
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Forecasting Univariate Financial Time
Series using eXtreme Gradient Boosting

Adrian Axelsson



Matematiska institutionen

Kandidatuppsats 2021:1
Matematisk statistik
Januari 2021

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm



Mathematical Statistics
Stockholm University
Bachelor Thesis 2021:1

http://www.math.su.se

Forecasting Univariate Financial Time Series using

eXtreme Gradient Boosting

Adrian Axelsson∗

January 2021

Abstract

The field of time series forecasting has for many decades been highly

influenced by linear statistical models, but machine learning techniques

have drawn much attention in this field in more recent times. The

application of machine learning methods is not theoretically straight-

forward due to inherent serial correlation, although many practitioners

seem to put less emphasis on this fact. This thesis aims to examine

existing academic work on the formalization of univariate time series

forecasting as a supervised learning task, and evaluate whether the cur-

rently popular eXtreme Gradient Boosting or XGBoost method, which

has drawn much attention since its introduction in 2016 due to great

success in various machine learning competitions, can be considered a

potential method for the problem at hand. To this end, we give a funda-

mental background in traditional time series analysis, with particular

emphasis on applications within finance, supervised learning and XG-

Boost in particular. We also present a theoretically justified supervised

learning setting to one-step ahead forecasting of univariate time series.

The theory is then applied in a forecasting case study on Nasdaq OMX

Stockholm Large Cap Price Index daily returns, where performance of

XGBoost and the traditional ARMA model is compared. We conclude

that the formalization of one step-ahead forecasting of time series as

a supervised learning task is justified. Furthermore, although weak

forecasting results due to that the efficient market hypothesis seems to

be applicable on the dataset, we conclude that XGBoost can capture

the existing weak dynamic dependencies of data, and that this method

itself possesses properties that could be beneficial in time series fore-

casting.
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1 Introduction

1.1 Background

Time series arise when events can be observed sequentially in time. Analysis
of such series is of great interest in many fields, not the least in finance and
economics, where stochastic and dynamic models are applied to describe the
dependency structure between adjacent observations. These models are used
for several purposes, including forecasting future values of a time series from
current and past values.

Traditional linear time series theory has highly influenced the field of fore-
casting for many decades, but in more recent times, machine learning methods
have caught the attention of many practitioners. One of the earliest contestants
to the traditional models was Artificial Neural Network (ANN). In this thesis
we will adopt a supervised learning setting to forecasting of univariate financial
time series, influenced primarily Bontempi et al. (2003) [1], and Ahmed et al.
(2010) [2]. We implement the currently popular eXtreme Gradient Boosting
(XGBoost) method by Chen & Guestrin (2016) [3], which has achieved great
success in various machine learning competitions considering both classification
and regression problems.

1.2 Aim

The main aim of this thesis is to examine whether the supervised learned set-
ting to time series forecasting, used in above papers, is theoretically justifiable,
and if XGBoost could be a potential method to be applied in this setting. We
focus specifically on forecasting of financial time series. The intended reader is
assumed to possess knowledge corresponding to the bachelor’s level in mathe-
matical statistics.

1.3 Methodology

We use traditional linear financial time series theory as a starting point of the
forecasting task in this thesis, for univariate financial time series in particular.
This theory provides some fundamental knowledge on distinctive characteristics
of financial time series and how traditional stochastic models are applied to
forecast such series. The weak stationary property of the time series at hand
is central in this theory, and has great influence on the choice of pre-processing
methods and statistical tests performed on data in a case study, introduced
below.

We also provide a fundamental background in supervised learning as function
approximation, especially in regression problems. This includes, among other
things, cross-validation methods for model selection and assessment, which is
an integral part of the supervised learning setting to time series forecasting. A
theoretical derivation of XGBoost in a regression setting is also given, which we
derive as an extension of Newton Boosting (Sigrist, 2019) [4].
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The findings in the above sections are then implemented in a case study,
which aims to evaluate the predictive performance of XGBoost on real world
data. The dataset was determined in advance, and consists of Nasdaq OMX
Stockholm Large Cap Price Index (OMXSLCPI) daily returns during the period
2015-2019. The well known linear ARMA model is used as benchmark model
in order to evaluate the performance of XGBoost.

1.4 Main Results

We find that academic work that supports forecasting of univariate time series
as a supervised learning task exist. The introduced supervised learning set-
ting is justified using the findings in Bergmeir et al. (2017) [5], which assesses
the validity of k-fold cross-validation for evaluating autoregressive time series
forecasting models, where machine learning methods are included.

The result of the case study shows that neither XGBoost nor ARMA perform
better than a mean model, which we argue follows from that the efficient market
hypothesis seems to hold for OMXSLCPI daily log returns during the current
period. However, from observing feature importance we find that XGBoost can
capture existing weak dynamic dependencies in data, and that the method itself
possesses properties that could be beneficial in time series forecasting.

1.5 Disposition

Some fundamental theory of financial time series forecasting is given in section 2.
We then proceed with basic supervised learning theory in section 3, which ends
with the supervised learning setting to time series forecasting of univariate time
series used in this thesis. The case study is described in section 4, and finally
in section 5 the findings in this thesis are discussed, conclusions are stated and
some suggestions for further studies are proposed.

1.6 Literature

The theory on financial time series is almost exclusively based on Analysis of
Financial Time Series by Tsay (2010) [6], which offers comprehensive theoret-
ical and empirical content for modelling of financial time series. Time Series
Analysis: Forecasting and Control by Box et al. (2015) [7], has been used as
supplementary literature. Primarily since this book treats time series in general
and not specifically financial time series.

The general theory on statistical learning is mainly based on Elements of
Statistical Learning by Hastie et al. (2009) [8], and to some extent from Ma-
chine Learning: A Probabilistic Perspective by Murphy (2012) [9]. The authors
of these two books come from different fields, but both adopt a probabilistic ap-
proach to statistical learning or machine learning. We found that these books
complement each other well, as simultaneous reading facilitated understand-
ing of various related concepts. The derivation of eXtreme Gradient Boosting
is based on XGBoost: A Scaleable Tree Boosting System by Chen & Guestrin
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(2016) [3], but also the papers by Friedman et al. (2000) and Friedman (2001,
2002) [10, 11] provided a necessary background for gradient tree boosting meth-
ods.

The papers by Bontempi et al. (2013) [1], Ahmed et al. (2010) [2] and
Bergmeir et al. (2017) [5] form the basis for the supervised learning setting to
time series forecasting.
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2 Time Series Analysis

In this section we will go through some basic concepts of univariate financial
time series analysis and forecasting. We derive the traditional linear time series
model ARMA, which is used as benchmark model in section 4. A basic under-
standing of the concepts in this section will also facilitate comprehending the
implementation of supervised learning models on this type of problem, which
we do in section 3.1.

This section is almost exclusively based on Analysis of Financial Time Series
by Tsay (2010) [6], and Time Series Analysis: Forecasting and Control by Box
et al. (2015) [7].

2.1 Time Series

2.1.1 Time Series as a Stochastic Process

We define a time series {zt}N1 = z1, z2, ..., zN as a set of successive realization of
a stochastic process, where the observations are taken on equally spaced time
intervals. Typically, such a series possess the property that adjacent observa-
tions are dependent. Time series analysis concerns analysing this dependence,
which we in this thesis will do with the purpose of forecasting. Many time series
not only exhibit dependence between adjacent observations, but between obser-
vations of multiples of lags. Such series are said to possess seasonal or cyclic
dependence, determined on the size of the multiple.

2.1.1.1 Forecasting

Time series forecasting use the at a current time t available observation zt and
passed or lagged observations zt−l, zt−2, ..., zt−(N−1) from a time series, in order
to build a method which can predict future or lead values zt+1, zt+2, ..., zt+h, for
some h. The case of h > 1 is referred to as multi step-ahead forecasting, whilst
the case of h = 1 is referred to as one step-ahead forecasting. We will concern
the latter and denote the forecast estimate by ẑt(1). The objective is to obtain
a model for which the expected square deviation given the previous information
E[(zt+1 − ẑt(1))2|zt, zt−1, ..] becomes as small as possible.

2.1.2 Stationary Stochastic Process

The special class of stationary stochastic processes is central in time series anal-
ysis, and linear time series models rely on such assumption. In this subsection
we will define two types of stationary processes.

Let {zt} be a time series, and let FZ(zt1 , zt2 , ..., ztm) be the cumulative dis-
tribution function associated with m observations, made at any set of times
t1, t2, ..., tm. Then {zt} is said to be strictly stationary if

FZ(zt1 , zt2 , ..., ztm) = FZ(zt1+k, zt2+k, ..., ztm+k)

for any positive discrete time shift k, for any m, and for any tn, ..., tm.

8



Whenm = 1, the strict stationary assumption implies that FZ(zt) = FZ(zt+k).
This means that the probability distribution is the same for all t, and the mean
and variance of the time series {zt} would be constant, when they exist.

The assumption of strict stationarity is not realistic on empirical data. For
prediction purposes, one often settles for weak stationarity.

Let {zt} be a time series, which is said to be weakly stationary if

(a) E[zt] = µ
(b) Cov(zt, zt−l) = γl,

for any l and t. This means that a process is weakly stationary if the first two
moments of zt are the same for all t, and that the covariance between zt and
zt−l only depends on the lag size l.

A special case is when {zt} is a Gaussian process, then weak stationarity is
equivalent to strict stationarity. Strict stationarity does in general not imply
weak stationarity, since finite second moment is not assumed for strict stationary
process.

2.1.3 The Autocorrelation Function

To measure the linear relationship between zt and past returns, we use a concept
called autocorrelation, which is a generalization of correlation. The correlation
between zt and zt−l is called the lag-l autocorrelation, which for a weak station-
ary time series {zt} is defined by:

ρl =
Cov(zt, zt−l)√
V ar(zt)V ar(zt−l)

=
Cov(zt, zt−l)

V ar(zt)
,

where we have used that V ar(zt) = V ar(zt−l) under weak stationary. For a
given sample {zt}Ni=1, we estimate ρl using the the lag-l sample autocorrelation

ρ̂l =

∑N
t=l+1(zt − z̄))(zt−l − z̄)∑T

t=1(zt − z̄)2
, 0 ≤ l < N − 1,

where z̄ is the sample mean. The series ρ̂1, ρ̂2, ... is called the sample autocorre-
lation function (ACF) of zt.

In the context of forecasting, we assume that past observations give us sig-
nificant information about the behaviour of future observations, that is, ρl is
significantly different from zero, for some l > 0. The Ljung-Box test, Ljung
& Box (1978) [12], is commonly used to test the null hypothesis H0 : ρ1 =
ρ2 = ... = ρm = 0, against the alternative hypothesis H1 : ρi 6= 0, for some
i ∈ {1, 2, ...,m}. Under H0, the test statistic

Q(m) = N(N + 2)

m∑
l=1

ρ̂2l
N − l

(1)

follows asymptotically a χ2 distribution with m degrees of freedom. We will
reject H0 in favor of H1 if the p-value corresponding to Q(m) is less than our
significance level. Tsay (2010, pp. 33) [6] suggests using m ≈ ln(N).
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The Ljung-Box test can also be applied to assess fully specified ARMA
models (Tsay, 2010, pp. 68) [6]. In such application, we test the model residuals
for significant autocorrelations. If the model successfully captures the dynamic
dependency, the residuals should show no significant autocorrelations. In this
case, under H0, the test statistic Q(m) in (1) should follow asymptotically a χ2

distribution with m− p− q degrees of freedom, where p and q define the order
of the model (see section 2.3.3).

A related concept is the partial autocorrelation, which we will briefly present.
The interested reader is referred to Tsay (2010, sect. 2.4.2) [6] or Box et al.
(2015, sect. 3.2.5) [7] for more details. The lag-l sample partial autocorrelation
(PACF) measures the contribution of adding another lagged observation to an
autoregressive model, and can thus be used for determining the order p of the
model.

2.2 Financial Time Series

Having gone through some basic concepts of time series in general, we will
from now on focus on a certain type, namely financial time series. Studies
in financial time series mainly concern returns, rather than prices (Campbell,
1997) [13]. There are two main reasons behind this. Firstly, the return is a
complete and scale-free summary of the investment opportunity. This means
that under the assumption of perfect competition on the market, the market
share has no influence on prices, thus the return is a useful measure for the
general investor. Secondly, returns have some appealing statistical properties
related to their behaviour over time. The concepts derived in this chapter mainly
concern return series.

We begin this section by defining asset return series and derive some as-
sumptions regarding their distributional properties and modeling. This content
is almost exclusively based on Analysis of Financial Time Series (Tsay, 2010)
[6].

2.2.1 One-Period Returns

There are several definitions of asset returns, those treated in this thesis are
defined below.

Let Pt be the price of an asset, that pay no dividend, at time t. Holding
the asset for one period from date t− 1 to date t would result in a simple gross
return:

1 +Rt =
Pt
Pt−1

⇐⇒ Pt = Pt−1(1 +Rt),

where

Rt =
Pt
Pt−1

− 1 =
Pt − Pt−1
Pt−1

10



is the simple return. Thus simple return is the percentage gain for holding
an asset during one period of time. Taking the natural logarithm of the simple
gross return 1+Rt proves useful in analysis of financial time series, and is called
log return:

rt = ln(1 +Rt) = ln(
Pt
Pt−1

).

Note that log returns are additive, meaning we can calculate the total return
over k periods by simply adding the k individual one step log returns.

2.2.2 The distributions of returns

With the objective to forecast log returns for individual assets, we shall specify
a model that makes use of an assumed dynamic dependence to describe the
stochastic behaviour of a return series {rt}T1 . The starting point for such model
is the joint distribution function of T succeeding stochastic returns for which the
joint distribution function is uniquely determined by the unknown parameter θ:

F (r1, r2, ..., rT ; θ). (2)

To study the dynamic structure of asset returns it is useful to partition the joint
distribution (2) (Tsay, 2010, pp. 15) [6] as

F (r1, r2, ..., rT ; θ) = F (r1; θ)

T∏
t=2

F (rt|rt−1, ..., r1; θ), (3)

which shift our focus to the conditional distribution F (rt|rt−1, ..., r1; θ). This
conditional distribution must be chosen appropriately, such that it sufficiently
describes the asset return over time. Assuming such conditional distribution
is specified, it remains to estimate θ in order to make inference about asset
returns, using for example maximum-likelihood estimation.

A special case related to forecasting is when the conditional distribution in
(3) is equal to the marginal distribution F (rt). In this case, there is no dynamic
dependence between asset returns. The forecast of such series is the naive one,
namely the sample mean.

2.2.2.1 Normal Assumption of Returns

It is common to assume that log returns rt are independent and identically
distributed random variables following a normal distribution with mean µ and
variance σ2. However, in empirical studies of asset returns the normal assump-
tion is often questionable. Typically the distribution is asymmetric (skew) and
have heavy tails (excess kurtosis). Asymptotic properties of the sample counter-
parts to the skewness statistic S(rt) = E[(rt−µ)3/σ3] and the kurtosis statistic
K(rt) = E[(rt − µ)4/σ4] can be used to test the normal assumption of data
(Tsay, 2010, pp. 9) [6].

Let µ̂ and σ̂2 be the sample mean and variance respectively of {rt}T1 . Then
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Ŝ(rt) =
1

(T − 1)σ̂3

T∑
t=1

(rt − µ̂)3,

K̂(rt) =
1

(T − 1)σ̂4

T∑
t=1

(rt − µ̂)4,

are the sample skewness and kurtosis respectively. Ŝ(rt) and K̂(rt) − 3 follow
asymptotically a normal distribution with zero mean, and variance 6/T and
24/T respectively. This means that the test statistics

ts =
Ŝ(rt)√
(6/T )

,

tk =
K̂(rt)− 3√

(24/T )
,

are standard normal distributed. The respective null hypothesis H0 : S(rt) = 0
and H0 : K(rt) − 3 = 0 are rejected in favour of the alternative hypothesis
H1 : S(rt) 6= 0 and H1 : K(rt) − 3 6= 0, if the p-value corresponding to |ts| or
|tk| is less than the chosen significance level.

2.2.2.2 Likelihood Function of Log Returns

Under the normal assumption of log returns the likelihood function of the log
return series {rt}T1 is

L(r1, r2, ..., rT ; θ) = F (r1; θ)

T∏
t=2

1√
2πσt(θ)

exp

[
−(rt − µt(θ))2

2σ2
t (θ)

]
where we have used the partitioned represenation of the distribution function
in equation 3. The θ that maximises this expression is called the maximum-
likelihood estimation (MLE).

2.3 Linear Time Series Models

We continue to consider succeeding stochastic asset returns rt, which constitute
a time series {rt}T1 , and wish to model its dynamic structure in order to forecast
future returns. In this thesis we only concern possible traditional time series
models that make a strong assumption of linear relationship between the returns.
The background to this restriction is the purpose of using such model as a
benchmark, when assessing the performance of XGBoost in the case study in
section 4.

The considered model is the autoregressive moving average model (ARMA),
which is a composition of the autoregressive and the moving average model.
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This model assumes a weak stationary time series, which generally holds for a
log return series. Price series however, do naturally appear to be non-stationary.
We will briefly make a connection between modeling of these two types of finan-
cial time series by generalizing ARMA to the autoregressive integrated moving
average model (ARIMA), which is used for modeling non-stationary time series,
such as price series.

2.3.1 White Noise

The basis of many stochastic time series models is that successive observa-
tions are generated from a series {at} of independent and identically distributed
shocks at, having finite mean and variance, which are drawings from a fixed dis-
tribution. Such series is called a white noise series (Box et al., 2015, pp. 7) [7].
If at is normally distributed with mean zero and variance σ2

a, the series is called
a Gaussian white noise series. In practice, if a time series has all sample ACFs
close to zero, then the series is approximately a white noise series (Tsay, 2010,
pp. 36) [6].

2.3.2 The General Linear Time Series Model

A time series rt is said to be linear if it can be written on the form

rt = µ+

∞∑
i=0

ψiat−i, (4)

where µ is the mean of rt, ψ0 = 1, and {at} is a white noise series. The white
noise variable can be considered the new information at time t, and its influence
on the value of rt is controlled by the weight parameter ψ.

Assuming that rt is on the form (4) and that it possesses the weak stationary
property, we can derive some of its properties using basic probability theory.
First, we have E(rt) = µ and V ar(rt) = σ2

a

∑∞
i=0 ψ

2
i . Furthermore, from the

derivation of lag-l autocovariance of rt, we can conclude that the weights are
related to the autocorrelations of rt and that remote returns have little or no
influence on current return rt. For details, see Tsay (2010, sect. 2.3) [6].

2.3.3 The ARMA Model

The ARMA model has been used for analysis of financial time series for decades,
but more so in the past than in the present. This model is the result of com-
bining two simpler linear models in order to overcome possible high-order issues
occurring when they are applied separately. These models are the autoregres-
sive model, AR(p), and the moving-average model, MA(q), which in short are
focused on modelling the autocorrelation parameters and the white noise se-
ries respectively. These models can also be represented as special cases of the
ARMA model.

The general ARMA(p,q) model is on the form

13



rt = φ0 +

p∑
i=1

φirt−i + at −
q∑
i=1

θiat−i, (5)

where {at} is a white noise series, and p and q are non-negative integers. In
this thesis we assume {at} is a Gaussian white noise series. It turns out that
rt which satisfies equation (5) is weakly stationary if all the solutions to the
associated charasteristic equation

1− φ1x− φ2x2 − · · · − ψpxp = 0 (6)

are less than one in absolute value. The characteristic equation is related to the
AR part, since the MA part is always stationary.

2.3.3.1 Order Determination

There are several approaches to selecting the parameters p and q of the ARMA
model. Box et al. (2015, pp. 183) [7] primarily present methods related to
characteristics of the sample ACF and PACF, while Tsay (2010, pp. 66) [6]
primarily suggest using the extended auto-correlation function (EACF) (Tsay &
Tiao, 1984) [14]. Among alternative methods they suggest using an information
criteria, which assess a specified model according to a trade-off between goodness
of fit and complexity penalization. We define three well known information
criteria AIC (Akaike, 1973) [15], AICc (Sugiura, 1978) [16] and BIC (Schwartz,
1978) [17] following Burnham & Anderson (2002) [18].

Let L(θ̂ML) be the value of the maximized model maximum-likelihood func-
tion, and let g = p+ q, then

AIC = −2 ln(L(θ̂ML)) + 2g

AICc = AIC + 2g(g+1)
T−g−1

BIC = −2 ln(L(θ̂ML)) + g ln(T )

.

In this thesis, we will use the ACF and PACF to estimate reasonable ranges
0 ≤ p ≤ P and 0 ≤ q ≤ Q, then evaluate all possible combinations using an
AICc in order to perform model selection.

2.3.3.2 Forecasting with ARMA

Let h denote the forecast origin and let Fh denote the by h available information.
The one-step-ahead forecast rh+1 of the return series using ARMA is defined
by

r̂h(1) = E[rh+1|Fh] = φ0 +

p∑
i=1

φirh+1−i −
q∑
i=1

θiah+1−i, (7)

with associated standard deviation
√
V ar(eh(1)) =

√
V ar(rh+1 − r̂h(1)) =√

V ar(ah+1) = σa of the forecast error eh(1).
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2.3.4 Extending ARMA to ARIMA

If we allow the solutions to the characteristic equation (6) in section 2.3.3 to
be equal to one, ARMA is extended to the ARIMA model. A time series that
possesses this property is said to be unit-root nonstationary. A conventional
approach to handle such series is to transform it to a stationary series using
differentiation. Differentiation means transforming a time series zt to ct by
letting ct = zt − zt−1 = (1−B)zt, where the back shift operator B is such that
Bzt = zt−1.

This model comes in handy if we instead of the log return series rt consider
the asset log price series pt, which in general appear to be non-stationary by
nature and can be such that it has a unit-root. If differencing the price series pt
once and the obtained return series rt follows and invertible ARMA(p,q) model,
then pt follows an ARIMA(p,1,q) model.

To test whether a financial time series has a unit root it is common to
perform the Augmented Dickey-Fuller test, Tsay (2010, section 2.7.5) [6].

3 Supervised Learning Approach

Having derived some fundamental properties of financial time series and how
these can be studied using the traditional linear model ARMA, we will now
switch focus to our alternative approach on forecasting future values of univari-
ate financial time series.

Starting with a general introduction to statistical learning and supervised
learning, we then proceed to common learning methods which underlie the XG-
Boost model, which is the model of primary interest in this thesis. In the final
section we derive the chosen approach to reframe the univariate time series
forecasting problem into a supervised learning problem.

The general theory on statistical learning in sections 3.1-3.3 is mainly from
Elements of Statistical Learning by Hastie et al. (2009) [8], and to some extent
from Machine Learning: A Probabilistic Perspective by Murphy (2012) [9]. The
derivation of eXtreme Gradient Boosting is based on XGBoost: A Scaleable Tree
Boosting System by Chen & Guestrin (2016) [3].

3.1 Supervised Learning

This section mainly follows Hastie et al. (2009, section 2.6) [8], which define
statistical learning as a statistical or applied mathematics approach to machine
learning.

3.1.1 Function Approximation

Supervised learning is a predictive task, where we are given a random sample
T = {(xi, yi)}Ni=1 of independent input-output pairs called a training set, which
are considered to be realizations from a joint distribution Pr(X, Y ). The aim
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is to make a useful approximation of a function f(X) in an assumed additive
relationship

Y = f(X) + ε (8)

between the response variable Y and the p-dimensional predictor variable X =
(X1, X2, ..., Xp)

T , where the random error ε has E[ε] = 0 and V ar(ε) = σ2,
and is independent of X. The error term is assumed to capture unmeasured
contributions, such as measurement errors and other unknown influential pre-
dictors. The input data pairs (xi, yi), i = 1, 2, ..., N , are viewed as points in a
(p+ 1)−dimensional Euclidean space.

In this thesis, we are concerned with the case where both input and output
are quantitative or continuous, meaning the domain of X is Rp and possible
outcomes of Y is in R. This entails the prediction task to be regression.

3.2 Model Assessment and Selection

In this section we shall enhance our knowledge in the procedure of estimating
the predictive performance of a given learning method. There are two aims
of such estimation: Model Selection: estimating the performance of different
models in order to choose the best one, and Model Assessment : having selected
a final model, estimating its prediction error (generalization error) on new data
(Hastie et al. 2009, page 222) [8].

We illustrate two common approaches for model selection and assessment
in Figure 1, where the dataset is randomly partitioned into subsets referred
to as training, validation and test sets. In (a) the model is fit to the training
set, then model selection is performed by estimating predictive performance
on the validation set. The selected model is then assessed by estimating its
predictive performance on the test set. The partition in (b) is related to k-fold
cross-validation, which we will derive in section 3.2.3.

3.2.1 Performance Measures

Assume that we have initially chosen a prediction model and learning method,
and that we have obtained an approximation f̂(X) of f(X) in (8) by fitting the
model to the training set T . In order to estimate its predictive performance
on new data, we first introduce the loss function L(Y, f̂(X)), which penalizes
prediction errors. In regression problems, the most common choice is the squared
error loss L(Y, f̂(X)) = (Y − f̂(X))2.

To evaluate model performance we want to estimate the test error or gen-
eralization error

ErrT = E[L(Y, f̂(X))|T ]

which is the prediction error over and independent test sample, where X and Y
are drawn from the joint distribution Pr(X, Y ). Note that the training set T is
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fixed, and the prediction error is thus specific to this training set. It is however
often more convenient to estimate the expected test error

Err = E[L(Y, f̂(X))] = E[ErrT ], (9)

which removes randomness from the training set T by averaging.
A candidate estimate of the test error ErrT would be the training error

err =
1

N

N∑
i=1

L(yi, f̂(xi)),

which is the average error on the training set T . However, this quantity has
two major drawbacks. Firstly, it is a too optimistic estimate of the test error
ErrT . This is since f̂ is specified through a fitting procedure on the specific
training set T , and it is highly likely that it would perform better on this
dataset compared to a new random sample. Secondly, the training error tends
to zero as the complexity of the model increases which makes it inappropriate
for model selection. Complex models tend to overfit data which has a negative
affect on its performance on new data.

3.2.2 The Bias-Variance Trade-Off

Assume a model Y = f(X) + ε (8), where E[ε] = 0 and V ar(ε) = σ2. For
squared error loss and a new random point x0 we can express the expected test
error Err (9) as

Err(x0) = E[(Y − f̂(x0))2|X = x0]

= σ2 + (E[f̂(x0)]− f(x0))2 + (E[f̂(x0)− Ef̂(x0)])2

= σ2 + Bias2(f̂(x0)) + V ar(f̂(x0))

= Irreducible Error + Bias2 + Variance

,

which is known as the bias-variance decomposition. The irreducible error derives
from how the target Y varies around its true mean and can thus not be influenced
by our model selection. However, both the squared bias (E[f̂(x0)]−f(x0))2 and

the variance E[(f̂(x0)−E[f̂(x0)])2] depend on our selected model f̂ which thus
controls how these factors contribute to the expected prediction error. A sim-
ple model that makes strong structural assumptions, like linearity, typically has
large bias but small variance, whilst a more complex model with mild structural
assumptions has small bias but large variance. The decision on model complex-
ity thus controls the influence of bias and variance on the expected prediction
error, and involves a bias-variance trade-off. If a special structure exists, then
this can be used to reduce both bias and variance of the estimates. Complexity
constraints, are often built into the learning method and rely on assuming some
type of regular behaviour for input points that are close to each other.
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Figure 1: Illustration of partitioning data (a) into train, validation and test set
(b) for 5-fold cross-validation

3.2.3 K-fold Cross-Validation Estimation of Err

K-fold cross-calidation is a popular method for estimating model performance,
which attempts to directly estimate the expected prediction error Err. Instead
of partitioning the available data into training and validation sets, k-fold cross-
calidation partition data into k roughly equal-sized subsets, or folds. Err is then
estimated on each fold by fitting the model to the remaining k − 1 folds. The
cross-calidation estimate of Err is the average of these k estimates, and is used
as performance measure for model selection. The final model is then fit to the
union of the k folds and model assessment is performed on the test set. Figure
1 (b) illustrates the partitioning in case of 5-fold cross-validation.

Now, we formally define k-fold cross-calidation, according Hastie et al. (2009,
sect. 7.10.1) [8].

Let κ : {1, ..., N} 7→ {1, ..., k} be a function that randomly allocates the N
observations in the dataset into k disjoint, roughly equal-sized subsets or folds.
Further, let f̂−k(x) denote the function fitted on the dataset having removed
the kth subset. Then

CV (f̂) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi)), (10)

is the k-fold cross-validation estimate of the prediction error.
Given a set of models f(x;α), where α is a tuning parameter, let f̂−k(x;α))

denote the αth model fit on the dataset having removed the kth subset. Then

CV (f̂ , α) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi;α)), (11)

estimates the test error curve. We then choose f(x, α̂), where α̂ minimizes the
test error curve, to be our chosen model. This model is then fit to the original
dataset.
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Choosing the number of folds k is a decision including a bias-variance trade-
off. Choosing k large, means low bias but variance tend to be high since there
will be few observations in each fold. On the other hand, small k leads to
decrease in variance but increase of bias. In general, k = 5 or k = 10 have
proven to be a good compromise.

3.3 Common Learning Methods

3.3.1 Linear Methods (for Regression)

In many fields of mathematics and statistics, linear methods are the starting
point for more complex models. We will thus briefly describe linear methods in
supervised learning.

The linear regression model is on the form

f(X) = β0 +

p∑
j=1

Xjβj , (12)

where β0 is the intercept. It is common to use least squares method to fit the
linear model to the training set. This means finding β̂ which minimizes the
residual sum of squares

RSS(β) =

N∑
i=1

(yi − f(xi))
2

=

N∑
i=1

(yi − xTi β)2,

(13)

where we have set xi,0 = 1 for convenient estimation of the intercept β0 ∈ R.
An important property of the linear model is that it can be applied to trans-

formations of the inputs, and can be presented as a special case of a broader class
of linear model called linear basis expansion methods, which widely expands the
applications of linear models.

3.3.2 Basis Function Expansions

One approach to move beyond linearity is by transforming the input variables
in (12) using basis functions, which increase and/or replace the input variables.
We follow Hastie et al. (2009, sect. 5.1) when defining the linear basis expansion
in X. Note that the intercept is dropped. The interested reader is also referred
to Murphy (2012, ch. 16) [9].

Let bm(X) : Rp 7→ R denote the mth basis expansion of X, for m =
1, 2, ...,M . The linear basis expansion is on the form
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f(X) =

M∑
m=1

βmbm(X)

=

M∑
m=1

fm(X),

(14)

which, once the basis functions bm have been determined, is linear in terms of
theseM functions of X and the coefficient vector β can be estimated using least
squares method.

Many models can be represented as a linear basis expansion by appropri-
ate definitions of the basis functions. We are particularly interested in the
models where the basis functions are parametric. In this case we can write
bm(x) = b(x; vm), where vm characterize the mth basis function. This means
that each basis function is fit to data. The model is no longer linear in the model
parameters (β1:M, {vm}M1 ) and the corresponding RSS minimization problem
(13) requires iterative methods or numerical optimization (Hastie et al., 2009,
pp. 30; Murphy, 2012, pp. 544) [8, 9]. Typically, such methods produce a
dictionary of basis functions, which is combined with a method for controlling
model complexity. We shall see that dictionary methods with stagewise greedy
selection methods such as CART (section 3.3.3) and Boosting (section 3.4) are
of special interest in this thesis.

3.3.3 Regression Trees

Classification and Regression Trees (CART), introduced by Breiman et al. (1984)
[19], is a popular type of tree-based method applicable to both classification and
regression problems. We will restrict ourselves to CART in a regression setting,
often called regression trees. We follow the content in Hastie et al. (2009, section
9.2.1-2) [8].

The basic idea of tree-based methods are to partition the domain of X into
disjoint regions and then assess a certain response in each region. CART is
restricted to recursive binary splits parallel to the coordinate axes, of which the
response is the mean of Y corresponding to each region.

Consider the linear basis expansion (14). By letting M = J , and corre-
spondingly βj = γj and b(X; vj) = 1{(X1, X2, ..., Xp) ∈ Rj}, we have defined
the regression tree model

f(X) =

J∑
j=1

γj1{(X1, X2, ..., Xp) ∈ Rj}, (15)

where γj is the response corresponding to region j, and 1 is the indicator func-
tion of the event that X is in region j. The tree parameters vj encode the choice
of split variables k, and split points s, on the path from the root node to the
jth leaf.
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3.3.3.1 Growing a Regression Tree

The process of partitioning the domain of X is referred to as growing the tree.
CART implements a greedy algorithm which we will now present.

Consider a training set T = {(xi, yi)}Ni=1, and suppose that we have a par-
tition into regions R1, R2, ..., RJ , as in (15). Then f(X) is linear in J specified
tree basis functions and we can minimize the RSS criteria (13) to obtain the
optimal coefficients {γ̂j}J1 . The solution turn out to equal the average of yi
corresponding to each region Rj , that is, γ̂j = ave(yi|xi ∈ Rj).

Estimating the split points and splitting variables, is done in a greedy fashion
since solving the RSS criteria is generally infeasible. Starting with the whole
training set T , we consider a splitting variable k and a split point s, and define
the half-planes

R1(k, s) = {X|Xk ≤ s} and R2(k, s) = {X|Xk > s}. (16)

The splitting variable and split point are those who solve

min
k,s

min
γ1

∑
xi∈R1(k,s)

(yi − γ1)2 + min
γ2

∑
xi∈R2(k,s)

(yi − γ2)2

 , (17)

where the inner minimization is solved by

γ̂1 = ave{yi|xi ∈ R1(k, s)} and γ̂2 = ave{yi|xi ∈ R2(k, s)}, (18)

for every (k, s). Thus, we are left with solving

min
k,s

 ∑
xi∈R1(k,s)

(yi − γ̂1)2 +
∑

xi∈R2(k,s)

(yi − γ̂2)2

 . (19)

The best split pair (k, s) is obtained by scanning through all possible pairs from
the input data. Having obtained such pair, they define the partitions R1 and
R2, and this process is repeated on these regions until some stopping criteria is
met.

Tree size J , that is, how large a tree should grow is a meta-parameter gov-
erning the model complexity. There exist several methods to determine the
tree size. However, when trees are implemented as weak learners in a boosting
algorithm, we shall later see that tree size becomes a meta-parameter in the
boosting procedure itself which can be determined using cross-validation.

3.4 Boosting

Boosting (Shapire 1990; Freud & Shapire 1997) [20] is a greedy algorithm for
fitting adaptive basis expansions on the form (14), where the basis functions
b(x; vm) are simple functions generated by a weak learner or base learner which
is a predictor that performs only slightly better than chance (Hastie et al., 2009,
section 10.2; Murphy 2012, sect. 16.4) [9, 8]. The boosting algorithm applies the
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weak learner sequentially and the final prediction consists of a weighted majority
vote from the M weak learners. Boosting was first presented in computational
learning theory where it achieved great success. Friedman et al. (2000) [21]
then presented a statistical view of Boosting, which explained its success as a
procedure to fit additive models in a forward stagewise manner.

In general, boosting aims to solve

{β̂m, v̂m}M1 = arg min
{βm,vm}M1

N∑
i=1

L

(
yi,

M∑
m=1

βmb(xi; vm)

)
. (20)

which, as mentioned in section 3.3.2, requires computationally intense numerical
optimization techniques for squared error loss.

3.4.1 Forward Stagewise Additive Modeling

Forward Stagewise Additive Modelling (FSAM) (Hastie, 2009, sect. 10.2-3) [8]
is a method that can be used to approximate (20), when it is possible to rapidly
estimate the parameters of a single basis function

(β̂, v̂) = arg min
(β,v)

N∑
i=1

L (yi, βb(xi; v)) . (21)

This procedure is defined in Algorithm 1, where it is shown that each iteration
or boost m add the optimal parametric basis function and the corresponding
coefficient to the current expansion f̂ (m−1). Here optimal is in terms of mini-
mizing the expected prediction error.

Input:
A data set T
A loss function L
A base learner b(x; v)
The number of iterations M

1 Initialize f̂ (0)(x) = f̂0(x) = 0;
2 for m = 1 to M do

3 (β̂m, v̂m) = arg min{β,v}
∑N
i=1 L

(
yi, f̂

(m−1)(xi) + βb(xi; v)
)

;

4 f̂m(x) = β̂mb(x, v̂m);

5 f̂ (m)(x) = f̂ (m−1)(x) + ηf̂m(x);

6 end

Output: f̂(x) ≡ f̂ (M)(x) =
∑M
m=0 f̂m(x)

Algorithm 1: Forward Stagewise Additive Modeling (FSAM)
a

In case of least squares loss, the loss function in step 3 of Algorithm 1 can
be expressed as
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L
(
yi, f̂

(m−1)(xi) + βb(xi; v)
)

= (yi − f̂ (m−1)(xi)− βb(xi; v))2

= (rim − βb(xi; v))2,

where rim = yi−f̂ (m−1)(xi) is the residuals of the current expansion f̂ (m−1)(xi).

This means, that the mth boosting iteration chooses f̂m(x) = β̂mb(x; v̂m) that
best fits the current residuals.

3.4.2 Newton Boosting

In this section we derive a boosting algorithm called Newton Boosting, which
is a generic boosting algorithm that approximates the optimization problem in
step 3 in Algorithm 1 for any twice differentiable loss function. This boosting
algorithm is implemented by XGBoost.

3.4.2.1 Background

Boosting, as described above, was limited to certain loss functions for which
a computationally feasible method for solving (21) existed. Friedman (2001)
[10] then viewed boosting in terms of steepest descent in function space, and
presented a generic boosting procedure called Gradient Boosting, applicable for
any sub-differentiable loss function.

Newton boosting, which we will present in the next section, relies on the same
underlying idea but instead of gradient descent implement Newton’s Method
in function space. Actually, Gradient Boosting is a special case of Newton
Boosting.

We will not go into the details of numerical optimization in function space,
or derive the Gradient Boosting algorithm. The interested reader is referred to
above mentioned article by Friedman, in which he generalizes numerical opti-
mization in parameter space to numerical optimization in function space.

3.4.2.2 Newton Boosting

Consider the optimization problem of choosing the next boost step f̂(x) in step
3 in Algorithm 1. We shall now see how Newton boosting chooses the mth boost
step as the basis function b(x; vm) that produces {b(xi; vm)}N1 most correlated
to the negative gradient Hessian ratio in the N -dimensional data space at the
current point f̂ (m−1)(x).

We will first define the general version of Newton Boosting, and then derive
its sample counterpart. The content is mainly based on Gradient and Newton
Boosting for Classification and Regression by Sigrist (2019) [4].

Let Y ∈ R and X ∈ Rp be stochastic variables, let S be a span of base
learners, and let R(f) = EX,Y (L(Y, f(X))), that is, the risk function or expected

loss. Newton boosting chooses f̂m as the minimizer of a second order Taylor
approximation around the current point f̂ (m−1), consequently
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f̂m = arg min
f∈S

R(f̂ (m−1) + f)

= arg min
f∈S

R(f̂ (m−1)) +
∂R(f̂ (m−1))

∂f̂ (m−1)
+

1

2

∂2R(f̂ (m−1))

∂(f̂ (m−1))2
.

(22)

Assuming P-almost all existence and integrability of the second derivative of
the loss function L(Y, f) with respect to f , we can interchange differentiation
and integration such that (22) can be written as

f̂m = arg min
f∈S

R(f̂ (m−1)) +
∂R(f̂ (m−1))

∂f
+

1

2

∂2R(f̂ (m−1))

∂f2

= arg min
f∈S

EY,X

[
gm(Y,X)f(X) +

1

2
hm(Y,X)f2(X)

]
= arg min

f∈S
EY,X

[
hm(Y,X)

(
− gm(Y,X)

hm(Y,X)
− f(X)

)2
]
,

(23)

where we have removed the constant R(f̂ (m−1)) which does not affect the mini-
mization, and gm(X, Y ) and hm(X, Y ) are the gradient and Hessian of the loss

function L(Y, f) with respect to the current estimate f̂ (m−1), that is,

gm(X, Y ) =

[
∂L(X, f)

∂f

]
f=f̂(m−1)(X)

,

hm(X, Y ) =

[
∂2L(X, f)

∂f2

]
f=f̂(m−1)(X)

.

The last row in equation (23) shows that f̂m is the weighted least squares ap-

proximation to − gm(Y,X)
hm(Y,X) , where the weights are given by the Hessian hm(Y,X).

The factor − gm(Y,X)
hm(Y,X) is commonly referred to as the Newton step.

If the following expression is well defined for P-almost all X, we can calculate
(23) with respect to the conditional risk

f̂m(X) = arg min
f∈S

EY |X

[
hm(Y,X)

(
− gm(X, Y )

hm(X, Y )
− f(X)

)2
]
.

If we now consider a training set T of N independent input-output pairs from
the distribution of (X, Y ), and approximate the risk R(f) with the empirical

risk for squared error loss Re(f) =
∑N
i=1 L(yi, f(xi)) =

∑N
i=1(yi−f(xi))

2, then
the Newton update in equation (23) is given by
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f̂m = arg min
f∈S

N∑
i=1

gimf(xi) +
1

2
himf(xi)

2

= arg min
f∈S

N∑
i=1

him

(
− gim
him
− f(xi)

)2

,

(24)

where gim and him are the empirical gradient and Hessian for observation i,
that is,

gim =

[
∂

∂f
L(yi, f)

]
f=f̂(m−1)(xi)

,

him =

[
∂2

∂f2
L(yi, f)

]
f=f̂(m−1)(xi)

.

The Newton Boosting algorithm is summarized in Algorithm 2.

Input: Data set T
A loss function L
A base learner b(x; v)
The number of iterations M
The learning rate η

1 Initialize f̂ (0)(x) = f̂0(x) = β̂ = arg minβ
∑n
i=1 L(yi, β);

2 for m = 1 to M do

3 ĝm(xi) =
[
∂L(yi,f(xi))

∂f(xi)

]
f(xi)=f̂(m−1)(xi)

;

4 ĥm(xi) =
[
∂2L(yi,f(xi))

∂f2(xi)

]
f(xi)=f̂(m−1)(xi)

;

5 b̂m = arg minb∈B
∑n
i=1

1
2 ĥm(xi)

[(
− ĝm(xi)

ĥm(xi)

)
− b(xi)

]2
;

6 f̂m = b̂m(x) ;

7 f̂ (m)(x) = f̂ (m−1)(x) + ηf̂m(x);

8 end

Output: f̂(x) ≡ f̂ (M)(x) =
∑M
m=0 f̂m(x)

Algorithm 2: Newton Boosting

3.4.3 Boosting Parameters

Fitting data too closely can be counterproductive and lead to decreased general-
ization performance, as derived in section 3.2. Regularization methods attempt
to prevent over-fitting by constraining the fitting procedure. Boosting has two
primary meta-parameters.

The Number of IterationsM
A natural constraint for additive expansions on the form (14) is the number of
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basis expansions M, which is the main meta-parameter of the boosting proce-
dure in Algorithm 1. Controlling the number of terms in the expansion places
an implicit prior belief that ”sparse” approximations involving fewer terms are
likely to provide better prediction (Friedman, 2001) [10].

The Learning Rate η
In his 2001 article (Friedman, 2001) [10], Friedman also suggested using a shrink-
age parameter η in the boosting procedure, such that line 5 in Algorithm 1 is
replaced by

f̂ (m)(x) = f̂ (m−1)(x) + ηf̂m(x), 0 < η ≤ 1.

Friedman argues thatM and η are not independent, thus they should be fitted
simultaneously. In general, empirical studies show that η < 0.1 and large values
ofM increase model performance. Unfortunately, this ”slow learning” increases
computational load. It is thus recommended to choose a combination of these
variables such that the computations can be performed in a reasonable amount
of time. Newton Boosting implements shrinkage, which can be seen at line 7 in
Algorithm 2.

3.5 XGBoost

In this section we will apply the theory in previous sections to derive eXtreme
Gradient Boosting (XGBoost) by Chen & Guestrin (2016) [3]. We start by de-
riving Newton Boosting (Algorithm 2) in the case of using regression trees as
base learners and squared error loss. We then move on to the regularized learn-
ing objective of XGBoost, which includes l1 and l2 penalty terms on objective
and define the algorithm used in this thesis.

3.5.1 Boosting Trees

When choosing regression trees on the form (15) as basis functions in the para-
metric version of the basis expansion (14), we get

f(X) = f (M)(X)

=

M∑
m=1

βm

J∑
j=1

γjm1(X ∈ Rjm)

=

M∑
m=1

J∑
j=1

wjm1(X ∈ Rjm)

=

M∑
m=1

T (X; Θm)

=

M∑
m=1

fm(X),

(25)
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where wjm = βmγjm is the response or weight corresponding to each region

Rjm, and Θm = {Rjm, wjm}Jm1 is the parameter set of the mth tree T (X; Θm).
We can see, at the second row in (25), that boosted trees is itself an ensemble
of additive trees. Remembering from section 3.3.3 that the response for a given
tree structure equals the coefficient wjm for which the input X ∈ Rjm, we realise
that the response for a specified function f (M)(X) is a sum of the corresponding
M region weights.

3.5.2 Newton Tree Boosting

In this section we will derive a general XGBoost algorithm which fit tree ensem-
bles on the form (25), and later we shall see how it is modified by introducing
a penalized learning objective.

Given a training set T of length n and a twice differentiable, convex loss
function L, Newton Boosting solves

{Θ̂m}M1 = arg min
{Θm}M1

N∑
i=1

L

(
yi,

M∑
m=1

T (xi; Θm)

)
(26)

in a forward stagewise manner. Considering the stagewise minimization problem
on the form of (24) where we assume a given tree structures gives us

Θ̂m = arg min
Θ

N∑
i=1

[
gimT (xi; Θ) +

1

2
himT (xi; Θ)2

]

= arg min
Θ

N∑
i=1

gim Jm∑
j=1

wjm1(xi ∈ Rjm) +
1

2
him

Jm∑
j=1

w2
jm1(xi ∈ Rjm)2


= arg min

Θ

J∑
j=1

 ∑
xi∈Rjm

gim

wjm +
1

2

 ∑
xi∈Rjm

him

w2
jm


= arg min

Θ

J∑
j=1

[
Gjmwjm +

1

2
Hjmw

2
jm

]
,

(27)

where Gjm and Hjm denote the gradient and the Hessian sum respectively, and
in the third equality we used additivity of the disjoint regions. Finding the
solutions to

∂

∂wjm

J∑
j=1

[
Gjmwjm +

1

2
Hjmw

2
jm

]
=

J∑
j=1

[Gjm +Hjmwjm] = 0

gives us the optimal leaf weights, which are given by
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ŵjm = −Gjm
Hjm

.

Inserting these weights into the last expression in equation (27) gives us a score
on the optimized tree with a given structure

Score(Θ̂m) =

J∑
j=1

−
G2
jm

Hjm
+

1

2

G2
jm

Hjm
= −1

2

J∑
j=1

Gjm
Hjm

.

The score is used to find an optimal tree structure by evaluating possible node
splits. XGBoost uses a greedy top-down split finding algorithm, similar to
CART which we described in section 3.3.3. The algorithm consider the possible
binary splits of a region R into RL and RR, and define the gain in terms of
reduced empirical risk of a specific split. The gain is calculated as

Gain =
1

2

[
G2
L

HL
+
G2
R

HR
− G2

H

]
, (28)

where the first two terms correspond to the score on the left and right leaf
respectively, and the last term corresponds to the original score. The split
algorithm perform the split that yield the largest gain, given that Gain > 0.

This general XGBoost algorithm is summarized in Algorithm 3.

Input: Data set T
A loss function L
The number of iterations M
The learning rate η
Tree size J

1 Initialize f̂ (0)(x) = f̂0(x) = β̂ = arg minβ
∑n
i=1 L(yi, β);

2 for m = 1 to M do

3 ĝim(xi) =
[
∂L(yi,f(xi))

∂f(xi)

]
f(xi)=f̂(m−1)(xi)

;

4 ĥim(xi) =
[
∂2L(yi,f(xi))

∂f2(xi)

]
f(xi)=f̂(m−1)(xi)

;

5 Determine the structure {R̂jm}J1 by selecting splits which maximize

Gain = 1
2

[
G2

L

HL
+

G2
R

HR
− G2

H

]
;

6 Determine the leaf weights {ŵjm}J1 for the learned structure by

ŵjm = −Gjm

Hjm
, j = 1, 2, ..., J ;

7 f̂ (m)(x) =
∑J
j=1 ŵjm1(xi ∈ R̂jm) = T (x; Θ̂m) ;

8 f̂ (m)(x) = f (m−1) + ηf̂m(x);

9 end

Output: f̂(x) ≡ f̂ (M)(x) =
∑M
m=0 f̂m(x)

Algorithm 3: XGBoost
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3.5.3 Penalized Learning Objective

Chen & Guestrin (2016) [3] introduce a penalized learning objective to prevent
over-fitting, which we will now present.

The penalized counterpart to (26) is on the form

{Θ̂m}M1 = arg min
{Θm}M1

N∑
i=1

L

(
yi,

M∑
m=1

T (xi; Θm)

)
+

M∑
m=1

Ω(Θm)

where Ω(Θm)) = ΓJ+α
∑J
j=1 |wjm|+

1
2λ
∑J
j=1 w

2
jm are the penalization terms

for the number of terminal nodes J , l1 (lasso)1 and l2 (ridge) regularization
respectively. This result in stagewise minimization, corresponding to (27), on
the form

Θ̂m = arg min
Θ

N∑
i=1

[
gimT (xi; Θ) +

1

2
himT (xi; Θ)2

]
+ ΓJ + α

J∑
j=1

|wjm|+
1

2
λ

J∑
j=1

w2
jm

= arg min
Θ

J∑
j=1

 ∑
xi∈Rjm

gim

wjm +
1

2

 ∑
xi∈Rjm

him + λ

w2
jm + α|wjm|

+ ΓJ

= arg min
Θ

J∑
j=1

[
Gjmwjm +

1

2
(Hjm + λ)w2

jm + α|wjm|
]

+ ΓJ.

(29)

We continue by deriving an expression for the optimal leaf weights {ŵjm}J1 ,
which is the solution to

∂

∂wjm

J∑
j=1

[
Gjmwjm +

1

2
(Hjm + λ)w2

jm + α|wjm|
]

+ ΓJ = 0

⇒ ∂

∂wjm

J∑
j=1

[Gjm + (Hjm + λ)wjm + sign(α)] = 0

.

For a given tree structure at iteration m, assuming wjm ≤ 0, we get

∂

∂wjm
Gjm + (Hjm + λ)wjm − α = 0

⇒ŵjm = −Gjm − α
Hjm + λ

,

1Chen & Guestrin (2016) does not include the l1 regularization term. However, this term
is included in the xgboost-package in which XGBoost is implemented in R. We choose to
include this term here.
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where the denominator is strictly positive and thus Gjm−α ≥ 0. Solving under
the assumption that wjm > 0 is done analogously, and we get the following
solution

ŵjm =


−Gjm+α
Hjm+λ , if Gjm < −α
−Gjm−α
Hjm+λ , if Gjm > α

0, else

.

Inserting in (29) results in the following score expression

Score(Θ̂m) = −1

2

J∑
j=1

A2
α

Hjm + λ
+ ΓJ.

where

Aα(Gjm) =

 Gjm + α, if Gjm < −α
Gjm − α, if Gjm > α
0, else.

Finally, we can express the gain as

Gain =
1

2

[
Aα(GjmL)G2

jmL

HjmL + λ
+
Aα(GjmR)G2

jmR

HjmR + λ
−
Aα(Gjm)G2

jm

Hjm + λ

]
− Γ. (30)

3.5.4 XGBoost Parameters

In section 3.4.3 we defined the boosting meta-parameters M and η. In this
section, we shall define the remaining main parameters for the XGBoost method.

3.5.4.1 Tree Parameters

Tree Size J
This parameter relates to the order of interactions among the predictor vari-
ables, and the optimal value is such that it reflects the number of effective
interaction order of the target function f(X) in (8), and is often found using
cross-validation (Friedman, 2001, section 7) [10]. Empirical studies (Friedman,
2001; Probst et al, 2018) [10, 22]) suggest collectively the use of trees of size 6-15.

Minimum Child Weight ω
The minimum sum of instance weight (Hessian) needed in a child, or leaf. If
the tree partition step results in a leaf node with the sum of instance weight
less than minimum child weight, then the building process will give up further
partitioning. In linear regression mode, this simply corresponds to minimum
number of instances or observations needed to be in each node. The larger, the
more conservative the algorithm will be (Chen et al., 2020) [23].
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Gamma Γ
Used to reduce Gain in possible splits, as can be seen in equations (28) and
(30). This parameter is not considered in this thesis.

3.5.4.2 Complexity Penalization

Chen & Guestrin (2016) [3] introduce a penalized learning objective, which we
derived in section 3.5.3. This type of regularization method relies on a prior
belief that the target exhibit a type of smooth behaviour (Hastie et al., 2009,
pp. 34) [8].

l2 Regularization λ
The λ parameter controls the strength of the l2 (Ridge) penalization term, which
shrinks the leaf weights. This becomes clear by presenting the Gain and final
leaf weights ŵjm, analogously to in Section 3.5.3, to a model only including l2
regularization, which become

Gain =
1

2

[
G2
jmL

HjmL + λ
+

G2
jmR

HjmR + λ
−

G2
jm

Hjm + λ

]
− Γ,

and

ŵjm = − Gjm
Hjm + λ

.

Since λ have an effect on the Gain, it may also impact the tree structure.

l1 Regularization α
The α parameter controls the strength of the l1 (LASSO) penalization term,
which is similar to l2 regularization. The Gain and final leaf weights ŵjm,
analogously to l2 regularization above, now become

Gain =
1

2

[
Aα(GjmL)G2

jmL

HjmL
+
Aα(GjmR)G2

jmR

HjmR
−
Aα(Gjm)G2

jm

Hjm + λ

]
,

and

ŵjm = −Aα(Gjm)

Hjm
.

Thus, also λ have an effect on the Gain, it may also impact the tree structure.
Unlike l2 regularization, l1 regularization can shrink leaf weights to zero.

3.5.4.3 Randomization Parameters

Row Subsampling δr
Friedman (2002) [11] suggest that introducing row subsampling in each iter-
ation would increase generalization performance and computational efficiency.
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This can be interpreted as a type of regularization. Row subsampling means
that only a proportion δr of the N training observations are used in order to
determine the next addition f̂ (m).

Column Subsample By Tree δc
In addition to row subsampling, XGBoost supports column, or feature, sub-
sampling. This technique should prevent over-fitting and increases speed by
reducing computations. The parameter δc is the proportion of features kept.

3.5.5 Relative Importance

Relative importance or feature importance allows for assessing how the input
features contribute to the response, in a relative perspective. The R package
xgboost which we use to implement XGBoost in section 4 offers this function-
ality which is described in Hastie et al. (2009, section 10.13.1).

For a single decision tree T , Brieman et al. (1984) [19] proposed

I2l (T ) =

J−1∑
t=1

î2t I(v(t) = l) (31)

as a relevance measure for each predictor Xl. Here J − 1 equal the number of
internal nodes, vt is the splitting variable associated with node t, and î2t is the
corresponding empirical risk improvement in squared error as a result of the
split. At each node t, one of the input variables Xv(t) is used to partition the
region associated with that node into two subregions and within each of those
regions a constant is fit to the response values. The particular input variable
that gives the maximal estimated improvement î2t is selected.

The importance measure (31) can be generalized to additive tree expansions
by

I2l (T ) =
1

M

J−1∑
t=1

I2l (Tm),

which is the average over the M trees. The averaging stabilizes the measure
which makes it more reliable than (31).

3.6 Supervised Learning Setting to Model Time Depen-
dencies

In this section we will present a general machine learning approach to one-step
forecasting of univariate time series. The approach is mainly based on Machine
Learning Strategies for Time Series Forecasting by Bontempi et al. (2013) [1].
Bontempi also gives a general introduction to the supervised learning setting to
model time dependencies and cite several related papers on this topic. Many of
the early papers consider artificial neural network models (ANNs). Ahmed et
al. (2010) [2] compared the forecasting capability of eight common supervised
learning models on 1045 time series, where ANNs proved successful.
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Consider {zt}Nt=1 to be a sample from a time series zt. In a supervised
learning forecasting setting, we can represent a training set of input-output
pairs by an (N −p−1)×p input matrix X and an (N −p−1)×1 output vector
Y

Y =


zN
zN−1

...
zp+1

 ,X =


zN−1 zN−2 · · · zN−p−1
zN−2 zN−3 · · · zN−p−2

...
...

...
...

zp zp−1 · · · z1

 ,
where p is the number of previous values. This type of rolling analysis of time
series has traditionally been used to assess the stability of a model over time
(Zivot, 2006, ch. 9) [24].

3.6.1 Cross-Validation for Dependent Data

One of the most common procedures for model evaluation in supervised regres-
sion is k-fold cross-validation (CV) which was derived in section 3.2.3. Using CV
on time series in forecasting problems is not straight-forward, due to inherent
serial correlation which contradicts assumptions about independent observa-
tions. Furthermore, the random partitioning process of CV entails using future
values to predict past values which is not in line with the forecasting purpose.
Bergmeir et al.2 (2017) [5] study the implementation of three different types
of model evaluation methods: CV, Out-Of-Sample evaluation (OOS), and non-
dependent Cross-Validation. We will not derive the last two methods, but rather
focus the remaining part of this subsection on some of Bergmeir’s conclusions
on applying CV in this type of problem.

From a purely theoretical perspective, CV on purely autoregressive models
is valid if the residuals of the model is uncorrelated. Furthermore, an empirical
study of autoregressive models, on Monte Carlo simulated data, show that CV,
in its original design, outperforms OOS evaluation, which according to Bergmeir
is the by practitioners assumed go-to method in forecasting model evaluation.
Finally, for a real-world dataset CV can control over-fitting, and only if the
model is under-fitting data or have heavily correlated errors should the method
be avoided.

Bergmeir states that machine learning models that perform predictions on
the form derived in the previous section, are considered such autoregressive
models for which CV in general is the preferred evaluation method.

The interested reader is also referred to Bergmeir (2012) [25] which is a
precursor to the above paper. Furthermore, Hart (1994) [26] present the Time
Series Cross-Validation method (TSCV), which in short can be described as
”evaluation on a rolling forecasting origin”. Its design is close to the general
prediction objective, allows for multi-step forecast evaluation and basis for es-
timating forecast uncertainty. The drawback is the large number of models to

2Co-author Rob J Hyndman is the creator of the forecast package which is used in this
thesis to implement the ARMA modeling.
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be fitted during the cross-validation process, which makes it an unlikely perfor-
mance estimator in this thesis (see section 4.4.2).

4 Case Study

4.1 Data

For model comparison, we use a dataset consisting of daily closing prices of OMX
Stockholm Large Cap Price Index (OMXSLCPI)3 during the period 2015-01-04
to 2019-12-30. The index is market capitalization-weighted composition of all
Large Cap companies listed on Nasdaq Stockholm. The dataset is considered to
be of high quality since it has been obtained from a reliable first-hand source, it
contains no missing values and visual inspection revealed no obvious inaccurate
observations.

We follow common practice in financial time series analysis and use log re-
turns rather than simple returns as input to the models (Tsay, 2010, pp. 83) [6].
However, experimental comparison of distributional properties on the specific
dataset revealed only small differences which suggest that log transformation
had little stabilizing effect, and that use of simple returns would lead to similar
conclusions for modeling and performance comparison.

Before choosing to proceed with analysing log returns, we also considered
using other types of Box-Cox stabilizing transformations on the original price
series, and analysed the extent of seasonal patterns. Taking seasonal patterns
into account is considered important when performing time series forecasting
(Tsay, 2010, section 2.8) [6]. In general, there are two approaches to seasonal
modeling. One is the use of seasonal differencing, and the other one is to use
seasonal adjustment. We have excluded seasonal differencing, since trees cannot
capture additive structures (Hastie et al., 2009, pp. 313) [8] indicating that
the same applies for XGBoost. Using seasonal differencing in only the ARMA
model, would bring uneven conditions when comparing model performance.

It is possible that other transformations and seasonally adjusting data, used
either individually or combined, would have some positive effects on the pre-
dictive capabilities of the models. On the other hand, such pre-processing of
data may have negative effect in terms of interpreting distributional properties
of data and the final predicted result. These are the main reasons to why we
chose to proceed with analysing log returns.

The log price and log return series are presented in Figure 2. We notice
relatively large fluctuations of log returns during the beginning of the dataset.
There is one significant outlier coinciding with the United Kingdom European
Union membership referendum on the 24th of June 2016. Although this should
reasonably be considered a single extreme event, this observation is retained.

3https://indexes.nasdaqomx.com/Index/Overview/OMXSLCPI
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Figure 2: Daily OMX Stockholm Large Cap PI log prices and log returns, during
the period 2015-01-04 to 2019-12-30.

4.1.1 Distributional properties

Distributional properties of the log returns are described in Table 1 and illus-
trated in Figure 3. We note that the mean return is close to zero. Conducting
a one sample t-test shows that the hypothesis of zero expected return cannot
be rejected at 95 % confidence level. Furthermore, according to the correspond-
ing one sample t-tests (Tsay, 2010, sect. 1.2.1) [6], we can conclude with 95
% confidence that skewness and positive excess kurtosis of the log returns are
significantly different from those of a normal distribution. The positive excess
kurtosis property means log returns are heavy tailed, that is, they contain more
extreme observations compared to a normal distribution. The heavy tail prop-
erty is also indicated by the fluctuations in the Q-Q plot in Figure 3. Thus, the
normal assumption of the log returns is questionable.

4.1.2 Stationarity

We have reason to believe that the log price series contain a unit root and is
non-stationary, while the differenced log price series, that is, the log return series
rt, seems to fluctuate around a constant level which would suggest this is a weak
stationary series, although the constant variation is questionable.

Conducting Augmented Dickey-Fuller unit-root test results in p-values of
0.41 and 0.01, for the log price- and log return- series respectively. Thus H0:
existence of unit root cannot be rejected for the log price series but can be
rejected for the log return series. Henceforth we will regard the log return series
to be weak stationary.
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rt Rt

Minimum -0.083659 -0.080255
Maximum 0.036474 0.037147
Mean 0.000254 0.000303
Median 0.000665 0.000665
Stdev 0.009917 0.009890
Skewness -0.648070 -0.550551
Kurtosis 5.172612 4.596897

Table 1: Descriptive statistics of daily OMX Stockholm Large Cap PI log return
series rt and simple return series Rt, during the period 2015-01-04 to 2019-12-
30.

4.1.3 Dynamic Dependence

With our prediction purpose, it is essential to examine the dynamic dependence
of the log return series. Visual assessment of the sample ACF and PACF in
Figure 4 show that the serial dependence of daily log returns are weak. Most
ACF:s and PACF:s are within two standard deviations, however presence of
significant serial correlations are indicated at lags 4, 10 and 24. The Ljung-Box
test (Tsay, 2010, pp. 32) [6], using m = log(N − 1) = 7 lags, gives a p-value
of 0.008 which suggests existence of significant serial correlation, and indicates
that the log return series can be used in prediction purpose.

4.2 Software

Code for data wrangling, analysis and modeling is entirely written in the lan-
guage R using the RStudio IDE4. In addition to basic packages, some additional
packages were used. The modeling of ARMA was implemented through the
functions Arima and auto.arima from the forecast package developed by
Hyndman et al. (2008, 2020) [27, 28]. The modeling of XGBoost was imple-
mented by xgb.train and xgb.cv from the xgboost package developed by
Chen & Guestrin (2016) [3]. Various functions from the tidyverse package,
by Wickham et al. (2019) [29], were used for data wrangling and analysis, and
in conjunction with above packages.

4.3 Outline of Model Selection and Model Comparison

In this section we give a background and overview of the approach taken for
model selection, performance assessment and comparison of the XGBoost and
ARMA models in the succeeding sections 4.4 and 4.5.

Since little is written about implementing XGBoost in the forecasting ap-
proach described in section 3.6, we mostly rely on traditional financial time
series analysis and forecasting theory in Tsay (2010) [6], combined with theory

4Integrated Development Environment.
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Figure 3: Q-Q plot and density plot of daily OMX Stockholm Large Cap PI log
return series, during the period 2015-01-04 to 2019-12-30.

Figure 4: Q-Q plot and density plot of daily OMX Stockholm Large Cap PI log
return series, during the period 2015-01-04 to 2019-12-30.
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on statistical learning in Hastie et al. (2009) [8] and implement a rather basic
approach. The idea is to provide base case, which opens up for improvement
by implementation of alternative data pre-processing and model selection tech-
niques that may improve the performance of XGBoost in this type of problem.
A similar approach is taken in An Empirical Comparison of Machine Learning
Models for Time Series Forecasting, by Ahmed et al. (2010, section 2) [2]. Some
alternative suggestions are discussed in section 5.

4.3.1 Model Selection and Comparison

We partition the data sample into training- and test sets. Since the aim is fore-
casting future values, at this step, we do not randomly partition data. Instead
we define the most recent year of data as our test set and the first four years
of data as our training set. We then consider the training set to be historical
values of which we will base our model selection. The test set is considered
future unseen values.

The model selection for ARMA and XGBoost are conducted in section 4.4.1
and 4.4.2 respectively. We use different methods for model selection. The
ARMA model selection procedure implements an information criteria combined
with training set residual diagnostics, while the XGBoost selection procedure is
based on k-fold cross-calidation. The reason to this is that these are common
approaches for each method (Ahmed et al., 2010, section 4) [2].

Having selected the best models, we estimate their predictive performance by
conducting one-step ahead forecasts on the test set. No re-estimation of model
parameters is performed between steps. As performance measure we choose root
mean squared error (RMSE), which is the square root of the mean squared error
(MSE), which we shall now define.

For a given sample of size N , with true outcomes yi and predicted outcomes
ŷi, i = 1, 2, ..., N , we define the following quantities:

MSE =
1

N

N∑
i=1

(yi − ŷi)2 =
1

N
RSS

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2

We consider these measures to be model neutral, and thus suitable for comparing
performance between the considered models in this thesis.

4.3.2 Data Pre-Processing

Data pre-processing is considered important in both traditional linear time series
forecasting and in statistical learning. Tsay (2010, pp. 83) [6] suggest log
transformation for stabilizing variability of price series, which is beneficial for
meeting linear model assumptions. Furthermore, the ARMA model relies on
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the weak stationarity property of the time series. This is assumed to hold for
the differenced log price series, that is, the log return series rt, which will be
considered for both models in this thesis.

4.4 Modeling

4.4.1 ARMA

4.4.1.1 Data Properties

We now only consider the training set and first address the weak stationarity
assumption of the log return series. Analysing the first four years in Figure
2, we make similar observations mentioned in section 4.1. ADF unit-root test
on training data yield a p-value of 0.01, and we reject the null hypothesis of
existance of a unit-root. We assume that the weak stationarity assumption
holds for training data.

We continue the analysis by examining the dynamic dependence if log re-
turns. Visual assessment of the sample ACF and PACF in Figure 12 in Ap-
pendix B indicates weak serial correlation, however presence of significant se-
rial correlations is indicated at lags 4, 10 and 24. The Ljung-Box test, using
log(Ntrain) = mtrain = 7 lags, gives a p-value of 0.002 which suggests signifi-
cant serial correlation. This indicates that the log return series can be used in
prediction purpose.

4.4.1.2 Order Determination

The next step is to determine the order of the ARMA model, that is, deciding
the values of the parameters p and q. To this end, we use the sample ACF
and PACF in Figure 12 in Appendix B, to decide reasonable upper limits P
and Q, such that 0 ≤ p ≤ P and 0 ≤ q ≤ Q. The Cartesian product of these
parameter sets define the set of possible ARMA(p,q) models. For each model,
generalization performance is estimated by calculating the AICc score, where
the lowest scoring model will initially be selected. Residual diagnostics is then
performed on this model, as well as nearby models, in order to select the final
model.

Based on the ACF and PACF, we choose P = Q = 10. Fitting these models
using Maximum Likelihood, we conclude that ARMA(2, 2) yields the lowest
AICc. The same model is selected by AIC criteria, but BIC only selects the
mean model ARMA(0,0).

Before making our final selection, we perform model checking in order to
detect possible adequacy of the fitted model. If the model is correctly specified,
the model residuals should follow a Gaussian white noise. To check how close
the residual series is a white noise, we calculate the Ljung-Box test statistic
Q(mtrain). If the residual series is a white noise, then the test statistic follows
asymptotically a χ2 distribution with mtrain − gtrain = 7 − 4 = 3 degrees
of freedom, where gtrain = p + q. The statistic takes a value of 0.3213 and
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Figure 5: Model checking summary of ARMA(2,2) fitted to the training set.

has a corresponding p-value of 0.956. This suggests we cannot reject the null
hypothesis that the residual series is a white noise series.

A visual analysis of the residuals is presented in Figure 5. We note that
there are no significant ACFs. The fit to the normal distribution indicates that
the normal distribution of the residuals is questionable. This is also indicated
by the tail deviations in the Q-Q plot in Figure 13 in Appendix B. Neighbour
models do not indicate better fit, thus we accept ARMA(2, 2)

rt = 0.000065− 0.9978rt−1 − 0.7361rt−2 + at − 0.9491at−1 − 0.6465at−2 (32)

as the final model.

4.4.2 XGBoost

4.4.2.1 Parameter Tuning Strategy

Some academic literature consider the problem of tuning meta-parameters of
XGBoost, but to the best of our knowledge, they are few and none consider
specifically XGBoost in the setting described in section 3.6. Luo (2016) [30]
provides a general overview of tuning strategies, whilst Probst et al.(2018) [22]
implement random search (Bergstra & Bengio, 2012) [31] to assess the tuneabil-
ity of several common machine learning algorithms, including XGBoost. The
choice of tuning strategy in this thesis is influenced by above mentioned aca-
demic papers, combined with ideas from Machine Learning and Data Science
communities such as Kaggle.

The base of the tuning strategy implemented in this thesis is grid search,
which is one of the most commonly used strategies (Bergstra et al., 2012, pp.
281) [31]. The performance of each model setting is estimated using k-fold
cross-calidation, and the parameters are tuned in several steps.
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Each tuning strategy includes a trade-off between computational speed and
accuracy, since the number of models to fit and estimate performance for model
selection, grow in a multiplicative manner. More formally, it equals the car-
dinality of the Cartesian product of the parameter sets. Thus, having a grid
generated by several parameter sets does in general mean you are forced to
include relatively few values for each parameter. The stepwise grid search ap-
proach used in this thesis reduces the number of models, in comparison to a
standard grid search, and thus allows for larger parameter sets, but does so at
the expense of not taking into account possible dependencies between some pa-
rameters. We know from Friedman (2001) [10], that the number of treesM and
learning rate η are dependent and should be determined simultaneously. The
number of values tested for each parameter is chosen with aspect of available
computational power, while the specific values (see Table 6 in Appendix A) are
influenced by Probst et al. (2018) [22]. The initial parameter values are default
in the xgboost package in R, except for the learning rate η and the number of
trees M. The learning rate was chosen such that the number of trees, decides
by cross-validation, entailed a reasonable computational load.

In addition to the XGBoost parameters, the supervised learning setting to
time series forecasting introduces a window size parameterW. We choose to fix
this parameter to max(P,Q), where P and Q are the maximum values of the
ARMA parameters in section 4.4.1. In this way, ARMA and XGBoost both are
able to take into account the same number of lagged values. We then rely on
the regularization properties of XGBoost to distinguish the relevant features.

The tuning steps are described below, and the actual tuning process is sum-
marized in Table 2.

� Step 1: Set the learning rate η and determine the corresponding number
of trees M using cross-validation.

� Step 2: Tune the tree-specific parameters, that is, Maximum Tree Depth
J , Minimum Child Weight ω, using grid search cross-validation.

� Step 3: Update the optimal number of trees M, using cross-validation.

� Step 4: Tune randomization parameters, that is, Row Subsample Frac-
tion δr and Column Subsample Fraction δc, using grid search cross-validation.

� Step 5: Tune Regularization parameters, that is, l1 Regularization Term
α and l2 Regularization Term λ, using grid search cross-validation.

� Step 6: Fine tune Learning Rate η and Number of Trees M by lowering
η and finding the corresponding optimal M using cross-validation.

4.4.2.2 Model Checking

Having found the optimal parameters from the tuning strategy, we fit the model
to the entire training set.
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XGBoost Meta-Parameter Initial Stepwise tuning progress Final
model

Number of treesM - ⇒ 130 ⇒ 130 ⇒ 1379 1379
Learning rate η 0.05 ⇒ 0.005 0.005
Maximum Tree Depth J 6 ⇒ 3 3
Minimum Child Weight ω 1 ⇒ 1 1
Row Subsample Fraction δr 1 ⇒ 0.5 0.5
Column Subsample Fraction δc 1 ⇒ 1 1
l1 Regularization Term α 0 ⇒ 0 0
l2 Regularization Term λ 0 ⇒ 1 1
Cross-validation mean RMSE - 1.081 1.054 1.054 1.045 1.033 1.029 1.029

Table 2: Summary of tuning the XGBoost meta-parameters using stepwise grid
search cross-validation on the test set.

Figure 6 shows how cross-validation train and test mean RMSE evolve during
5-fold cross-validation in Step 6 of the tuning process, with η = 0.005. The red
dot illustrates the chosen iteration M = 1379. We can see that the test mean
RMSE has levelled out at this point, indicating that the chosen M is close to
optimal.

According to section 3.6.1, we shall evaluate whether 5-fold cross-validation
is valid for model evaluation for model selection. For this purpose, we shall study
the model residuals on training data. Figure 7 shows a summary of properties for
the actual model residuals for the final XGBoost model fit to the entire training
set. The sample ACFs for the first 10 lags are weak, and not significant. This
indicates that the model has been able to capture the linear dependencies input
data. To check how close the residual series is a white noise, we calculate the
Ljung-Box test. Since we have a window size of max(P,Q) = 10, we make a
maximum reduction of the degrees of freedom (max(mtrain−max(P +Q), 1) =
1) in the χ2 distribution for which we assume the test statistic asymptotically
shall follow. We get Q(1) = 1.219, which corresponds to a p-value of ≈ 0.27.
This suggest that we cannot reject the null hypothesis that the residual series is
a white noise, assuming common statistical confidence levels of 0.95 or 0.9 are
applicable. According to section 3.6.1 this indicates that 5-fold cross-validation
is valid for estimating test error of XBGoost model on this specific dataset.
The sample distribution indicates the normal assumption of the residuals is
questionable.

4.5 Model Comparison (Result)

In this section we will compare how the two above specified ARMA and XGBoost
models perform in one-step ahead forecasts on our test set, without refitting.

The test set contains 250 observations of simple log returns of OMX Stock-
holm Large Cap PI during the period 2019-01-02 to 2019-12-30. In accordance
with traditional time series forecasting, we will use the last (ordered) obser-
vations from the training set in order to construct full feature vectors for the
first response value in the test set. This means that, for the first predicted
value, XGBoost will use the 10 last observations from the training set, while
ARMA(2, 2) will use the 2 last observations from the training set.
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Figure 6: Development of train and test mean RMSE from 5-fold cross-
validation during Step 6 of the XGBoost parameter tuning process, having fix
learning rate η = 0.005. The red dot illustrates the chosen number of iterations
M = 1379.

Figure 7: Summary of model residuals for the final XGBoost model.
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Figure 8: Test set simple log returns against predicted log returns from ARMA
and XGBoost models.

Figure 9: Development of RMSE for one-step ahead test set forecasts from
ARMA and XGBoost models.

4.5.1 One-Step Ahead Forecast

Figure 8 illustrates the one-step ahead log return forecasts against observed logr
returns over the test set, for both models, while figure 9 shows the development
of the corresponding RMSE, where a mean model ARMA(0,0) is also included.
In the first figure, we can see that both models tend to underestimate the mag-
nitude of the log returns. XGBoost shows more fluctuations than ARMA(2,2),
in which predictions show mostly small deviations from its intercept. The sec-
ond figure illustrates how RMSE corresponding to XGBoost and ARMA(2,2),
both follows the RMSE developement of the mean model. At the end of the test
period, the ARMA(2,2) model has the largest RMSE, slightly above XGBoost
and the mean model which shows very similar results.

Although regression is the main interest of this thesis, we have also com-
pared the above three models in terms of predicting whether the one step log
return will be positive or negative. We simply used the log returns above and
converted them to observations of a binary classification problem. Table 3 and
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4 show the corresponding confusion matrices for ARMA and XGBoost respec-
tively. Test data contains 149 observed positive log returns and 101 negative.
The ARMA model predicted as many positives as negatives, while XGBoost pre-
dicted just under 70 % positive. Common classification performance measures
corresponding to above confusion matrices are given in Table 5.

Actually Actually
positive negative

Predicted
73 52 125

positive
Predicted

76 49 125
negative

149 101

Table 3: Confusion matrix on the test set for the ARMA(2,2) model.

Actually Actually
positive negative

Predicted
109 65 174

positive
Predicted

48 32 80
negative

149 101

Table 4: Confusion matrix on the test set for the XGBoost model.

Regr. measures Classif. measures %
RMSE Sens. Spec. Acc.

XGBoost 0.001023 73.2 35.6 56.4
ARMA(2,2) 0.001060 49.0 48.5 48.8
ARMA(0,0) 0.001026 100 0 59.6

Table 5: Summary of performance measures for XGBoost, ARMA(2,2) and
ARMA(0,0) on the test set.

5 Discussion

This thesis has examined the suitability of XGBoost in problems regarding
prediction of univariate financial time series. This included partly deriving a
theoretical background in financial time series analysis, XGBoost in a regression
setting and a supervised learning setting for time modelling of such time depen-
dencies, and partly applying this theory in a case study on five years of daily
market index data. In this section we will discuss the findings of this study.
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The first two sections are dedicated to the theoretical conditions of XGBoost,
while the third section concerns data specific findings from the case study. Some
suggestions for further studies are addressed in section four, and finally the main
conclusions of this study are made in the fifth section.

5.1 Theory

In answering the question whether XGBoost is a suitable model for predicting
univariate financial time series, one of the main issues concerned if the super-
vised learning setting of the one step-ahead time series forecasting problem,
which among others is mentioned in Bontempi et al. (2013, sect. 3.1) [1],
is theoretically motivated. This included dealing with contradictions regarding
the assumption of independent observations in conjunction with model selection
and assessment. In section 3.6 the supervised learning setting in conjunction
with non-modified k-fold cross-calidation, were assumed to hold for XGBoost
using findings in the paper by Bergmeir et al. (2017) [5]. The paper does not
specifically mention XGBoost or tree-based methods, but rather states that this
approach holds for pure autoregressive models which includes Machine Learning
procedures for time series forecasting. Bergmeir et al. state it is the first paper
suggesting non-modified k-fold cross-calidation in the dependent case, which
indicates there is still a lot of work to be done in this area.

Hastie et al. (2009, pp. 313) [8] state that trees has difficulty in capturing
additive structures. Assuming boosting trees does not solve this issue, this also
includes XGBoost. This needs to be handled appropriately if the time series of
interest can be expressed as an additive decomposition Yt = St +Tt + εt, where
St is a seasonal component, Tt is a trend and ε is an error term (Hastie et al,
2009, pp. 297). We will discuss this situation to some extent in section 5.3.

Under the assumption that we have indeed a valid supervised learning set-
ting to the univariate time series forecasting problem, we can proceed with
theoretical findings regarding whether XGBoost can be considered an appro-
priate model for this type of problem. The success in predictive problems of
boosted tree methods in general is well documented, both through empirical
studies and motivated theoretically in for example Friedman et al. (2000) and
Friedman (2001, 2002) [10, 11]. During the derivation of XGBoost, we have
not found any reason to believe that the predictive capability would not hold
in the time series setting. We will however mention a couple of properties.
Firstly, tree-based methods in general, and thus also XGBoost, naturally deal
with collinearity in the tree structure procedure. Since the split criteria is eval-
uated in terms of gain, it is likely that only one of these will be selected for a
split, while further splits on the remaining correlated features will have little or
no gain in terms of prediction performance. However, Strobl et al. (2008, sect.
2.2) [32] suggest that the correlated features are used interchangeably in the tree
building process. Thus the most influential of the correlated variables may not
be selected for the split, which has an effect on interpreting the contribution of
each variable through feature importance. Secondly, regression trees are unable
to extrapolate, since the response corresponds to an average of training data
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observations.

5.2 Case Study

In this section we will discuss the content in section 4, which includes choice of
methods related to the application of XGBoost in a supervised learning setting
to univariate time series forecasting, the experiment setup and interpretation of
the result.

5.2.1 Linear Time Series Background

In order to evaluate the performance of XGBoost, we chose to compare to the
much established and relatively simple linear ARMA model. To make a fair
comparison, we chose to use the same format on input data for both mod-
els. The pre-processing and analysis of the data where highly influenced by
theory regarding analysis of linear time series, of financial type. This entailed
selecting modelling of log returns, to facilitate the weak stationary assumption.
According to Ahmed et al. (2010, sect. 3) [2] differentiation of time series may
have negative effect on predictive performance for non-linear models, such as
XGBoost. However, since XGBoost using regression-trees as weak learners are
unable to extrapolate, the pre-processing methods must take this into account.
We find that the weak stationary assumption of input data avoids the need for
extrapolation. Furthermore, Hastie et al (2009) [8] suggest that standardization
of variables is beneficial for ridge regression, and thus may also apply for XG-
Boost with respect to the penalized learning objective. We discuss alternative
pre-processing approaches to some extent in section 5.3.

5.2.2 Data

In this section we will discuss the choice of dataset, properties of the dataset at
hand and how this may have influenced the result.

The descriptive statistics of the log return series and return series of OMX
Stockholm Large Cap PI, summarized in Table 1, reveal little difference between
these series. Several measures indicate analyzing the log transformed series
has little stabilizing effect on the specific dataset. Statistical tests of sample
skewness and kurtosis indicated that the normal assumption of log returns does
not hold. This may effect the performance of the ARMA model, which assumes
normality in the maximum likelihood estimation (Tsay, 2010, pp. 19) [6]. The
XGBoost model however makes no distributional assumption of data.

The sample ACFs and PACFs for the complete dataset are given in Figure
4. Although statistical tests indicate significant autocorrelation, it can be seen
that the individual correlations are weak. This implicates (Tsay, 2010, pp. 36)
[6] that the log return series of OMX Stockholm Large Cap PI, during the period
2015-2019, is close to a white noise series. The same goes for the period 2015-
2018 which constitutes the training data, and it is likely to hold true also for
the test data, although this has not been tested.
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Figure 2 reveals some obvious outliers in the dataset, which has been kept in
the study. Although these types of observations occur from time to time, they
are often consequences of exceptional events. It would be reasonable to exclude
these events from the dataset to obtain a more stable series, which should benefit
the normal assumption, and have a positive effect when using least squares loss
criteria for XGBoost (Hastie et al., 2009, pp. 349-350) [8].

5.2.3 Modeling

Since XGBoost is the model of primary interest in this thesis, we will only do a
brief analysis of the content related to the ARMA modelling in the succeeding
paragraph, to dedicate the remaining part of this section to XGBoost.

For the ARMA model, model selection depends on the choice of informa-
tion criteria. Both AIC and AICc select the ARMA(2,2) model, while BIC
selects the mean model ARMA(0,0). This is not surprising, considering the
weak autocorrelations in data, and that BIC by definition penalizes complex
models to a greater extent than AIC and AICc. Model checking, including test
of autocorrelation of the model residuals, indicates that the model is reasonable
specified, although Figure 5 and 13 indicate the normal assumption of the resid-
uals is questionable. The latter should not be surprising, given that the normal
assumption of the log return series does not hold.

5.2.3.1 Parameter tuning

Table 2 shows how the model parameters and the cross-validation mean test
RMSE developed in each step of the parameter tuning process. We note how
the mean test RMSE decreases for each step, except in the third step since the
number of iterations or trees does not change.

Figure 10 depicts how the cross-validation mean RMSE developed when fine
tuning the learning rate and the number of iterations in the final step of the
parameter tuning process. It is here shown how decreasing the learning rate
entails slow learning which increases the optimal number of iterations. The
test curves, corresponding to the three largest learning rates, all show only a
small increase after reaching the minimum value, and then level off to be near
constant as the number of iterations increases. This result is common in many
applications (Hastie et al., 2009, pp. 371) [8], and indicates that over-fitting is
not a major concern for any of these models, but it is necessary to choose the
number of iterations sufficiently large to avoid under-fitting. For the model with
the smallest learning rate, there is not enough observations to fully evaluate the
model. However, the curve looks to have flattened out at 7000 iterations, and
since the mean RMSE is above the minimum for the final model, it is reasonable
to assume that choosing a learning rate below 0.005 would not yield significantly
improved model performance.

Model checking, including statistical tests of autocorrelations of the model
residuals, indicates that the model has been specified in a reasonable manner.
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Figure 10: Cross-validation mean RMSE as a function of the number of itera-
tions for different learning rates in the tuned XGBoost model.

As mentioned in section 4.4.2, the chosen parameter tuning strategy may
have some weaknesses. This includes not taking all possible dependencies of
all the meta-parameters into consideration during the fit, as a full grid search
cross-validation strategy would. However, we believe the tuning strategy is solid
enough to give a reasonable fit.

5.2.4 Model Interpretation

Observing the final meta-parameters of the XGBoost model, we do not notice
any obvious surprising results. The shallow trees indicates little interaction be-
tween the features, which should not be surprising given the weak dependencies
in the log return series.

The implementation of XGBoost in R offers the functionality of assessing
feature importance (see sect. 3.5.5), which for the final XGBoost model is sum-
marized in Figure 11. The Gain relate to loss reduction when using a feature
for splitting, while Cover and Frequency are related to the number of times a
feature is used to split the data across all trees. A basic evaluation of the three
plots shows how the features corresponding to lag 1, 2, 3, 4 and 10 seem to con-
tribute more than features 5-9. This result may not be surprising, since time
series analysis theory suggests (Tsay, 2010, pp. 105) [6] that the most recent
past values are most likely to be important in forecasting purpose. Further-
more, the sample ACF and PACF on the training set, visualized in Figure 12
in Appendix B, may explain the importance of features 4 and 10. At the same
time, relatively low ACF and PACF for features 1 and 2 mIay not explain why
these are considered top contributing features in the XGBoost model. However,
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(a) (b) (c)

Figure 11: Feature importance summary of Gain, Cover and Frequency for the
final XGBoost model.

remember that ACF and PACF only measure linear dependencies, whilst XG-
Boost is able to capture more complex relationships. These results may indicate
that the XGBoost model can indeed capture the dynamic structure of the time
series, which we find to be very interesting.

5.2.5 Case Study Performance Evaluation

The results of the case study are presented in Figure 8 and 9. Here we can
clearly see that neither XGBoost nor ARMA(2,2) predicts the movements of
the log returns during the test period in a satisfactory manner. The magnitude
of the true log returns are severely underestimated by both models. Thus, in
Figure 9, it can be seen how the RMSE increases significantly during relatively
volatile periods of the test period. The ARMA(2,2) model and the XGBoost
model perform only marginally better than the mean model ARMA(0,0), and we
conclude there is little gain in using more complex models than the mean model
on the specific dataset. The poor performance of the predictions is expected,
given the weak dependencies in the dataset, as mentioned in above sections.

Although regression was the primary task, we also examined model perfor-
mance in terms of binary classification, that is, the models’ ability to predict
positive or negative returns. The results are summarised in Table 3, 4 and 5.
We note that the XGBoost model predicted a larger proportion of positive log
returns in comparison to the ARMA(2,2) model which seems to predict similar
to random guessing. The XGBoost model shows better sensitivity, but worse
specificity than the ARMA(2,2) model. Taking overall accuracy into considera-
tion, the mean model performs best and we conclude that neither XGBoost nor
ARMA(2,2) perform satisfactory binary classification. It seems like XGBoost,
to some extent, can estimate the proportion of positives and negatives, but it
can not predict which days will have one or the other.

5.3 Suggestions for Further Studies

We realize that this study only considers the supervised learning setting to time
series forecasting and application of the XGBoost in a very non-profound matter,
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considering the wide range of theories on the subject that we have encountered
during the writing of this thesis. We end this section by mentioning some of
our main ideas for further studies.

For empirical evaluation of XGBoost in the problem at hand, or any other
method, it is of course necessary that the dataset is considered predictable.
Considering the Efficient Market Hypothesis (Bechelier, 1900) [33], such series
does not exist on the financial market. However, this hypothesis has met some
criticism. Malkiel (2003) [34] concludes that pricing irregularities and predictive
patterns in stock returns can appear over time and persist for short periods, and
that the market cannot be perfectly efficient. This would implicate that further
studies of time series, similar to that in this thesis, can be used to evaluate the
XGBoost model in a supervised learning setting to forecasting time series.

For empirical evaluation of XGBoost in a wider spectrum of time series, a
similar approach to that in Ahmed et al. (2010) [2], in which the M3-competition
dataset is used, could be attempted. Such approach may be beneficial in com-
parison to other models, since this dataset has frequently been used in many
studies of which the results are available online.

Feature engineering, is widely accepted to be an important aspect regarding
performance of machine learning models. This thesis leaves room for increasing
performance of the XGBoost model by considering optimizing the format of the
input data to a greater extent.

Modeling of seasonal, cyclic or trend (for non-stationary time series) com-
ponents has not been considered in this thesis. However, some experimental
examination of deseasonalization, assuming an additive decomposition5, of the
price series was performed. A similar deseasonalization approach is applied in
Ahmed et al. (2010, section 5) [2], which also refers to several papers consider-
ing the issues of pre-processing data. For the specific dataset, deseasonalization
seemed to have some positive effect on stabilizing the log return series which
may be beneficial for model performance.

In general, forecasting the remainder of a decomposed time series, to some
extent described in Hyndman & Athanasopoulos (2018, sect. 6.7-8) [35], may
be one method to overcome the issues of XGBoost using regression trees being
unable to extrapolate. Possibly also to overcome that regression trees them-
selves cannot capture additive structures (Hastie et al., 2009, pp. 313) [8].
Another interesting decomposition approach worth mentioning is the so called
CEEMDAN-XGBOOST used in Yingrui et al.(2019) [36], where XGBoost is
applied to a CEEDMAN-decomposition of historical crude oil prices.

It is likely that the model selection procedure of XGBoost can be improved,
by choosing other types of cross-validation based methods mentioned in for ex-
ample Bergmeir et al. (2012, 2017, 2020) [25, 5, 28], and Hyndman & Khandakar
(2008) [27]. This may also influence how the division of test and training set
is performed, and whether it is reasonable to re-fit the model during each step
when assessing model performance.

5We used the function stats::decompose in R to decompose training data.
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5.4 Conclusions

The main aim of this thesis was to assess the suitability of XGBoost on one-
step ahead forecasting of univariate time series. In chapter 3, we derived the
XGBoost model and a framework for phrasing univariate time series forecasting
as a supervised learning problem. We can conclude that the XGBoost model
is indeed a powerful tool, which has some properties that make it a candidate
method for application in prediction of univariate time series. Such properties
are its explicit and implicit ability perform feature selection and to handle mul-
ticollinearity, which may cause issues in regression problems in general. Feature
importance facilitates interpreting the contribution of each predictor, which we
understand may be an important aspect in time series forecasting.

We have seen that its flexibility in terms of the many parameters compli-
cates the model selection process in which the choice of an appropriate tuning
strategy is key for successful prediction. Applying XGBoost in a time series
forecasting setting adds more complexity to the model assessment process, due
to the ordered and dependent nature of time series. Time series forecasting
theory provides several cross-validation based assessment methods which are
intended to take into account the properties of time series, as alternatives to
the standard k-fold cross-calidation assessment with a 70/30 random partition-
ing. Both theory and empirical studies suggest that such special methods will
not necessarily outperform k-fold cross-calidation, and that the validity of an
assessment method should be evaluated for the problem at hand.

The result of the case study in section 4.5 shows that neither XGBoost nor
ARMA(2,2) significantly outperform a mean model on the specific dataset. With
regards to the concept of parcimony (Tukey, 1961) [37], we make the assessment
that the mean model is the best suited model on the specific dataset. The results
on the specific dataset may largely be explained by the fact that the efficient
market hypothesis applies, and it is not likely that any model would significantly
outperform a mean model. However, feature importance of XGBoost shows that
features of relatively high autocorrelation are among the top contributors to
the prediction, together with the most recent observations. This is in line with
traditional time series theory. Although the most recent observations did not
show significant autocorrelation, there may exist more complex relationships
that XGBoost can capture.

Our perception is that much is unexplored when it comes to applying su-
pervised learning methods on time series forecasting problems in general. If we
further limit ourselves to XGBoost in this setting, the availability of academic
work is almost non-existent. However, we are under the impression that in-
terest in this area is increasing, and success of XGBoost in machine learning
competitions may motivate research on this specific method.
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Appendix

A Tables

XGBoost Parameter Initial Parameter Set
Number of trees M 130 -
Learning rate η 0.05 {0.05, 0.01, 0.005, 0.001}
Maximum Tree Depth J 6 {3, 5, 6, 7, 9, 11, 13, 15}
Minimum Child Weight ω 1 {1, 3, 5, 7}
Row Subsample Fraction δr 1 {0.5, 0.6, ..., 1}
Column Subsample Fraction δc 1 {0.4, 0.6, ..., 1}
l1 Regularization Term α 0 {0, 0.001, 0.01, 0.1, 0.3, 0.5, 1, 2, 5}
l2 Regularization Term λ 0 {0, 0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 30}

Table 6: XGBoost parameter values.

B Figures

Figure 12: Sample ACF and PACF for the training set of daily OMX Stockholm
Large Cap PI.
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Figure 13: Q-Q plot of residuals for ARMA(2,2) fit to train set

57


