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Abstract

This thesis aims to investigate the possibility to perform nowcast-
ing of the number individuals infectious with COVID-19. In order to
do this a discrete time SIR (Susceptible, Infectious, Removed) with
the added Diagnosed state is used to simulate epidemics. This model
has three parameters, q which denotes the probability that a suscep-
tible individual becomes infected by a given infectious individual, r
which denotes the probability that an infectious individual stops be-
ing infectious and p which denotes the probability that an individual
who stops being infectious become diagnosed. Four different sets of
parameters where q, r and p either are fixed or uniformly randomised
are used to simulate four sets of training data. These sets of data are
then used to train a linear regression model where the inputs are the
number of new daily diagnosed individuals of current time step and
four steps before. Only diagnosed individuals are used in the linear
regression because that is what we observe in reality.

The theory behind the model used for simulation show that the
parameter p is not observed in the available data, while q and r are.
This suggests that the cases where p is randomised during simulation
should provide less accurate nowcasting, which is also suggested in lin-
ear regression. The regression model does however violate some of the
assumptions made during linear regression. For this reason, further
studies of nowcasting should investigate other regression models.
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1 Introduction

The coronavirus disease (COVID-19) caused by the virus SARS-Cov2 hit the
world and has had a huge impact on our society. The disease is highly conta-
gious and some of the symptoms like coughing, sore throat and headache fit in
with other diseases. These symptoms come in varying degrees, mostly mild to
moderate, and if they are mild should be treated at home if the person is oth-
erwise healthy according to the World Health Organization (WHO) [10]. They
also mention that it takes 5-6 days on average before symptoms show after being
infected, but that it can take up to 14 days.

There are different ways to get tested for COVID-19 in Sweden, but the ma-
jor way is to self-report that you are sick and then perform a test [6]. The avail-
able data for COVID-19 shows the number of confirmed infected individuals,
the people who get the diagnose [7]. Since it take some time before symptoms
show after getting infected and also a slight delay between taking the test and
your case being added to the data set, the available data would not show the
real number of infected individuals every day even if everybody self-reported im-
mediately when they show symptoms. A study made by Folkhälsomyndigheten
reports that, in Stockholm, for every confirmed case of COVID-19 there are 44.4
more cases, with a confidence interval that varies from lowest to highest with a
factor of almost 3 [8]. This means that the dark numbers for confirmed cases
could potentially be large.

Nowcasting is a term mainly used within economics and meteorology which
describes the act of predicting withing the present or near future. This thesis
aims to explore the possibilities of nowcasting the number of infectious individ-
uals using the available data, in this case the number of diagnosed individuals.
In the middle of an ongoing and deadly epidemic, delay in the data could mean
that wrong decisions are made. With the help of a modified SIR (Susceptible,
Infectious, Removed) model to simulate an epidemic this thesis tries to perform
nowcasting on the daily number of infected individuals using a linear regression
model with the number of diagnosed individuals from the current day and up
to four days ago as inputs. We will see in the thesis that somewhat accurate
nowcasting can be made, but that the model used for the nowcasting violates
some of the assumptions made when performing linear regression. We also learn
about some limitations in the currently available data

The thesis begins by explaining the theory behind the modified SIR model,
followed by a section about linear regression. Then the application of the model
to simulate a pandemic together with using a linear regression model to per-
form nowcasting are explained. Lastly the results are presented followed by a
discussion.

2 Theory

In this thesis we are looking to perform nowcasting on the number of infectious
individuals with the aid of linear regression. We are interested in how many
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individuals are infected each day, and how it relates to our available data which
is the number of diagnosed individuals. The data used for training the linear
regression model comes from simulation. The model used for simulation in this
thesis is a model called SIR (Susceptible, Infectious, Removed) which is widely
used to describe infectious diseases. This model is described in section 2.1 and
2.2. The method used for nowcasting, linear regression, is described in section
2.3.

2.1 Continous Time SIRD epidemic

SIR (Susceptible, Infectious, Removed) is a model for infectious diseases and is
explained in detail by Andersson and Britton [1]. The model has each individual
in the three states susceptible, infectious and removed. In addition to these
three states we have added a fourth state D, diagnosed. For this thesis the
population is assumed closed and every person is treated the same, there is
no difference between age groups or other factors that might increase the risk
of getting infected or how long you remain infectious. The reality is more
complicated than this but for the purpose of this thesis it is sufficient to make
these assumptions since we are looking to explore the possibilities, not make
actual nowcasting.

As previously mentioned there are four states in this model in which a person
can be in at any given time. These states are susceptible, infectious, removed
and diagnosed. Over time, each individual either change state or stay in their
current state. The relationship between the states are shown in figure 1. A
susceptible person can either stay susceptible or become infected (and therefore
infectious) by the result of contact with an infectious individual.

Susceptible Infectious

Diagnosed

Removed

Figure 1: Flow chart of the SIRD model showing in which directions individuals
transition.

From the infectious state each individual can either remain infectious, get
diagnosed and enter the diagnosed state, or enter the removed state either by
recovering from the infection or by deceasing. If an individual enters the removed
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state it means that they are no longer infectious and can no longer infect any
susceptible individuals, but not diagnosed and they never will be diagnosed. If
an individual deceases and and it is found out that they had COVID-19 as cause
of death, they will enter the diagnosed state. It is also assumed that a diagnosed
individual is quarantined and therefore not considered infectious anymore. The
removed state only includes individuals who has not been diagnosed.

Once an individual has entered the removed or diagnosed state they can not
change state and will stay there until the end of the epidemic. Individuals tran-
sition between these states at different rates and the model is Markov, meaning
that only the current time decides how the model behaves, not dependent on
how it got there. The epidemic is considered over once the infectious state is
empty. An important part of modelling epidemics is a number called the basic
reproduction number (R0) which is the expected number of transmissions of
the disease made by the typical infected individual during the early stages of
an epidemic which is usually between 2.5 and 5.0 [3]. A variant of the virus
has evolved which have been starting to spread, the Delta variant. This Delta
variant have even higher R0, up to 60% higher [5].

We assume that initially there are n susceptible individuals and m infectious,
with n being a large number and m being relatively small compared to n. Let
X(t), Y (t) and Z(t) denote the number of susceptible, infectious and diagnosed
individuals at time t. As explained by Andersson and Britton [1], the time
points at which an infectious individual makes contact with another individual
is given by a time homogenous Poisson process with intensity λ

n and if that
individual is still susceptible they will now become infectious. The time that an
individual stays infectious is exponentially distributed with intensity γ. This
means that the rate at which new infections occur is λ

nX(t)Y (t) and the rate
at which people stop being infectious is γY (t). The relationship between these
intensities and the basic reproduction number is R0 = λ

γ . Since we are also

interested in the number of diagnosed people, let p ∈ [0, 1] denote the fraction
of no longer infectious individuals who become diagnosed. The rate at which
people become diagnosed is then γY (t)p.

Now let x(t), y(t) and z(t) denote the proportions of the population within
each state and µ be the initial proportion of infectives. Since X ′(t) is the rate
of change for the number of susceptible individuals, which is the same as the
rate at which new infections occur, we get X ′(t) = −λnX(t)Y (t), since the

newly infected leaves the susceptible state. With x(t) = X(t)
n we get X′(t)

n =

− 1
n
λ
nX(t)Y (t) which gives x′(t) = −λx(t)y(t). Whenever an individual leaves

the susceptible state they enter the infectious state and when an individual
stops being infectious they leave the state. This, with the previous calculations
leads to y′(t) = λx(t)y(t)− γy(t). And since only a fraction p of the individuals
leaving the infectious state enters the diagnosed state we get z′(t) = γpy(t).
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This gives a set of differential equations

x′(t) = −λx(t)y(t), x(0) = 1,

y′(t) = λx(t)y(t)− γy(t), y(0) = µ

z′(t) = γpy(t), z(0) = 0

(1)

which are the rates of transition for individuals between the states.

2.2 Discrete Time SIRD epidemic

The available data for the number of diagnosed individuals is not in continuous
time, the reports come in at discrete time. For this reason the simulations are
made with a discrete time Markov chain. The chain being Markov means that
the conditional probabilities for the state of the chain in the next time step only
depends on the current state of the chain, not how it got there. First let Xj , Yj
and Zj denote the number of susceptible, infectious and diagnosed individuals
at time step j. Further let

Aj+1 = Xj −Xj+1

Bj+1 = Zj+1 − Zj
Cj+1 = Xj −Xj+1 + Yj − Yj+1 + Zj − Zj+1

(2)

denote the number of individuals who transition from susceptible to infectious,
infectious to diagnosed and infectious to removed respectively. Aj+1 only de-
pends on Xj and Yj and is independent of Bj+1 and Cj+1 while Bj+1 and
Cj+1 are not independent of each other and further only depends on Yj . The
conditional probabilities for the model are

P (Aj+1 = aj+1, Bj+1 = bj+1, Cj+1 = cj+1|Xj = xj , Yj = yj , Zj = zj)

=

(
xj
aj+1

)
(1− qyj )aj+1qyj(xj−aj+1)

yj !

bj+1!cj+1!(yj − (cj+1 + bj+1))!
(1− r)yj−(cj+1+bj+1)(rp)bj+1(r(1− p))cj+1 . (3)

There are three parameters in this model which are the probabilities of a person
transitioning to a different state between time j to time j + 1. The first one,
q, is the probability that a susceptible individual avoids being infected by an
infectious individual. Since there are Yj = yj infectious individuals at time j
the susceptible one has to avoid being infected by yj people and the probability
for this is qyj which means that the probability to become infected is 1 − qyj .
The second one, r, is the probability that an infectious individual stops being
infectious and the probability to remain infectious is 1 − r. Lastly p denotes
the probability that an individual no longer infectious is diagnosed. This means
that the probability that an infectious individual becomes diagnosed is rp and
that an infectious individual has stops being infectious without being diagnosed
is r(1− p).
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The time an individual spends being infectious in the continuous case is
exponentially distributed with intensity γ as discussed in the previous section
2.1. This means that the expected time until an individual leaves the infectious
state is 1

γ , while it is 1
r in the discrete case. We want to choose parameters q

and r of model (3) to make a good approximation of the continuous model and
therefore choose r = γ. We also have that the probability of a contact occurring

between two given individuals in the continuous case is 1 − e−λn [1] which can
be approximated by λ

n . This probability in the discrete case is 1 − q, and to

approximate the continuous model as good as possible we choose q = 1 − λ
n .

Looking back at equation (1) we have y′(t)
y(t) = λx(t) − γ. At the beginning of

the epidemic x(t) ≈ 1 which gives y(t) = y(0)e(λ−γ)t and towards the end we
have x(t) ≈ x(∞) which gives y(t) = y(0)e(λx(∞)−γ)t where x(∞) is the fraction
of individuals still susceptible after the epidemic has ended. Let α denote the
exponential growth rate of y(t) and use the discrete notations λ = (1− q)n and
γ = r to get two different α,

α1 = (1− q)n− r,
α2 = (1− q)nx(∞)− r.

(4)

This approximately gives growth rate α1 for the first part of the epidemic and
rate α2 for the second part. Note that two of three parameters from model (3),
q and r, appear in equation (4), while parameter p does not.

The fraction of individuals still susceptible after the epidemic has ended,
x(∞), can be derived using a method described by Britton [4]. We assume that
as n goes to infinity, x(∞) converges and thus is not random. This fraction is
then approximately equal to the probability of not getting infected, which is ap-
proximately equal to escaping infection from each infectious individual through
the epidemic. This is equal to e−R0(1−x(∞)) where 1−x(∞) is the fraction of all
individuals who got infected during the epidemic. We then have the final size
equation

x(∞) = e−R0(1−x(∞)).

Multiplying by R0e
−x(∞)R0 gives

x(∞)R0e
−x(∞)R0 = R0e

−R0

which are two realisations of f(x) = xe−x. The maximum of f(x) is in x = 1
which is the only local extreme point, and since f(R0) and f(x(∞)R0) has the
same value with R0 6= x(∞)R0, one of the inputs has to be larger than 1 and
the other has to be less than 1. We know that R0 > 1, and thus x(∞)R0 < 1.

Since R0 = γ
λ with γ = (1− q)n and λ = r we can use r = (1−q)n

R0
to rewrite α2

in (2.2) as
R0α2 = (1− q)n[x(∞)R0 − 1].

We previously showed that x(∞)R0 < 1, meaning that the right hand side of the
equation above is negative. On the left hand, we know that R0 is positive, and
thus α2 has to be negative. This means that the number of new daily infected
individuals decreases in the second part of the epidemic.
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2.3 Linear regression

Regression is a method to predict values of a target variable given some input
values. Linear regression in its simplest form is a linear function of the input
values. Let t be our target value and x be a vector of explanatory input values
that corresponds to this target value. We can say that we try to model the
distribution of p(t|x), that is the probability of t given the input vector x [2].
When we have one input value x and one output value our linear regression
model is y(x) = β0+β1x where βk are the model parameters which are estimated
using a maximum likelihood method. With this, y(x) is a deterministic function
and t = y(x) + ε where ε is a Gaussian random variable with mean zero.

Using only a linear function of the input variables has limitations on the
model, and we can instead use nonlinear transformations of the input variables
and combine them linearly [2]. For example, with one input variable we could
have the model y(x) = β0 + β1log(x). More generalised we have y(x,β) =

β0 +
∑N−1
k=1 βkφk(x), which is a model with N parameters and x as the input

vector and β as the parameter vector, with φk(x) possibly nonlinear as long
as y(x,β) is a linear function of β [2]. An important part for investigating
the validity of a linear regression model is the residuals, which is the distance
between the observed value and the regression line.

When performing linear regression there are some assumptions that are made
which are explained by Knief and Forstmeier [9]. These are validity, indepen-
dence, linearity, homoscedasticity of the errors and normality of the errors.
Validity means that the regression should help answer the scientific question at
hand. Independence means that the explanatory input values should be inde-
pendent. Linearity means that the output variable should be linearly dependent
on the input values through the parameters β. Homoscedasticity means that
the errors, ε, should be constant across all x and lastly normality means that
the errors should be normally distributed. Homoscedasticity and normality of
the errors are both checked by looking at the residuals. In the case of normality
a Q-Q plot is often used, which plots the quantiles of the distribution of the
residuals against the quantiles of a normal distribution.

Later in the thesis in section 3.1 we will see that the the logarithm of daily
new infectious and diagnosed individuals is somewhat linear in the first (and
the second) stage of the epidemic, and thus t is the logarithm of daily new
infectious individuals. Every time step has a pair of daily number of infected
and diagnosed individuals, but in order to have more information to work with
the number of daily diagnosed individuals four days leading up to that time are
also taken into account. This means that x is a vector with five elements. Since
we are considering the logarithm of these, we have that φk(x) is the logarithm
of the k-th element of x.
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3 Simulations and application of linear regres-
sion

This section of the thesis describes how the theory of section 2.2 can be used
to perform simulations. The simulations generate the training- and test data
required to estimate the parameters of the linear regression model used to per-
form nowcasting. Section 3.1 describes how the simulations are performed and
section 3.2 describes how the simulated data is used to estimate the parameters
of the model. All code is written in R and can be found in the appendix, section
6.4.

3.1 Simulations

The model (3) allows for a simulation where at each time step the number of
individuals in each of the four states S, I, R and D are recorded. To get the
number of individuals who transitioned from susceptible to infectious between
time steps j and j + 1 a binomial random function with the n parameter set
to the number of susceptible individuals at time step time step j (Xj) and the
probability parameter set to 1− qYj . This gives Aj+1 in equation (2). With the
help of a multinomial function with n set to the number of infectious individuals
at time step j (Yj) and the probabilities set to 1−r, rp and r(1−p) as discussed
in section 2.1, we get Bj+1 and Cj+1 from equation (2). These functions use
the first factor and the second factor respectively in model (3). These makes it
trivial to get the number of susceptible, infectious and diagnosed individuals in
the next time step.

This results in a matrix where each row contained the current time step, the
total number of individuals in each state and the number of people who became
infectious and diagnosed during that time step. Let i(t) and d(t) denote how
many individuals transitioned to infectious and diagnosed respectively at time t.
To investigate the relationship between the number of diagnosed and infectious

individuals two new columns were created in the matrix, one with i(t+1)
i(t) and

one with d(t+s)
d(t) . The purpose for these columns is to compare the growth rate

of these states.
As mentioned in section 2.1, R0 is an important number when modeling

infectious diseases. This number is important to bear in mind when choosing
the parameters in the model, q and r in particular. They should result in R0

being between 2.5 and 5.0 as mentioned in section 2.1. To accomplish this r was
chosen to be 1

4 meaning that an individual is infectious on average four days.
Since q is the probability that an individual avoids getting infected by a given
infectious individual, 1−q is the probability that they do get infected. We want
an infectious person to infect one person per day on average to achieve R0 ≈ 4
and set 1− q = 1

X0
. This will result in an average of one infectious contact per

day which is what we wanted. The parameter p is harder to estimate. There is
no R0 or similar to use to estimate it and therefore it has to be guessed. For
this first simulation p = 1

3 is used.
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Figure 2: The ratio between daily new individuals of current time step and the
time step before of both infected and diagnosed individuals.

At first one epidemic was simulated using these parameters. Figure 2 plots
the ratio between daily new individuals of the current time step and the time
step before of both diagnosed and infected individuals against t which shows
that after the growth has been stabilised the growth rate of infectious and
diagnosed individuals are similar. Then, since the growth rate of the number of
infectious individuals is exponential the pool of susceptible individuals quickly
depletes which in turn means that the growth of infectives slows down. There is
a delay before the growth of diagnosed individuals slows down after, and then
they converge to a similar rate.

This similarity between the growth rate of the two states is further shown
in figure 3. It shows the logarithm of d(t) and i(t) against t and as in figure 2
there is a delay between the two, but they both have a similar growth rate after
the epidemic has started spreading. After a while the pool of susceptibles starts
to deplete and there is a decline in the growth. Looking back at equation (4)
we can see that during the first stage of the epidemic the number of infectious
has a growth rate of α1 and during the second stage the growth rate is α2 with
the second rate being negative.
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Figure 3: The logarithm of daily new infectious and diagnosed individuals.

3.2 Application of linear regression

As we saw in figure 3 the growth rate of the number of diagnosed and infectious
individuals stays roughly equal throughout the epidemic. For now we will focus
on the first stage of the epidemic, but the same methods can be used on the
second stage as well. The nowcast requires that enough time has elapsed for
us to be able to estimate α1 in equation (4) with the help of linear regression.
To get more training data 1001 simulations were made using the discrete time
model (3) with different sets of parameters. Since equation (4) includes both r
and q, but not p, our available data do not contain any information about p. For
this reason the sets of parameters are chosen particularly to test if nowcasting
is possible with, or without p. Four sets of parameters are used to simulate four
sets of training data. The first two sets has q and r as in the previous section
3.1 with one of them having uniformly randomised p between ( 1

5 ,
1
2 ). We keep

q and r fixed in these sets with p fixed in one and randomised in the other
in order to investigate if a variation in p makes a significant difference in the
linear regression. The other two sets has r uniformly randomised between ( 1

6 ,
1
3 )

and q uniformly randomised between (1 − 2
3n , 1 −

1
2n ) (n being the number of

initially susceptible), with p as in the first two sets. These sets of parameters
are chosen to further investigate whether a variation in p has a bigger impact on
the regression than a variation than q and r. Whenever a randomised parameter
is used a new set of parameters was generated for each simulation.

These data sets are used to perform linear regression as described in section
2.3. Let ij denote the number of new infectious individuals and dj the number
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of new diagnosed individuals at time j. The linear regression model used is

log(ij) = β0+β1log(dj)+β2log(dj−1)+β3log(dj−2)+β4log(dj−3)+β5log(dj−4)
(5)

where βk are the parameters of the model. Since the growth fluctuates at the
beginning of the epidemic the early values are filtered out. After a while when
the growth starts to fall off since the pool of susceptible individuals is being
depleted, the logarithm of the growth rate is no longer linear and therefore
these values are also filtered out. This model is then used to predict the number
of daily new infectious individuals given another simulated epidemic with the
same set of parameters and the predicted values are compared to the actual test
values.

4 Results

The method described in section 3.2 results in plots of the comparison between
the predicted values and the actual test values for each set of parameters used
when simulating the data. There were also model parameter estimates, Q-Q
plots and pair plots.

The Q-Q plot all show that the residuals are non-normal except for the case
of all parameters being randomised which can be seen in figure 4 shows the case
when all parameters in the simulations are fixed. If the residuals are normal the
dots should align to the line in the plot, and in this case the dots are reasonable
aligned to the line. This means that for the other three cases the residuals are
not normal and did not fulfill that assumption described in section 3.2. Plots
for the other cases can be found in appendix section 6.1.
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Figure 4: Q-Q plot for the linear regression model when all parameters are
randomised.

There is also a clear evidence of dependence between the variables which can
be shown in figure 5, which is the case where all parameters are fixed during
simulation. The figure plots every variable in the data set used to train the
linear regression model against each other in pairs and it shows that there are
strong correlations between each of the explanatory variables meaning that they
depend on each other. This violates the assumption of dependency described in
section 3.2. The rest of the pair plots can be found in appendix section 6.3 and
show more variance, but still strong correlation between the variables.
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Figure 5: Pair plot for the linear regression model when all parameters are fixed.

The last assumption that will be checked is the one about homoscedasticity.
Figure 6 shows a plot of the residuals over the predicted values of the model
where all parameters are fixed. We can see that the residuals do not have
constant variance, as it is larger in the beginning but become smaller after a
while. This means that the model with all parameters fixed during simulation
violates this assumption. However, the variance become more even the more
randomised parameters there are in the model. For the model with all three
parameters randomised the variance seems to be closer to constant, as seen
in figure 7. There are some outliers however, and they mostly appear at the
beginning of a simulated epidemic. The other plots can be found in appendix
section 6.2.
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Figure 6: Residual plot for the linear regression model when q and r are fixed,
p randomised.

Figure 7: Residual plot for the linear regression model when all parameters are
randomised.

When it comes to the actual predictions we first look at the cases where q

17



and r are fixed during simulation. Figure 8 shows a comparison between the
cases with the left plot having p fixed and the right plot having p randomised
during simulation. The figure plots the actual number of daily new infectious
individuals against the predicted number of individuals with a line indicating
them being equal. In table 1 we can see the estimated parameters of model (5)
when q and r are fixed during simulation.

Figure 8: Plots showing a comparison between the predicted number of infec-
tious and actual number of infectious individuals when q and r are fixed during
simulation. Left plot has p fixed and right plot has p randomised

Model parameters with q and r fixed
Parameter p fixed p randomised

β0 2.97 3.05
β1 0.53 0.48
β2 0.26 0.25
β3 0.12 0.13
β4 0.06 0.09
β5 0.03 0.04

Table 1: Table showing the estimated parameters of the linear regression models
when q and r are fixed.

For the cases where q and r are both randomised during simulation we have
figure 9 comparing the predicted and actual values and like previously, table 2
lists the estimated parameters of model (5), but with q and r being randomised.
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Figure 9: Plots showing a comparison between the predicted number of infec-
tious and actual number of infectious individuals when q and r are randomised.
Left plot has p fixed and right plot has p randomised

Model parameters with q and r randomised
Parameter p fixed p randomised

β0 1.38 1.35
β1 1.44 1.40
β2 0.33 0.41
β3 −0.28 −0.28
β4 −0.24 −0.30
β5 −0.24 −0.23

Table 2: Table showing the estimated parameters of the linear regression models
when q and r are randomised.

Looking at figure 8 and 9 we can see that the cases where p of model (3) is
fixed seems to give better predictive results than the cases where p is randomised.

5 Discussion and Conclusion

Having residuals that are not normal as shown in the appendix section 6.1 could
mean that there are information in the data that the linear regression model is
not taking into account for. This is something that, if there were to be further
work with this method of nowcasting the number of infectious individuals, would
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have to be looked into. Taking another look at 6 and investigating the outliers
by running the simulations found in appendix 6.4 and looking at the data shows
that they mostly appear in the beginning of an epidemic. Looking at the other
cases with different model parameters show that they also mostly appear in
the beginning. This could be because the beginning of the simulated epidemics
are volatile and tweaking the filtering done in section 3.2 could improve the
predictions.

The model used for the simulations is also simplified. In reality there is an
incubation time and there are different groups of people. But for now we make
the assumption that this is how the reality looks and we interpret the results.
The data available in Sweden, which is the number of diagnosed individuals,
allows us to observe (4). Under the assumption that the model used in the
thesis holds, we can only observe q and r, while p remains unobserved. Knowing
this, we can expect that the biggest problem with the nowcasting would be
dealing with p, as p gives the relationship between the number of diagnosed
(observed) individuals and the actual number of infected. From figure 8 and
9 we can see that the cases where p is fixed during simulation seems to give
better predictive results than the cases where p is randomised. However, figure
4 shows the residuals of the model where all parameters are randomised are
close to normally distributed and 7 shows variance in the residuals that is much
closer to constant than 6.

Multiple of the assumptions made in linear regression as described in section
3.2 are violated which means that the results provided by model (5) could
potentially be misleading. The main issue is that the input variables of the
regression model are very correlated, as shown in figure 5. Further work with
the model could involve the removal of some of variables, possibly using only the
current time as input instead of the series of time steps leading up to the current.
This might however not improve the non normal distribution of the residuals,
meaning that it could be useful to add more complexity to the model or trying
another method of regression. Looking at the theory of section 2 indicates that
the problem of not being able to observe parameter p, the probability that an
infected individual gets diagnosed, has to be dealt with to be able to perform
nowcasting. This is also somewhat reflected in 8 and 9 where we can see that
having p randomised rather than fixed during simulations has a negative impact
on the predictions.

As a summary of the thesis we can say that the model used in this thesis
violates multiple of the assumptions made when performing linear regression,
and the results in section 4 might not be reliable. However, we showed that
the available data only observes parameters q and r of model (3), and not p,
and that this is a potential problem when performing nowcasting of infectious
individuals when we can only observe the number of diagnosed individuals.
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6 Appendix

6.1 Q-Q plots

Here are the rest of the Q-Q plots from section 4 presented. Figure 10 shows the
Q-Q plot of the case when parameters q and r are fixed while p is randomised
during simulation. Figure 11 shows Q-Q plot of the case where q and r are
randomised and p fixed during simulation. Lastly figure 12 shows the Q-Q plot
of the case when all parameters are fixed during simulation.

Figure 10: Q-Q plot for the linear regression model when q and r are fixed, p
randomised.
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Figure 11: Q-Q plot for the linear regression model when q and r are randomised,
p fixed.

Figure 12: Q-Q plot for the linear regression model when all parameters in the
simulation are fixed.
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6.2 Residual plots

These are the residual plots from section 4. Figure 13 shows the residuals
resulting from the regression model when q and r are randomised and p fixed
during simulation, and 14 shows the residual plot from when q and r are fixed
while p is randomised during simulation.

Figure 13: Residual plot for the linear regression model when q and r are
randomised, p fixed.
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Figure 14: Residual plot for the linear regression model when q and r are fixed,
p randomised.

6.3 Pair plots

The plots in this section are the pair plots left out of section 4. Figure 15 is
the plot from the case when q and r are kept fixed and p is randomised during
simulation, figure 16 from the case when q and r are randomised while p is kept
fixed, and figure 17 is from the case when all parameters are randomised.
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Figure 15: Pair plot for the linear regression model when q and r are fixed, p
randomised.

Figure 16: Pair plot for the linear regression model when q and r are randomised,
p fixed.
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Figure 17: Pair plot for the linear regression model when all parameters are
randomised.

6.4 R code

# Library imports and global variables

#-----------------------------------

# tidyverse used to manipulate data frames

# and generate plots

library(tidyverse)

# Additional packages GGally and gridExtra

# has to be installed to generate plots

# Seed for randomisation

seed <- 123456

#-----------------------------------

# Functions

#-----------------------------------

# This function performs a single simulated epidemic.

# The default arguments are as described in the thesis

simulate_epidemic <- function (N = 10000000,

q = exp(-1/(N-1)),

r = 1/4,
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p = 1/3) {

valid_epidemic <- FALSE

while (!valid_epidemic) {

# This data frame keeps track of each state in

# each time step of the epidemic.

df <- data.frame(t = 0,

S = N-1,

I = 1,

R = 0,

D = 0,

d = 0,

i = 0)

k <- 1

# Loop while there are still infectious individuals

while (df$I[k] > 0) {

# How many susceptible individuals become infected

# with parameters as described in the thesis

a <- rbinom(1, df$S[k], (1-q^df$I[k]))

# How many currently infectious individuals

# stops being infectious, and how many of these gets diagnosed.

# Parameters described in the thesis

multi <- rmultinom(1, df$I[k], c(1-r, r*p, r*(1-p)))

# Add next time step to the data frame using equation (2)

# in the thesis to calculate.

df[k+1,] <- c(k,

df$S[k]-a,

a+multi[1],

df$R[k]+multi[3],

df$D[k]+multi[2],

multi[2],

a)

k <- k+1

}

# If the epidemic is too short it is not considered valid

# because we only want to consider major outbreaks

if (nrow(df) > 20) {

valid_epidemic <- TRUE

}

}

return (df)

}

# This function takes a data frame consisting of epidemic data and

# returns a data frame consisting of the ratio of change of
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# infectious and diagnosed individuals between each time step.

change_ratio <- function (df) {

result <- data.frame(t = 0,

dS = 0,

dI = 0,

dR = 0,

dD = 0,

d = 0,

i =0)

# Loops through the data and calculates the change ratio

# defaulting to 0 if the denominator is 0

for(k in 1:(nrow(df)-1)) {

ds <- ifelse(df$S[k] != 0,

df$S[k+1] / df$S[k],

0)

di <- ifelse(df$I[k] != 0,

df$I[k+1] / df$I[k],

0)

dr <- ifelse(df$R[k] != 0,

df$R[k+1] / df$R[k],

0)

dd <- ifelse(df$D[k] != 0,

df$D[k+1] / df$D[k],

0)

d <- ifelse(df$d[k] != 0,

df$d[k+1] / df$d[k],

0)

i <- ifelse(df$i[k] != 0,

df$i[k+1] / df$i[k],

0)

result[k,] <- c(k,ds,di,dr,dd,d,i)

}

return (result)

}

# This function reformats a data frame consisting of

# epidemic data to better suit the linear regression

previous_days <- function (df) {

df <- df %>%

mutate(logd = log(d)) %>%

select(t, i, d, logd) %>%

filter(d != 0) %>%

# Adds value from previous days to each time step

# where d1 is one time day ago

mutate(d1 = lag(d, n=1, default = 0),
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d2 = lag(d, n=2, default = 0),

d3 = lag(d, n=3, default = 0),

d4 = lag(d, n=4, default = 0),

logd1 = lag(log(d), n=1, default = 0),

logd2 = lag(log(d), n=2, default = 0),

logd3 = lag(log(d), n=3, default = 0),

logd4 = lag(log(d), n=4, default = 0)) %>%

# This filters away the non increasing parts of the daya

# to make sure we keep ourselves within the first part of the epidemic

filter(d >= d1 &

d1 >= d2 &

d2 >= d3 &

d3 >= d4 &

# To make sure we are in the linear part, filter away

# parts where the slope changes too much

d/d1 > 0.9*d1/d2 &

logd > 3 &

logd < 10)

return (df)

}

# Help function to generate new set of parameters as described in section 3.2

# If p, q or r set to fixed, return the fixed probability. Otherwise randomise

# between values described in the thesis.

random_probs <- function(q_fixed = FALSE, r_fixed = FALSE, p_fixed = FALSE) {

p <- ifelse(p_fixed, 1/3, runif(1, 1/5, 1/2))

q <- ifelse(q_fixed,

exp(-1/9999999),

runif(1, exp(-1.5/9999999), exp(-0.5/9999999)))

r <- ifelse(r_fixed, 1/4, runif(1, 1/6, 1/3))

return (c(p = p, q = q, r = r))

}

# Perform 1000 simulations using the chosen set of fixed or randomised parameters

sim_many_times <- function(q_fixed = TRUE,

r_fixed = TRUE,

p_fixed = TRUE) {

# Generate one set of parameters, perform one simulation and

# reformat data for regression

probs <- random_probs(q_fixed, r_fixed, p_fixed)

sims <- simulate_epidemic(q = probs["q"],

r = probs["r"],

p = probs["p"])

sims <- previous_days(sims)
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# Then do it 1000 more times

for (i in 1:1000) {

probs <- random_probs(q_fixed, r_fixed, p_fixed)

sim <- simulate_epidemic(q = probs["q"],

r = probs["r"],

p = probs["p"])

sim <- previous_days(sim)

sims <- rbind(sims, sim)

}

return (sims)

}

#-----------------------------------

# Simulations

#-----------------------------------

# First we set the seed

set.seed(seed)

# Run simulation for figure 2 and figure 3

test <- simulate_epidemic()

ratio <- change_ratio(test)

# Run 1001 simulations using the default parameters

# which are the fixed probabilities

sims <- sim_many_times()

# Simulate one epidemic as test data

test_data <- simulate_epidemic()

test_data <- previous_days(test_data)

# Filter away where i = 0 since we take the logarithm of i and dont want errors

sims <- sims %>%

filter(i != 0)

# Fit the regression model

model <- lm(log(i) ~ logd + logd1 + logd2 + logd3 + logd4,

data = sims)

# Get predicted values using the model and simulated test data

preds <- predict(model, test_data)

# The procedure above is then performed for the different

# sets of parameters explained in section 3.2 of the thesis.
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# Run the above procedure but with p fixed, q and r randomised

# as described in section 3.2

# with the added step of generating probabilities.

sim_known_p <- sim_many_times(r_fixed = FALSE, q_fixed = FALSE)

# Generate probabilities when p is kept fixed

probs <- random_probs(p_fixed = TRUE)

test_known_p <- simulate_epidemic(q = probs["q"],

r = probs["r"],

p = probs["p"])

test_known_p <- previous_days(test_known_p)

sim_known_p <- sim_known_p %>%

filter(i != 0)

known_p_model <- lm(log(i) ~ logd + logd1 + logd2 + logd3 + logd4,

data = sim_known_p)

known_p_pred <- predict(known_p_model, test_known_p)

# Same procedure but with q and r fixed, p randomised

# as described in section 3.2

sim_unknown_p <- sim_many_times(p_fixed = FALSE)

probs <- random_probs(q_fixed = TRUE, r_fixed = TRUE)

test_unknown_p <- simulate_epidemic(q = probs["q"],

r = probs["r"],

p = probs["p"])

test_unknown_p <- previous_days(test_unknown_p)

sim_unknown_p <- sim_unknown_p %>%

filter(i != 0)

unknown_p_model <- lm(log(i) ~ logd + logd1 + logd2 + logd3 + logd4,

data = sim_unknown_p)

unknown_p_pred <- predict(unknown_p_model, test_unknown_p)

# Once again same procedure but every parameter

# randomised as described in section 3.2

sim_unknown_all <- sim_many_times(q_fixed = FALSE,

r_fixed = FALSE,

p_fixed = FALSE)
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probs <- random_probs()

test_unknown_all <- simulate_epidemic(q = probs["q"],

r = probs["r"],

p = probs["p"])

test_unknown_all <- previous_days(test_unknown_all)

sim_unknown_all <- sim_unknown_all %>%

filter(i != 0)

unknown_all_model <- lm(log(i) ~ logd + logd1 + logd2 + logd3 + logd4,

data = sim_unknown_all)

unknown_all_pred <- predict(unknown_all_model, test_unknown_all)

#-----------------------------------

# Plotting

#-----------------------------------

# Plot figure 2

ratio %>%

# First filter away the most unstable parts of the epidemic

filter(t>10 & t<70) %>%

# Create a new column called state to be able to have

# two sets of points and lines

pivot_longer(c(i,d), names_to = "state") %>%

ggplot(aes(t, value, group = state)) +

geom_line(aes(color=state)) +

geom_point(aes(color=state)) +

labs(title = "The number of daily new diagnosed people",

x = "Time step",

y="Number of people")

# Plot figure 3

test %>%

mutate(i = log(i), d = log(d)) %>%

filter(t>5 & t<70) %>%

pivot_longer(c(i,d), names_to = "state") %>%

ggplot(aes(t, value, group = state)) +

geom_line(aes(color=state)) +

geom_point(aes(color=state)) +

labs(title = "The logarithm of daily new diagnosed people",

x = "Time step",

y="Logarithm of new people")

# Generates a plot of predicted values against

# test data values of the case when all parameters are fixed
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plot1 <- ggplot(data = data.frame(prediction = preds,

test_data = log(test_data$i)),

aes(prediction, test_data)) +

geom_point() +

geom_abline(slope = 1, intercept = 0) +

labs(x = "Predicted value", y="Test data value")

# Generates a plot of predicted values against

# test data values of the case when q and r are randomised, p fixed

plot2 <- ggplot(data = data.frame(prediction = known_p_pred,

test_data = log(test_known_p$i)),

aes(prediction, test_data)) +

geom_point() +

geom_abline(slope = 1, intercept = 0) +

labs(x = "Predicted value", y="Test data value")

# Generates a plot of predicted values against

# test data values of the case when q and r are fixed, p randomised

plot3 <- ggplot(data = data.frame(prediction = unknown_p_pred,

test_data = log(test_unknown_p$i)),

aes(prediction, test_data)) +

geom_point() +

geom_abline(slope = 1, intercept = 0) +

labs(x = "Predicted value", y="Test data value")

# Generates a plot of predicted values against

# test data values of the case when all parameters are randomised

plot4 <- ggplot(data = data.frame(prediction = unknown_all_pred,

test_data = log(test_unknown_all$i)),

aes(prediction, test_data)) +

geom_point() +

geom_abline(slope = 1, intercept = 0) +

labs(x = "Predicted value", y="Test data value")

# Will provide useful plots and information regarding estimates of

# the case when all parameters are fixed during simulation

plot(model)

summary(model)

# Will provide useful plots and information regarding estimates of

# the case when q and r are randomised, p fixed during simulation

plot(known_p_model)

summary(known_p_model)

# Will provide useful plots and information regarding estimates of

# the case when q and r are fixed, p randomised during simulation
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plot(unknown_p_model)

summary(unknown_p_model)

# Will provide useful plots and information regarding estimates of

# the case when all parameters are randomised during simulation

plot(unknown_all_model)

summary(unknown_all_model)

# Plot figure 8

gridExtra::grid.arrange(plot1, plot3, ncol=2)

# Plot figure 9

gridExtra::grid.arrange(plot2, plot4, ncol=2)

# Plot figure 5

sims %>%

select(logd,logd1,logd2,logd3,logd4) %>%

rename(`Log(d1)`=logd,

`Log(d2)`=logd1,

`Log(d3)`=logd2,

`Log(d4)`=logd3,

`Log(d5)`=logd4) %>%

GGally::ggpair

# Plot figure 16

sim_known_p %>%

select(logd,logd1,logd2,logd3,logd4) %>%

rename(`Log(d1)`=logd,

`Log(d2)`=logd1,

`Log(d3)`=logd2,

`Log(d4)`=logd3,

`Log(d5)`=logd4) %>%

GGally::ggpair

# Plot figure 15

sim_unknown_p %>%

select(logd,logd1,logd2,logd3,logd4) %>%

rename(`Log(d1)`=logd,

`Log(d2)`=logd1,

`Log(d3)`=logd2,

`Log(d4)`=logd3,

`Log(d5)`=logd4) %>%

GGally::ggpair

# Plot figure 17

sim_unknown_all %>%

select(logd,logd1,logd2,logd3,logd4) %>%

34



rename(`Log(d1)`=logd,

`Log(d2)`=logd1,

`Log(d3)`=logd2,

`Log(d4)`=logd3,

`Log(d5)`=logd4) %>%

GGally::ggpair
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