGBoost: 
54.5

LightGBM-GOSS:
 61.8

LightGBM-GBDT:
93.3

CatBoost: 
289.5

XGBoost: 
51.1

LightGBM-GOSS:
 58.1

LightGBM-GBDT:
92.4

CatBoost: 
366.8

N=100.000

LightGBM-GOSS:
 209

LightGBM-GBDT:
333.4

CatBoost: 
547

XGBoost: 
644

LightGBM-GOSS:
 223.7

LightGBM-GBDT:
335.2

XGBoost: 
588.1

CatBoost: 
1165.5

LightGBM-GOSS:
 198.2

LightGBM-GBDT:
282.7

XGBoost: 
451.9

CatBoost: 
1195.1

Number of categorical features increases when moving from left to right in the table, number of
instances increases when moving from the top to the bottom.
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Table 6: Average training time in seconds, in ascending order for high
cardinality scenarios. The B scenario is showed for comperative purposes.

 Training Time B BS CS

N=1000

XGBoost: 
17.5

LightGBM-GOSS: 
49.2

LightGBM-GBDT:
53.7

CatBoost: 
355.4

LightGBM-GOSS: 
16.4

XGBoost: 
19.5

LightGBM-GOSS(OHE):
22.1

LightGBM-GOSS(OHE)
No EFB: 

34.5
CatBoost(OHE): 

45.2
LightGBM-GBDT:

61.4
CatBoost: 

291

LightGBM-GOSS: 
11.5

LightGBM-GOSS(OHE):
14.1

XGBoost: 
18.7

LightGBM-GOSS(OHE)
No EFB: 

34.3
CatBoost(OHE): 

39.5
LightGBM-GBDT:

54.4
CatBoost: 

377.2

N=100.000

LightGBM-GOSS:
 223.7

LightGBM-GBDT:
335.2

XGBoost: 
588.1

CatBoost: 
1165.5

LightGBM-GOSS: 
273.5

LightGBM-GOSS(OHE):
276.4

LightGBM-GBDT:
317.5

LightGBM-GOSS(OHE)
No EFB: 

342.6
CatBoost(OHE): 

369.3
XGBoost: 

711.8
CatBoost: 

1741

LightGBM-GOSS(OHE):
272.5

LightGBM-GOSS: 
303.7

LightGBM-GBDT:
323.8

CatBoost(OHE): 
338.3

LightGBM-GOSS(OHE)
No EFB: 

361.8
XGBoost: 

727.2
CatBoost: 

1893.9

Number of categorical features of high cardinality increases when moving from left to right in
the table, number of instances increases when moving from the top to the bottom. OHE

represents one-hot encoding, EFB represents exclusive feature bundling
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7. Discussion

7.1 Number of instances

For all scenarios in table 3 where  CatBoost is the most accurate followed by
XGBoost, the difference in accuracy between CatBoost and XGBoost decreases when

 is increased to . Finally for scenarios where  the AUC score for 
CatBoost and XGBoost are close to identical, hence CatBoost seems to benefit from 
smaller  while XGBoost benefits, or at least its disadvantage diminishes for larger .
Similarly LightGBM-GBDT and XGBoost have similar accuracy for low , but 
XGBoost has a higher accuracy for higher .

LightGBM is less accurate than CatBoost for all scenarios in Table 3. At first glance it 
might appear that LightGBM’s disadvantage decreases when  becomes larger, 
although this is true when looking at absolute differences in accuracy, it is important to
note that the area above the curve decreases by a higher factor for LightGBM when  
is increasing. For example by moving from  to   in the B data
sets the area above the curve ( ) is reduced from  to  for 
LightGBM-GBDT which shows that an instance with label value 1 is less likely to be 
ranked lower than an instance with label value 0 by a factor of  in the second 
case when compared to the first. The corresponding number for CatBoost is  in 
this case. This is important to note since the reason why LightGBM catches up with 
CatBoost might be that CatBoost has an accuracy closer to 1 already for lower , and 
hence its accuracy cannot be improved as much in absolute terms, for this reason we 
cannot draw the conclusion that LightGBM could be more suitable for larger data sets 
based in our results. 

Comparing XGBoost and LightGBM we can see that accuracy is simillar for
 but that this similarity disappears for higher  in favor of XGBoost. 

7.2 Low Cardinality Categorical features

By comparing the A column to the B column and then B to C in Table 3, we can see 
that introduction of categorical features seems to have benefited XGBoost and 
CatBoost the most in most cases. We expected CatBoost to perform well with 
categorical features, XGBoost’s increase in performance was less expected. Possibly 
the limitation of one-hot encoding to only being able of sorting one category at the 
time helps avoid overfitting for low cardinality categorical features, although this has 
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been poorly researched in the academia there is some empirical evidence that one-hot 
encoding performs well for low cardinality categorical features[28]. 

We expected that LightGBM-GOSS would be less accurate than LightGBM-GBDT for
small . This seems to be true only when categorical features are involved, perhaps 
because the amount of instances in each category will be low when using gradien-
based one-side sampling in this cases. For higher  this difference in accuracy 
disappears. 

The most important aspect of Table 3 in terms of categorical features however is 
probably that exchanging continuous features to low cardinality categorical features 
does not seem to benefit one boosting method more than the other more than 
marginally. 

7.3 High Cardinality Categorical features

CatBoost had the highest accuracy in all scenarios that are included in Table 4 when
, and the differences in accuracy is large when compared to Table 3. This is 

followed by one-hot encoded models whom all have simillar accuracy between 
themselfs, LightGBM with naive target statistics is the least accurate, when gradient-
based one-side sampling is included LightGBM is hardly more accurate than pure 
guessing. For  XGBoost had a simillar accuracy to CatBoost when no 
categorical features of high cardinality was present, this is no longer the case when low
cardinality features are exchanged to high cardinality features as CatBoost is now 
considerably more accurate. LightGBM’s accuracy increases drastically when  
increases. When , LightGBM’s accuracy surpases XGBoost and is 
simillar to CatBoost. Considering that neither the results for  in table 3 or 
the results from table 4 when  would suggest that LightGBM’s accuracy for

 in table 4 would be similar to that of CatBoost this could be considered 
an interaction effect.

By comparing default CatBoost and LightGBM with by their one-hot encoded models 
it is evident that their ability (or inability for LightGBM when  is low) to handle high
cardinality categorical features stems from naive target statistics and ordered target 
statistics respectively. 
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7.4 CatBoost’s high overall accuracy

CatBoost achieves a high accuracy compared to XGBoost and LightGBM for all 
scenarios, the only scenarios where CatBoost is not the most accurate is the B, BS and 
CS scenarios for . However also in these cases CatBoost is close to being 
the most accurate. It seems likely that some of the fixed settings in this simulation 
study favors CatBoost, perhaps the low level of noise, low amount of features or the 
logistic regression as simulation model. This highlights the need for more simulation 
studies to test a larger variety of settings since CatBoost is not always the most 
accurate in all applications. 

7.5 LightGBM’s lower overall accuracy

After much search we found only one study [25] where LightGBM achieves a lower 
accuracy than XGBoost, to this background it seems likely that some of the fixed 
settings in this thesis was unfavorable for LightGBM. In this thesis LightGBM’s 
accuracy was higher only when  was large and categorical features of high 
cardinality was used, this advantage of LightGBM was lost however when using one-
hot encoding instead of naive target statistics, therefor it seems likely that LightGBM’s
naive target statistics causes the high accuracy in this case. This leaves us with the 
question of why XGBoost is more accurate when no categorical features of high 
cardinal is involved or when  is low.

XGBoost and LightGBM are similar methods, and to find the source of the difference 
in accuracy we will use default LightGBM components in XGBoost. We will run 
XGBoost with leaf-wise splitting to see if this can put accuracy closer to LightGBM. 
We will also use basic histogram search as is used in LightGBM, we  set number of 
bins to per feature to 255 which is default in LightGBM. To find where the difference 
in accuracy stems from we will run level-wise splitting with basic histogram search as 
well. We will also run XGBoost with exact search, that is to say without any 
approximations at all in the split finding to get a deeper understanding of the different 
histogram searches. As XGBoost does not use gradient-based one-side sampling, we 
will compare the results to that of LightGBM when used without gradient-based one-
side sampling.
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Table 7: Accuracy and training time for LightGBM components in XGBoost

AUC Training time

B

N=10.000

XGBoost: 
0.97106(0.0036)
XGBoost(exact):
0.96929(0.005)

XGBoost(hist-level-wise):
0.96668(0.0093)

XGBoost(hist-leaf-wise):
0.96637(0.0076)

LightGBM-GBDT:
0.95976 (0.0084)

XGBoost(hist-level-wise):
42.5

XGBoost(hist-leaf-wise):
44.9

XGBoost: 
54.5

XGBoost(exact):
63.3

LightGBM-GBDT:
93.3

There does not appear to be much difference between leaf-wise and level-wise splitting
in terms of accuracy, and the difference between the two is also insignificant. However,
basic histogram search decreased the accuracy for both level-wise and leaf-wise 
splitting, putting us closer to LightGBM’s accuracy. Weighed quantile sketch is 
therefore likely part of the explanation to the differences in accuracy.  Surprisingly 
weighed quantile sketch also outperformed exact split finding (although with a very 
slight margin). 

To our understanding we have at this point covered all aspects of the documentation 
papers of XGBoost and LightGBM that could be a likely explanation to the differences
in accuracy, but we were not able to find a complete answer to why their performance 
differ. Important parts of these algorithms often seems to be omitted from the 
documentation papers, in the case of LightGBM for example, leaf-wise splitting and 
naive target statistics were omitted, perhaps an explanation can be found in some other 
omitted component.

It should be noted however that the large differences in accuracy between LightGBM 
and the other two methods in this study is likely in part due to the low level of noise in 
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our data sets, noise is irreducible error and when it is included the proportion of error 
that stems from variance and bias will be smaller. 

7.6 Training Time

For all scenarios in Table 3 except A with  CatBoost was the slowest of 
our boosting methods. The difference between CatBoost and the other boosting 
methods becomes larger when number of categorical features increases, hence the 
categorical feature handling of CatBoost seems to come at a cost. XGBoost was the 
fastest for data sets with  or  but loses this advantage for all data
sets with  in favor off the LightGBM models. As expected LightGBM-
GOSS is faster than LightGBM-GBDT and this holds for all scenarios. 

LightGBM with exclusive feature bundling was faster than LightGBM without 
exclusive feature bundling for one-hot encoded high cardinality categorical features, 
although it is likely that LightGBM rarely is used with one-hot encoding when used in 
applications it also demonstrate an important strength in exclusive feature bundling to 
handle sparse data in general. By comparing CatBoost with its one-hot encoded 
counterpart in Table 3, it appears evident that the increase in training time that 
CatBoost experiences for categorical features is due to ordered target statistics. For 
naive target statistics and LightGBM this effect appears to be the opposite but weak. 

7.6.1 Oblivious splitting, tree depth and training time

The generaly long training time of CatBoost can possible be explained by high number
of nodes in the CatBoost trees, the average max tree depth for CatBoost is similar to 
XGBoost and LightGBM for most scenarios. However as discussed by Hancock et. al. 
[11] due to oblivious spitting, in CatBoost the number of nodes growths by  for each
level  added to the tree and therefore the amount of nodes is likely to increase more 
when max tree depth is increased. The number of splits that has to be conducted will 
not increase dramatically since CatBoost performs only one split per level, for this 
reason computation should not be increased more than that for XGBoost or 
LightGBM, instead Hancock et. al. [11] argues that the high number or nodes increases
memory usage dramatically. The slightly higher average values for maximum tree 
depth for CatBoost might also be explained by its rigorous splitting as the loss score 
will likely decrease less per level and more levels are needed to capture variation in 
data and reduce bias. The long training time might therefor stem from the combination 
of CatBoost’s sensitivity to the maximum tree depth parameter in terms of training 
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time and that seemingly its optimal configuration of hyperharameter includes a 
relatively high value for maximum tree depth. It is possible that CatBoost varying 
performance with regards to both accuracy and training time in previous studies is due 
to this relationship between oblivious splitting, tree depth and training time. Anghel et. 
al. [1] uses a time budget in their BHO instead of an iteration budget as in this thesis, 
they found that CatBoost’s accuracy is lower than the accuracy for both XGBoost and 
LightGBM, possibly the low accuracy can be explained by the amount of training time 
CatBoost needs for each iteration of the BHO at the area of the hyperparameter space 
where its most accurate configuration often seems to be. In studies that combine a large
hyperparameter space in the hyperparameter optimization without any time 
restrictions, the accuracy of CatBoost compared to that of XGBoost or LightGBM is 
often high[11]. The combined results of these earlier studies and this study indicates 
that when accuracy is the priority CatBoost with a large hyperparameter space in the 
hyperparameter optimization could be a good choice for a large variety of data sets. It 
is possible that CatBoost training time is reduced more than that of XGBoost or 
LightGBM when restricting values for the maximum depth parameter, if this will affect
CatBoost accuracy more than that of XGBoost or LightGBM could be a topic for 
future studies.  

8. Future Studies

More simulation studies are needed for a more complete understanding of XGBoost’s, 
LightGBM’s and CatBoost’s dependencies of different data characteristics. To what 
extent the findings of this study can be extended to other combinations of data 
characteristics must be explored by more simulation studies.  By experimenting with 
data characteristics such as missing data, non-linearity or dependencies between 
features more important clues to the varying performances of these boosting methods 
might be found. 

For a deeper understanding of these boosting methods it should also be possible to 
implement parts of one boosting method into another. We have been testing by turning 
off and on different boosting features in our methods to find the sources off the varying
results. More can be done in this area by for example implementing ordered target 
statistics in LightGBM for better handling of high cardinality categorical features, 
testing oblivious splitting in LightGBM or XGBoost, or perhaps testing CatBoost with 
gradient-based one-side sampling for increased speed. All this will however require 
some programming as the libraries do not offer these substitutions at the moment.  
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9. Conclusion 

We have compared accuracy and training time for XGBoost, LightGBM and CatBoost 
for different data characteristics. When the data sets have a high number of instances 
(100.000) and no categorical features of high cardinality, XGBoost and CatBoost 
achieved about the same accuracy. For data sets with a lower number of instances or 
with categorical features of high cardinality, CatBoost was the most accurate. 
Categorical features of low cardinality improved XGBoost’s (one-hot encoded) and 
CatBoost accuracy compared to LightGBM, although this effect was small. LightGBM
had the lowest accuracy for most scenarios, but for scenarios with high cardinality 
features and a high number of instances it outperformed XGBoost and had a similar 
accuracy to CatBoost. 

CatBoost had the longest training time for all cases tested in this thesis, with the only 
exception of the scenario which combined high number of instances (100.000) and no 
categorical features, here XGBoost was the slowest. CatBoost training time increased 
more then the other methods when categorical features was introduced, this effect was 
amplified if these categorical features was of high cardinality. XGBoost was faster than
LightGBM when the data sets was of size 1000 or 10.000, LightGBM was faster for 
data sets of size 100.000. The combination of long training time for data sets with 
categorical features and the absence of gain in relative accuracy when categorical 
features are added suggests that CatBoost should not be considered a go to solution for 
all data sets with many categorical features, especially not if training time is of 
importance, rather CatBoost gets an advantage only if these  categorical features are of 
high cardinality. If accuracy is the priority CatBoost might also be a good option for 
medium size and small data sets, also if these do not include any categorical features. 
LightGBM could only outperform XGBoost, and compete with CatBoost in terms of 
accuracy when data sets were large and included categorical features of high 
cardinality, for other scenarios it was considerably less accurate than XGBoost and 
CatBoost. LightGBM had a low training time however, especially for large data sets 
and especially when using gradient-based one-side sampling. XGBoost was faster and 
equally accurate as CatBoost for scenarios with a high number of instances and some 
degree of low cardinality categorical features.

To get a deeper understanding of the varying performances of these boosting methods 
we have been  running tests with and without different components. We found that 
gradient-based one-side sampling increased the speed for all scenarios, but accuracy 
was compromised for small data sets with categorical features. Exclusive feature 
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bundling increased speed when using one-hot encoding for categorical features of high 
cardinality. We found no significant difference in accuracy or training time between 
leaf-wise and level-wise splitting. The weighted quantile sketch implementation of 
histogram search outperformed basic histogram search in terms of accuracy. Naive 
target statistics increased accuracy for data sets with high cardinality categorical 
features and large number of instances when compared to one-hot encoding, the effect 
was the opposite however when number of instances was small, in both cases naive 
target statistics decreased training time. Ordered target statistics increased accuracy for 
all data sets with high cardinality categorical features, but training time was increased.

     52



10. Appendix

10.1 Software and hardware

We have used a computer with a Intel Core(TM) i5-4670K 3.40GHz CPU, NVIDIA 
GeForce GTX 1050 CPU and 16 GB of RAM.

Software versions used was:

XGBoost 1.3.1, LightGBM 3.1.1, CatBoost 0.24.1 and BayesOpt. 

10.2 Derivative of the Sigmoid function

For :

10.3 Derivation of splitting criteria and output function for XGBoost 
and LightGBM

With Taylor expansion for loss reduction approximation around , equation 
(8) will be rewritten as: 

                      

By removing constant terms with regards to  we get:

 (16)

We can rewrite the trees as their respective outputs as
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, where  to denotes leaf  for tree . Using that 

regions  are disjoint we can rewrite (16) as:

 

Expanding  and using that all term where  are zero gives us:

                  

Moving in the last sum gives:

                        (17)

Solving for  is now analogous to the solution for  in the gradient boost section, 
this will yield:

                                 (18)

Plugging optimal output function (18) into (17) yields similarity score:

     (19)

Equation (19) can be used to evaluate tree structures, by splitting up the region  in 
left, right and unsplit we can score each candidate split by:

                  (20)

Finally by plugging (5) and (6) into (20) we get the splitting criteria for the log loss:
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10.4 Derivation of asymptotic approximation error for gradient-
based one-side sampling

Let    denote the approximation error of gradient-based one-
side sampling when splitting by some feature at point .

let  and    denote approximate 

gradients.

We introduce Theorem 3 (the proof can be found in the supplementary materials of 
LightGBM).

T  heorem 3  

For probabilities at least  and  the approximation error will have the 
upper limit:

(21)

Where   and  . 

Theorem 3 provides us that the asymptotic approximation error will have upper limit:  

Under the assumption that splits will be balanced enough to fulfill conditions
 and    the approximation error will be dominated 

by  (the second term in (21)). Since  approaches zero

in  as  hence we expect that the bias stemming 

from the approximation error will be lower for large data sets, and as a consequence 
gradient-based one-side sampling will decrease accuracy but this effect will be smaller 
for large data sets than for small. 
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