
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Carving Out Borders and Searching for Roots Among
the Forest Kingdoms

Aron Södergren

Matematiska institutionen

Kandidatuppsats 2021:11
Matematisk statistik
Juni 2021

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2021:11

http://www.math.su.se

Carving Out Borders and Searching for Roots

Among the Forest Kingdoms

Aron Södergren∗

June 2021

Abstract

We compare the three tree-based gradient boosting methods XGBoost,
LightGBM and CatBoost for binary classification tasks. We compare
these by AUC scores and training time on data sets simulated from a
logistic regression model with varying number of instances, categorical
features and different degrees of cardinality in these categorical features.
We use Bayesian hyperparameter optimization for hyperparameter tun-
ing for all boosting methods and data sets. The goal of the study is
to bring some light to why the performance of these boosting methods
varies when they are applied to real-world data. This is of importance
since gradient boosting growths ever more popular for binary classifica-
tion tasks, but also because the relationship between the performance of
these methods and different data characteristics is poorly researched at the
moment. Furthermore we exchanged different components in the boost-
ing methods to identify which parts that cause the variation in results,
the goal here was to get a deeper understanding of how these methods
work. For simulation scenarios with a high number of instances (100.000)
and no categorical features of high cardinality, XGBoost and CatBoost
was more accurate than LightGBM. For scenarios with a lower number
of instances or with categorical features of high cardinality, CatBoost
proved the most accurate, however when both number of instances was
high and the cardinality of categorical features was high, LightGBM was
equally accurate to CatBoost. When comparing components we found
that gradient-based one-side sampling increased the speed for all scenar-
ios, but accuracy was compromised for small data sets with categorical
features. Exclusive feature bundling reduced training time when used
with one-hot encoded categorical features of high cardinality. We found
no significant difference in accuracy or training time between leaf-wise and
level-wise splitting. Weighted quantile sketch improved the accuracy of
histogram search. Naive target statistics increased accuracy for data sets
with high cardinality categorical features and large number of instances
when compared to one-hot encoding, this effect was reversed when num-
ber of instances was small, in both cases naive target statistics decreased
training time. Similarly, ordered target statistics increased accuracy for
all data sets with high cardinality categorical features, this however came
at the cost of higher training time.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-

mail: aron.s.sodergren@gmail.com. Supervisor: Taras Bodnar and Pieter Trapman.

Acknowledgments

This is a Bachelor’s thesis of 15 ECTS in Mathematical Statistics at the Department of
Mathematics at Stockholm University. I would like to thank my supervisors Taras
Bodnar and Pieter Trapman for their support and advice during the writing of this

thesis.

 3

Table of Contents

1 Introduction...8

1.1 Dictionary, Machine Learning – Statistics..9

2. Theoretical Framework..9

2.1 Machine learning classification methods..9

2.2 Bias-Variance Trade off...10

2.3 Computation Cost..12

2.4 Regression CART trees..12

2.4.1 Usage of regression trees for prediction..13

2.4.2 Growth of regression CART trees..13

2.5 Boosting...15

2.5.1 Forward Stagewise Additive Modeling...16

2.6 Gradient Boosting..16

2.7 XGBoost..18

2.7.1 Weighted Quantile Sketch..20

2.7.2 Column Block for Parallel Learning..21

2.7.3 XGBoost and Categorical Features..22

2.8 LightGBM...23

2.8.1 Leaf-Wise Tree Growth...23

2.8.2 Gradient-based One-Side Sampling...24

2.8.3 Exclusive Feature Bundling...26

 4

2.8.4 Naive Target Statistics For Grouping of Categorical Features........26

2.9 CatBoost..27

2.9.1 Oblivious Splitting...28

2.9.2 Ordered Target Statistics For Grouping of Categorical Features.....29

2.10 Summary of Expectations..31

3. Simulation Setup..32

4. Modeling..34

4.1 Hyperparameters..34

4.2 Bayesian Hyperparameter Optimization...35

4.3 Hyperparameter tuning..39

5. Evaluation...40

5.1 Evaluation Metrics...40

5.2 Cross-Validation..41

6. Results..42

6.1 AUC...42

6.2 Training Time..44

7. Discussion..46

7.1 Number of instances..46

7.2 Low Cardinality Categorical features..46

7.3 High Cardinality Categorical features...47

7.4 CatBoost’s high overall accuracy..48

 5

7.5 LightGBM’s lower overall accuracy...48

7.6 Training Time..50

7.6.1 Oblivious splitting, tree depth and training time.............................50

8. Future Studies...51

9. Conclusion..52

10. Appendix..54

10.1 Software and hardware..54

10.2 Derivative of the Sigmoid function...54

10.3 Derivation of splitting criteria and output function for XGBoost and
LightGBM...54

10.4 Derivation of asymptotic approximation error for gradient-based one-
side sampling...56

11. References..57

 6

1 Introduction

Modern binary tree-based boosting classification methods have proven to be the most
accurate binary classification methods to date in a multitude of applications [2],
ranging from email spam detection [3] to prediction of kidney disease or epileptic
seizure [24]. However no single tree-based boosting classifier ends up on top in all
applications, rather several studies show that the preferred method depends on the data
at hand, where for example CatBoost was shown to be the most accurate to predict
whether or not a person will click on an advertisement [3], but when predicting if a
flight will be delayed LightGBM proved the most accurate [20]. The evermore
widespread use of these classification methods justifies knowledge in how the tree-
based boosting classification methods performance depends on data characteristics,
which in turn hopefully can yield more detailed guidelines to the choice of method
given data, but it might also provide important information for developers. The
majority of research that have been conducted thus far has a pure empirical approach
where different tree-based boosting classification methods are applied to real-life data,
for the most part, these studies do not attempt to explain why the performance of these
methods vary concerning the data, but rather simply states a number of performance
metrics. There are exceptions however, Al Daoud [4] experiments with propotion of
missing data using a home credit data set and finds that LightGBM is more accurate
than XGBoost and CatBoost regardless of level of missing data, but also that the
difference between LightGBM and the other two is smaller when proportion of missing
data is high, possible giving a clue to the varying results of other studies. Dorogush et
al. [6] finds that Catboost achieves higher accuracy on eight data sets all with a high
propotion of categorical features. Anghel et al.[1] finds that training time is reduced
more for XGBoost when using GPU instead of CPU for computation.

To the best of our knowledge there has been no pure theoretical approaches to map the
relationships between these methods performances and data characteristics, possible
due to the complex and black-box nature of the methods. There has been a number
simulation studies that attempts to explore performance for different tree-based binary
classification methods for varying data characteristics, for example Hamza et al.[11]
demonstrates that random forest performance is less affected by noise than bagging
classifcation Trees or arcing boost. However neither of these studies include
LightGBM or CatBoost.

 7

By simulating data sets one can change the data sets in a predictable and controlled
way, hence it is possible to disentangle the relationship between the data characteristics
and performance. This thesis aims to expand the understanding of the relationships
between these methods performance and data characteristics further by simulating data
sets with varying numbers of categorical features, varying cardinality within these
categorical features and finally number of instances. These are easily identifiable data
characteristics in most data sets, if we can uncover how these data characteristics
affects relative performance for the three methods it might yield some useful
guidelines for users. For a deeper understanding of the causes of our results we will
also use these boosting methods with and without different components.

1.1 Dictionary, Machine Learning – Statistics

This is a short machine learning – statistics dictionary with terms that are central in this
essay.

instance – observation

feature – explanatory variable

target value – dependent variable

label – categorical dependent variable

2. Theoretical Framework

2.1 Machine learning classification methods

Machine learning techniques create models by applying iterative functions on data
without explicitly programmed instructions (this process is referred to as training). Let

 be a data set with instances, where and will denote explanatory variables
(features) and response variables (labels) for instance . Classification machine
learning techniques uses a subset of for training to create a function that maps
to labels that is . The aim of these methods is to find a function
(classifier) that as accurately as possible categorizes (classifies) instances when the
function is applied outside of the training data set, this is not necessarily the function

 8

that most accurately classify the training data itself (see the bias-variance trade-off
section).

To compare classifiers a second part of the data set is used as a validation data set .
The classifier will then take the feature values of the instances in the validation data set

 as input variables to produce estimated labels . Different accuracy measurements
can now be computed using estimated labels and the actual labels in the
validation data set. The remaining data will be used in a tests data set , used for an
unbiased evaluation of the final model.

2.2 Bias-Variance Trade off

Although we will compare classification methods in this essay, these methods use
likehood-based regression base learners as a sort committee to classify instances (we
will cover what this mean in more detail soon), throughout the essay we will discuss
how these base learner regressors can be affected by bias and variance. There has never
been any widely accepted strict definition of the bias-variance decomposition for
likehood-based estimators, in this thesis however we will use definitions from
Domingos (2000) [5] as these can be applied to the log-loss function, this is the loss
function used for all models in this thesis. We can write the log loss function as:

Where is the total number of instances in the data set. We can also write the loss
function with regards to only one instance:

This is the more simple representation that we will use for the rest of the essay. There
are three types of errors a regression model can suffer from, these are bias, variance
and noise. In machine learning the term bias is used to explain the inability of a model
to correctly fit the training data, that is to say, the model is inaccurate already after the
training stage. With the log loss as loss function we define bias as:

Here is the prediction that minimizes and

, where in turn denotes that the expectation is taken

 9

for all possible values of weighted by their probabilities and denotes that
expectations are taken with respect to the training data sets, that is with respect to the
predictions produced while training on data set . An example of a model that could
suffer from bias could be a linear regression model that has only linear terms and is
applied to a data set with a quadratic relationship between features and labels. Since
the model is not able to capture the relationship we call it underfit.

If a model’s performance is systematically reduced when applied to other data than the
training sets, the model suffers from variance error. Typically this occurs when a
model is highly fitted to the training set, capturing its characteristics in too much detail,
hence capturing too much of the noise in the training set. We define variance as (using
log loss):

An example of a model that might be prone to variance error could be a linear
regression model that applies terms making up a single variable fifth-degree
polynomial to capture the relationship between some feature values and its
corresponding target values in a training data set with only five instances. This model
would capture all of the variances in the model although much of it could be due to
omitted variables or noise. When this model is applied to other data than the training
set its estimation would suffer from error not only due to noise in the data set it is
applied to, but also due to the noise of the training data set that it carries with it, hence
it is said to be overfit. This trade-off between bias and variance in linear regression is
demonstrated in Figure 1 in the end of this section. Lastly, noise is unexplained
variation within a data sample and hence this error source is irreducible. Noise can be
written as:

When choosing or tuning machine learning models, usually a stage is reached where
the bias cannot be reduced without increasing the variance and vice versa. This is a
reoccurring pattern for machine learning models since the low bias more flexible
models use much local information to achieve low bias but low variance less flexible
models need to average over larger regions to not capture too much noise and achieve
their low variance.

Unmodified CART trees typically end up very close to the high variance side of the
bias-variance spectrum [9]. To balance the model's various node splitting stopping

 10

conditions have been introduced. Another common measure to balance the models is
pruning algorithms, these algorithms re-evaluate the branches of already grown trees
by some complexity penalty function that takes both purity gain and complexity of the
branches as input variables, and then removes the branch if some criterion is not met.

2.3 Computation Cost

For users of classification methods not only accuracy is of importance but also
computation costs. We will also see in the later parts of the theory section that tree-
based boosting methods compromises between accuracy and computation cost, it is
therefore important to take computation cost into account when comparing these
methods. More specifically we will consider time complexity in form of training time
(the time it takes to build the model) in this thesis. Time complexity is compared by the
number of required elementary operations to run an algorithm. Since worst case and
average case computational cost is generally hard to derive, in this essay we will make
use of the upper asymptotic bound when calculating computation cost, we denote this
with as . We will denote upper asymptotic bound for accuracy with to avoid
confusion.

2.4 Regression CART trees

Although classification gradient boost methods perform classification tasks, they do
not rely on classification trees (this is a common misconception). Instead, classification
gradient boost methods uses an aggregate score from regression trees to predict class.
How this works in detail will be explained in later sections of the thesis.

 11

Figure 1: The curve to the left captures too much of the noise in the data, which it will carry with it when
used for future predictions. The middle curve does not capture the relationships in the data, while the last
curve uses just enough local information to capture the relationship without capturing too much noise.

In its most formal sense CART trees works by recursive binary partitioning of the
training data feature space into disjunct regions where every partitioning is
parallel with a feature in the feature space. The partitioning of a region is based on the
minimization of a splitting criteria , which in turn is a function of target values and
predicted target values . When used for prediction, instances will be sorted by the
same parallels created using training data. Finally a prediction will be assigned to the
instances given by an output function which in turn is a function of the training
instances sorted to the region .

In this thesis we will use the far more commonly used terms associated with the tree
models intuitive structure of trees (hence the name). The rest of this section will give a
more detailed explanation of CART trees using this imaginary structure and its
associated terms.

2.4.1 Usage of regression trees for prediction

The subsequent binary splitting is based on only one feature at the time. The sorting
can be based on both continous or categorical features. In the case of continous values
an inequality is given such that or , (here denotes instance, a
specific feature and is constant). In the case of categorical features the sorting will
be based on if where is some categories all in feature . This sorting
process can be envisioned as a tree-shaped structure where the first sorting takes place
at the top of the tree (root node), depending on the procedure will continue down
the tree on the left or the right side. The next step can be either in the form of a leaf, in
which case a target value estimate will be assigned to the instance or in the form of a
node in which case the procedure will continue down the tree on the left or right side
of the node, again depending on the outcome. Eventually, the procedure reaches a leaf
and a final target value estimate will be assigned to the object.

2.4.2 Growth of regression CART trees

When a CART tree is created, for each node (starting at the root node) the split among
all possible univariate splits in which the two subsequent nodes will be the “purest” by
some impurity measure will be selected, or equivalently some splitting criteria will
be minimized with regards to the split options. A simple example of such splitting

criteria is the mean squared error , the boosting methods used in this thesis

uses a splitting criteria similar to the mean squared error which will be derived in the

 12

XGBoost section. In the case of continuous predictors, all possible split points will be
considered. Likewise, in the case of categorical features all possible combinations of
categories will be evaluated. In the creation of nodes sequential to the target node, the
splitting criteria will be minimized for the subset of the training data that corresponds
to the respective criteria of preceding nodes, in other words we are minimizing locally
such that:

where is possible split points in and denotes node (or region) that will occur to
the left of the node as a result of the split and will be its equivalent to the right.
When an optimal split has been found, a stopping condition check will be performed, if
the stopping conditions (see parameter section) are satisfied the split will be canceled
altogether and the node in question will instead become a leaf, this leaf will predict a
target value by some output function which in turn is a function of the instances that
has been assigned to the leaf. The output function used in the boosting methods in this
thesis will be derived from the definition of gradient boost in the gradient boost
section. Figure 2 and 3 below shows how decision trees splits the data set into subset
by the features in the data set. Figure 2 shows partitioning in the probability space
while Figure 3 shows partitioning in the tree representation.

 13

Figure 2: Partioning of the two-
dimenstional feature-space by
value a and b for feature 1 and
value c for feature 2.

Figure 3: Tree structure corresponding to partitions shown in Figure
1.

2.5 Boosting

Boosting methods are ensemble meta-algorithms that combine several weak learners to
create a strong learner. A weak learner in this context would be some model that
predicts dependent variables better than pure chance. The aim is then to construct,
using the weak learners, a strong learner that is more accurate than the weak learners
individually. The boosting methods used in this thesis uses CART trees of different
variations as weak learners and gives every CART tree a weighted say in a final
classification. In other words, these boosting methods fit an additive expansion in a set
of CART trees and this will be written as:

 (1)

Here denotes tree, will be the expansion coefficients, represents the basis
functions I.e CART trees where will be its parameters (i.e and , not to be
confused with hyperparameters).

Ideally, we would like to proceed by fitting equation (1) by choosing and theta to
minimize some loss function averaged over a training data set with instances (here
overfitting would be controlled by choosing appropriately). This minimization
problem could then be written on the form:

 (2)

However often this is a computationally costly task, instead, the boosting methods
covered in this thesis make use of forward stagewise additive modeling.

2.5.1 Forward Stagewise Additive Modeling

By using forward stagewise additive modeling it is often possible to find an
approximate solution to equation (2). Instead of solving (2), an FSAM approximate
solution to (2) starts by the computationally cheap problem of finding the most
accurate standalone CART tree. That is we will find:

 14

The following steps will be to add additional CART trees whose coefficients
 and parameters will be chosen so that the summed predictions of the two

CART trees will be as accurate as possible by some loss function. In other words the
parameters will depend on the previous CART trees () so that
however for the sake of simplicity we will still refer to the parameters as . Using these
notations the next steps will be to find:

 (3)

This process of adding new cart trees to the expansion will continue until some
predetermined is reached:

Where:

2.6 Gradient Boosting

Gradient Boost is a numerical method for optimizing the forward stagewise additive
modeling process. This method has similarities to the gradient descent method (hence
the name), they are both greedy methods that aim to minimize some loss criteria at
every step without taking other steps into account. Both methods achieve this in an
additive fashion, adding a term (in the gradient descent case) or a basis function
multiplied by a coefficient (in the FSAM case) to all previous terms or basis functions.
The basis functions in FSAM can therefore be considered analogous to the negative
gradients in gradient descent.

The FSAM minimize the loss function by adding a tree instead of the gradient
. Since the gradient is only defined at the training data

points , using would cause overfitting. Instead every tree we add
will use the current residuals for each instance as the dependent variable which we
want to predict, in this manner every new tree that we add will prioritize instances that
the previous trees has failed to categorize correctly, thus one can say that each added
tree compensate for the inaccuracy of previous trees. We can now derive an output
function and splitting criteria that optimizes this aim, however in this thesis we

will not derive as we will not use basic gradient boost, the boosting methods used

 15

in this thesis uses a splitting criteria which is derived similarly, the derivation of this
splitting criteria can be found in the XGBoost section. On the other hand is used
by all boosting methods in this thesis and will deviate only with regards to
regularization terms, for this reason it will derived here and we will denote it simply as

 in the remaining part of this thesis.

Since the weighted summarized prediction of all prior trees gives us our
predicted value, we will denote this in log odds form as , we will also introduce

 which is expressed in plain probability. For gradient boost binary

classifiers the most commonly used loss function is the log loss function, this is also
the only loss function used in this thesis. This loss function can be written as a function
of and :

We want every added tree to minimize the global loss function in (3) and hence we can
derive the output function by finding:

By removing the summation sign for clarity and by second order Taylor approximation
we get:

Now deriving the right hand side with respect to and setting the equation equal to
zero to find the minimum:

Finally solving for gives:

(equation 4)

 16

That is is the ratio of the negative gradient of the log loss function and the Hessian of
the log loss function. For the remaining part of the thesis we will denote this gradient
and the corresponding Hessian . To find the splitting criteria we must find and .

We have that and by the derivation of the Sigmoid function

in the appendix we find that . By using these derivations and the

chain rule we get:

(5)

Using the equations from the derivation of the gradient we can find the Hessian by:

(Equation 6)

Finally equation (4),(5) and (6) gives:

(7)

2.7 XGBoost

The theory in this section largely follows that of Chen & Guestrin (2016) [3]. XGBoost
is a gradient boost method, it differs from the basic gradient boost by that it adds a
complexity penalizing term to equation (3) to prevent overfitting. XGBoost also differs
from earlier gradient boost methods in its implementation, allowing it evaluate more
potential splits for the same computation cost. This will be covered in the end of this
section, however we will exclude XGBoost features that are not relevant to the topic of
this essay (handling of missing data, out of core computation etc.), instead we will
focus on aspects that may affect general performance or performance with regards to
categorical features or number of instances. Expected effects will be discussed in more
detail as we introduce the other boosting methods as we are interested in XGBoost
from a comparative perspective. Some XGBoost features will be covered in the

 17

parameter section since they depend on parameter selection but also because
LightGBM and CatBoost happens to share these parameter features.

For number of leaves in the tree and output in leaf (here is obtained by
applying local instances in), the complexity penalizing term can now be written as:

Where and are regularization terms. Equation (3) can now be rewritten as:

 (8)

In addition XGBoost makes use of Taylor expansions up to the second order gradient
to approximate loss reduction when evaluating candidate trees in the forward stagewise
additive modeling process, these approximate loss reductions are less computationally
costly as after the first order gradient and second order gradient has been
calculated loss reduction for all candidate trees can be calculated using only these
values multiplied with constants. In turn this enables XGBoost to include a larger
number of candidate trees without increasing computation cost. With Taylor expansion
for loss reduction approximation around , equation (8) will be rewritten as:

From this equation we can derive the optimal greedy splitting criteria (see the appendix
for this derivation):

(Equation 9)

Where the first term represents the similarity score of the left leaf created by the split,
the second term represents the right leaf in a similar matter and the third term represent
similarity score for the unsplit leaf resulting from not performing a split.

XGBoost (and LightGBM) uses (9) as splitting criteria, however if the value of the
equation is less than zero for all potential splits the split will not be conducted. Splits

 18

are conducted in level-wise order, this means that every level of the tree is finished
before starting a next level starting from the leftmost node, this is shown in Figure 4
below.

2.7.1 Weighted Quantile Sketch

The full description and proof of approximation errors and computation cost for
weighted quantile sketch would need several pages and will not be covered here since
there is no obvious reason to suspect that weighted quantile sketch would effect
performance with regards to any of the data characteristics that we study in this thesis.

For large data sets, it is often infeasible to evaluate all candidate split points. To reduce
computation cost XGBoost makes use of histogram-based split finding to reduce the
number candidate split points to be evaluated. This is done by a form of categorization
of continuous data, more specifically only a lower number of split points that will be
evenly distributed across the data will be evaluated and used as candidates.

More formally, for the multi-set where
denotes features and second order gradient of the instance we have the rank
function:

 19

Figure 4: XGBoost’s splitting order with some example values. The node with
green framing is the active node in evaluation, frameless nodes has already been
evaluated, while yellow-framed nodes have not yet been evaluated.

(10)

(10) gives the proportion of instances whose feature value is smaller than .

The quantile sketch method will create summaries (bins) of size where is a

parameter. A merge operation will be performed on these bins which gives
approximation error where and are approximation errors for
respective summary. Finally a prune operation reduces the number of elements in the
summeries to where is a parameter which further increases the approximation

error from to .

This method achieves that for each candidate split point such that for
an approximate factor :

The method described thus far was developed before the release of XGBoost. What is
unique for XGBoost however is that the method was adopted to handle weighted data
sets, which is a necessity when applying it to tree-based boosting ensemble methods as
instances are weighted by their residuals. This gave XGBoost an advantage as
histogram search could be used without compromising accuracy as much as in earlier
gradient boosting methods. The full description of this implementation can be found in
the appendix section of the XGBoost documentation.

2.7.2 Column Block for Parallel Learning

This section will be brief since all our three boosting methods happens to use column
blocks for parallel learning and thus it is of less interest from a comparative
perspective, it is however a core difference between our methods and earlier
generations of gradient boosting methods.

XGBoost stores data in in-memory units called blocks, one block per feature is created
and in each block, the instances will be sorted by the corresponding feature value. In
this manner, the data only need to be sorted once before training and can be reused in
all later iterations. Sorting the data based on feature values enables linear scanning for
finding optimal splits, this is a less computationally costly register allocation approach

 20

than those used by older tree-based boosting methods. Besides, XGBoost performs
split finding of all leaves collectively, hence after a single scan over a block’s
similarity scores with regards to the corresponding feature will be calculated for all
possible splits in the tree rather than at a single potential split.

2.7.3 XGBoost and Categorical Features

At it’s core a computer relies on binary code, this means that all operations we want a
computer to perform must be expressed in zeros and ones. The most common way to
encode categorical features in statistical software is by one-hot encoding, by one-hot
encoding every category in a categorical feature will be treated as an independent
categorical feature . Instances will then have the value one for the categorical
feature that responds to the category it belonged to in the original categorical feature

, for all other categorical features stemming from the instance will have the
value zero. XGBoost does not distinguish these variables from other numerical
variables. The effect of this encoding will be that splits can be done only with regards
to one category at each node, this reduces potential split points, especially when the
categorical feature has high cardinality (many categories). Since node splitting is done
greedily potential combinations of categories within a categorical feature which may
have had the lowest score by the splitting criteria will not be evaluated (due to
regularization parameters), and accuracy will be compromised as a result. In addition,
computation cost is increased since there will be more features to search through,
computation cost can also be increased because of the depth that the tree must reach in
order to reach sufficient accuracy, this is demonstrated in Figure 5 in the end of this
section. Exactly how computation cost is effected is difficult to predict theoretically
since XGBoost ignores features which have not been used in splitting during previous
iterations.

There are alternative methods to encode categorical features (all problematic in it’s
own way), however one-hot encoding is the most commonly used [17], to demonstrate
XGBoost in it’s most common implementation we will therefore use one-hot encoding
for XGBoost’s categorical features in this essay. We will sometimes refer to one-hot
encoding as OHE.

 21

2.8 LightGBM

The theory in this section largely follows that of Ke et al. (2017) [13]. LightGBM
builds on the XGBoost method but does not use weighted quantile sketch and also
applies the following modifications.

2.8.1 Leaf-Wise Tree Growth

Rather than building the trees level-wise as XGBoost, LightGBM growths trees by
taking all available nodes into account and splits the one that reduces the loss function
the most, this is shown in Figure 6 at the end of this section. LightGBM does this by
minimizing the loss function globally instead of locally at each node. When no
parameters such as maximum depth for XGBoost or maximum leaves for LightGBM
are used and no pre-pruning is used, these two growth orders will evaluate the same
nodes for potential splitting only in a different order, and hence the two methods will
result in the same tree. However, when there are restrictions to tree size the growth
process might stop prematurely and therefore the two methods might yield different

 22

Figure 5: The tree has to be grown deep in order to sort out category a,b,c etc. from
one-hot encoded categorical feature C. The tree becomes more costly from a
computation perspective due to the depth, but it is also likely that tree won’t grow
this deep as sorting by a single category likely reduces the loss function less than
sorting many categories in one single step, categorical features will therefore have
a too low priority in the splitting process.

trees. In these cases, leaf-wise tree growth tends to result in less biased trees simply
because more potential splits will be considered to minimize the loss function.

2.8.2 Gradient-based One-Side Sampling

In order to reduce computation cost LightGBM trains on a randomly selected subset of
the training data for tree creation. This is done by sorting the instances by their
gradients and selecting the top of the data, and then selecting
instances randomly from the remaining part of the training data. In order to reduce the
alteration of the original data distribution the randomly selected instances

will all be multiplied by , this amplifies their influence to proportionally represent

the subset they were randomly selected from. In this essay we will use the default
values and .

By using gradient-based one-side sampling LightGBM growths trees on a smaller
number of instances while still making sure that the most undertrained
instances(highest gradient) will be present in this subset of the full training set.
Instances with large gradients have a larger influence in the splitting process, therefore

 23

Figure 6: LightGBM’s splitting order with some example values. The
node with green framing is the active node in evaluation, frameless
nodes has already been evaluated, while yellow-framed nodes have not
yet been evaluated. The tree will build new levels before previous levels
are finished if this leads to a larger decrease in the loss function.

by letting this part of the original data set be represented in full detail while the less
influential low gradient instances are represented by an approximate distribution
gradient-based one-side sampling achieves a favorable trade-off between accuracy and
computation cost.

When using gradient-based one-side sampling the splitting criteria (equation 13) must
be rewritten. By removing the unsplitt leaf, and for convenience, and let denote

some region, let denote the sums of all Hessians in region , let

denote splitting point by some feature value, equation (13) using gradient-based one-
side sampling can then be rewritten as:

Where the first term represents similarity score in the left node resulting from the split
and the second term represents it’s counterpart to the right. denotes the high gradient
subset and the randomly selected subset.

In the appendix we show that it is possible to derive that the approximation error
approaches zero as number of instances approaches infinity, hence we expect that the
bias stemming from the approximation error will be lower for large data sets.

We will use LightGBM both with and without gradient-based one-side sampling since
both configurations are popular, but also because we want to evaluate what effect this
component has on LightGBM. We will refer to LightGBM with gradient-based one-
side sampling as LightGBM-GOSS and LightGBM without gradient-based one-side
sampling as LightGBM-GBDT where GBDT stands for gradient based decision tree.

2.8.3 Exclusive Feature Bundling

In many applications a large number of the available feature values are sparse, this
means that most instances has the value zero for the specific feature. In addition many
of the sparse feature values tend to be mutually exclusive, when a number of features
are mutually exclusive no instance takes a non-zero value for more than one of these
features. In this essay we will not simulate any such sparse and mutually exclusive
features, however when categorical features of high cardinality (many categories) is
one-hot encoded it happens to result in mutually exclusive sparse features. For this

 24

reason Exclusive Feature Bundling might make LightGBM more suitable for one-hot
encoded categorical of features of high cardinality. Exclusive Feature Bundling works
by merging of exclusive features by first adding offsets to the feature values so that
values from different features ends up in different bins during the histogram search, for
example for features where takes values in the range and

takes values in the range an instance with will be assigned value
 in the merged feature column, while another instance with will be

assigned value etc.

Potential feature candidates for bundling are found by creating a list of all features
where they are sorted by their non-zero value count, the features will then be treated in
descending order where they will be merged with another feature or an already existing
bundle if the fraction of conflicting is lower than . How is determined is not stated
anywhere in LightGBM’s documentation. In cases where there is several bundling
options where the fraction of conflicting is lower than , the option with lowest
fraction of conflicts will be chosen.

The computation cost for histogram building is reduced with exclusive feature
bundling from to where and denotes number of
features and bundles respectively. We expect that exclusive feature bundling
contributes to faster computations for one-hot encoded categorical features when these
are of high cardinality, to test this component we will use LightGBM with and without
exclusive feature bundling when using one-hot encoded categorical features.

2.8.4 Naive Target Statistics For Grouping of Categorical Features

Treatment of categorical variables is omitted in the LightGBM documentation paper,
this section uses information from LightGBM’s official website [8] and second hand
information [12].

LightGBM attempts to solve the problematic relationship between categorical features
and one-hot encoding. It does so by sorting categories within categorical feature by:

That is each category is sorted by an approximation to the splitting critera itself,
summed over all instances in the category. A split can be performed based on these
estimated values. There is possible binary partitions among these values,

 25

however Fisher[8] finds that we only need to evaluate splitting points to find the
optimal split.

When splitting categories in this manner the LightGBM algoritm is not limited to
splitting with regards to only one category at the time, also since the optimal split is
found using a psuedo target value optimal split points is found much like in manually
computed gradient boost.

While the above solution might appear as perfect, it does introduce a new problem,
namely it causes target leakage. When we compute we are using which is the
target of , this leads to a conditional shift as differs for training and test data.
The inaccuracy due to the conditional shift is likely to be less severe when we have a
large number of instances in since the difference between and

 that is caused by noise is likely to be smaller due to the law of large
numbers, but also because the bias stemming from using to calculate will be
smaller since will make a smaller proportion of .

The computation cost for estimating all naive target statistics for all instances with
regards to one categorical feature is while finding the optimal split among these
target statistics costs [7]. These computations has to be made at every
node for every categorical feature. To overcome this high cost LightGBM groups
categorical features into clusters, thus compromising accuracy further.

2.9 CatBoost

Information about CatBoost is obtained from CatBoost’s documentation [18] unless
otherwise stated. Recommended (and default) parameters differs depending on CPU or
GPU is used for training computation. In this essay we use CPU on training for all
boosting methods, however it should be noted that CatBoost might have performed
differently if GPU was used.

 26

2.9.1 Oblivious Splitting

CatBoost does not perform splitting with regards to individual nodes, instead CatBoost
performs splitting with regards to entire levels in a tree, also CatBoost does not use any
parameter similar to . The splitting criteria (9) therefor has to be rewritten as:

Where is some level. Oblivious splitting is shown in tree format in Figure 7 at the
end of this section.

The CatBoost developers argues that oblivious splitting reduces variance since it uses
the entire data set for each split, and not just local information, the idea is that if a split
can achieve a low score by the splitting criteria only locally at a few regions it is based
on less instances and hence it will be more likely to be based on noise. Also the trees
will be balanced in the sense that there will be no shallow nodes, all estimates will be
based on an equal amount of splits. Since bias will be increased due to the inability of
oblivious splitting to capture local information it is difficult to predict whether
oblivious splitting will increase or decrease accuracy compared to level-wise or leaf-
wise splitting. There are however some empirical evidence that the net effect on
accuracy is positive, Lou et al. [17] finds that oblivious splitting achieves higher
accuracy than level-wise splitting in five different data sets, an empirical bias-variance
analysis is also provided which confirms that oblivious splitting causes higher bias, but
also that variance is reduced more than bias is increased hence achieving a more
favorable bias-variance trade-off. Similarly Ferov Modrý [7] find that oblivious
splitting outperforms level-wise splitting when used for document retrieval for search
engines. To the best of our knowledge there has been no empirical and comparative
studies between oblivious splitting and leaf-wife splitting.

While it may be obvious that computation cost per tree level is lower when we only
conduct one split per level, it is less obvious how oblivious splitting affects
computation cost overall since we will likely need a deeper tree to achieve the same
accuracy.

 27

Figure 7: CatBoost’s splitting order with some example values. The node with green
framing is the active node in evaluation, frameless nodes has already been evaluated,
while yellow-framed nodes have not yet been evaluated. All nodes that are on the same
level in the tree has the same sorting criteria.

2.9.2 Ordered Target Statistics For Grouping of Categorical Features

To circumvent the target leakage caused by naive target statistics CatBoost creates
random permutations of the instances in the data set. Each instance is now
assigned an individual target statistics using the instances prior to instance in a
permutation such that and:

Where is a constant between zero and one and is a prior belief (). Since the
estimation of suffers for high variance (especially for instances which have a
low), CatBoost sets and uses the average of the three estimates from the
three permutations to get the final predictions . By using these target statistics
CatBoost avoids conditional shifts and in contrast to LightGBM, CatBoosts categorical
treatment achieves:

Therefore we expect that CatBoost can achieve a higher accuracy also for data sets
with categorical features that has high cardinality.

Using computation cost for updating will be (compared to for
LightGBM). However these statistics only need to be computed once before building
each tree, remember that in LightGBM categorical target statistics needs to computed

 28

at every node. CatBoost however does not cluster categories which brings computation
cost up again, in this sense perhaps one can say that CatBoost trades its newfound
efficiency for accuracy instead of speed. The reasons for expecting higher accuracy
with CatBoost when categorical features with high cardinality features is present is
therefore twofold, CatBoost handling of categorical features does not cause a
conditional shift and it does not rely on clustering.

 29

2.10 Summary of Expectations

Table 1: Summary of expected effects

Feature XGBoost LightGBM CatBoost Expected effect

Level-wise
splitting

Yes No No Lower accuracy

Leaf-wise splitting No Yes No Improved accuracy

Oblivious splitting No No Yes Improved accuracy

Weighted Quantile
Scetch

Yes No No
Better cost-

accuracy trade-off

Column blocks for
parallel learning

Yes Yes Yes Decreased cost

Exclusive Feature
Bundling

No Yes No
Decreased cost for
high cardinal OHE

cat. features

Gradient-Based
One-Side
Sampling

No Yes No
Decreased accuracy

for smaller N,
decreased cost

Untreated (OHE)
categorical

features
Yes No No

 Inaccurate for cat.
features (esp. high

cardinality)

Naive target
statistics for cat.

features
No Yes No

Inaccurate for cat.
features (esp. high

cardinality)

Ordered target
statistics for cat.

features
No No Yes

Accurate for cat.
features (esp. high

cardinality)

 30

To summarize the summation, we expect that CatBoost’s relative accuracy will
increase when the proportion of categorical features increases or when the cardinality
of these are increased. Overall accuracy is difficult to predict since LightGBM and
CatBoost likely has splitting methods in their favor, while XGBoost might benefit from
weighted quantile sketch.

When comparing components we expect that gradient-based one-side sampling will
decrease LightGBM’s accuracy for small , and decrease training time for all . We
also expect that exclusive feature bundling will decrease LightGBM’s training time
when using one-hot encoding for categorical features of high cardinality. We expect
leaf-wise splitting to achieve a higher accuracy than level-wise splittng, we will not
test oblivious splitting as its comparative performance has been well studied.
Weighted quantile sketch will likely give a better trade-off between accuracy and
computation cost than basic histogram search. Finally we expect ordered target
statistics to achieve a higher accuracy than one-hot encoding for scenarios with
categorical features, we expect this effect to especially strong for features of high
cardinality. The effect of naive target statistics is more difficult to predict as it trades
the inaccuracy stemming from one-hot encoding to inaccuracy stemming from
condition shifts. Albeit for different reasons computation cost is expected to be
increased for all three methods when categorical variables (esp. high cardinality) are
introduced.

3. Simulation Setup

Since this will be the first simulation study comparing these boosting methods based
on the given variations in data characteristics we will use logistic regression models
where the continuous features will be normally distributed, this is a common
simulation setting. It is important to note however that results might differ depending
on what settings are used, hence results and conclusions from this study can not
necessarily be generalized to other settings. To fully map the relationship between
these three boosting methods and performance with regards to categorical features and
number of observations more simulation studies are needed, “Simulation studies reveal
points of light on a landscape, but can not illuminate the entire landscape”-Patrick
Royston.

In an attempt to increase the external validity somewhat we will use several iterations
of all our simulation models, letting all random elements be regenerated for each
iteration and then use averages of all iterations as final results. In this manner we are

 31

less prone to use for example some beta coefficients that happens to favor or disfavor a
certain boosting method or some combination of boosting method and data
characteristics.

We will simulate 300 data sets using logistic regression models in a
setting by 20 iterations. For each iteration data sets will vary with respect to number of
categorical features, number of instances and finally we will simulate four variations of
data sets with sparse categorical features. Continuous feature values will be

simulated from a -distribution for each instance and feature , coefficients
for continuous features will be generated using the continuous uniform distribution

, these coefficients are generated once before simulation and will be used for

all data sets in that iteration. Categorical feature values will be drawn from a
categorical distribution with five categories, probability of instance belonging to

category will be generated using probabilities , we will let the

coefficients for categorical variables be -distributed where denotes
categorical feature, and category. Sparse categorical feature values will be

generated similarly using and with coefficients

 for and for . After all features has been generated for an instance, a
label variable (0 or 1) will be assigned to the instance, the probabilities of these will be
given by the model equation itself. For the first three models we will create data sets
of sizes , and , while data sets BS and CS will
simulated using only and . For as and as we
have the model equations:

A

B

C

 32

BS

CS

4. Modeling

4.1 Hyperparameters

XGBoost, LightGBM and CatBoost share most of their hyperparameters, in total there
is more than onehundred hyperparameters for each of these boosting methods, however
most of these hyperparameters are rarely used for parameter tuning. In this section we
will cover some hyperparameters that is commonly part of hyperparameter
optimization processes or whose values are often chosen to be something other than
default values. How we use the parameters in this essay will be given within
parentheses where BHO will denote that the parameter will be part of the Bayesian
hyperparamer optimization (see the next section). Our three boosting methods uses
different names for these hyperparameters, we will use the XGBoost names. All
hyperparameters used to control overfitting can also cause underfitting if values are not
balanced, this will not be explicitly stated.

N um ber of _estimators (BHO)

Determines number of trees for the model, lower values prevents overfitting as every
tree that is added reduces the sum of residuals for instances and hence captures the
training data in more detail.

Eta (BHO)

Determines learning rate, low values makes the model less prone to overfitting by
shrinking the weights on each step.

 33

M in imum child weight (= 1)

Determines the minimum sum of weights of all instances required in new nodes
resulting from a split. High values prevents overfitting as leafs with a low sum of
weights might be very specific to the training data.

M ax imum depth (BHO)

Determines maximum depth of trees. Low values prevents overfitting as this prevents
the tree to grow deep and capture the training data in too much detail.

Mi nimum s plit gain (BHO for XGBoost and LightGBM)

Makes the node splitting more conservative by subtracting a regularization term from
the splitting critera, it is represented by in (9). This prevents overfitting as only splits
with a higher gain will be conducted. Catboost does nat have this parameter.

C olsample_by_tree (BHO)

Determines the fraction of features(columns) to be randomly selected for each tree.

Lambda (BHO for CatBoost, =1 for XGBoost and LightGBM)

Adds the regularisation term to the denominators to all three gain ratios in (9). Since
 will have the same value for all nodes, nodes with fewer instances will likely be

affected more.

4.2 Bayesian Hyperparameter Optimization

We will leave parts of the proof of Bayesian hyperparameter optimization (BHO) to
other papers, as a full proof would likely require all too many pages [23].

BHO makes use of a probabilistic model which maps sets of hyperparameters to
probabilities of score intervals using a surrogate function.

Using XGBoost and data set (the first data set generated from simulation
model) as an example, we have that the hyperparameters that we will use in the
BHO is number of estimators, eta, maximum tree depth, minimum split gain and
column sample by tree, these have respective domains , , , , and
where domain values are given by Table 2. The hyperparameter space for XGBoost is

 34

now given by . Let denote XGBoost

with some combination of hyperparameters . Let denote the
AUC score that achieves on validation data set using data set for training.
The hyperparameter optimization problem using tenfold cross-validation is then to
maximize the blackbox function:

In order to maximize this function by BHO we first introduce two theorems.

Theorem 1

The joint probability density of the multivariate normal (Gaussian) distribution is
given by:

 (11)

Here is a mean vector of length , is a symmetric positive definite covariance
matrix with dimension . With the shorthand notation we can
write the jointly normal random vectors and as:

Using these notations the marginal distribution of and the conditional distribution
of given will be given by:

and:

which can be written as:

 (12)

 35

Proof of this theorem can be found for example at section 9.3 in von Mises 1964 [28].

Theorem 2

Using the notations from theorem 1, the product of two normal distributions with mean
vectors and covariance matrices is given by:

 (13)

Where:

, and:

(Equation 14)

Equation 14 can be proven by inserting (11) and (13) into (12) and verifying equality.

To construct the prior distribution we first chose a mean function from which we
can make a mean vector by evaluating different hyperparameter combinations .
Similarly we obtain a covariance matrix by evaluating each pair of points and by

a covariance function . The resulting prior distribution on
 will now be given by:

(15)

Here denotes , ,
 and

.

After observing for some , we can now infer the value at some not yet
evaluated point . With and the prior over is given
by (15). By Bayes theorem the posterior distribution will be obtained from:

 36

Where is a normalizing constant (see page 19 in Rasmussen and Williams[28]
for details). By theorem 1 and 2 we can write as:

Where and

.

To find the next evaluation point an acquisition function is used, all possible will be
evaluated by the acquisition function and the with highest score will be the next
evaluation point. After this point has been found and evaluated it will be added to ,
hence updating the posterior distribution, the process is then repeated with the updated
posterior. In our case we will use the expected improvement as acquisition function,

we will set its exploration parameter to the recommended value and it can then be

written as:

Here is the highest AUC score observed so far, and represents the
cumulative and probability density functions for the normal distribution, finally is
given by:

We have chosen expected improvement as acquisition function because in contrast to
measures of the probability of improvement it takes the magnitude of the potential
improvement into account, it does so by letting the standard deviation of a point have a
large influence on the score, in this manner regions of where there is much
uncertainty gets a higher priority, if we were to use probability of improvement it is
likely that the process will stuck in already well explored regions.

The mean function will be set to zero (without any loss in generality [22]). As

covariance function we will use the Matérn kernel:

 37

Here denotes the characterics lentgh and is given by n-th root of the volume of ,
where n is the dimension of . represents the Euclidean distance:

The Matérn kernel is a commonly used as covariance function when optimizing

gradient boost hyperparameters. The Matérn kernel is a generalization of the normal
radial basis function, where in turn the normal radial basis function can be described as
a method to measure similarity between points in normal distributions.

4.3 Hyperparameter tuning

The parameter tuning will be done using bayesian hyperparameter optimization(BHO),
this method has proven to be more efficient regarding time and accuracy than grid
search and random search [21]. The effectiveness of BHO will help us to ensure that
every model will be represented with at least close to optimal settings.

Another reason for using BHO is that it relies less on its parameters than grid search or
random search to find accurate models. Similarly to grid search and random search
BHO also relies on a limited parameter space as input, however due to the
effectiveness of BHO the parameter space can be chosen to be very large and thus in
our case it would be very unlikely that the optimal combination of parameters would
exist outside of the chosen parameter space.

More specifically we will use the BayesianOptimazation[8] library with a Gaussian

process using 8 random starting points, 10 iterations and a Matérn -kernel which is

often considered a standard choice [16].

In the selection of hyperparameter used in BHO we take insperation from Anghel et al.
[1]. However we will make one important deviation, Anghel et al. chooses to not
include the hyperparameter minimum split gain in their optimization, possible in an
attempt to standardize the optimization process as CatBoost lacks this hyperparamer. It
is our notion however that in the optimization search for XGBoost and LightGBM
including minimum split gain is a popular choice, our testing confirms that replacing

 38

the lambda hyperparameter with minimum split gain in the BHO improves accuracy,
we are therefore using this regularization parameter instead of lambda for XGBoost
and LightGBM. In our opinion a fair comparison can not be made excluding crucial
hyperparameters, if XGBoost and LightGBM’s performance is positively affected by
the use of minimum split gain instead of lambda this highlights an important strength
in hyperparameter options whose effect should ideally be included in the overall
results. Also since we do not rely on quite as strong hardware (and therefore use fewer
BHO iterations) we will reduce the search span for lambda and minimum split gain, it
is unlikely that an optimal combination would exist outside this search span even in
our reduced form.

The hyperparameter space explored by BHO is shown in the table below.

Table 2: Hyperparameter space for BHO

Method No. of
estimators

Maximum
tree depth

Lambda Minimum
split gain

Eta Colsample
by tree

XGBoost [16,1000] [2,14] 1 [0,10] [0.01,1] [0.01,1]

LightGBM [16,1000] [2,14] 1 [0,10] [0.01,1] [0.01,1]

CatBoost [16,1000] [2,14] [0,10] – [0.01,1] [0.01,1]

All models are evaluated using 10-fold cross-validation.

5. Evaluation

5.1 Evaluation Metrics

Area under the curve (AUC)

To measure accuracy we will use AUC, AUC measures the probability that a randomly
chosen instance with label value one will be ranked higher (assigned a higher
probability of being an instance with label value 1one) than a randomly chosen
instance with label value zero.

 39

With as the set of instances with actual label value equal to zero and as it’s
converse, AUC can be expressed as:

Here is some set of instances which all have been classified by some classification
method as either one or zero.

Training time

We will measure computation cost in form of training time, this will include
hyperparameter search and cross-validation.

5.2 Cross-Validation

For our evaluation metric , label vector and estimated label vector we have
the expected test error , cross-validation is a resampling procedure used
to estimate this error. The procedure starts by randomly assigning the data sample into

 folds of roughly equal size. Successively each of these folds will be used as a
validation set while remaining sets will be used as training sets, the procedure goes on
until all folds have been used as a validation set. Let be the total number of
instances, then for each and each where is all folds except the expected test
error will be calculated as:

Where is the estimation of when has been used as training set. Finally, the

cross-validation score is calculated as:

The cross-validation estimates will depend on how we choose the parameter . By
choosing a that is large relative to we get a test error estimate that has a low bias,
however since the training sets will be more similar to each other we will instead be
more prone to higher variance, that is the estimates themselves will be inaccurate when
applied to new data. We will choose to balance between these effects.

 40

6. Results

6.1 AUC

Table 3: AUC score in descending order for each method and scenario

AUC A B C

N=1000

CatBoost:
 0.92915 (0.0211)

LightGBM-GOSS:
0.91004 (0.0243)

XGBoost:
0.90534 (0.0256)

LightGBM-GBDT:
0.90186 (0.01994)

CatBoost:
0.93241 (0.0228)

LightGBM-GBDT:
0.89512 (0.0371)

XGBoost:
0.89259 (0.025)

LightGBM-GOSS:
0.87462 (0.035)

CatBoost:
0.94156 (0.0202)

XGBoost:
0.90493 (0.038)

LightGBM-GBDT:
0.8978 (0.0358)

LightGBM-GOSS:
0.85848 (0.0488)

N=10.000

CatBoost:
0.97344 (0.0034)

XGBoost:
0.9692 (0.0047)

LightGBM-GOSS:
0.96278 (0.0093)

LightGBM-GBDT:

0.96006 (0.0073)

CatBoost:
0.97267 (0.0054)

XGBoost:
0.97105 (0.0036)

LightGBM-GOSS:
0.96239 (0.0099)

LightGBM-GBDT:
0.95976 (0.0084)

CatBoost:
0.97906 (0.0063)

XGBoost:
0.97335 (0.0089)

LightGBM-GOSS:
 0.96988 (0.0087)

LightGBM-GBDT:
0.9678 (0.0109)

N=100.000

CatBoost:
0.98923 (0.0019)

XGBoost:
0.98897 (0.0016)

LightGBM-GBDT:
0.98116 (0.0089)

LightGBM-GOSS:
0.9786 (0.0069)

XGBoost:
 0.98966 (0.0015)

CatBoost:
0.98922 (0.002)

LightGBM-GOSS:
 0.98136 (0.0064)

LightGBM-GBDT:
0.98016 (0.0046)

CatBoost:
0.99193 (0.0017)

XGBoost:
0.99067 (0.0032)

LightGBM-GBDT:
0.97906 (0.0208)

LightGBM-GOSS:
0.97632 (0.0141)

Number of categorical features increases when moving from left to right in the table, number of
instances increases when moving from the top to the bottom.

 41

Table 4: AUC score in descending order for high cardinality scenarios. The B
scenario is showed for comperative purposes.

AUC B BS CS

N=1000

CatBoost:
0.93241 (0.0228)

LightGBM-GBDT:
0.89512 (0.0371)

XGBoost:
0.89259 (0.025)

LightGBM-GOSS:
0.87462 (0.035)

CatBoost:
0.8045 (0.0149)

XGBoost:
0.68437 (0.059)

CatBoost(OHE):
0.62138 (0.0427)

LightGBM-GOSS(OHE):
0.59336 (0.0474)

LightGBM-GOSS(OHE)
No EFB:

0.59275 (0.0512)
LightGBM-GBDT:

0.53618 (0.0456)
LightGBM-GOSS:

0.50543 (0.0245)

CatBoost:
0.80374 (0.022)

XGBoost:
0.68003 (0.0602)
CatBoost(OHE):
0.59208 (0.0381)

LightGBM-GOSS(OHE)
No EFB:

0.58375 (0.0483)
LightGBM-GOSS(OHE):

0.57871 (0.0423)
LightGBM-GBDT:

0.53009 (0.0411)
LightGBM-GOSS:

0.52332 (0.0347)

N=100.000

XGBoost:
 0.98966 (0.0015)

CatBoost:
0.98922 (0.002)

LightGBM-GOSS:
 0.98136 (0.0064)

LightGBM-GBDT:
0.98016 (0.0046)

LightGBM-GBDT:
0.98331 (0.0039)

LightGBM-GOSS:
0.98151 (0.0058)

CatBoost:
0.98093 (0.002)

XGBoost:
0.97574 (0.0041)
CatBoost(OHE):
 0.9732 (0.0036)

LightGBM-GOSS(OHE):
0.96323(0.0081)

LightGBM-GOSS(OHE)
No EFB:

0.96179 (0.0061)

LightGBM-GOSS:
0.99008 (0.0021)

CatBoost:
0.98851 (0.0037)

LightGBM-GBDT:
0.98818 (0.0038)

XGBoost:
0.98396 (0.0027)

LightGBM-GOSS(OHE):
0.97964 (0.0072)
CatBoost(OHE):
0.97788 (0.0059)

LightGBM-GOSS(OHE)
No EFB:

0.97683 (0.012)

Number of categorical features of high cardinality increases when moving from left to right in
the table, number of instances increases when moving from the top to the bottom. OHE

represents one-hot encoding, EFB represents exclusive feature bundling

 42

6.2 Training Time

Table 5: Training time in seconds, in ascending order for each method and
scenario

Training Time A B C

N=1000

XGBoost:
16.5

LightGBM-GOSS:
 58.1

LightGBM-GBDT:
65.5

CatBoost:
152.5

XGBoost:
17.5

LightGBM-GOSS:
49.2

LightGBM-GBDT:
53.7

CatBoost:
355.4

XGBoost:
14.1

LightGBM-GOSS:
 46.4

LightGBM-GBDT:
52

CatBoost:
422.2

N=10.000

XGBoost:
58.86

LightGBM-GOSS:
63.8

LightGBM-GBDT:
101.9

CatBoost:
183.2

XGBoost:
54.5

LightGBM-GOSS:
 61.8

LightGBM-GBDT:
93.3

CatBoost:
289.5

XGBoost:
51.1

LightGBM-GOSS:
 58.1

LightGBM-GBDT:
92.4

CatBoost:
366.8

N=100.000

LightGBM-GOSS:
 209

LightGBM-GBDT:
333.4

CatBoost:
547

XGBoost:
644

LightGBM-GOSS:
 223.7

LightGBM-GBDT:
335.2

XGBoost:
588.1

CatBoost:
1165.5

LightGBM-GOSS:
 198.2

LightGBM-GBDT:
282.7

XGBoost:
451.9

CatBoost:
1195.1

Number of categorical features increases when moving from left to right in the table, number of
instances increases when moving from the top to the bottom.

 43

Table 6: Average training time in seconds, in ascending order for high
cardinality scenarios. The B scenario is showed for comperative purposes.

 Training Time B BS CS

N=1000

XGBoost:
17.5

LightGBM-GOSS:
49.2

LightGBM-GBDT:
53.7

CatBoost:
355.4

LightGBM-GOSS:
16.4

XGBoost:
19.5

LightGBM-GOSS(OHE):
22.1

LightGBM-GOSS(OHE)
No EFB:

34.5
CatBoost(OHE):

45.2
LightGBM-GBDT:

61.4
CatBoost:

291

LightGBM-GOSS:
11.5

LightGBM-GOSS(OHE):
14.1

XGBoost:
18.7

LightGBM-GOSS(OHE)
No EFB:

34.3
CatBoost(OHE):

39.5
LightGBM-GBDT:

54.4
CatBoost:

377.2

N=100.000

LightGBM-GOSS:
 223.7

LightGBM-GBDT:
335.2

XGBoost:
588.1

CatBoost:
1165.5

LightGBM-GOSS:
273.5

LightGBM-GOSS(OHE):
276.4

LightGBM-GBDT:
317.5

LightGBM-GOSS(OHE)
No EFB:

342.6
CatBoost(OHE):

369.3
XGBoost:

711.8
CatBoost:

1741

LightGBM-GOSS(OHE):
272.5

LightGBM-GOSS:
303.7

LightGBM-GBDT:
323.8

CatBoost(OHE):
338.3

LightGBM-GOSS(OHE)
No EFB:

361.8
XGBoost:

727.2
CatBoost:

1893.9

Number of categorical features of high cardinality increases when moving from left to right in
the table, number of instances increases when moving from the top to the bottom. OHE

represents one-hot encoding, EFB represents exclusive feature bundling

 44

7. Discussion

7.1 Number of instances

For all scenarios in table 3 where CatBoost is the most accurate followed by
XGBoost, the difference in accuracy between CatBoost and XGBoost decreases when

 is increased to . Finally for scenarios where the AUC score for
CatBoost and XGBoost are close to identical, hence CatBoost seems to benefit from
smaller while XGBoost benefits, or at least its disadvantage diminishes for larger .
Similarly LightGBM-GBDT and XGBoost have similar accuracy for low , but
XGBoost has a higher accuracy for higher .

LightGBM is less accurate than CatBoost for all scenarios in Table 3. At first glance it
might appear that LightGBM’s disadvantage decreases when becomes larger,
although this is true when looking at absolute differences in accuracy, it is important to
note that the area above the curve decreases by a higher factor for LightGBM when
is increasing. For example by moving from to in the B data
sets the area above the curve () is reduced from to for
LightGBM-GBDT which shows that an instance with label value 1 is less likely to be
ranked lower than an instance with label value 0 by a factor of in the second
case when compared to the first. The corresponding number for CatBoost is in
this case. This is important to note since the reason why LightGBM catches up with
CatBoost might be that CatBoost has an accuracy closer to 1 already for lower , and
hence its accuracy cannot be improved as much in absolute terms, for this reason we
cannot draw the conclusion that LightGBM could be more suitable for larger data sets
based in our results.

Comparing XGBoost and LightGBM we can see that accuracy is simillar for
 but that this similarity disappears for higher in favor of XGBoost.

7.2 Low Cardinality Categorical features

By comparing the A column to the B column and then B to C in Table 3, we can see
that introduction of categorical features seems to have benefited XGBoost and
CatBoost the most in most cases. We expected CatBoost to perform well with
categorical features, XGBoost’s increase in performance was less expected. Possibly
the limitation of one-hot encoding to only being able of sorting one category at the
time helps avoid overfitting for low cardinality categorical features, although this has

 45

been poorly researched in the academia there is some empirical evidence that one-hot
encoding performs well for low cardinality categorical features[28].

We expected that LightGBM-GOSS would be less accurate than LightGBM-GBDT for
small . This seems to be true only when categorical features are involved, perhaps
because the amount of instances in each category will be low when using gradien-
based one-side sampling in this cases. For higher this difference in accuracy
disappears.

The most important aspect of Table 3 in terms of categorical features however is
probably that exchanging continuous features to low cardinality categorical features
does not seem to benefit one boosting method more than the other more than
marginally.

7.3 High Cardinality Categorical features

CatBoost had the highest accuracy in all scenarios that are included in Table 4 when
, and the differences in accuracy is large when compared to Table 3. This is

followed by one-hot encoded models whom all have simillar accuracy between
themselfs, LightGBM with naive target statistics is the least accurate, when gradient-
based one-side sampling is included LightGBM is hardly more accurate than pure
guessing. For XGBoost had a simillar accuracy to CatBoost when no
categorical features of high cardinality was present, this is no longer the case when low
cardinality features are exchanged to high cardinality features as CatBoost is now
considerably more accurate. LightGBM’s accuracy increases drastically when
increases. When , LightGBM’s accuracy surpases XGBoost and is
simillar to CatBoost. Considering that neither the results for in table 3 or
the results from table 4 when would suggest that LightGBM’s accuracy for

 in table 4 would be similar to that of CatBoost this could be considered
an interaction effect.

By comparing default CatBoost and LightGBM with by their one-hot encoded models
it is evident that their ability (or inability for LightGBM when is low) to handle high
cardinality categorical features stems from naive target statistics and ordered target
statistics respectively.

 46

7.4 CatBoost’s high overall accuracy

CatBoost achieves a high accuracy compared to XGBoost and LightGBM for all
scenarios, the only scenarios where CatBoost is not the most accurate is the B, BS and
CS scenarios for . However also in these cases CatBoost is close to being
the most accurate. It seems likely that some of the fixed settings in this simulation
study favors CatBoost, perhaps the low level of noise, low amount of features or the
logistic regression as simulation model. This highlights the need for more simulation
studies to test a larger variety of settings since CatBoost is not always the most
accurate in all applications.

7.5 LightGBM’s lower overall accuracy

After much search we found only one study [25] where LightGBM achieves a lower
accuracy than XGBoost, to this background it seems likely that some of the fixed
settings in this thesis was unfavorable for LightGBM. In this thesis LightGBM’s
accuracy was higher only when was large and categorical features of high
cardinality was used, this advantage of LightGBM was lost however when using one-
hot encoding instead of naive target statistics, therefor it seems likely that LightGBM’s
naive target statistics causes the high accuracy in this case. This leaves us with the
question of why XGBoost is more accurate when no categorical features of high
cardinal is involved or when is low.

XGBoost and LightGBM are similar methods, and to find the source of the difference
in accuracy we will use default LightGBM components in XGBoost. We will run
XGBoost with leaf-wise splitting to see if this can put accuracy closer to LightGBM.
We will also use basic histogram search as is used in LightGBM, we set number of
bins to per feature to 255 which is default in LightGBM. To find where the difference
in accuracy stems from we will run level-wise splitting with basic histogram search as
well. We will also run XGBoost with exact search, that is to say without any
approximations at all in the split finding to get a deeper understanding of the different
histogram searches. As XGBoost does not use gradient-based one-side sampling, we
will compare the results to that of LightGBM when used without gradient-based one-
side sampling.

 47

Table 7: Accuracy and training time for LightGBM components in XGBoost

AUC Training time

B

N=10.000

XGBoost:
0.97106(0.0036)
XGBoost(exact):
0.96929(0.005)

XGBoost(hist-level-wise):
0.96668(0.0093)

XGBoost(hist-leaf-wise):
0.96637(0.0076)

LightGBM-GBDT:
0.95976 (0.0084)

XGBoost(hist-level-wise):
42.5

XGBoost(hist-leaf-wise):
44.9

XGBoost:
54.5

XGBoost(exact):
63.3

LightGBM-GBDT:
93.3

There does not appear to be much difference between leaf-wise and level-wise splitting
in terms of accuracy, and the difference between the two is also insignificant. However,
basic histogram search decreased the accuracy for both level-wise and leaf-wise
splitting, putting us closer to LightGBM’s accuracy. Weighed quantile sketch is
therefore likely part of the explanation to the differences in accuracy. Surprisingly
weighed quantile sketch also outperformed exact split finding (although with a very
slight margin).

To our understanding we have at this point covered all aspects of the documentation
papers of XGBoost and LightGBM that could be a likely explanation to the differences
in accuracy, but we were not able to find a complete answer to why their performance
differ. Important parts of these algorithms often seems to be omitted from the
documentation papers, in the case of LightGBM for example, leaf-wise splitting and
naive target statistics were omitted, perhaps an explanation can be found in some other
omitted component.

It should be noted however that the large differences in accuracy between LightGBM
and the other two methods in this study is likely in part due to the low level of noise in

 48

our data sets, noise is irreducible error and when it is included the proportion of error
that stems from variance and bias will be smaller.

7.6 Training Time

For all scenarios in Table 3 except A with CatBoost was the slowest of
our boosting methods. The difference between CatBoost and the other boosting
methods becomes larger when number of categorical features increases, hence the
categorical feature handling of CatBoost seems to come at a cost. XGBoost was the
fastest for data sets with or but loses this advantage for all data
sets with in favor off the LightGBM models. As expected LightGBM-
GOSS is faster than LightGBM-GBDT and this holds for all scenarios.

LightGBM with exclusive feature bundling was faster than LightGBM without
exclusive feature bundling for one-hot encoded high cardinality categorical features,
although it is likely that LightGBM rarely is used with one-hot encoding when used in
applications it also demonstrate an important strength in exclusive feature bundling to
handle sparse data in general. By comparing CatBoost with its one-hot encoded
counterpart in Table 3, it appears evident that the increase in training time that
CatBoost experiences for categorical features is due to ordered target statistics. For
naive target statistics and LightGBM this effect appears to be the opposite but weak.

7.6.1 Oblivious splitting, tree depth and training time

The generaly long training time of CatBoost can possible be explained by high number
of nodes in the CatBoost trees, the average max tree depth for CatBoost is similar to
XGBoost and LightGBM for most scenarios. However as discussed by Hancock et. al.
[11] due to oblivious spitting, in CatBoost the number of nodes growths by for each
level added to the tree and therefore the amount of nodes is likely to increase more
when max tree depth is increased. The number of splits that has to be conducted will
not increase dramatically since CatBoost performs only one split per level, for this
reason computation should not be increased more than that for XGBoost or
LightGBM, instead Hancock et. al. [11] argues that the high number or nodes increases
memory usage dramatically. The slightly higher average values for maximum tree
depth for CatBoost might also be explained by its rigorous splitting as the loss score
will likely decrease less per level and more levels are needed to capture variation in
data and reduce bias. The long training time might therefor stem from the combination
of CatBoost’s sensitivity to the maximum tree depth parameter in terms of training

 49

time and that seemingly its optimal configuration of hyperharameter includes a
relatively high value for maximum tree depth. It is possible that CatBoost varying
performance with regards to both accuracy and training time in previous studies is due
to this relationship between oblivious splitting, tree depth and training time. Anghel et.
al. [1] uses a time budget in their BHO instead of an iteration budget as in this thesis,
they found that CatBoost’s accuracy is lower than the accuracy for both XGBoost and
LightGBM, possibly the low accuracy can be explained by the amount of training time
CatBoost needs for each iteration of the BHO at the area of the hyperparameter space
where its most accurate configuration often seems to be. In studies that combine a large
hyperparameter space in the hyperparameter optimization without any time
restrictions, the accuracy of CatBoost compared to that of XGBoost or LightGBM is
often high[11]. The combined results of these earlier studies and this study indicates
that when accuracy is the priority CatBoost with a large hyperparameter space in the
hyperparameter optimization could be a good choice for a large variety of data sets. It
is possible that CatBoost training time is reduced more than that of XGBoost or
LightGBM when restricting values for the maximum depth parameter, if this will affect
CatBoost accuracy more than that of XGBoost or LightGBM could be a topic for
future studies.

8. Future Studies

More simulation studies are needed for a more complete understanding of XGBoost’s,
LightGBM’s and CatBoost’s dependencies of different data characteristics. To what
extent the findings of this study can be extended to other combinations of data
characteristics must be explored by more simulation studies. By experimenting with
data characteristics such as missing data, non-linearity or dependencies between
features more important clues to the varying performances of these boosting methods
might be found.

For a deeper understanding of these boosting methods it should also be possible to
implement parts of one boosting method into another. We have been testing by turning
off and on different boosting features in our methods to find the sources off the varying
results. More can be done in this area by for example implementing ordered target
statistics in LightGBM for better handling of high cardinality categorical features,
testing oblivious splitting in LightGBM or XGBoost, or perhaps testing CatBoost with
gradient-based one-side sampling for increased speed. All this will however require
some programming as the libraries do not offer these substitutions at the moment.

 50

9. Conclusion

We have compared accuracy and training time for XGBoost, LightGBM and CatBoost
for different data characteristics. When the data sets have a high number of instances
(100.000) and no categorical features of high cardinality, XGBoost and CatBoost
achieved about the same accuracy. For data sets with a lower number of instances or
with categorical features of high cardinality, CatBoost was the most accurate.
Categorical features of low cardinality improved XGBoost’s (one-hot encoded) and
CatBoost accuracy compared to LightGBM, although this effect was small. LightGBM
had the lowest accuracy for most scenarios, but for scenarios with high cardinality
features and a high number of instances it outperformed XGBoost and had a similar
accuracy to CatBoost.

CatBoost had the longest training time for all cases tested in this thesis, with the only
exception of the scenario which combined high number of instances (100.000) and no
categorical features, here XGBoost was the slowest. CatBoost training time increased
more then the other methods when categorical features was introduced, this effect was
amplified if these categorical features was of high cardinality. XGBoost was faster than
LightGBM when the data sets was of size 1000 or 10.000, LightGBM was faster for
data sets of size 100.000. The combination of long training time for data sets with
categorical features and the absence of gain in relative accuracy when categorical
features are added suggests that CatBoost should not be considered a go to solution for
all data sets with many categorical features, especially not if training time is of
importance, rather CatBoost gets an advantage only if these categorical features are of
high cardinality. If accuracy is the priority CatBoost might also be a good option for
medium size and small data sets, also if these do not include any categorical features.
LightGBM could only outperform XGBoost, and compete with CatBoost in terms of
accuracy when data sets were large and included categorical features of high
cardinality, for other scenarios it was considerably less accurate than XGBoost and
CatBoost. LightGBM had a low training time however, especially for large data sets
and especially when using gradient-based one-side sampling. XGBoost was faster and
equally accurate as CatBoost for scenarios with a high number of instances and some
degree of low cardinality categorical features.

To get a deeper understanding of the varying performances of these boosting methods
we have been running tests with and without different components. We found that
gradient-based one-side sampling increased the speed for all scenarios, but accuracy
was compromised for small data sets with categorical features. Exclusive feature

 51

bundling increased speed when using one-hot encoding for categorical features of high
cardinality. We found no significant difference in accuracy or training time between
leaf-wise and level-wise splitting. The weighted quantile sketch implementation of
histogram search outperformed basic histogram search in terms of accuracy. Naive
target statistics increased accuracy for data sets with high cardinality categorical
features and large number of instances when compared to one-hot encoding, the effect
was the opposite however when number of instances was small, in both cases naive
target statistics decreased training time. Ordered target statistics increased accuracy for
all data sets with high cardinality categorical features, but training time was increased.

 52

10. Appendix

10.1 Software and hardware

We have used a computer with a Intel Core(TM) i5-4670K 3.40GHz CPU, NVIDIA
GeForce GTX 1050 CPU and 16 GB of RAM.

Software versions used was:

XGBoost 1.3.1, LightGBM 3.1.1, CatBoost 0.24.1 and BayesOpt.

10.2 Derivative of the Sigmoid function

For :

10.3 Derivation of splitting criteria and output function for XGBoost
and LightGBM

With Taylor expansion for loss reduction approximation around , equation
(8) will be rewritten as:

By removing constant terms with regards to we get:

 (16)

We can rewrite the trees as their respective outputs as

 53

, where to denotes leaf for tree . Using that

regions are disjoint we can rewrite (16) as:

Expanding and using that all term where are zero gives us:

Moving in the last sum gives:

 (17)

Solving for is now analogous to the solution for in the gradient boost section,
this will yield:

 (18)

Plugging optimal output function (18) into (17) yields similarity score:

 (19)

Equation (19) can be used to evaluate tree structures, by splitting up the region in
left, right and unsplit we can score each candidate split by:

 (20)

Finally by plugging (5) and (6) into (20) we get the splitting criteria for the log loss:

 54

10.4 Derivation of asymptotic approximation error for gradient-
based one-side sampling

Let denote the approximation error of gradient-based one-
side sampling when splitting by some feature at point .

let and denote approximate

gradients.

We introduce Theorem 3 (the proof can be found in the supplementary materials of
LightGBM).

T heorem 3

For probabilities at least and the approximation error will have the
upper limit:

(21)

Where and .

Theorem 3 provides us that the asymptotic approximation error will have upper limit:

Under the assumption that splits will be balanced enough to fulfill conditions
 and the approximation error will be dominated

by (the second term in (21)). Since approaches zero

in as hence we expect that the bias stemming

from the approximation error will be lower for large data sets, and as a consequence
gradient-based one-side sampling will decrease accuracy but this effect will be smaller
for large data sets than for small.

 55

11. References

1. Anghel, A., Papandreou, N., Parnell, T., Palma, A., & Pozidis, H. (2018).
Benchmarking and Optimization of Gradient Boosted Decision Tree
Algorithms. ArXiv, abs/1809.04559. [online]. Available at:
https://arxiv.org/pdf/1809.04559.pdf

2. Caruana, R, Niculescu-Mizil, A. (2006). An empirical comparison of
supervised learning algorithms. Proceedings of the 23rd international
conference on Machine learning, ACM, pp. 161-168. [online]. Available at:

https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf

3. Chen, T., Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.

Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. [online]. Available at:

https://arxiv.org/pdf/1603.02754.pdf

4. Daoud, E. (2019). 'Comparison between XGBoost, LightGBM and CatBoost

Using a Home Credit Dataset'. World Academy of Science, Engineering and

Technology, Open Science Index 145, International Journal of Computer and

Information Engineering, 13(1), 6 - 10. [online]. Available at:

https://publications.waset.org/10009954/comparison- between-xgboost-

lightgbm-and-catboost-using-a-home-credit-dataset

5. Domingos, P.M. (2000). A Unified Bias-Variance Decomposition for Zero-One

and Squared Loss. AAAI-00 Proceeding. [online]. Available at:

https://www.aaai.org/Papers/AAAI/2000/AAAI00-086.pdf?

fbclid=IwAR2lWgrRSA7G8rRs_J3q9xPhge9uud3GYNQ6Na13BWVrn

lgbL7y6_Uf0x-A

6. Dorogush, A.V., Ershov, V., Gulin, A. (2018). CatBoost: gradient boosting with
categorical features support. ArXiv, abs/1810.11363. [online]. Available at:
https://arxiv.org/pdf/1810.11363.pdf

7. Ferov, M., Modrý, M. (2016). Enhancing LambdaMART Using Oblivious

Trees. ArXiv, abs/1609.05610. [online]. Available at:

https://arxiv.org/pdf/1609.05610.pdf

 56

https://arxiv.org/pdf/1609.05610.pdf
https://arxiv.org/pdf/1810.11363.pdf
https://www.aaai.org/Papers/AAAI/2000/AAAI00-086.pdf?fbclid=IwAR2lWgrRSA7G8rRs_J3q9xPhge9uud3GYNQ6Na13BWVrnlgbL7y6_Uf0x-A
https://www.aaai.org/Papers/AAAI/2000/AAAI00-086.pdf?fbclid=IwAR2lWgrRSA7G8rRs_J3q9xPhge9uud3GYNQ6Na13BWVrnlgbL7y6_Uf0x-A
https://www.aaai.org/Papers/AAAI/2000/AAAI00-086.pdf?fbclid=IwAR2lWgrRSA7G8rRs_J3q9xPhge9uud3GYNQ6Na13BWVrnlgbL7y6_Uf0x-A
https://publications.waset.org/10009954/comparison-between-xgboost-lightgbm-and-catboost-using-a-home-credit-dataset
https://publications.waset.org/10009954/comparison-between-xgboost-lightgbm-and-catboost-using-a-home-credit-dataset
https://publications.waset.org/10009954/comparison-between-xgboost-lightgbm-and-catboost-using-a-home-credit-dataset
https://arxiv.org/pdf/1603.02754.pdf
https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf
https://arxiv.org/pdf/1809.04559.pdf

8. GitHub, Inc. (2021). fmfn/BayesianOptimization. [online]. Available at:

https://github.com/fmfn/BayesianOptimization

9. Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees.

Machine Learning, 63, 3-42. [online]. Available at:

https://link.springer.com/article/10.1007/s10994-006-6226-1?

fbclid=IwAR3Hk1wc9-zSdRPXtSVjsOO-

95QKraGKDSSAqR8lfMWY2z7A0zcW9Ti19Bg

10. Hamza, M., Larocque, D. (2005). An empirical comparison of ensemble

methods based on classification trees, Journal of Statistical Computation and

Simulation, 75:8, 629-643.[online]. Available at:

https://www.tandfonline.com/doi/abs/10.1080/00949650410001729472

11. Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an
interdisciplinary review. Journal of big data, 7(1), 94. [online]. Available at:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610170/?
fbclid=IwAR3_QYsEW_1PdZtx-6fIviGj4AnG-
tpRrNtHOekXgzxmpAT-DIeSkQH3qy8

12. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T. Y.

(2017). LightGBM: a highly efficient gradient boosting decision tree.

Proceedings of the 31st International Conference on Neural Information

Processing Systems (NIPS'17). [online]. Available at:

https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669b

dd9eb6b76fa- Paper.pdf

13. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T. Y.

(2017). LightGBM: a highly efficient gradient boosting decision tree:

Supplementary materials. Proceedings of the 31st International Conference on

Neural Information Processing Systems (NIPS'17). [online]. Available at:

https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-

Abstract.html

14. Klein, A., Falkner, S., Bartels, S., Hennig, P. , Hutter, F. (2017). Fast Bayesian

hyperparameter optimization on large datasets. Electronic Journal of Statistics,

 57

https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610170/?fbclid=IwAR3_QYsEW_1PdZtx-6fIviGj4AnG-tpRrNtHOekXgzxmpAT-DIeSkQH3qy8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610170/?fbclid=IwAR3_QYsEW_1PdZtx-6fIviGj4AnG-tpRrNtHOekXgzxmpAT-DIeSkQH3qy8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610170/?fbclid=IwAR3_QYsEW_1PdZtx-6fIviGj4AnG-tpRrNtHOekXgzxmpAT-DIeSkQH3qy8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610170/?fbclid=IwAR3_QYsEW_1PdZtx-6fIviGj4AnG-tpRrNtHOekXgzxmpAT-DIeSkQH3qy8
https://www.tandfonline.com/doi/abs/10.1080/00949650410001729472
https://link.springer.com/article/10.1007/s10994-006-6226-1?fbclid=IwAR3Hk1wc9-zSdRPXtSVjsOO-95QKraGKDSSAqR8lfMWY2z7A0zcW9Ti19Bg
https://link.springer.com/article/10.1007/s10994-006-6226-1?fbclid=IwAR3Hk1wc9-zSdRPXtSVjsOO-95QKraGKDSSAqR8lfMWY2z7A0zcW9Ti19Bg
https://link.springer.com/article/10.1007/s10994-006-6226-1?fbclid=IwAR3Hk1wc9-zSdRPXtSVjsOO-95QKraGKDSSAqR8lfMWY2z7A0zcW9Ti19Bg
https://github.com/fmfn/BayesianOptimization

11 (2), 4945-4968. [online]. Available at:

https://projecteuclid.org/euclid.ejs/1513306864

15. Lou, Y., Obukhov, M. (2017). BDT: Gradient Boosted Decision Tables for
High Accuracy and Scoring Efficiency. Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

[online]. Available at: https://yinlou.github.io/papers/lou-kdd17.pdf?
fbclid=IwAR0CtL9M-s-w3tdlm-
Va7PdjM4exxsXfOjBa4yBXdpSLFmdifQCACPe2a5E

16. Lu, H. (2020). Quasi-orthonormal Encoding for Machine Learning
Applications. ArXiv, abs/2006.00038. [online]. Available at:
https://arxiv.org/pdf/2006.00038.pdf

17. Mei, Z., Xiang, F., Zhen-hui, L. (2018). Short-Term Traffic Flow Prediction
Based on Combination Model of Xgboost-Lightgbm. 2018 International
Conference on Sensor Networks and Signal Processing (SNSP), 322-327.
[online]. Available at: https://ieeexplore.ieee.org/document/8615947

18. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V. , Gulin, A. (2018).
CatBoost: Unbiased Boosting with Categorical Features. arXiv e-prints.
[online]. Available at: https://arxiv.org/pdf/1706.09516.pdf

19. Putatunda, S., Rama, K. (2018). A Comparative Analysis of Hyperopt as
Against Other Approaches for Hyper-Parameter Optimization of XGBoost.
SPML '18. [online]. Available at:
https://dl.acm.org/doi/10.1145/3297067.3297080

20. Rasmussen, C. E., Williams, C. K. I. (2006). Gaussian Processes for Machine
Learning. MIT Press, 2006. Massachusetts Institute of Technology. [online].
Available at: http://www.gaussianprocess.org/gpml/chapters/RW.pdf

21. Renuka, D.K., Visalakshi, P., Rajamohana, S. (2017). An Ensembled Classifier

for Email Spam Classification in Hadoop Environment. Applied Mathematics

& Information Sciences, 11, 1123-1128. [online]. Available at:

http://www.naturalspublishing.com/files/published/7ttcu333pd8l38.pdf

22. Tama, B. A., Lim, S. (2020). A comparative performance evaluation of

classification algorithms for clinical decision support systems. Mathematics, 8

 58

http://www.naturalspublishing.com/files/published/7ttcu333pd8l38.pdf
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://dl.acm.org/doi/10.1145/3297067.3297080
https://arxiv.org/pdf/1706.09516.pdf
https://ieeexplore.ieee.org/document/8615947
https://arxiv.org/pdf/2006.00038.pdf
https://yinlou.github.io/papers/lou-kdd17.pdf?fbclid=IwAR0CtL9M-s-w3tdlm-Va7PdjM4exxsXfOjBa4yBXdpSLFmdifQCACPe2a5E
https://yinlou.github.io/papers/lou-kdd17.pdf?fbclid=IwAR0CtL9M-s-w3tdlm-Va7PdjM4exxsXfOjBa4yBXdpSLFmdifQCACPe2a5E
https://yinlou.github.io/papers/lou-kdd17.pdf?fbclid=IwAR0CtL9M-s-w3tdlm-Va7PdjM4exxsXfOjBa4yBXdpSLFmdifQCACPe2a5E
https://yinlou.github.io/papers/lou-kdd17.pdf?fbclid=IwAR0CtL9M-s-w3tdlm-Va7PdjM4exxsXfOjBa4yBXdpSLFmdifQCACPe2a5E
https://projecteuclid.org/euclid.ejs/1513306864

(10), 1814. MDPI AG. [online]. Available at:

http://dx.doi.org/10.3390/math8101814

23. Thuan L.G., Logofatu D. (2020). A Comparative Study on Bayesian

Optimization. In: Iliadis L., Angelov P., Jayne C., Pimenidis E. (eds)

Proceedings of the 21st EANN (Engineering Applications of Neural Networks)

2020 Conference. EANN 2020. Proceedings of the International Neural

Networks Society, vol 2. [online]. Available at:

https://link.springer.com/chapter/10.1007/978-3-030-48791-1_46?

fbclid=IwAR0E06hAIGD2QNWSjwGpj2aOImCIc4UrpChWDUTkJtvqdaFQb

9QIqLZzTIY

24. Zhang, Q., & Wang, W. (2007). A Fast Algorithm for Approximate Quantiles in

High Speed Data Streams. 19th International Conference on Scientific and

Statistical Database Management (SSDBM 2007), 29-29. [online]. Available

at: https://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.74.8534&rep=rep1&type=pdf&fbclid=IwAR1jAQp3hSxbvvjKEIk

6pIrU_8w_4IbcCx5yCpAj7vizfNly1QClQzZwTXY

25. Yang, H., & Bath, P.A. (2020). The Use of Data Mining Methods for the

Prediction of Dementia: Evidence From the English Longitudinal Study of

Aging. IEEE Journal of Biomedical and Health Informatics, 24, 345-353.

[online]. Available at:

http://eprints.whiterose.ac.uk/148550/3/Dementia_JBHI_Resubmit_Final.pdf

26. https://lightgbm.readthedocs.io/en/latest/Features.html

27.Walter D. Fisher. “On Grouping for Maximum Homogeneity.” Journal of the

American Statistical Association. Vol. 53, No. 284 (Dec., 1958), pp. 789-798.

28. Von Mises. (1964) Mathematical Theory of Probability and Statistics.

Academic press.

 59

https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501479
https://lightgbm.readthedocs.io/en/latest/Features.html
http://eprints.whiterose.ac.uk/148550/3/Dementia_JBHI_Resubmit_Final.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.8534&rep=rep1&type=pdf&fbclid=IwAR1jAQp3hSxbvvjKEIk6pIrU_8w_4IbcCx5yCpAj7vizfNly1QClQzZwTXY
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.8534&rep=rep1&type=pdf&fbclid=IwAR1jAQp3hSxbvvjKEIk6pIrU_8w_4IbcCx5yCpAj7vizfNly1QClQzZwTXY
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.8534&rep=rep1&type=pdf&fbclid=IwAR1jAQp3hSxbvvjKEIk6pIrU_8w_4IbcCx5yCpAj7vizfNly1QClQzZwTXY
https://link.springer.com/chapter/10.1007/978-3-030-48791-1_46?fbclid=IwAR0E06hAIGD2QNWSjwGpj2aOImCIc4UrpChWDUTkJtvqdaFQb9QIqLZzTIY
https://link.springer.com/chapter/10.1007/978-3-030-48791-1_46?fbclid=IwAR0E06hAIGD2QNWSjwGpj2aOImCIc4UrpChWDUTkJtvqdaFQb9QIqLZzTIY
https://link.springer.com/chapter/10.1007/978-3-030-48791-1_46?fbclid=IwAR0E06hAIGD2QNWSjwGpj2aOImCIc4UrpChWDUTkJtvqdaFQb9QIqLZzTIY
https://link.springer.com/chapter/10.1007/978-3-030-48791-1_46?fbclid=IwAR0E06hAIGD2QNWSjwGpj2aOImCIc4UrpChWDUTkJtvqdaFQb9QIqLZzTIY

