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Abstract

In this thesis we investigate what is the most effective vaccination
strategy against an epidemic resembling the COVID-19 outbreak in
the Stockholm region in Sweden, using a multi-type stochastic epi-
demic model with a fraction of initially vaccinated of each type, given
a varied number of either perfect or 90% efficacious all-or-nothing

vaccines. We extend the SEIR (Susceptible, Exposed, Infectious, Re-
moved) model to an SEIRLD model with Recovered, Long-term ill
or Dead as final states, and we vaccinate the population uniformly
(where the same fraction of each type is vaccinated), in order of de-
scending probability of early infection, and in descending age order
with males first to protect risk groups. The final sizes of the outbreak
are computed using a balance equation and the relative probabilities
of long-term illness and death, computed from COVID-19 data from
the Stockholm region.

The findings suggest that vaccinating the most vulnerable first pro-
tects risk groups the most, but reduces the spread the least for both
vaccines and all fractions of available vaccines considered. Conversely,
uniform vaccination protects the vulnerable groups the least, but re-
duces the spread more than the former approach. Vaccinating those
with a higher risk of early infection reduces the spread quite similarly
to the uniform vaccination for some fractions of vaccinated among the
population, while also reducing death and long-term illness relatively
sufficiently. Therefore, this strategy seems the most efficient overall.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: vera.c.andersson@gmail.com. Supervisor: Pieter Trapman.



Sammanfattning

I den här uppsatsen undersöker vi vad som är den mest effektiva vac-
cinationsstrategin mot en epidemi liknande utbrottet av COVID-19 i
region Stockholm i Sverige, genom att använda en stokastisk epidemi-
modell med flera typer och en andel initialt vaccinerade av varje typ,
givet ett varierat antal antingen perfekta vaccin eller 90% effektiva
allt-eller-inget-vaccin. Vi utökar SEIR-modellen (mottaglig, smittad,
smittsam, borttagen) till en SEIRLD-modell med återhämtad, lång-
tidssjuk eller avliden som slutgiltiga tillstånd och vi vaccinerar befolk-
ningen likformigt (där samma andel av varje typ vaccineras), i fallan-
de ordning av tidig smittorisk och i fallande åldersordning med män
först för att skydda riskgrupper. Slutstorlekarna av utbrottet beräk-
nas med hjälp av en balansekvation och de relativa sannolikheterna för
långtidssjukdom och död, beräknat från data om COVID-19 i region
Stockholm.

Resultaten tyder på att vaccinering av de mest sårbara först skyd-
dar riskgrupper mest, men reducerar spridningen minst för båda vacci-
nen och alla andelar tillgängliga vaccin som beaktas. Omvänt skyddar
likformig vaccination de sårbara grupperna minst, men reducerar sprid-
ningen mer än det tidigare tillvägagångssättet. Att vaccinera de med
en högre risk att bli smittade tidigt minskar smittspridningen ganska
liknande den likformiga vaccinationen för några andelar av vaccinera-
de i populationen, medan även dödsfallen och fallen av långtidssjuka
minskas relativt tillräckligt. Därför verkar denna strategi vara den
mest effektiva över lag.
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1 Introduction

The current COVID-19 pandemic has caused a demand for the manufactur-
ing and rapid distribution of vaccines to manage the worldwide spread and
reduce the number of fatalities and severe infections. As of now, multiple
vaccines have been assessed safe and efficacious enough for utilization and
several countries are in the process of vaccination. However, determining who
to vaccinate first is complicated as various vaccination strategies can affect
the reduction of the spread, severity of cases and mortality rates differently
depending on the type and allocation of vaccines. A range of contributing
factors need to be regarded including for instance individual heterogeneities
and structures in the population, and the optimal vaccination strategy in
terms of decreasing the expected number of people a typical infectious indi-
vidual in turn infects differs for these factors, as mentioned in Andersson &
Britton [1, p.119-120]. If heterogeneity in the population is due to individ-
ual differences in susceptibility and infectivity as is considered in this thesis,
those most susceptible should get vaccinated first if the infectivity is equal
across types of individuals and otherwise the optimal strategy is unclear. In-
deed, there is a trade-off in terms of high susceptibility and infectivity when
determining the optimal vaccination strategy.

Furthermore, the purpose of vaccination influences the strategies as well,
as vaccinating elderly and those with health issues may be more efficient
to protect vulnerable people, whereas vaccinating younger individuals may
reduce the spread more depending on who is the most susceptible to infec-
tion. As an intervention against the COVID-19 pandemic, The World Health
Organization (WHO) [14] recommends vaccinating those most at risk of get-
ting infected along with the elderly, those with other health conditions and
health workers before vaccinating other risk groups and the general pub-
lic. Similarly, in Sweden, the Public Health Agency [8] recommends first
vaccinating those with the highest need of protection where age and socioe-
conomic factors are considered, where those living or working at care homes
and hospitals as well as those having close contacts to people living at care
homes should be prioritized.

Research in relation to this has been done aiming to determine the opti-
mal vaccine allocation as a means to reduce the consequences of the COVID-
19 pandemic the most effectively. Ferranna, Cadarette & Bloom [7] evaluate
several strategies considering different vaccines, including vaccinating the el-
derly first, the elderly as well as essential workers unable to work remotely,
and younger individuals. They included age differences as well as essential
worker status in their epidemic model and found that prioritizing the elderly
reduced the number of deaths the most for most scenarios and also that
vaccinating essential workers reduced the spread and years of life lost, while
prioritizing younger people reduced fatalities the least. Earlier works consid-
ering optimal vaccination schemes include Duijzer, van Jaarsveld, Wallinga
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& Dekker [6] who show that an optimal strategy can require notably fewer
vaccines compared to commonly suggested allocation methods, andWallinga,
van Boven & Lipsitch [16] who show that vaccinating those with a higher
risk of getting infected reduces transmission the most.

As the vaccination strategy against COVID-19 is a topical matter, this
thesis aims to investigate the effectiveness of vaccination strategies in terms
of reducing the severity of the outbreak and protecting risk groups for an
outbreak similar to COVID-19 in a population structured similar to Swe-
den, using COVID-19 data for the Stockholm region in Sweden as well as
population distribution and contact data for Finland (since we do not have
access to the detailed contact data from Sweden). We assume that the num-
ber of available vaccines is such that a certain fraction of the population is
vaccinated which is varied for each strategy, and we use as a perfect vaccine
resulting in lifelong immunity for all vaccinated individuals along with an
all-or-nothing vaccine resulting in 90% of the vaccinated individuals being
fully immune and leaving the remainder unaffected. The first strategy con-
siders vaccinating the population uniformly in the sense that each type of
individual has the same fraction vaccinated, while the second strategy vacci-
nates individuals in descending order of the respective probability of getting
infected early on in the outbreak. The final method vaccinates males before
females in descending order of age to protect vulnerable groups, similar to
the recommended strategies mentioned above.

Keeping in mind that all models are oversimplifications of reality but can
be beneficial and applicable by being aware of the assumptions and reasons
for deviations from real-life, we use a stochastic epidemic model with the
population divided into types depending on age and sex, in order for the
model to be as realistic as possible yet simple enough to comprehend. We
extend the basic SEIR model for a homogeneous population mentioned by
Britton & Pardoux [5, p.5-6], where each individual can either be susceptible
(S), latently infected and hence exposed (E), infectious (I) or removed (R)
through recovery or death, to a multi-type SEIRLD model using Andersson
& Britton [1, p.51-52] where the last state of an individual is either recovered
(R), long-term ill (L) or dead (D). This may be unrealistic considering a long-
term ill individual would eventually either die or hopefully recover, but it
allows for simpler computations of the final fractions of long-term ill.

Furthermore, we consider a population where a fraction of each type
is vaccinated prior to the outbreak and the final percentages of infected
are computed from the final size equation derived and presented in Section
2.2.2. The percentages of long-term ill and dead are computed from the
relative probabilities of long-term illness and death computed in Section
3.2 from the COVID-19 data from the Stockholm region in Sweden. To
compare the reduction of the spread we compute the effective reproduction
number in Section 4.2.4 for each strategy and both vaccines, which is the
expected number of further infections caused by an infectious individual in
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a population with both susceptible and immune individuals, as is the case
after vaccination.

As we show below, the results suggest that the strategy prioritizing vul-
nerable groups is the most effective in reducing the fatalities and severe cases
but the least effective in reducing the spread. Vaccinating uniformly is the
least effective in protecting the risk groups but reduces the spread more
than vaccinating the risk groups first. The most effective strategy in terms
of reducing the spread is the one first vaccinating those most likely to get
infected early in the outbreak, which also keeps the vulnerable people fairly
protected as the older age groups are the most likely to get infected early
and are hence prioritized. As 70% of the population is vaccinated with the
perfect vaccine, both vaccinating uniformly and based on early contribution
to the spread achieve herd immunity where the entire population is protected
from the disease even with unvaccinated individuals. When vaccinating with
the all-or-nothing vaccine, only the latter strategy achieves herd immunity,
clearly suggesting that this is the most effective in reducing the spread in
this case.

2 Theoretical aspects

2.1 Epidemic models

This section introduces a basic stochastic epidemic model which is extended
to a stochastic model for a multi-type population with added possible final
states in order to capture the notion of risk groups in the model.

2.1.1 The SEIR model

A simple model describing an epidemic outbreak is the stochastic SEIR
model which is described by Britton & Pardoux [5, p.5-6], where we assume
a closed population of N +1 individuals where N are initially susceptible to
the disease and one person is already infected. During the epidemic, an indi-
vidual can either be susceptible (S), exposed (E) and hence latently infected,
infectious (I) or removed (R) by either recovering or dying of the disease.
The possible movements of an individual between different states are dis-
played in Figure 1. We let S(t), E(t), I(t) and R(t) respectively represent
the number of susceptible, exposed, infectious and removed individuals at
time t, and it follows from the assumption of the population being closed
that N + 1 = S(t) + E(t) + I(t) + R(t) at any time point t. Using this
notation and that the epidemic starts at t = 0 we can describe the initial
state as (S(0), E(0), I(0), R(0)) = (N, 0, 1, 0).

Furthermore, following Britton & Pardoux [5, p.5-6], an infectious in-
dividual is assumed to have infectious contacts following a Poisson process
with rate β, where each of these contacts is chosen uniformly and randomly
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Susceptible Exposed Infectious Removed

Figure 1: Diagram of the SEIR model with arrows showing the possible
directions of movement between compartments for an individual.

from the population. Thus, to keep this rate constant independently of the
population size, an infectious individual has contact with another specific in-
dividual at rate β/N as mentioned in Andersson & Britton [1, p.11]. Given
that the contacted individual is susceptible they become infected and oth-
erwise they are left unaffected. If infected, an individual i is first latently
infected (exposed) for a period denoted by X(i) which is distributed as the
random variable X with expectation E(X). The individual is infectious for
a period Y(i), distributed as the random variable Y with expectation ιY .
After infection the individual either dies or becomes immune and is hence
not susceptible to reinfection. We also assume that all Poisson processes,
uniformly chosen contacts and durations are mutually independent.

Since the population is closed it follows that eventually there will be no
more exposed or infectious individuals and the epidemic will stop at some
time point τ , where τ := min{t;E(t) + I(t) = 0}. In this case there are
only susceptibles and removed individuals left and therefore the final size of
the outbreak is given by the number of infected (now removed) among the
initially susceptible at time point τ , computed as Z = R(τ)−I(0) = N−S(τ)
as in Britton & Pardoux [5, p.6]. This topic is further discussed in Section
2.2.

In addition, as a supplement we also mention the deterministic SEIR
model where each susceptible individual can become exposed, then infec-
tious and finally removed as in the stochastic model and the rates of these
events are respectively given by β, ρ and γ. As in the stochastic model the
population is still closed, but we now assume fractions instead of numbers
such that s(t) + e(t) + i(t) + r(t) = 1 at all times t, where s(t) = S(t)/N ,
e(t) = E(t)/N , i(t) = I(t)/N , and r(t) = R(t)/N . This means that we
now assume that the initial case is (s(0), e(0), i(0), r(0)) = (1 − ε, 0, ε, 0)
for a small fraction ε. In the case where the transmission rates between
compartments are exponential it can be shown that the deterministic model
approximates the stochastic model, where the following system of differential
equations

s′(t) = −βs(t)i(t),
e′(t) = βs(t)i(t)− ρe(t),
i′(t) = ρe(t)− γi(t),
r′(t) = γi(t)

describes the deterministic model as in Britton & Pardoux [5, p.6, 22]. The

4



definitions of the symbols used are summarized in Table 1.

Table 1: Definitions of symbols used in the deterministic SEIR model.

Symbol Definition
s(t) Fraction of population that is susceptible at time t
e(t) Fraction of population that is exposed at time t
i(t) Fraction of population that is infected at time t
r(t) Fraction of population that is removed at time t
β Rate at which a susceptible individual becomes infected
ρ Rate at which a latent individual becomes infectious
γ Rate at which an infectious individual becomes removed

Nevertheless, the SEIR model relies on assumptions such that the pop-
ulation is homogeneous where every individual has equal rate of infectious
contacts with other individuals and that each individual has equal rates of
recovery (or death). In reality, there may be differences in susceptibility, so-
cial structures and activity, and some individuals could be more predisposed
to severe illness due to for instance age or chronic diseases. Additionally,
as the purpose of this thesis is to compare different vaccination strategies
in terms of risk groups and social activity, it is necessary to include those
aspects in the epidemic model. Therefore, we now extend the SEIR model to
include individual differences within the population, as well as distinguishing
between long-term ill, recovered and dead individuals.

2.1.2 The extended multi-type SEIRLD model

The SEIR model above is now extended to an SEIRLD model with the R
compartment divided into recovered (R), long-term ill (L) and dead (D)
individuals. The R, L and D compartments are absorbing states without
possible intercompartmental movement, as seen in the diagram in Figure 2.
This may be considered unrealistic as a long-term ill individual would prob-
ably either eventually recover or die, however we assume this is not the case
since it is of interest to study the final fraction of long-term ill individuals
in order to compare vaccination strategies in terms of risk groups.

Moreover, the population is assumed to be closed and is now divided
into k ∈ {1, 2, ...,K} different types with varying combinations of age and
sex. Additionally, we let the outbreak develop for a period of one year in
order to keep the ages of the individuals constant. Following Andersson &
Britton [1, p.51-52], we now assume that initially there are nk susceptible
k-individuals and mk infectious k-individuals with no exposed, recovered,
long-term ill or dead individuals. We denote the total number of initially
susceptible by n =

∑K
k=1 nk and the total number of initially infectious by

m =
∑K

k=1mk. In addition, we assume that each j-individual has infectious
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Susceptible Exposed Infectious Long-term ill

Recovered

Dead

Figure 2: Diagram of the SEIRLD model with arrows showing the possible
directions of movement between compartments for an individual.

contacts with a specific k-individual following a homogeneous Poisson process
with rate βjk/n and we note that βjk and βkj need not coincide, as the disease
transmission depends both on the infectivity of the infectious individual and
the susceptibility of the contacted individual.

Similar to the stochastic SEIR model, each infected individual i first
becomes latent (exposed) with random duration X(i) distributed as X with
expectation E(X), while each k-individual is infectious for a random duration
Yk distributed as Y with expectation ιYk . This way we assume that the
final state of either recovery, long-term illness or death for an individual is
independent of the time spent in the infectious state. However, it is possible
to assume otherwise if for instance individuals who die of the disease are
assumed to do so at a faster rate than other individuals recover as they are
more vulnerable, or they could be assumed to die at a slower rate if they for
example are in a coma prior to death. Furthermore, we again assume that
all Poisson processes, random choices of contacts and durations are mutually
independent.

Moreover, we mention the deterministic SEIRLD model for the sake of
completeness and using the supplementary materials for Britton, Ball and
Trapman [4, p.3] as a main reference, we describe the model by the following
system of differential equations
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s′k(t) = −sk(t)
K∑
j=1

πjβjkij(t),

e′k(t) = sk(t)
K∑
j=1

πjβjkij(t)− ρek(t),

i′k(t) = ρek(t)− (γrk + γlk + γdk)ik(t),

r′k(t) = γrkik(t),

l′k(t) = γlkik(t),

d′k(t) = γdkik(t)

where πj = nj/n is the fraction of j-individuals and the rest of the symbols
are defined in Table 2. In addition, as the population is assumed closed it
follows in accordance with the SEIR model that the sum of the fractions of
k-individuals in each state is given by 1 = sk(t) + ek(t) + ik(t) + rk(t) +
lk(t) + dk(t) for any time point t and

∑K
k=1 πk = 1. Finally, similar to the

SEIR model, the deterministic SEIRLD model approximates the stochastic
SEIRLD model if the transmission rates between states are exponentially
distributed. Nonetheless, Britton & Pardoux [5, p.22] mention that there are
other possible distributions of the rates of leaving states, such as a gamma
distribution with an integer valued shape parameter such that we have a sum
of independent exponential distributions. Another special case they mention
is when the infectious and latent periods are non-random.

Table 2: Definitions of symbols used in the SEIRLD model.

Symbol Definition
sk(t) Fraction of susceptibles in group k at time t
ek(t) Fraction of exposed individuals in group k at time t
ik(t) Fraction of infectives in group k at time t
rk(t) Fraction of recovered individuals in group k at time t
lk(t) Fraction of long-term ill individuals in group k at time t
dk(t) Fraction of dead individuals in group k at time t
βjk Infection rate for an individual from group k getting

infected by an individual from group j
ρ Rate at which a latent individual becomes infectious
γrk Recovery rate for an individual from group k
γlk Long-term illness rate for an individual from group k
γdk Disease-induced death rate for an individual from group k
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2.2 Final size equations

In this section we introduce the final size equation for a single-type popu-
lation where the whole population is initially susceptible, as well as when a
fraction is initially immune and then extend the equations to a multi-type
setting in the final subsection.

2.2.1 The single-type case

When the epidemic has stopped at some time point τ and there are no more
exposed or infectious people, it is possible to compute the final size of a ma-
jor outbreak by evaluating the final fraction of infected among the initially
susceptible. To do this, we first consider a population with single-type indi-
viduals for simplicity and utilize the SEIR model mentioned above. We note
that in this model, each infected individual will have become removed at the
end of the epidemic and thus the fraction of those not infected could be com-
puted from the amount of susceptibles left when the epidemic has stopped.
Therefore, as we are solely interested in the final outcome we can disregard
the progression of the outbreak and this is a consequence of the infectious
contacts following a Poisson process, which is a special case of a continuous
time Markov process where each state in the process is independent of the
past.

In order to do this, we first introduce the basic reproduction number,
denoted by R0. As in Heesterbeek & Dietz [9, p.89], this is the expected
number of people that an infectious individual in turn infects during their
infectious period, in a fully susceptible population. A major outbreak in
a large population is possible if and only if R0 > 1, since if R0 = 1 each
infected person only infects one other person on average and if R0 < 1, the
expected number of infected people will decline and hence the outbreak will
diminish quickly. This can be observed through that the expectation of a
non-negative integer-valued random variable is greater than the probability
that it is positive, since if the expected number of infected is declining, the
probability of an outbreak decreases as well. Additionally, as each individual
has infectious contacts at rate β with expected infectious time period ιY , we
get that R0 can be expressed as

R0 = E(βY ) = βιY

as stated by Britton & Pardoux [5, p.8-9].
Now we can derive the final size equation using Britton [3, p.6] as a

main reference. We denote the final fraction infected among the initially
susceptible by z and assume a large population such that we can neglect the
initially infected single individual and assume a population size of N instead
of N + 1, meaning that the final number of infected is zN . Additionally,
as the infectious contact rate between an infectious individual and another
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susceptible individual is β/N , we have that the number of infected individ-
uals by an individual i during their infectious period is given by Y(i)β/N .
As the infectious contacts follow a Poisson process, the number of infectious
contacts is Poisson distributed with parameter Y(i)β/N and we get that the
probability of escaping infection from an individual i is

E
(
(Y(i)β/N)0e−Y(i)β/N

0!

)
= E

(
e−Y(i)β/N

)
.

Furthermore, we assume that the fraction not getting infected is approx-
imately the same as the probability of not getting infected by assuming that
the fraction converges as the population size increases to infinity and hence
that it is non-random. Supposing that this is approximately equal to the
probability of escaping infection from all zN infectious individuals at the
end of the epidemic, we get that

1− z = fraction not getting infected
≈ probability not getting infected
≈ probability of escaping infection from all zN infected

≈ E
(
e−

Y(1)β

N

)
E
(
e−

Y(2)β

N

)
· ... · E

(
e−

Y(zN)β

N

)
= E

(
e−

β
N

∑zN
i=1 Y(i)

)
≈ e−βzE(Y )

= e−R0z

where we used that the probabilities of escaping infection from specific in-
dividuals are independent as well as that

∑zN
i=1 Y(i)/(zN) converges to E(Y )

almost surely as zN →∞ by the strong law of large numbers. To summarize,
the final size equation in the single-type case is given as

1− z = e−R0z

which is a balance equation for z, where solving for z yields the final fraction
of infected among the initially susceptible. We wish to determine the largest
solution for z, as this can either be 0 in the case where R0 ≤ 1 and for a
minor outbreak if R0 > 1, or between 0 and 1 for a major outbreak if R0 > 1.

Furthermore, if there is a fraction v of initially immune individuals due
to for instance vaccination, then the fraction of initially susceptible reduces
to 1 − v as the fraction of initially infectious is very small and negligible in
a large population. The contact rate between an infectious individual and
other initially susceptible individuals β/N is unchanged but the population
size changes to N(1− v), which means that the new reproduction number is
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given by

Rv = E
(
β

N
Y N(1− v)

)
= (1− v)βιY = (1− v)R0,

as in Britton & Pardoux [5, p.17-18]. As a result, we can express the final
size equation in this case as

1− z = e−Rvz

and solving for z again yields the final fraction of infected among the initially
susceptible but in the case of a fraction v being initially immune. Similar to
the case without initially immune individuals, if Rv ≤ 1 the solution is 0 and
if Rv > 1 the final fraction is either 0 for a minor outbreak and otherwise
between 0 and 1 for a major outbreak.

2.2.2 The multi-type case

In the case of a multi-type population where the infectious contacts again
follow a Poisson process such that we can neglect the development of the
outbreak, we can extend the above equations to find the final fraction of
infected for each type of individual. We do this similarly as above by now
considering the final fraction of infected k-individuals, which we denote zk
and the contact rate between an infectious j-individual and a susceptible
k-individual is now βjk/n where n denotes the population size. This means
that the number of infected during the infectious period of the j-individual
is Yjβjk/n. Since the infectious contacts are independent Poisson processes,
the number of contacts follow a Poisson distribution with parameter Yjβjk/n
and we get that the probability for a k-individual to escape infection from a
j-individual is

E
(
(Yjβjk/n)

0e−Yjβjk/n

0!

)
= E

(
e−Yjβjk/n

)
.

Nevertheless, we need to find the probability that a k-individual avoids in-
fection by all the j-individuals. We assume that the number of j-individuals
nj is very large and hence that the difference between nj and nj−mj is neg-
ligible for the number of initially infectious j-individualsmj , which results in
the final number of infected j-individuals being zjnj . Thus, the probability
of escaping infection from all j-individuals for a k-individual is given as the
following

E
(
e−Yj(1)βjk/n

)
E
(
e−Yj(2)βjk/n

)
· ... · E

(
e
−Yj(zjnj)βjk/n

)
= E

(
e−βjk/n

∑zjnj
i=1 Yj(i)

)
where we again utilized the independence between probabilities. Using the
strong law of large numbers as in the single-type case, we get that the above
is approximately

e−βjknjzjE(Yj)/n = e
−βjkπjzjιYj
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where we used that πj = nj/n.
However, this is merely the probability for a k-individual to escape in-

fection from the individuals of type j. As there are K different types of
individuals and as we assume that the rates of infectious contacts between
groups are independent, we get that the probability of escaping infection
from all individuals for a k-individual is given as

K∏
j=1

e
−βjkπjzjιYj = e

−
∑K
j=1 βjkπjzjιYj .

Thus, we can finally express the final size equation in the multi-type case as

1− zk = e
−

∑K
j=1 ιYjβjkπjzj

which is a balance equation for zk and it is in accordance with Equation
(6.2) in Andersson & Britton [1, p.54], since 1− zk is the fraction among the
initially susceptible who escape infection. In line with the single-type case,
we wish to find the largest solution zk which is 0 for a minor outbreak and
between 0 and 1 for a major outbreak.

Additionally, as in the single-type case we also consider the scenario with
a fraction vj of already immune j-individuals and susceptible k-individuals,
where j 6= k. Similar to in the single-type case, the contact rate βjk/n
between a j-individual and a k-individual is unchanged but the population
size of j-individuals changes to (1 − vj)nj , as only the fraction 1 − vj of j-
individuals are initially susceptible and this transforms the final size equation
into

1− zk = e
−

∑K
j=1 ιYjβjk(1−vj)πjzj . (1)

Furthermore, as the solution zk denotes the final fraction of infected k-
individuals among the initially susceptible we can use this in the SEIRLD
model since this fraction is divided into the recovered, long-term ill and dead
individuals. Hence, to find the final fractions of recovered, long-term ill and
dead we can multiply zk with the corresponding probabilities of these events
for a k-individual.

As in the single-type case, we can compute R0 before vaccination which
in the multi-type case is given as the largest eigenvalue of the next generation
matrix whose entries are given by βjkπkιYk , as stated in Andersson & Britton
[1, p.54]. After a fraction vk of k-individuals is vaccinated, the effective
reproduction number Rv is given as the largest eigenvalue of the matrix with
entries βjkπkιYk(1−vk) since the fraction of initially susceptible k-individuals
is now (1− vk)πk.

Moreover, we use the supporting information by Wallinga, van Boven &
Lipsitch [16, p.1-2] as a main reference to note that for the next generation
matrix with entries βjkπkιYk , the left eigenvector belonging to R0 is approx-
imately proportional to the number of individuals of each type among the
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infected in the generation. That is if we assume that no interventions have
been introduced prior to the time period of this generation, as well as that
the distribution of new infections for each type is similar to that during the
time period of this generation. Thus, if the next generation matrix is de-
noted by N and the left eigenvector belonging to R0 is denoted by a, we get
that aN = R0a and this suggests that the fractions of infected are accord-
ing to the normalized eigenvector a such that the entries add up to 1 and
that the fractions are increased by the factor R0 each generation. Therefore,
we assume that the normalized eigenvector a approximates the fractions of
infected in the early stages of the epidemic.

To get an idea of how likely individuals are to get infected in the epi-
demic, we divide the entries of the eigenvector a by the respective fractions of
individuals of each type in the population. As this is the fraction of infected
of each type divided by the fraction of individuals of each type, it follows
that this is proportional to the number of infected of each type divided by
the number of people of each type, which is the probability for each type
to get infected in the early stages. We can hence use this to decide who to
vaccinate first by vaccinating in descending order of the size of ak/πk for
each type k, where k = 1, 2, ...,K.

2.3 Vaccination

In this section we describe different vaccination strategies to implement
against an epidemic outbreak as well as how the properties of vaccines can
differ. We also mention the assumptions we make considering vaccinations
and the vaccines in this thesis.

2.3.1 Vaccination strategies

There are various strategies to combat an epidemic outbreak such as for
instance introducing quarantine, closing down parts of the community and
imposing travel restrictions, which all intend to reduce contact rates in order
to reduce R0 as pointed out by Britton [3, p.7-8]. Another strategy is vacci-
nation, which instead of reducing contact rates aims to reduce the amount of
susceptibles in the population and there are numerous possible vaccination
strategies with different purposes. However, in some circumstances some
strategies may be impossible to implement due to for instance a shortage of
vaccines or a lack thereof, as in the early stages of the COVID-19 pandemic
prior to the manufacturing of vaccines.

Although, given that a vaccine is already available a proportion of the
population could either be previously vaccinated, immediately vaccinated at
the beginning of the outbreak or the vaccinations could be initiated at a
later time point. The vaccination process could also be distributed over a
longer period and in practice the process requires time and therefore this
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would be more realistic than the assumption we make that a proportion of
the population is already vaccinated. Moreover, a significant topic of interest
is the allocation of the vaccines and its order which depend on the severity
of the epidemic and the purpose of the vaccinations. One possible strategy
is to prioritize individuals with high social activity to reduce the spread,
while another is to focus on those with individual risk factors such as age or
chronic diseases that could affect the recovery rate, and severity of illness.
This would protect those most vulnerable in the population.

In this thesis we are interested in analyzing how the fractions of severely
ill and deceased individuals at the end of the outbreak are affected by differ-
ent vaccination strategies as well as how the size of the outbreak is affected.
Moreover, it is also relevant to examine how the probability of an introduc-
tion of another outbreak is affected by different vaccination strategies, if for
instance an outbreak has already occurred and parts of the community are
already immune from being infected during the first outbreak.

2.3.2 Types of vaccines

Another significant aspect of vaccination is the action of the vaccine as its
ability to reduce susceptibility and infectivity is essential. In this thesis we
consider vaccines that reduce the susceptibility of individuals. Different types
of vaccines can have varying efficacy, which as in Andersson & Britton [1,
p.123] is the relative decrease in the rate of infection of vaccinated individuals
by infectious individuals, in comparison with that of completely susceptible
and unvaccinated people.

However, the efficacy could either impact how protected a vaccinated
individual is from becoming infected or the proportion of completely im-
mune individuals among those vaccinated, meaning that some vaccinated
individuals remain fully susceptible to infection in that case. Thus, differ-
ent vaccines can affect susceptibility differently and some examples include
an all-or-nothing vaccine that independently provides a fraction E of indi-
viduals with complete lifelong immunity and leaves the rest unaffected, a
leaky vaccine that independently reduces the risk of infection given exposure
to an infectious contact by a fraction E, as well as a perfect vaccine which
provides lifelong immunity to all vaccinated individuals with 100% efficacy.
These definitions of different types of vaccines are in line with those stated
by Halloran, Haber & Longini, as cited by Ball, Britton & Lyne [2, p.20,23].
We take these differences into account by comparing the use of a perfect
vaccine and an all-or-nothing vaccine in this thesis.

Furthermore, some vaccines could require multiple doses with different
time intervals, but for simplicity we solely consider single dose vaccines.
Additionally, for a multi-type setting we assume a fraction vk of already vac-
cinated k-individuals at the start of the epidemic, which as aforementioned
is a simplification of reality since sometimes a vaccine is unavailable at the
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start of an epidemic outbreak. However, this could be applicable to when
new outbreaks occur in a population with a fraction already immune from
the first outbreak.

When considering the fractions of available vaccines, we also keep in mind
the ability to achieve herd immunity where the whole population, including
unvaccinated individuals, is protected from the epidemic as in Andersson &
Britton [1, p.118]. They also state that for a fraction v of initially vaccinated
in the whole population with uniform vaccine allocation across groups, we
need

v ≥ 1

E

(
1− 1

R0

)
(2)

to reach herd immunity where v = vc is the critical vaccination coverage to
achieve this. In the case of a large R0 and a vaccine of low efficacy, it is
possible that vc exceeds 1 which means that vaccination alone is insufficient
in preventing the outbreak as the population is not protected even if everyone
is vaccinated.

3 Data

3.1 Next generation matrix

In this section we compute a next generation matrix of the expected number
of contacts between each type of individual, where the population is divided
into 10 groups depending on age and sex with age groups 0-19, 20-39, 40-59,
60-79 and 80+ years. To do this, we use the data from all the reported
contacts in Finland in 2008 in the form of the average number of contacts
per day found in Table S8.3a in the supporting information in Mossong et
al. [11], as well as the population distribution across age groups and sexes
in 2008 made available by Statistics Finland [10].

As the rows of the table of average number of contacts represent the age
groups of the contacted individuals and the last age group is 70+ years, we
transform the data by first adding an extra row, dividing the last row of 70+
years old individuals into the age groups 70-79 and 80+ years. This since
the average number of contacted people older than 79 years is included in
the values for those older than 69 years, and we therefore assume that the
expected number of contacts is the same for both groups. Similarly, as the
same issue occurs for the columns which represent the individual making
contacts, we divide the 70+ years column into age groups 70-79 and 80+
years by first computing the fraction of those older than 79 years among the
individuals aged 70+ years from the population distribution table, which
was found to be about 0.374. We then multiply the values in the 70+ years
column by 0.374 to get our 80+ years column and by 0.626 to get the 70-79
years column.
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Next, as the given age groups only span five years, we group the rows
and columns together into our desired groups by taking the average of the
average contacts for each combined age group. For instance, the values
for contacts between the different combinations of the age groups of 0-4,
5-9, 10-14 and 15-19 years are combined to become the average number of
contacts between the age group of 0-19 years and itself by adding the average
number of contacts and dividing by the total number of values, which is 16.
Repeating this for each of our selected age groups results in a matrix of the
average number of contacts per day, but we still need to incorporate the sexes
into the matrix. We do this by computing the fraction of males and females
in each age group and multiplying the fraction of the sex of the individual
making contacts by the fraction of the sex of the contacted individuals and
the average number of contacts made between these age groups. We have
now produced a contact matrixM of the average number of contacts between
our selected groups by age and sex. The population distribution table with
the fractions of males and females in each age group used to compute M are
found in Table 17 in Appendix A.

Moreover, we can express the entries in the contact matrix M as βjkπk
since a j-individual has close contacts with k-individuals at rate nkβjk/n =
βjkπk (note that j is represented by the columns and k by the rows in
the matrix as the individual making contacts is represented by the columns
and the contacted individuals are represented by the rows in the data from
Mossong et al. [11]). Therefore, we can use this to compute the basic
reproduction number following Andersson & Britton [1, p.54] as the basic
reproduction number in the multi-type case is given by the largest eigenvalue
of the matrix whose entries are computed as ιYjβjkπk, which is the expected
number of contacts made with k-individuals by an infectious j-individual
during their infectious period. We assume that the mean infectious period ιYj
is 4 days for all j as in Britton et al. [4, p.2] and further multiply the matrix
4M by the constant 0.5 to get the largest eigenvalue to be approximately
2.89 to get R0 = 2.9 in order to have a large outbreak but still resembling
the COVID-19 outbreak. Therefore, the next generation matrix is 2M and
is found in Table 18 in Appendix A.

Finally, in order to compute the final size equations, we need the matrix
with entries βjk which we obtain by dividing the entries βjkπk of matrix M
by the fraction πk of contacted k-individuals. However, as we rescaled the
next generation matrix to decrease our R0, we need to rescale the matrix
with entries βjk as well by multiplying each entry by 0.5 in order to keep the
same contact intensity. The computed matrix can be found in Table 19 and
the values for πj for all j are found in Table 20 and both tables are located
in Appendix A.
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3.2 Probabilities of death, long-term illness and recovery

To compute the final fractions of deceased, long-term ill and recovered indi-
viduals, we obtain the respective probabilities of dying, becoming long-term
ill and recovering for each age group and sex. As Finland and Sweden are
geographically adjacent and similar in a sociocultural sense, we use data
on the total number of reported cases and deaths due to COVID-19 in the
Stockholm region in Sweden as of March 28th 2021 made available by Vård-
givarguiden Region Stockholm [15] to compute the probabilities of dying.
We use Figure 5 in the report showing the total number of reported cases,
including deaths, by age group and sex in the Stockholm region, and we
combine the age groups in pairs by adding the values to obtain our selected
age groups, as for instance the first two groups represent the age group 0-19
years and so on. Nevertheless, we note that there were 147 cases mentioned
in Figure 5 with unknown details about age and sex.

Using the above as well as Figure 9 in the report showing the total number
of reported deaths by age groups and sex, we can compute the probabilities
of dying. However, the first age group in the figure is 0-49 years and hence to
divide this into our desired groups we compute the fraction of deaths among
the total number of cases in the 0-49 years age group and use this same ratio
for ages 0-19, 20-39 and 40-49 years. We further compute the fractions of
deaths for ages 50-59, 60-79 and 80+ years by adding the number of deaths
for ages 60-69 and 70-79 years, as well as for 80-89 and 90+ years and dividing
by the total number of cases for the respective age groups. Finally, we obtain
the fraction of deaths in the 40-59 years age group by taking the average of
the two fractions obtained for ages 40-49 and 50-59 years. The obtained
probabilities can be found in Table 3.

Furthermore, we compute the probabilities of becoming long-term ill us-
ing data on the reported number of COVID-19 patients by age groups and
sex in the Stockholm region as of March 28th 2021 made available by The
Swedish Intensive Care Registry (SIR) [13], assuming that this represents
the number of long-term ill individuals. We only consider patients who did
not end up dying in order to distinguish between long-term ill individuals
and disease-induced deaths, as well as only those who remained in hospital
care for a minimum of four days to ensure long-term illness. Additionally,
we consider both risk groups and non-risk groups and the individuals are
divided into age groups spanning 10 years, meaning that we need to add
the total number of patients in each age group for each sex in pairs to get
our selected age groups spanning 20 years, as we did previously for the total
number of cases. The probabilities of long-term illness by age group and sex
are computed from the fractions of long-term ill individuals among the total
number of cases found, which can be found in Table 3.

Finally, we compute the probabilities of recovering from COVID-19 by
age groups and sex by assuming that only those not long-term ill or dead
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recover and hence we compute the fractions of the remaining individuals
when excluding the reported number receiving hospital care and the dead
individuals. The results are found in of Table 3 and illustrated in Figure
3, where we note that the males and females aged 60 years and above can
be viewed as risk groups as they have a higher probability of dying and
becoming long-term ill than the rest of the population. In addition, the 40-
to 59-year-olds have some probability of becoming long-term ill and even
dying while almost all individuals in the younger groups are expected to
recover in probability.

Table 3: The probabilities of death, long-term illness and recovery by sex
and age group in years based on the COVID-19 data from the Stockholm
region in Sweden as of March 28th 2021.

Age groups
0-19 20-39 40-59 60-79 80+

Death Males 0.0005 0.0005 0.0033 0.0623 0.3728
Females 0.0003 0.0003 0.0010 0.0348 0.2536

Long-term illness Males 0.0004 0.0019 0.0161 0.0930 0.0182
Females 0.0001 0.0011 0.0062 0.0360 0.0063

Recovery Males 0.9991 0.9976 0.9806 0.8448 0.6090
Females 0.9996 0.9986 0.9929 0.9292 0.7401
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Figure 3: The probabilities of death, long-term illness and recovery by sex
and age group in years based on the COVID-19 data from the Stockholm
region in Sweden as of March 28th 2021.

4 Computations

4.1 Methods

We compute the final fractions of infected among the initially susceptible for
each type of individual in the population by computing the final size equation
in Equation (1) for each type with different fractions of initially immune due
to vaccination. The types of vaccines we use are a perfect vaccine and an
all-or-nothing vaccine with efficacy E = 90%, which is incorporated into the
final size equation by substituting v for Ev as the fraction E of the fraction
v gets completely immune from an all-or-nothing vaccine. The final fractions
of dead, long-term ill and recovered are computed by multiplying the final
fractions with the respective probabilities of death, long-term illness and
recovery for each type of individual computed in Section 3.2.

For comparative purposes we first compute the final fraction of infected
for each group and their respective probabilities of death, long-term illness
and recovery when nobody is vaccinated. Then we vary the different com-
binations of vaccinated groups as well as the vaccine used, while only vac-
cinating individuals such that the overall fraction of vaccinated is close to
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the critical vaccination coverage for uniform vaccination in the population,
according to Equation (2). For a perfect vaccine we get that the critical
vaccination coverage is

vc = 1− 1

R0
= 1− 1

2.9
≈ 0.66 (3)

and for an all-or-nothing vaccine with efficacy 90% the critical vaccination
coverage is

vc =
1

E

(
1− 1

R0

)
=

1

0.90

(
1− 1

2.9

)
≈ 0.73.

Furthermore, we assume that there are V < n vaccines available such that
V/n = c < 1 is the fraction of the population we can vaccinate. We therefore
assume scenarios where c = 0.1, 0.2, ..., 0.7 for both the perfect vaccine and
the all-or-nothing vaccine in order to stay close to the critical vaccination
coverage in both cases.

4.2 Results

As the main purpose of this thesis is to compare vaccination strategies in
terms of effectiveness in reducing the spread and protecting vulnerable indi-
viduals, we first compute the final fractions of infected as well as the prob-
abilities of dying, becoming long-term ill and recovering for each type of
individual in an unvaccinated population for comparison. The results are
found in Table 4 where we note that almost all individuals aged 80+ years
are infected and that the percentages of infected for the ages 0-19, 20-39 and
40-59 years are all above 90% for both sexes, whereas the 60-79 years age
group has a significantly lower percentage of 78.92% for both sexes. This
could be due to that many individuals in the 80+ years age group may live
at retirement homes and have many interactions with other residents and
the staff, meanwhile individuals in the 60-79 years age group may be less
interactive with other age groups since a large proportion are at the age of
retirement and do not attend school or work daily. Furthermore, we note
that the final percentages of infected males and females are almost identical
across all age groups.

The table also shows that almost all infected individuals under the age
of 60 years recover while the corresponding percentage for individuals aged
60+ years is lower, where we notice that men have a lower probability of
recovering than females overall and that this difference is more prominent
for the elderly. We also note that individuals from the 40-59 years age group
have a slightly lower probability of recovering than the younger age groups.

Additionally, it is clear that individuals under the age of 60 years have a
minimal risk of dying as the percentages are below 1% for both sexes, while
the percentages increase to 4.92% for males and 2.75% for females for the
60-79 years age group and further increase significantly for the 80+ years age
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group, where the males are 37.26% likely to die and the females are 25.35%
likely to die. Thus, to reduce the number of deaths it seems necessary to
vaccinate a larger fraction of those aged 60+ years. The findings also suggest
that men are more likely to die than females for all age groups which may
indicate a need for vaccinating a higher fraction of males than females.

Similarly, the percentages of long-term ill illustrate how men are more
susceptible than females to long-term illness for all age groups, which again
suggests that vaccinating a higher fraction of men would be beneficial for the
population. The probability of long-term illness for men in the 60-79 years
age group is considerably higher than in any other age group, and thus they
may need a higher fraction of vaccinated. We also note that the percentages
of long-term ill among those younger than 20 years are below 0.1% for both
sexes.

Moreover, the 40-59 and 80+ years age groups show a similar percentage
of long-term ill individuals, which could be attributed to a large fraction
of those older than 79 years dying rather than staying long-term ill. Ad-
ditionally, as the probability of long-term illness was based on data on the
number of hospitalized patients, this result could also be explained by how
individuals aged 80+ years may be less likely to get admitted into hospi-
tal than younger people who are more likely to recover from intensive care.
However, as the highest percentage of long-term ill individuals is 7.34% for
the males in the 60-79 years age group which is significantly lower than the
highest percentage 37.26% of dead for the males older than 79 years, it may
be more important to prioritize the latter group for an overall strategy to
protect vulnerable individuals. This however depends on the main aim of
the vaccinations.

As we now know the outcomes of the epidemic without any interventions,
we can implement different vaccination strategies to compare the results to
the outcomes in the unvaccinated case.
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Table 4: The final percentages of infected, recovered, dead and long-term ill
within each group by age groups in years and sex when the entire population
is unvaccinated.

Age groups
0-19 20-39 40-59 60-79 80+

Infected (%) Males 93.39 94.43 92.53 78.92 99.94
Females 93.39 94.43 92.53 78.92 99.95

Recovered (%) Males 93.31 94.20 90.74 66.67 60.87
Females 93.36 94.29 91.87 73.33 73.98

Dead (%) Males 0.0467 0.0472 0.3054 4.92 37.26
Females 0.0280 0.0283 0.0925 2.75 25.35

Long-term ill (%) Males 0.0374 0.1794 1.49 7.34 1.82
Females 0.0093 0.1039 0.5737 2.84 0.6297

4.2.1 Vaccinating equal fractions of each group

Assuming we can vaccinate a fraction c = 0.1, 0.2, ..., 0.7 of the population,
we first decide to vaccinate the same fraction c of all types. The final per-
centages of infected, recovered, dead, and long-term ill are presented in Table
5 after vaccination with a perfect vaccine and in Table 6 after vaccination
with the all-or-nothing vaccine. Additionally, the ratios between the final
sizes when the same fractions of each group are vaccinated and for the un-
vaccinated population are presented in Table 7. Since the final fractions of
recovered, dead and long-term ill are computed from the final sizes of infected
by multiplying with the respective probabilities for each type of individual,
the ratios are the same as for the ratios of the fractions of infected which are
displayed in the table.

In the case where a perfect vaccine is used, we see in Table 5 that the
percentages of recovered are approximately the same for the 0-19, 20-39 and
40-59 age ranges for females and males which indicates that the percentages
of dead and long-term ill individuals are small, and we note that they are all
close to or below 1%. More significant differences between the percentages
of infected and recovered are displayed for the 60-79 years age groups as well
as for those aged 80+ years since larger proportions of these types become
long-term ill or die.

Furthermore, if only 10% of each group is vaccinated then the final per-
centages of infected decrease to just under 90% for the individuals older than
79 years, to about 80% for the age groups under 60 years and to about 67%
for the 60- to 79-year-olds. The final fractions of dead and long-term ill also
decrease slightly, but the percentages of dead individuals aged 80+ years are
still above 30% for the males and above 20% for the females. This corre-
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sponds to about 90% of the final sizes in the unvaccinated population. We
also note that when c is less than or equal to 0.5 at least 25% of individu-
als below the age of 60 years are infected for both sexes and when c = 0.5
the proportions are about a third of the final fractions in the unvaccinated
case, which is a decent reduction of cases. However, more than 40% of males
and females aged 80+ years are still infected which is almost 45% of the
infections without a vaccine, indicating that these types of individuals are
not well protected by this strategy. This is also shown by how 16% of the
80+ years old males and 11% of the 80+ years old females die of infection
when half of the population is vaccinated equally. The percentages of dead
60- to 79-year-olds are close to or below 1% when c = 0.5 which means that
this age group is quite well protected by this strategy, although the percent-
ages of dead in the unvaccinated case for this age group were already quite
low to begin with as they were below 5%. Additionally, the percentages of
long-term ill are all below 2% when c ≥ 0.5.

Moreover, all percentages of infected are close to or below 10% when c =
0.6 except for the 80+ years groups, where the percentages have decreased to
21.7% and 22% which is a large decrease in the number of cases since almost
the entire age group was infected in the unvaccinated case. In addition, about
8.1% of the males and 5.6% of the females die which means that less than 10%
of those groups die, but these percentages might be reduced further by using
another vaccination strategy. However, the percentages of dead 60- to 79-
year-olds are below 0.5% for c = 0.6, indicating that this strategy is already
sufficient in protecting this age group. Furthermore, since herd immunity is
reached when roughly 66% of the population has been vaccinated with the
perfect vaccine according to Equation (3), the final percentages of infected
are zero when 70% of the population has been vaccinated.
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Table 5: The final percentages of infected, recovered, dead and long-term ill
within each group by age groups in years and sex for different allocations
of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of the population can be
vaccinated with a perfect vaccine. In each group the same fraction c of
individuals of that type is vaccinated.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Infected (%) 0.1 81.60 82.74 80.60 66.53 89.86 81.60 82.74 80.60 66.53 89.88
0.2 69.30 70.52 68.16 54.03 79.65 69.30 70.52 68.16 54.03 79.69
0.3 56.32 57.56 55.07 41.52 69.09 56.32 57.56 55.07 41.52 69.18
0.4 42.41 43.59 41.12 29.14 57.62 42.41 43.59 41.12 29.14 57.80
0.5 27.21 28.16 26.05 17.11 43.59 27.21 28.16 26.05 17.11 43.91
0.6 10.15 10.60 9.54 5.75 21.67 10.15 10.60 9.54 5.75 22.01
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Recovered (%) 0.1 81.53 82.54 79.04 56.20 54.72 81.57 82.62 80.03 61.82 66.52
0.2 69.24 70.35 66.84 45.65 48.50 69.27 70.42 67.68 50.21 58.98
0.3 56.27 57.43 54.00 35.08 42.08 56.30 57.48 54.68 38.58 51.20
0.4 42.37 43.49 40.32 24.62 35.09 42.40 43.53 40.82 27.08 42.78
0.5 27.19 28.10 25.54 14.46 26.55 27.20 28.12 25.86 15.90 32.50
0.6 10.14 10.58 9.35 4.86 13.20 10.14 10.59 9.47 5.34 16.29
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dead (%) 0.1 0.0408 0.0414 0.2660 4.14 33.50 0.0245 0.0248 0.0806 2.32 22.79
0.2 0.0346 0.0353 0.2249 3.37 29.69 0.0208 0.0212 0.0682 1.88 20.21
0.3 0.0282 0.0288 0.1817 2.59 25.76 0.0169 0.0173 0.0551 1.44 17.54
0.4 0.0212 0.0218 0.1357 1.82 21.48 0.0127 0.0131 0.0411 1.01 14.66
0.5 0.0136 0.0141 0.0860 1.07 16.25 0.0082 0.0084 0.0260 0.5955 11.14
0.6 0.0051 0.0053 0.0315 0.3581 8.08 0.0030 0.0032 0.0095 0.2000 5.58
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Long-term ill (%) 0.1 0.0326 0.1572 1.30 6.19 1.64 0.0082 0.0910 0.4997 2.40 0.5662
0.2 0.0277 0.1340 1.10 5.03 1.45 0.0069 0.0776 0.4226 1.95 0.5020
0.3 0.0225 0.1094 0.8866 3.86 1.26 0.0056 0.0633 0.3414 1.49 0.4358
0.4 0.0170 0.0828 0.6620 2.71 1.05 0.0042 0.0480 0.2549 1.05 0.3641
0.5 0.0109 0.0535 0.4193 1.59 0.7934 0.0027 0.0310 0.1615 0.6160 0.2766
0.6 0.0041 0.0201 0.1535 0.5345 0.3944 0.0010 0.0117 0.0591 0.2069 0.1387
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Moreover, for the all-or-nothing vaccine we see in Table 6 that the per-
centages of infected aged 80+ years are above 90%, that the percentages of
infected younger than 60 years are above 80% and that almost 70% of the
60- to 79-year-olds are infected for both sexes when 10% of the population
is vaccinated, corresponding to about 90% of the infections in the unvacci-
nated case. The percentages of dead individuals under the age of 60 years
are below 0.5% for both sexes, while the percentages of dead people aged
80+ years are still above 30% for the males and over 20% for the females.
The final fractions of dead 60- to 79-year-olds did not change significantly
either and similar results are found for the percentages of long-term ill as
well.

Additionally, the proportion of infected individuals younger than 60 years
are at least above 30% for both sexes for c less than or equal to 0.5, while
about 20% of the 60- to 79-year-olds and about half of the 80+ years group
are infected for both sexes, showing a similar trend to when a perfect vaccine
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is used. The proportion of long-term ill individuals are less than or close to
2% when half the population in each group is vaccinated, and we also see
that only about 1% of the 60- to 79-year-old males and less than 1% of the
females die but that the percentages of deceased in the 80+ years age group
are about 20% for the males and 13% for the females, resulting in a high
number of deaths in a large population.

When 60% of the population is vaccinated, the proportion of deceased
who are 80+ years old is closer to 10% and the remaining groups have per-
centages less than 1%, while the percentages of long-term ill individuals are
minimal across all groups. The final proportions of infected are now all be-
low 40%, where the younger age groups are down to about 20% infected
and the 60- to 79-year-olds have closer to 10% infected. As we approach the
critical vaccination coverage for the all-or-nothing vaccine with 70% of the
population vaccinated, we note that all percentages of infected individuals
younger than 80 years are below 5% whereas about 11% of the group aged
80+ years is infected. This results in about 4% and around 3% of the males
and females aged 80+ years dying, respectively.
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Table 6: The final percentages of infected, recovered, dead and long-term ill
within each group by age groups in years and sex for different allocations
of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of the population can be
vaccinated with an all-or-nothing vaccine of efficacy 90%. In each group the
same fraction c of individuals of that type is vaccinated.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Infected (%) 0.1 82.80 83.93 81.82 67.77 90.87 82.80 83.93 81.82 67.77 90.89
0.2 71.81 73.01 70.70 56.54 81.71 71.81 73.01 70.70 56.54 81.74
0.3 60.30 61.54 59.07 45.27 72.31 60.30 61.54 59.07 45.27 72.39
0.4 48.11 49.33 46.81 34.06 62.38 48.11 49.33 46.81 34.06 62.52
0.5 35.00 36.09 33.74 23.06 51.11 35.00 36.09 33.74 23.06 51.36
0.6 20.65 21.44 19.63 12.47 36.36 20.65 21.44 19.63 12.47 36.72
0.7 4.56 4.79 4.26 2.51 11.14 4.56 4.79 4.26 2.51 11.36

Recovered (%) 0.1 82.73 83.73 80.23 57.25 55.34 82.77 83.81 81.23 62.97 67.27
0.2 71.74 72.84 69.33 47.76 49.76 71.78 72.91 70.20 52.53 60.50
0.3 60.24 61.39 57.93 38.24 44.04 60.27 61.46 58.66 42.06 53.57
0.4 48.06 49.21 45.91 28.78 37.99 48.09 49.26 46.48 31.65 46.27
0.5 34.97 36.01 33.09 19.48 31.13 34.99 36.04 33.50 21.43 38.01
0.6 20.63 21.39 19.25 10.53 22.14 20.64 21.41 19.49 11.59 27.18
0.7 4.56 4.78 4.18 2.12 6.78 4.56 4.78 4.23 2.33 8.41

Dead (%) 0.1 0.0414 0.0420 0.2700 4.22 33.88 0.0248 0.0252 0.0818 2.36 23.05
0.2 0.0359 0.0365 0.2333 3.52 30.46 0.0215 0.0219 0.0707 1.97 20.73
0.3 0.0301 0.0308 0.1949 2.82 26.96 0.0181 0.0185 0.0591 1.58 18.36
0.4 0.0241 0.0247 0.1545 2.12 23.26 0.0144 0.0148 0.0468 1.19 15.86
0.5 0.0175 0.0180 0.1113 1.44 19.05 0.0105 0.0108 0.0337 0.8026 13.02
0.6 0.0103 0.0107 0.0648 0.7768 13.55 0.0062 0.0064 0.0196 0.4332 9.31
0.7 0.0023 0.0024 0.0141 0.1563 4.15 0.0014 0.0014 0.0043 0.0873 2.88

Long-term ill (%) 0.1 0.0331 0.1595 1.32 6.30 1.65 0.0083 0.0923 0.5073 2.44 0.5726
0.2 0.0287 0.1387 1.14 5.26 1.49 0.0072 0.0803 0.4383 2.03 0.5150
0.3 0.0241 0.1169 0.9511 4.21 1.32 0.0060 0.0677 0.3663 1.63 0.4560
0.4 0.0192 0.0937 0.7537 3.17 1.14 0.0048 0.0543 0.2902 1.23 0.3939
0.5 0.0140 0.0686 0.5432 2.14 0.9302 0.0035 0.0397 0.2092 0.8303 0.3235
0.6 0.0083 0.0407 0.3161 1.16 0.6617 0.0021 0.0236 0.1217 0.4489 0.2313
0.7 0.0018 0.0091 0.0686 0.2333 0.2028 0.0005 0.0053 0.0264 0.0903 0.0716
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Table 7: The ratio of final sizes within each group by age groups in years and
sex for different allocations of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of
the population can be vaccinated with a perfect or an all-or-nothing vaccine
with 90% efficacy, compared to in an unvaccinated population. In each group
the same fraction c of individuals of that type is vaccinated.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Perfect 0.1 0.87 0.88 0.87 0.84 0.90 0.87 0.88 0.87 0.84 0.90
0.2 0.74 0.75 0.74 0.68 0.80 0.74 0.75 0.74 0.68 0.80
0.3 0.60 0.61 0.60 0.53 0.69 0.60 0.61 0.60 0.53 0.69
0.4 0.45 0.46 0.44 0.37 0.58 0.45 0.46 0.44 0.37 0.58
0.5 0.29 0.30 0.28 0.22 0.44 0.29 0.30 0.28 0.22 0.44
0.6 0.11 0.11 0.10 0.07 0.22 0.11 0.11 0.10 0.07 0.22
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

All-or-nothing 0.1 0.89 0.89 0.88 0.86 0.91 0.89 0.89 0.88 0.86 0.91
0.2 0.77 0.77 0.76 0.72 0.82 0.77 0.77 0.76 0.72 0.82
0.3 0.65 0.65 0.64 0.57 0.72 0.65 0.65 0.64 0.57 0.72
0.4 0.52 0.52 0.51 0.43 0.62 0.52 0.52 0.51 0.43 0.63
0.5 0.37 0.38 0.36 0.29 0.51 0.37 0.38 0.36 0.29 0.51
0.6 0.22 0.23 0.21 0.16 0.36 0.22 0.23 0.21 0.16 0.37
0.7 0.05 0.05 0.05 0.03 0.11 0.05 0.05 0.05 0.03 0.11

4.2.2 Vaccinating in descending order of contribution to spread

In order to find the types of individuals contributing most to the spread
we consider the probabilities of getting infected in the early stages of the
epidemic by first computing the eigenvector corresponding to R0 according
to Section 2.2.2. However, as our next generation matrix in Table 18 in
Appendix A is transposed with the columns representing the infectious j-
individual making infectious contacts with the k-individuals in each row,
we instead compute the right eigenvector corresponding to R0. That is, we
compute the positive right eigenvector a normalized with the entries adding
up to 1 such that Na = R0a where N is our next generation matrix. This
eigenvector is given in Table 20 in Appendix A and the computed values of
ak/πk can be found in the same table.

According to Table 20 we now vaccinate groups in the following order

1. Females aged 80+ years
2. Males aged 80+ years
3. Females aged 20-39 years
4. Males aged 20-39 years
5. Females aged 0-19 years

6. Males aged 0-19 years
7. Females aged 40-59 years
8. Males aged 40-59 years
9. Males aged 60-79 years

10. Females aged 60-79 years

where we vaccinate the entire group when possible and iteratively move on
to give any remaining vaccines to the next group in the list, if the proportion
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of vaccines is greater than the proportion of individuals in the former group.
The fractions vaccinated using this strategy when different fractions of the
whole population can be vaccinated are found in Table 8 and the results
when a perfect vaccine is used can be found in Table 9. The results for the
all-or-nothing vaccine are found in Table 10 and the ratio of the final sizes
compared to the unvaccinated case are presented in Table 11.

Table 8: The fractions vaccinated by age groups in years and sex for different
allocations of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of the population
can be vaccinated. The order of vaccinating individuals is determined by the
computed ak/πk in Table 20.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+
0.1 0 0 0 0 1 0 0.46 0 0 1
0.2 0 0.28 0 0 1 0 1 0 0 1
0.3 0 1 0 0 1 0.08 1 0 0 1
0.4 0 1 0 0 1 0.97 1 0 0 1
0.5 0.82 1 0 0 1 1 1 0 0 1
0.6 1 1 0 0 1 1 1 0.56 0 1
0.7 1 1 0.26 0 1 1 1 1 0 1

When 10% of the population is vaccinated with a perfect vaccine accord-
ing to the above strategy none of the individuals aged 80+ years are infected
and the final percentages of infected 60- to 79-year-olds are about 75% for
both sexes. About 90% of the individuals younger than 60 years are infected
except for the 20- to 39-year-old females, as only about 49.7% of this group
is infected. Additionally, the highest percentage of deaths in this case is
4.67% for the 60- to 79-year-old males which significantly reduces the overall
deaths as the most vulnerable 80+ years age group is completely protected
from long-term illness and death. However, the final percentages of infected
in the younger age groups are still high and the percentages of long-term ill
60- to 79-year-olds are not significantly affected as this group is yet to be
vaccinated.

As we move from vaccinating 30% of the population to 40%, we note that
the proportion of infected 0- to 19-year-old females decreases from about 79%
to 2.01% as we vaccinate almost this whole group. This also decreases the
percentages of infected in the remaining groups and especially for the 0- to 19-
year-old males whose percentage is 68% of that in the unvaccinated case. The
final fractions of dead and long-term ill decrease slightly for the unvaccinated
individuals aged 40-59 and 60-79 years. As half of the population has been
vaccinated, none of the age groups 20-39 years and 80+ years or the females
younger than 20 years are infected and only about 5.7% of the 0- to 19-
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year-old males are infected, which is 6% of the unvaccinated case and the
remaining unvaccinated groups have about 62 − 66% of the infected in an
unvaccinated population. Thus, this strategy is quite effective in reducing
the spread if half of the population is vaccinated.

Nevertheless, the percentage of dead 60- to 79-year-old males is only
reduced to below 3.5% when at least 50% of the population is vaccinated and
the proportion of deceased females is not reduced significantly either until
half the population is immune. However, the percentages were rather low
to begin with and compared to the unvaccinated population the infections
were reduced to 62% for this age group. Furthermore, it is also notable that
the 60- to 79-year-olds remain unvaccinated for all values of c but the final
fractions of infected are reduced from about 75% to about 24.8% for both
sexes by vaccinating the other groups when c = 0.6. Although, about half
of the 60- to 79-year-olds are still infected as c = 0.5 and the reduction of
infections is quite slow until we vaccinate at least half of the population.
Moreover, when c = 0.7 no one is infected as herd immunity is achieved
for the perfect vaccine and no outbreak takes place, similar to when equal
fractions were vaccinated in every group in the previous subsection.
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Table 9: The final percentages of infected, recovered, dead and long-term ill
within each group by age groups in years and sex for different allocations
of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of the population can be
vaccinated with a perfect vaccine. The order of vaccinating individuals is
determined by the computed ak/πk in Table 20.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Infected (%) 0.1 92.25 92.03 90.63 74.94 0.00 92.25 49.68 90.63 74.94 0.00
0.2 89.83 61.69 86.51 70.56 0.00 89.83 0.00 86.51 70.56 0.00
0.3 85.82 0.00 80.59 65.15 0.00 78.99 0.00 80.59 65.15 0.00
0.4 63.67 0.00 71.60 57.24 0.00 2.01 0.00 71.60 57.24 0.00
0.5 5.65 0.00 61.01 48.79 0.00 0.00 0.00 61.01 48.79 0.00
0.6 0.00 0.00 28.71 24.83 0.00 0.00 0.00 12.75 24.83 0.00
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Recovered (%) 0.1 92.16 91.81 88.88 63.31 0.00 92.21 49.61 89.99 69.63 0.00
0.2 89.75 61.54 84.83 59.61 0.00 89.80 0.00 85.89 65.57 0.00
0.3 85.74 0.00 79.03 55.03 0.00 78.96 0.00 80.02 60.53 0.00
0.4 63.61 0.00 70.21 48.36 0.00 2.01 0.00 71.09 53.19 0.00
0.5 5.64 0.00 59.83 41.22 0.00 0.00 0.00 60.58 45.33 0.00
0.6 0.00 0.00 28.15 20.97 0.00 0.00 0.00 12.66 23.07 0.00
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dead (%) 0.1 0.0461 0.0460 0.2991 4.67 0.00 0.0277 0.0149 0.0906 2.61 0.00
0.2 0.0449 0.0308 0.2855 4.40 0.00 0.0270 0.00 0.0865 2.46 0.00
0.3 0.0429 0.00 0.2659 4.06 0.00 0.0237 0.00 0.0806 2.27 0.00
0.4 0.0318 0.00 0.2363 3.57 0.00 0.0006 0.00 0.0716 1.99 0.00
0.5 0.0028 0.00 0.2013 3.04 0.00 0.00 0.00 0.0610 1.70 0.00
0.6 0.00 0.00 0.0947 1.55 0.00 0.00 0.00 0.0127 0.8640 0.00
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Long-term ill (%) 0.1 0.0369 0.1749 1.46 6.97 0.00 0.0092 0.0547 0.5619 2.70 0.00
0.2 0.0359 0.1172 1.39 6.56 0.00 0.0090 0.00 0.5363 2.54 0.00
0.3 0.0343 0.00 1.30 6.06 0.00 0.0079 0.00 0.4997 2.35 0.00
0.4 0.0255 0.00 1.15 5.32 0.00 0.0002 0.00 0.4439 2.06 0.00
0.5 0.0023 0.00 0.9823 4.54 0.00 0.00 0.00 0.3783 1.76 0.00
0.6 0.00 0.00 0.4622 2.31 0.00 0.00 0.00 0.0790 0.8938 0.00
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Further implementing this strategy with the all-or-nothing vaccine when
10% of the population is vaccinated results in just under 10% of the individ-
uals aged 80+ years getting infected for both sexes, and about 54% of the
20- to 39-year-old females getting infected. This already reduces the final
percentages of dead people aged 80+ years to below 4% for both sexes. In
addition, we note that for c = 0.4, each of the vaccinated groups has less
than 10% infected and the remaining unvaccinated groups each has about
80% or less of the infected in an unvaccinated population, which could be
reduced further. As 60% of the population is vaccinated only the 60- to
79-year-olds and the males aged between 40-59 years are left unvaccinated,
and each group now has less than half infected. The final percentages of
long-term ill and dead 60- to 79-year-olds are about half of that in the un-
vaccinated population and the percentages of long-term ill and dead are all
under 4% for all groups.
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Moreover, as 70% of the population is vaccinated, we have reduced the
reproduction number to below 1 as no one is infected. Hence, we can protect
the population and the vulnerable individuals if we vaccinate only 70%,
even with an all-or-nothing vaccine of efficacy 90% where none of the 60- to
79-year-olds and only 26% of the 40- to 59-year-olds are vaccinated. This
proves more efficient than vaccinating the same fraction of each group, as
people were still infected when 70% of the population was vaccinated with
the all-or-nothing vaccine.

Table 10: The final percentages of infected, recovered, dead and long-term
ill within each group by age groups in years and sex for different alloca-
tions of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of the population can
be vaccinated with an all-or-nothing vaccine of efficacy 90%. The order of
vaccinating individuals is determined by the computed ak/πk in Table 20.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Infected (%) 0.1 92.37 92.31 90.85 75.38 9.98 92.37 54.08 90.85 75.38 9.99
0.2 90.27 65.04 87.29 71.57 9.97 90.27 8.68 87.29 71.57 9.98
0.3 86.84 7.81 82.31 66.91 9.94 80.62 7.81 82.31 66.91 9.95
0.4 69.47 6.93 75.37 60.62 9.88 8.92 6.93 75.37 60.62 9.89
0.5 10.64 5.84 66.47 53.31 9.76 4.09 5.84 66.47 53.31 9.77
0.6 2.14 3.63 42.32 35.58 8.88 2.14 3.63 21.15 35.58 8.89
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Recovered (%) 0.1 92.29 92.09 89.09 63.68 6.08 92.33 54.01 90.20 70.04 7.39
0.2 90.19 64.89 85.60 60.47 6.07 90.23 8.67 86.68 66.51 7.38
0.3 86.76 7.79 80.71 56.53 6.06 80.59 7.80 81.72 62.17 7.37
0.4 69.40 6.91 73.91 51.21 6.02 8.91 6.92 74.84 56.33 7.32
0.5 10.63 5.83 65.18 45.04 5.94 4.09 5.84 66.00 49.53 7.23
0.6 2.14 3.63 41.50 30.06 5.41 2.14 3.63 21.00 33.06 6.58
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dead (%) 0.1 0.0462 0.0462 0.2998 4.70 3.72 0.0277 0.0162 0.0908 2.62 2.53
0.2 0.0451 0.0325 0.2881 4.46 3.72 0.0271 0.0026 0.0873 2.49 2.53
0.3 0.0434 0.0039 0.2716 4.17 3.71 0.0242 0.0023 0.0823 2.33 2.52
0.4 0.0347 0.0035 0.2487 3.78 3.68 0.0027 0.0021 0.0754 2.11 2.51
0.5 0.0053 0.0029 0.2193 3.32 3.64 0.0012 0.0018 0.0665 1.86 2.48
0.6 0.0011 0.0018 0.1397 2.22 3.31 0.0006 0.0011 0.0211 1.24 2.25
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Long-term ill (%) 0.1 0.0369 0.1754 1.46 7.01 0.1817 0.0092 0.0595 0.5633 2.71 0.0629
0.2 0.0361 0.1236 1.41 6.66 0.1815 0.0090 0.0095 0.5412 2.58 0.0628
0.3 0.0347 0.0148 1.33 6.22 0.1810 0.0081 0.0086 0.5103 2.41 0.0627
0.4 0.0278 0.0132 1.21 5.64 0.1798 0.0009 0.0076 0.4673 2.18 0.0623
0.5 0.0043 0.0111 1.07 4.96 0.1777 0.0004 0.0064 0.4121 1.92 0.0615
0.6 0.0009 0.0069 0.6814 3.31 0.1617 0.0002 0.0040 0.1311 1.28 0.0560
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 11: The ratio of final sizes within each group by age groups in years and
sex for different allocations of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of
the population can be vaccinated with a perfect or an all-or-nothing vaccine
with 90% efficacy, compared to in an unvaccinated population. The order of
vaccinating individuals is determined by the computed ak/πk in Table 20.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Perfect 0.1 0.99 0.97 0.98 0.95 0.00 0.99 0.53 0.98 0.95 0.00
0.2 0.96 0.65 0.93 0.89 0.00 0.96 0.00 0.93 0.89 0.00
0.3 0.92 0.00 0.87 0.83 0.00 0.85 0.00 0.87 0.83 0.00
0.4 0.68 0.00 0.77 0.73 0.00 0.02 0.00 0.77 0.73 0.00
0.5 0.06 0.00 0.66 0.62 0.00 0.00 0.00 0.66 0.62 0.00
0.6 0.00 0.00 0.31 0.31 0.00 0.00 0.00 0.14 0.31 0.00
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

All-or-nothing 0.1 0.99 0.98 0.98 0.96 0.10 0.99 0.57 0.98 0.96 0.10
0.2 0.97 0.69 0.94 0.91 0.10 0.97 0.09 0.94 0.91 0.10
0.3 0.93 0.08 0.89 0.85 0.10 0.86 0.08 0.89 0.85 0.10
0.4 0.74 0.07 0.81 0.77 0.10 0.10 0.07 0.81 0.77 0.10
0.5 0.11 0.06 0.72 0.68 0.10 0.04 0.06 0.72 0.68 0.10
0.6 0.02 0.04 0.46 0.45 0.09 0.02 0.04 0.23 0.45 0.09
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4.2.3 Vaccinating in descending order of vulnerability

According to Figure 3, the most vulnerable groups in terms of death and
long-term illness are the males and females aged 80+ years as well as the 60-
to 79-year-old males and females, followed by the 40- to 59-year-old males and
females. The remaining groups have the same probability of dying, where
the males are slightly more likely to die than the females. Thus, to reduce
the percentages of dead and long-term ill we vaccinate groups in descending
order of age, focusing on vaccinating males before females. We distribute the
fractions c = 0.1, 0.2, ..., 0.7 of vaccines similarly as in Section 4.2.2, where
the whole group is vaccinated when possible and any remaining vaccines are
given to the group next in line until there are no more vaccines left.

The fractions of vaccinated in each group are shown in Table 12 and the
results for the perfect vaccine are presented in Table 13, while the results for
the all-or-nothing vaccine are presented in Table 14. The ratios of final sizes
compared to an unvaccinated population are displayed in Table 15.
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Table 12: The fractions vaccinated by age groups in years and sex for different
allocations of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of the population
can be vaccinated. The individuals are vaccinated in descending order of age
with males vaccinated before females.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+
0.1 0 0 0 0.62 1 0 0 0 0 1
0.2 0 0 0 1 1 0 0 0 0.63 1
0.3 0 0 0.43 1 1 0 0 0 1 1
0.4 0 0 1 1 1 0 0 0.13 1 1
0.5 0 0 1 1 1 0 0 0.83 1 1
0.6 0 0.60 1 1 1 0 0 1 1 1
0.7 0 1 1 1 1 0 0.42 1 1 1

When vaccinating 10% of the population with the perfect vaccine none
of those aged 80+ years are infected and only about 27.7% of the 60- to
79-year-old males are infected as these are the first to get vaccinated. Thus,
none of the individuals 80+ years old die and less than 2% of the males and
less than 2.6% of the females aged 60-79 years are deceased. When 30% of
the population is vaccinated there are no infected individuals above the age
of 60 years and hence the highest percentage of dead individuals is about
0.16% for the 40- to 59-year-old males and the highest percentage of long-
term ill is just over 0.79% for this same group. Hence, already when 30% of
the population is vaccinated the most vulnerable groups are protected and
there are next to no cases of deaths and long-term illness. However, as only
the 40- to 59-year-olds are vaccinated among the younger age groups, the
final percentages of infected are still high for these groups. In fact, over 80%
of both sexes of those younger than 20 years and almost 66% of the 20- to
39-year-old females are still infected even when 60% of the population has
been vaccinated and about 26% of the 20- to 39-year-old males are infected.

As 70% of the population is vaccinated, we note that about 77.5% of both
sexes aged 0-19 years are infected which is more than 80% of the infections in
this group in an unvaccinated case and about 26.7% of the 20- to 39-year-old
females are infected, even as 42% of this group has been vaccinated. We also
see that none of the individuals younger than 20 years were vaccinated for
any value of c and that herd immunity was not achieved, as we still have
infections even after vaccinating more than the critical vaccination coverage
for uniform vaccination with a perfect vaccine. Therefore, while this strategy
managed to protect the most vulnerable well by reducing the final fractions
of deaths and long-term ill for these groups, it is ineffective in minimizing
the spread even for a perfect vaccine.
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Table 13: The final percentages of infected, recovered, dead and long-term
ill within each group by age groups in years and sex for different allocations
of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of the population can be vac-
cinated with a perfect vaccine. The individuals are vaccinated in descending
age order with males vaccinated before females.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Infected (%) 0.1 93.03 93.80 91.68 27.70 0.00 93.03 93.80 91.68 72.53 0.00
0.2 92.56 92.91 90.49 0.00 0.00 92.56 92.91 90.49 23.02 0.00
0.3 91.35 90.57 49.11 0.00 0.00 91.35 90.57 86.40 0.00 0.00
0.4 89.32 86.18 0.00 0.00 0.00 89.32 86.18 67.84 0.00 0.00
0.5 87.00 80.40 0.00 0.00 0.00 87.00 80.40 11.13 0.00 0.00
0.6 82.71 26.16 0.00 0.00 0.00 82.71 65.97 0.00 0.00 0.00
0.7 77.54 0.00 0.00 0.00 0.00 77.54 26.72 0.00 0.00 0.00

Recovered (%) 0.1 92.95 93.58 89.90 23.40 0.00 92.99 93.67 91.03 67.40 0.00
0.2 92.48 92.69 88.73 0.00 0.00 92.52 92.78 89.84 21.39 0.00
0.3 91.27 90.36 48.15 0.00 0.00 91.31 90.45 85.79 0.00 0.00
0.4 89.24 85.97 0.00 0.00 0.00 89.29 86.06 67.36 0.00 0.00
0.5 86.92 80.21 0.00 0.00 0.00 86.96 80.29 11.05 0.00 0.00
0.6 82.64 26.10 0.00 0.00 0.00 82.68 65.88 0.00 0.00 0.00
0.7 77.47 0.00 0.00 0.00 0.00 77.51 26.68 0.00 0.00 0.00

Dead (%) 0.1 0.0465 0.0469 0.3025 1.73 0.00 0.0279 0.0281 0.0917 2.52 0.00
0.2 0.0463 0.0465 0.2986 0.00 0.00 0.0278 0.0279 0.0905 0.8013 0.00
0.3 0.0457 0.0453 0.1620 0.00 0.00 0.0274 0.0272 0.0864 0.00 0.00
0.4 0.0447 0.0431 0.00 0.00 0.00 0.0268 0.0259 0.0678 0.00 0.00
0.5 0.0435 0.0402 0.00 0.00 0.00 0.0261 0.0241 0.0111 0.00 0.00
0.6 0.0414 0.0131 0.00 0.00 0.00 0.0248 0.0198 0.00 0.00 0.00
0.7 0.0388 0.00 0.00 0.00 0.00 0.0233 0.0080 0.00 0.00 0.00

Long-term ill (%) 0.1 0.0372 0.1782 1.48 2.58 0.00 0.0093 0.1032 0.5684 2.61 0.00
0.2 0.0370 0.1765 1.46 0.00 0.00 0.0093 0.1022 0.5610 0.8289 0.00
0.3 0.0365 0.1721 0.7906 0.00 0.00 0.0091 0.0996 0.5357 0.00 0.00
0.4 0.0357 0.1637 0.00 0.00 0.00 0.0089 0.0948 0.4206 0.00 0.00
0.5 0.0348 0.1528 0.00 0.00 0.00 0.0087 0.0884 0.0690 0.00 0.00
0.6 0.0331 0.0497 0.00 0.00 0.00 0.0083 0.0726 0.00 0.00 0.00
0.7 0.0310 0.00 0.00 0.00 0.00 0.0078 0.0294 0.00 0.00 0.00

Moving on to the all-or-nothing vaccine, we observe that almost 10% of
both sexes of the group aged 80+ years are infected and that 32.5% of the
males aged 60-79 years are infected when 10% of the population is vaccinated,
corresponding to about 40% of the infected 60- to 79-year-old males in an
unvaccinated population. The unvaccinated groups have over 90% infected,
except for the 60- to 79-year-old females who have about 73% infected. As
almost all the most vulnerable groups are vaccinated already, the percentages
of deaths and long-term illness are minimal and below 4% for all types and
hence the vulnerable are already quite well protected.

Nonetheless, as in the case of the perfect vaccine the final fractions of
infected in the younger age groups are still high and as half of the population
has been vaccinated, we still have over 80% infected for both sexes of the ages
0-19 and 20-39 years. Actually, when 70% of the population is vaccinated
there are still about 80% infected for both sexes younger than 20 years
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and just below 33% infected 20- to 39-year-old females, while the remaining
vaccinated groups have less than 7% infections. The final percentages of
long-term ill and dead are also minimal. Therefore, this strategy is highly
effective in protecting the vulnerable, but much less effective in reducing the
spread for the all-or-nothing vaccine as well.

Table 14: The final percentages of infected, recovered, dead and long-term
ill within each group by age groups in years and sex for different allocations
of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of the population can be
vaccinated with an all-or-nothing vaccine of efficacy 90%. The individuals
are vaccinated in descending age order with males vaccinated before females.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Infected (%) 0.1 93.07 93.87 91.77 32.50 9.97 93.07 93.87 91.77 73.23 9.98
0.2 92.64 93.06 90.69 6.47 9.89 92.64 93.06 90.69 27.77 9.91
0.3 91.56 91.00 53.27 5.65 9.71 91.56 91.00 87.11 5.65 9.75
0.4 89.79 87.26 7.99 4.81 9.34 89.79 87.26 70.63 4.81 9.44
0.5 87.74 82.35 7.02 3.91 8.60 87.74 82.35 17.60 3.91 8.81
0.6 84.09 32.22 5.82 3.06 7.59 84.09 70.50 5.82 3.06 7.94
0.7 79.42 5.27 4.50 2.28 6.30 79.42 32.96 4.50 2.28 6.81

Recovered (%) 0.1 92.98 93.64 89.99 27.45 6.07 93.03 93.73 91.11 68.04 7.38
0.2 92.55 92.83 88.93 5.46 6.03 92.60 92.92 90.04 25.80 7.33
0.3 91.47 90.78 52.24 4.78 5.91 91.52 90.88 86.49 5.25 7.22
0.4 89.71 87.05 7.84 4.06 5.69 89.75 87.14 70.13 4.47 6.98
0.5 87.66 82.15 6.88 3.30 5.24 87.71 82.24 17.47 3.63 6.52
0.6 84.01 32.14 5.71 2.59 4.62 84.05 70.40 5.78 2.84 5.88
0.7 79.35 5.25 4.41 1.93 3.84 79.39 32.91 4.46 2.12 5.04

Dead (%) 0.1 0.0465 0.0469 0.3028 2.02 3.72 0.0279 0.0282 0.0918 2.55 2.53
0.2 0.0463 0.0465 0.2993 0.4028 3.69 0.0278 0.0279 0.0907 0.9663 2.51
0.3 0.0458 0.0455 0.1758 0.3521 3.62 0.0275 0.0273 0.0871 0.1967 2.47
0.4 0.0449 0.0436 0.0264 0.2996 3.48 0.0269 0.0262 0.0706 0.1674 2.39
0.5 0.0439 0.0412 0.0232 0.2435 3.21 0.0263 0.0247 0.0176 0.1360 2.23
0.6 0.0420 0.0161 0.0192 0.1907 2.83 0.0252 0.0212 0.0058 0.1065 2.01
0.7 0.0397 0.0026 0.0148 0.1421 2.35 0.0238 0.0099 0.0045 0.0794 1.73

Long-term ill (%) 0.1 0.0372 0.1783 1.48 3.02 0.1815 0.0093 0.1033 0.5689 2.64 0.0629
0.2 0.0371 0.1768 1.46 0.6013 0.1801 0.0093 0.1024 0.5622 0.9996 0.0624
0.3 0.0366 0.1729 0.8576 0.5257 0.1767 0.0092 0.1001 0.5401 0.2035 0.0615
0.4 0.0359 0.1658 0.1287 0.4473 0.1699 0.0090 0.0960 0.4379 0.1731 0.0595
0.5 0.0351 0.1565 0.1130 0.3635 0.1566 0.0088 0.0906 0.1091 0.1407 0.0555
0.6 0.0336 0.0612 0.0937 0.2846 0.1382 0.0084 0.0776 0.0361 0.1102 0.0500
0.7 0.0318 0.0100 0.0724 0.2121 0.1147 0.0079 0.0363 0.0279 0.0821 0.0429
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Table 15: The ratio of final sizes within each group by age groups in years and
sex for different allocations of vaccines when a fraction c = 0.1, 0.2, ..., 0.7 of
the population can be vaccinated with a perfect or an all-or-nothing vaccine
with 90% efficacy, compared to in an unvaccinated population. The indi-
viduals are vaccinated in descending age order with males vaccinated before
females.

Males Females
c 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Perfect 0.1 1.00 0.99 0.99 0.35 0.00 1.00 0.99 0.99 0.92 0.00
0.2 0.99 0.98 0.98 0.00 0.00 0.99 0.98 0.98 0.29 0.00
0.3 0.98 0.96 0.53 0.00 0.00 0.98 0.96 0.93 0.00 0.00
0.4 0.96 0.91 0.00 0.00 0.00 0.96 0.91 0.73 0.00 0.00
0.5 0.93 0.85 0.00 0.00 0.00 0.93 0.85 0.12 0.00 0.00
0.6 0.89 0.28 0.00 0.00 0.00 0.89 0.70 0.00 0.00 0.00
0.7 0.83 0.00 0.00 0.00 0.00 0.83 0.28 0.00 0.00 0.00

All-or-nothing 0.1 1.00 0.99 0.99 0.41 0.10 1.00 0.99 0.99 0.93 0.10
0.2 0.99 0.99 0.98 0.08 0.10 0.99 0.99 0.98 0.35 0.10
0.3 0.98 0.96 0.58 0.07 0.10 0.98 0.96 0.94 0.07 0.10
0.4 0.96 0.92 0.09 0.06 0.09 0.96 0.92 0.76 0.06 0.09
0.5 0.94 0.87 0.08 0.05 0.09 0.94 0.87 0.19 0.05 0.09
0.6 0.90 0.34 0.06 0.04 0.08 0.90 0.75 0.06 0.04 0.08
0.7 0.85 0.06 0.05 0.03 0.06 0.85 0.35 0.05 0.03 0.07

4.2.4 The effect on R0

After vaccination with the perfect vaccine, we see from Table 16 that for c =
0.1, 0.2, 0.3, vaccinating those contributing the most to the spread in the early
stages first reduces R0 slightly more than when the vulnerable individuals
are vaccinated first, but vaccinating the same fraction of individuals reduces
R0 the most. These values are quite similar, though, and this trend continues
for c = 0.5, 0.6, but for c = 0.4 and c = 0.7 we observe that the strategy
of vaccinating those most socially active in the early stages seems to reduce
R0 the most. Therefore, in order to reduce the spread when only 40% of the
population can be vaccinated, it might be more effective to prioritize socially
active individuals. However, the differences between these values are quite
small, especially for when c = 0.7 and in this case, we further observe that
Rv < 1 for both strategies, meaning that the outbreak will end which is
shown by the final sizes for these strategies in the previous sections where
we had no cases of infections for the perfect vaccine in Table 5 and Table 9.

In addition to this, we recognize that vaccinating the vulnerable indi-
viduals first does not result in Rv < 1 even as 70% of the population is
vaccinated. This is in line with the results in Table 13 as we still have a high
percentage of infected among the younger age groups when the maximum
percentage of vaccinated in the population is reached. This could seem odd
as we vaccinate the group aged 80+ years first which is the group with the
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otherwise highest percentage of infected, yet R0 is not substantially reduced
since Rv is still above 2 for c = 0.6. However, this could be explained by
how this group only constitutes a small portion of the population and by
how these individuals have the most contacts with their own group and the
older age groups, as seen in the contact matrix in Table 19 in Appendix A.
The values of βjk, which is proportional to the contact rate, for the infectious
males aged 80+ years are below 0.3 for all contacted age groups younger than
80 years of both sexes, while the values are greater than 2 for both sexes of
the contacted individual aged 80+ years. The same trend is observed for
the infectious females of this age group, where the values for all contacted
individuals younger than 80 years are below 0.5, while the values for the
contacted males and females older than 79 years are almost 4.9.

This suggests that those in the 80+ years age group mainly infect in-
dividuals in their own age groups and that the infection stays within this
group instead of spreading through interactions with other types, which is
reasonable considering that many aged 80+ years might be accommodated
in care homes or similarly where interactions mainly occur with other res-
idents from the same age groups, or the staff who are likely to be part of
the 20-39 and 40-59 years age groups. Thus, vaccinating people older than
79 years protects solely this group whereas the number of infections of the
other groups is not as significantly affected.

Moreover, this could also explain why vaccinating the same fraction of
individuals and vaccinating those of higher probability of becoming infected
in the early stages have a similar effect in reducing the spread, as illustrated
by the values of Rv in Table 16. Since the people aged 80+ years are the
first to get vaccinated in the latter strategy and the groups ending up with
the highest percentages of infected in the unvaccinated case are not fully
or mostly vaccinated until at least half of the population has been vacci-
nated, it seems to be slightly more effective to vaccinate the same fraction
of each group if fewer vaccines are accessible such that less than 40% of the
population can be vaccinated.

Similarly, this might be the reason why vaccinating the socially active
first reduces R0 more when c = 0.4, as this is when almost all the 0- to
19-year-old females are vaccinated and this group has one of the highest
percentages of infected when the outbreak occurs in an unvaccinated popu-
lation. Additionally, when c = 0.5 the strategies have the same values of Rv
for the all-or-nothing vaccine, as vaccinating the same fraction of all groups
includes the 40- to 59-year-olds who have a high percentage of infected in
the outbreak with fully susceptible individuals and these are unvaccinated
still for the other strategy until when c = 0.6 and 56% of these females are
vaccinated, causing Rv to be lower for the all-or-nothing vaccine. As c = 0.7
only the least socially active 60- to 79-year-olds are left unvaccinated when
prioritizing the socially active individuals and 26% of the 40- to 59-year-old
males are vaccinated with the rest of the groups fully vaccinated, resulting
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in most to all groups otherwise entirely infected being immune. As these
younger groups also have more interactions with each other and the group
aged 80+ years as seen in the contact matrix, we have reached herd immu-
nity when parts of or all of these more active groups are immune before the
outbreak and hence no outbreak occurs.

Furthermore, we note that the differences in the reduction of R0 when c is
greater than 0.4 are more significant for the all-or-nothing vaccine, suggesting
that in a more realistic setting and with more vaccines available it is more
effective to vaccinate those most likely to get infected in the early stages than
to vaccinate the population uniformly, whereas when a perfect vaccine can
be assumed these differences are less prominent and influential. This could
be interpreted as there being more individuals still making many infectious
contacts in the groups vaccinated by the less efficacious vaccine through
uniform vaccination than when allocating vaccines first to the entire group
of those getting infected early on, thus preventing these groups from making
further infectious contacts and protecting the rest of the population.

Table 16: The effective reproduction number Rv when a fraction c =
0.1, 0.2, ..., 0.7 of the whole population is vaccinated for different allocation
strategies including vaccinating the same fraction of each group, prioritizing
those most likely to get infected in the early stages of the outbreak, as well
as vaccinating in descending order of vulnerability.

c
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Perfect Same fraction 2.60 2.31 2.02 1.73 1.44 1.15 0.87
Socially active 2.64 2.37 2.13 1.67 1.50 1.17 0.86
Vulnerable 2.79 2.74 2.57 2.36 2.22 2.02 1.89

All-or-nothing Same fraction 2.63 2.37 2.11 1.85 1.59 1.33 1.07
Socially active 2.66 2.41 2.19 1.77 1.59 1.28 0.98
Vulnerable 2.80 2.75 2.59 2.40 2.26 2.07 1.93

5 Conclusions

From the results it is clear that the strategy of vaccinating those most vulner-
able first reduces the cases of deaths and long-term illness the most overall,
hence protecting the vulnerable individuals more than the other strategies
and this holds for when c = 0.1, 0.2, ..., 0.7 for both the perfect and the all-
or-nothing vaccine. However, it is the least effective strategy in reducing the
overall spread for all values of c and for both vaccines as the younger age
groups are not prioritized, and these groups contribute most to the spread
in the unvaccinated case, together with the people aged 80+ years. Instead,
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when less than 40% of the population can be vaccinated it would be more
useful to implement uniform vaccination or focus on those contributing most
to the early spread in order to decrease the infections in the population.

When 40% or more are vaccinated it is more effective to vaccinate the
socially active individuals first with the all-or-nothing vaccine instead of
using uniform allocation, and it is even possible to achieve herd immunity and
preventing the outbreak if 70% of individuals are vaccinated this way. This
is significant as one would expect that uniform vaccination is less effective
overall, and since the all-or-nothing vaccine can reduce R0 below 1 when
vaccinating the socially active first. When assuming a perfect vaccine, the
differences are however less distinguished and both strategies prevent the
outbreak for the highest fraction of vaccinated individuals, suggesting that
these strategies have similar effectiveness in reducing the spread.

Nevertheless, vaccinating the same fractions of each type with the per-
fect and all-or-nothing vaccines resulted in high fatality rates for all values
of c as the 60- to 79-year-olds and those aged 80+ years were not all vacci-
nated, causing these more vulnerable groups to be less protected than when
the individuals contributing most to the spread were vaccinated primarily.
This since the females and males older than 79 years are the most likely to
get infected early on and simultaneously have the highest mortality rates.
Therefore, in order to reduce the spread and concurrently protect those at
risk of dying it would be more effective to vaccinate in descending order of
contribution to the spread at the early stages. Although the percentages
of long-term ill 60- to 79-year-olds are slightly higher for this strategy, it is
arguably still more practical as there is no dramatic difference between the
final sizes of long-term ill for these strategies, yet vaccinating the socially
active first reduces the amount of deaths and infections substantially more.

To summarize, if the purpose of vaccination is to reduce the number of
deaths and cases of long-term illness it is evidently the most advantageous
to vaccinate those most vulnerable first, whereas if the purpose is to reduce
the spread it is more effective to either vaccinate uniformly or in descending
order of contribution to the early spread. Interestingly enough, for lower
numbers of available vaccines it seems like vaccinating the same fraction is
slightly more effective, while when a larger proportion of the population is
vaccinated it is more effective to use the other strategy and the reduction
of the spread is more distinguishable for the all-or-nothing vaccine than the
perfect vaccine. However, to reduce both the infections and the fatality rates,
it is the most effective to vaccinate those with a higher probability of getting
infected early in the outbreak for all values of c, as this reduces the risk of a
large outbreak the most.
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6 Discussion

As the results in this thesis rely on data and on mathematical models simpli-
fying reality, it is essential to take into account the assumptions made with
such an approach. For instance, the extended multi-type SEIRLD model ne-
glects births and deaths through assuming a constant population and while
some individual heterogeneities are accounted for by dividing the population
into types by age groups and sex with varying contact rates, there could be
differences in individual susceptibility due to for example short-term antibod-
ies or natural predisposition to becoming infected, violating the assumption
that all unvaccinated individuals are susceptible. Additionally, realistically
most individuals have high rates of interactions with certain individuals at
their workplace, school, household or similar as these places are regularly vis-
ited and usually the same people are encountered there. However, this model
does not take this into account and doing so could be a possible improvement
of the applicability to a real-life setting.

In addition, the model assumes constant contact rates over time whereas
in reality people may be more socially active and thus more susceptible to
infection around holiday seasons and due to other seasonalities, however as
we are mainly interested in the final size of the outbreak which is inde-
pendent of the development of the outbreak over time this is not of major
concern. The model also assumes that all Poisson processes, choices of con-
tacts and durations are independent and while this may not be realistic it
greatly simplifies computations and in particular the derivation of the final
size equation. Moreover, the SEIRLD model includes the exposed state of
being latently infected which is realistic but does not impact the results due
to the aforementioned independence of past states.

Furthermore, we also suppose that recovery and vaccination induce life-
long full immunity to the disease, thus rejecting the possibility of reinfection
through for instance viral mutations, short-term antibodies or vaccines hav-
ing short-term effectiveness. In addition to this, some vaccines may only
reduce the probability of getting infected instead of protecting the individ-
ual fully and one such vaccine is the leaky vaccine mentioned in Section 2.3.2.
Thus, a possible extension is to compare the outcomes when a leaky vaccine
is used since in this case vaccinated individuals are not completely immune
and could still contribute to the spread. One could also possibly combine
the all-or-nothing and leaky vaccine to get an all-or-leaky vaccine, such that
vaccinated individuals are either fully immune or the risk of infection is re-
duced by the efficacy of the vaccine, or to get a leaky-or-nothing vaccine
where some people are not protected at all from the disease.

Other assumptions made about the vaccines include that all the avail-
able vaccines are used and hence that people do not reject the opportunity
of getting vaccinated which may occur in real-life and that vaccination is
the sole preventive measure used. Thereby assuming that no lockdowns,
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quarantines, social distancing or even masks are used which are all widely
implemented strategies across countries during the ongoing COVID-19 pan-
demic. However, although assuming that vaccination is used exclusively of
other preventive measures is unrealistic in relation to the current pandemic,
it allows for comparison between different allocations and types of vaccines
without the interference of other simultaneous strategies. Therefore, the
isolation of this preventive measure is a strength of the method.

Moreover, it is also important to consider that the results could have been
impacted by the assumptions made in order to compensate for unavailable
data, such as when transforming the contact matrix to our age groups and
computing the probabilities of death, long-term illness and recovery. We also
used data on social contacts relevant to disease transmission in Finland in
2008 and the reported number of COVID-19 cases in the Stockholm region in
Sweden. Consequently, we assume that people in Finland over a decade ago
have similar contact patterns as people in Stockholm during the COVID-19
outbreak where additional restrictions have been implemented other than
vaccination. However, as Sweden did not introduce severe restrictions and
the vaccination process was still in its early stages when the data were re-
trieved, the data are still useful for computing the relative probabilities of
dying, becoming long-term ill and recovering for each type of individual.
Even so, we do assume that the long-term ill individuals do not recover and
that they are represented by those admitted into hospitals for a period of
four days or longer which does not include those who were not admitted
into hospital and also only includes the reported cases. Similarly, the data
on infections only include the reported cases and the reporting procedure
has changed throughout the epidemic; consequently, the data may not be
representative of the true number of cases.

Furthermore, other vaccination strategies could be investigated as well
and as we took into consideration the combined the risk of becoming long-
term ill or dying when vaccinating in descending order of vulnerability, this
could be further extended by a separate strategy to vaccinate those with
a higher probability of becoming long-term ill, thus further distinguishing
between risk groups. We also chose to prioritize vaccinating the males as
opposed to the females in this strategy when the probabilities of dying were
equal for the sexes of the younger groups and we could also have divided
the vaccines equally among both sexes, although this may not have a pro-
found influence on the results considering the equal probabilities of dying
and similar contact rates. However, the proportion of females and males is
almost the same across age groups except for the people aged 80+ years,
where about two thirds are females and this could have impacted the order
of vaccination for this strategy, as evidently more of the fatalities in the 80+
years group are females considering this composition of the sexes.

Another possible extension is to determine the most advantageous strat-
egy to employ in a population where the main goal is to prevent the intro-
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duction of an outbreak, even if R0 > 1. Doing this could protect vulnerable
individuals by minimizing the probability that an introduction occurs, and
given that R0 > 1 the probability of a major outbreak through the explosion
of the branching process of infections is given by 1 −

∏
k q

mk
k , where mk is

the number of initially infectious k-individuals and qk is the extinction prob-
ability of type k individuals, as in Andersson & Britton [1, p.54]. Hence,
it would be of interest to minimize this probability through vaccination to
prevent a large outbreak. Some examples of countries where R0 > 1 but the
probability of introduction is low are Taiwan, New Zealand and Australia
and if an introduction would occur in these countries other interventions
than vaccination would be implemented to manage the outbreak.

During the writing process, a preprint was released by Sjödin, Rock-
löv and Britton [12] where different vaccination strategies are evaluated for
COVID-19 from December 1st 2020 to October 1st 2021 through a deter-
ministic SEIR model with similar structure and characteristics to Sweden,
in contrast to our use of a stochastic model. Similar to in this thesis, they
also consider an all-or-nothing vaccine but with the slightly higher efficacy
of 95% and in addition to that they assume that only 90% of people older
than 19 years get vaccinated with strategies varying the transmission rates,
if there is a delay of vaccine deliveries, whether antibody-positive individ-
uals are down-prioritized or not and whether vaccination is in descending
age order or not. As in this thesis, they consider fatalities and infections
but in contrast they further differentiate between regular and critical care.
Their model is also more applicable to reality, since vaccination occurs over
time instead of before the outbreak and there are also more possible states
an individual can be in, such as in self-quarantine at home and recovery at
different locations.

Additionally, the results of the preprint suggest that the best strategy is
to vaccinate in descending age order after risk groups have been vaccinated
since even though ascending age order decreases transmission rates more, the
strain on healthcare is greater than for vaccinating in descending age order
as the 50+ year-olds are left unvaccinated until later on. The results in this
thesis are partly in line with this, as prioritizing vulnerable people does not
reduce the infections as much as vaccinating those most likely to get infected
early on or even as vaccinating uniformly, but uniform vaccination does not
reduce deaths and long-term illness adequately. Instead, vaccinating those
most likely to get infected early reduces both the infections and fatalities
sufficiently, as the highly infectious 80+ years group which is considered a
risk group is vaccinated early on. However, this strategy vaccinates those
younger than 40 years in descending order and those aged between 40-59 and
60-79 years in ascending order, which clearly is a mixture of both strategies
mentioned in the preprint. Not only that, but we also consider vaccinating
ages 0-19 years in contrast to the preprint and consequently we can thereby
reduce infections by prioritizing this group as well, which may be unrealistic
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considering only those aged 18+ are vaccinated against COVID-19. Thus,
this may partly explain the differences in our results, and we also did not
compare descending age order with ascending age order, but rather with the
probability of early infection.

Furthermore, our results could also differ due to that we only consider
cases of critical hospital care exceeding a period of 4 days to represent long-
term illness, while they consider not only critical care but also regular care.
Thus, an improvement of our study could be to consider additional cases of
hospitalization and to distinguish between the status of care. Another ma-
jor difference is that our results are based on the final sizes where the final
fractions of dead and long-term ill are computed from the relative probabil-
ities of these events occurring, whereas the preprint considers the effect of
strategies on the development of the outbreak and the outcomes over time.

Appendix

A Tables

This appendix includes the tables showing the population distribution, the
next generation matrix and the rescaled contact matrix based on the data
from Finland in 2008, as well as the table presenting the fractions of individ-
uals of each type along with the right eigenvector corresponding to R0 and
the ratio between these two as mentioned in Section 4.2.2.

Table 17: Population distribution by sex and age group in years for data
from Finland in 2008.

Total 0-19 20-39 40-59 60-79 80+
Total males 2 611 653 625 136 672 313 764 654 476 134 73 416
Total females 2 714 661 599 203 639 548 757 637 553 337 164 936
Faction males 0.490 0.511 0.512 0.502 0.463 0.308
Fraction females 0.510 0.489 0.488 0.498 0.537 0.692
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Table 18: Next generation matrix for data from Finland in 2008 where the
columns indicate the sex and age group in years of the individual making
the contacts and the rows indicate the sex and age group in years of the
contacted individuals.

Males Females
Age groups 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Males 0-19 0.960 0.250 0.182 0.064 0.014 0.920 0.238 0.180 0.076 0.034
20-39 0.318 0.708 0.408 0.162 0.028 0.304 0.674 0.404 0.188 0.064
40-59 0.318 0.434 0.658 0.186 0.036 0.306 0.412 0.650 0.216 0.082
60-79 0.084 0.096 0.160 0.308 0.078 0.080 0.092 0.158 0.358 0.178
80+ 0.034 0.058 0.116 0.242 0.120 0.052 0.056 0.114 0.282 0.270

Females 0-19 0.920 0.240 0.176 0.062 0.014 0.882 0.228 0.174 0.072 0.032
20-39 0.302 0.674 0.388 0.154 0.028 0.290 0.642 0.384 0.180 0.060
40-59 0.316 0.430 0.650 0.184 0.036 0.302 0.410 0.646 0.214 0.082
60-79 0.096 0.112 0.186 0.358 0.092 0.092 0.106 0.184 0.416 0.206
80+ 0.124 0.132 0.260 0.544 0.270 0.118 0.124 0.258 0.632 0.606

Table 19: Rescaled contact matrix for data from Finland in 2008 where the
columns indicate the sex and age group in years of the individual making
the contacts and the rows indicate the sex and age group in years of the
contacted individuals.

Males Females
Age groups 0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

Males 0-19 2.045 0.534 0.389 0.138 0.032 1.960 0.508 0.386 0.160 0.071
20-39 0.630 1.404 0.807 0.322 0.057 0.604 1.335 0.799 0.375 0.127
40-59 0.555 0.756 1.144 0.324 0.064 0.532 0.719 1.134 0.376 0.144
60-79 0.233 0.271 0.446 0.862 0.221 0.223 0.258 0.442 1.001 0.496
80+ 0.603 1.060 2.105 4.388 2.179 0.957 1.008 2.086 5.099 4.894

Females 0-19 2.045 0.534 0.389 0.138 0.032 1.960 0.508 0.386 0.160 0.071
20-39 0.630 1.404 0.807 0.322 0.057 0.604 1.335 0.799 0.375 0.127
40-59 0.555 0.756 1.144 0.324 0.064 0.532 0.719 1.134 0.376 0.144
60-79 0.233 0.271 0.446 0.862 0.221 0.223 0.258 0.442 1.001 0.496
80+ 0.999 1.060 2.105 4.388 2.179 0.957 1.008 2.086 5.099 4.894

Table 20: The fractions πk of individuals in each group by sex and age groups
in years in the whole population for data from Finland in 2008, the entries
ak of the right eigenvector and ak divided by the fractions πk of people of
each type for k = 1, 2, ..., 10.

Males Females
0-19 20-39 40-59 60-79 80+ 0-19 20-39 40-59 60-79 80+

πk 0.117 0.126 0.144 0.089 0.014 0.112 0.120 0.142 0.104 0.031
ak 0.119 0.135 0.135 0.049 0.039 0.114 0.128 0.134 0.057 0.090

ak/πk 1.013 1.069 0.942 0.547 2.833 1.014 1.069 0.943 0.546 2.898
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B Code

The code used to compute the final size equations is inspired by the code
used in Britton et al. [4] and is available at a public GitHub repository at
https://github.com/veraandersson/Thesis. The data and the remainder
of the code used to compute the fractions vaccinated in each group, the ratios
of the outcomes compared to the unvaccinated scenario and Rv are available
there as well.
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