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Abstract

In this Bachelor thesis the selling price of diamonds is empirically

examined. We use a sample of 308 certified diamonds collected from

brilliance.com in July 2001. The models that will be analysed are

linear models and the method that is used is multiple linear regression.

We find that the relationship between the price of diamonds and the

explanatory variables is actually not linear, but is better explained

when transforming it to a quadratic model. We also find out that the

price of diamonds increases markedly with the carat weight. What

is also interesting is that a diamonds certificate is proved to be a

significant factor for the price, even though it is in theory believed

that the price is independent of which certificate the diamond has.
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1 Introduction

Diamonds are undoubtedly one of the most well-recognized materials. They
have since long been demanded assets and the use of a diamond is deeply
ingrained in many cultures. It has many different attributes and works as a
symbol of wealth and love. The crystal structure of diamond is what gives it
its unusual physical and chemical properties. It is for example the hardest
known naturally occurring mineral. The word ”diamond” origins from the
greek word adamas, which means invincible. (R. Tappert, M. C. Tappert,
2011, p. 1 [1])

During the 18th century, the first real diamond rush started in Brazil. But
by the end of 19th century, South Africa made some great findings and took
over the leading role from Brazil. Within the coming years, there would
be tens of thousands of diamond hunters travelling to South Africa. Most
of them left the country empty handed but a few of them became vastly
wealthy. Two of them were Barney Barnato and Cecil Rhodes, which in
year 1888 founded the firm De Beers Consolidated Mines Ltd. During the
latest turn of century, this company controlled approximately 90% of the
world’s diamond production. (F. Schimanski, 2008 [2])

In this thesis, we are going to analyse how the crucial factors of diamond
stones affect the price of it. The diamonds that are going to be used are
from brilliance.com, where they guarantee that diamonds are not artificially
made. The goal is to create a model that will in the best way explain the
price of diamonds as well as give information about which variables that af-
fect the price and how. Such a model could be used in practise, for example
when evaluating a diamond. The main question that will be answered in
this thesis is:

• How can the price of a diamond be explained in the best way?

The structure of the thesis is organised as follows. The theories of the
concepts that will be used are explained in Section 2. In Section 3 the data
will be processed, following by the execution of the statistical analysis in
Section 4 and a presentation of the results in Section 5. After that, the
results, possible sources of error and etcetera will be discussed in Section 6.
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2 Theory

In this section the mathematical theory and methods will be analysed and
explained.

2.1 Linear Regression

Given the information about the variables and the data set, a natural path
to explore the relationships in the analysis is by a multiple linear regression.
The definition of a linear regression model is

yi =
k∑
j=0

xijβj + ej , i = 1, ..., n (1)

where yi is an observation of the dependent stochastic variable y. The value
of yi depends on the variables xj and the errors ej . The coefficients βj are
estimated from the equation, which can be written in matrix form as:

Y = Xβ + e (2)

where

X =


1 x11 . . . x1k
1 x21 . . . x2k
...

...
. . .

...
1 xn1 . . . xnk

 , β =


β0
.
.
.
βk

 , e =


e1
.
.
.
en

 , Y =


y1
.
.
.
yn


where n is the number of observations and k is the number of explanatory
variables. (H. Lang, 2015 [3])

2.1.1 Parameter Estimation

In this section the point estimation theory will be explained.

• Least Squares Method

To estimate the parameters we can use the least squares method, which
is the most commonly used method in many mathematical fields. It
was Carl Friedrich Gauss, a German mathematician who developed
the basis for the least squares analysis by the end of the 18th century.
The interpretation of the method is to fit a curve to points in the plane,
corresponding to determined values (x1, y1), (x2, y2), ..., (xn, yn). The
idea is to choose the curve that best fits the data. Since the relationship
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between x and y is approximately linear, this approximate relationship
is modeled through an error term ej and takes the following form

yj = α+ βxj + ej (3)

where j = 1, 2, ..., n and n is the number of data points. ej is the
difference between the data point yj and the corresponding point on
the straight line α + βxj . Obviously, the smaller the difference the
better the fit. To minimize this, the least squares method uses the
sum of squared errors

n∑
j=1

e2j =

n∑
j=1

(yj − α− βxj)2 (4)

as an overall distance between observed data points and the fitted line.
To determine the parameters α and β that minimize Equation 4, we
differentiate with respect to α respectively β and set the derivatives
equal to zero. (P. Andersson, K. Lindensjo, J. Tyrcha, 2019, p. 17 [4])

• Maximum Likelihood Method Under the Normal-Theory As-
sumptions

Consider the linear regression model from Equation 2. Suppose that
the errors in this model are normally and independently distributed
with mean zero and constant variance σ2. Then the observations Y
are normally and independently distributed with mean Xβ and vari-
ance σI. The likelihood function is found from the joint probability
distribution of the observations. For the linear regression model the
likelihood function is

L(y|β, σ2) =
1

(2πσ2)n/2
e(−1/2σ

2)(y−Xβ)′(y−Xβ) (5)

The maximum likelihood estimators are the values of the parameters
β and σ2 that maximize the likelihood function. Maximizing the like-
lihood function L is equivalent to maximizing the log-likelihood, lnL.
The derivative of the log-likelihood is called the score function. Tak-
ing the partial derivatives of the log-likelihood with respect to the
parameters β and equating to zero yields

1

σ2
X ′(y −Xb) = 0 (6)

The solution to the score equations is the maximum likelihood estima-
tor (MLE)

b = (X ′X)−2X ′y (7)
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Notice that the MLE for the normal-theory linear regression model
is identical to the ordinary least squares estimator. Maximizing the
likelihood function involves minimizing the quantity in the exponent,
which is the least squares function. (D. C. Montgomery, R. H. Myers,
G. G. Vining, T. J. Robinson, 2010, p. 34 [5])

2.1.2 Hypothesis Testing

We may be interested in seeing whether one, a few or all the explanatory
variables have any effect on the response variable. The objective in a hypoth-
esis testing problem is to assess the validity of a claim against a counterclaim
using sample data. The two competing claims are called the null and alter-
native hypothesis, denoted by H0 respectively H1 and a hypothesis test is
a data-based rule to decide between H0 and H1. A test statistic calculated
from data is used to make this decision. (P. Anderssion, K. Lindensjo, J.
Tyrcha, 2019, p. 42 [4])

• t-test

We are going to test whether the coefficients βj , j = 1, ..., k are sig-
nificantly nonzero, with the purpose of examining if the explanatory
variable xj influences the response variable. In other words, we are
going to test the null hypothesis H0 : βj = 0 against the alternative
hypothesis H1 : βj 6= 0. If the assumptions that the residuals are i.i.d.
and normally distributed with E(ej) = 0 and V ar(ej) = σ2 are sat-

isfied, it follows that β̂j is normally distributed with E(β̂j) = β and

V ar(β̂j) = (σ2(XTX)−1)jj , where (σ2(XTX)−1)jj is the jth diagonal

element in the matrix V ar(β̂j). Since we want to compare whether
two mean values are significantly different, we are going to use the
t-test. The t-statistic is given by

Tj =
β̂j

σ
√

(XTX)−1)jj
(8)

and has a t-distribution with (n − k) degrees of freedom, under the
null hypothesis. The null hypothesis is rejected at significance level α
if |Tj | ≤ tα/2(n − k) where tα/2(n − k) is the critical value which is
given by a table for the quantiles of the t-distribution. In this thesis
we use α = 0.05. (P. Andersson, J. Tyrcha, 2015, p. 48 [6])

• p-value

When determining which variables that are significant for explain-
ing the model, the p-value will be used. The p-value is defined as
the probability that |Tj | ≤ tα/2(n − k) under the null hypothesis, i.e.
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P (|Tj | ≤ tα/2(n−k)). If the p-value for a variable is less than α = 0.05
the coefficient βj is significantly nonzero and we may reject the null
hypothesis. (P. Andersson, J. Tyrcha, 2015, p. 49 [6])

2.1.3 Linearity

In order to use the linear regression model, we first have to examine some
important assumptions of the model. One of the assumptions is linearity.
This assumption specifies that the functional form of the relationship be-
tween the response variable and the explanatory variables is linear. Without
linearity between them, parameter estimates will be biased and without any
meaning when using the OLS method.
(P. Anderssion, K. Lindensjo, J. Tyrcha, 2019, p. 63 [4])

2.1.4 Residuals

The inspection of residuals is also an important aid in finding out whether
a linear regression model is plausible. The residuals are the differences
between what is observed and what is explained by the model, they are
expressed as êi = yi − ŷi. The assumption in the linear regression model is
that the error terms are independent and normally distributed, with con-
stant variance and E(ei) = 0.

The easiest way to analyse the residuals is to examine graphical plots. Some
of the most useful plots are histograms and plotting the residuals against fit-
ted values Ŷi. From the histogram we can learn something about the shape
of the probability density function of the error terms. In this case, the den-
sity function should be the bell shaped normal distribution. This can also
be examined in the Normal Quantile plot where we want an approximate
straight line to conclude that the residuals are approximately normally dis-
tributed. In the plot against Ŷi, we want it to have the form of a horizontal
”band”. (P. Anderssion, K. Lindensjo, J. Tyrcha, 2019, p. 67 [4])

• Homoscedasticity
Homoscedasticity occurs when the residuals have constant variance,
i.e. V ar(ei) = σ2i . When this is not the case, heteroscedasticity occurs
and leads to inconsistent standard deviations of the coefficient esti-
mates, which makes the F-test invalid. To prevent this occurrence, it
is appropriate to transform or add more variables to the model. (H.
Lang, 2015 [3])

• Endogeneity
Endogeneity occurs when the residuals correlate with one or more
variables. This violates the assumption that E(ei|xi) = 0 which makes
the OLS estimator produce inconsistent estimates. (H. Lang, 2015 [3])
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2.1.5 Non Multicollinearity

Another assumption for the linear regression model is that the matrix X
has full rank. This means that the explanatory variables are not exactly
linearly related. When having many potential explanatory variables, it is
very common that there exists some kind of linear relationship between
them. This is denoted as multicollinearity between the explanatory vari-
ables and may cause some problems for the model. If you expected that
some variables were going to be statistically significant, but weren’t, then
this might be because of multicollinearity in the model. If two variables
are multicollinear, the results might show that none of them are statisti-
cally significant and you may want to exclude both of them from the model.
But they can in fact both be very explanatory, however multicollinearity
has made their estimates misleading. You should therefore investigate fur-
ther, and the conclusion is usually that you end up keeping one of them.
One useful statistical measure that helps identifying multicollinearity is the
Variance Inflation Factor (VIF) that is computed as follows:

V IF =
1

1−R2
j

, (9)

where R2
j is the coefficient of determination explained in Section 2.7. (P.

Anderssion, K. Lindensjo, J. Tyrcha, 2019, p. 69 [4]) (R. Sundberg, 2020,
p. 92 [7])

2.2 Backward Elimination

The Backward Elimination is a method of fitting regression models where the
choice of variables is carried out by an automatic procedure. This procedure
starts with the model with all k variables included. One variable at a time
is eliminated, until the procedure stops. In every step the hypothesis βh = 0
is tested for all the remaining variables xh. The procedure stops when all
remaining parameters βh are significantly nonzero. If one or more variables
are not significant, the variable which gives the smallest decrease in R2 when
excluded will be eliminated. (R. Sundberg, 2020, p. 88 [7])

2.3 Cook’s Distance

Cook’s distance (after Dennis Cook) is a measure of the influence of an
observation on the regression, that measures the effect on β̂ when excluding
that particular observation. It is defined as follows:

Di = (β̂(i) − β̂)TS(β̂(i) − β̂)/kσ̂2 (10)

where β̂(i) is the estimate when the i:th observation is excluded from the data
set. k is the number of explanatory variables, σ̂2 is the estimated variance

8



and S = XTX. Cook’s distance has a threshold value, where observations
above this value are seen as very influential for the estimate. Normally,
there is a big proportion of observations above this value, and therefore it is
reasonable to only control the observations with the highest values. In case
we find out that the observation is incorrect or too extreme in any sense,
we should investigate whether we want to keep the observation or not. (R.
Sundberg, 2020, p. 100 [7])

2.4 Box-Cox Transformation of the Response Variable

Generally, transformations are used for three purposes: stabilizing response
variance, making the distribution of the response variable closer to the nor-
mal distribution, and improving the fit of the model to the data. Sometimes
a transformation will be reasonably effective in simultaneously accomplish-
ing more than one of these objects. We often find that the power family
of transformations y∗ = yλ is very useful, where λ is the parameter of the
transformation to be determined. Box and Cox (1964) have shown how the
transformation parameter λ may be estimated. The theory underlying their
method uses the method of maximum likelihood, discussed in Section 2.1.1.
The computation consists of performing for various values of λ, a standard
analysis of variance on

y(λ) =

{
yλ−1
λẏλ−1 , λ 6= 0

ẏ ln y, λ = 0
(11)

where ẏ = ln−1 [(1/n)
∑

ln y] is the geometric mean of the observations.
The maximum likelihood estimate of λ is the value for which the error sum
of squares is a minimum. However, there is a problem that arises in y as λ
approaches zero, yλ approaches unity. That is, when λ = 0, all the response
values are a constant. This problem is alleviated by the component (yλ−1)/λ
from Equation 11 because as λ tends to zero, (yλ − 1)/λ goes to a limit of
ln y. Values of λ close to unity would suggest that no transformation is
necessary. (D. C. Montgomery, R. H. Myers, G. G. Vining, T. J. Robinson,
2010, p. 43 [5])

2.5 Dummy Variables

Dummy (or indicator) variables are variables that are either 0 or 1. Usually
1 represents the presence of some attribute and 0 its absence. They allow
qualitative characteristics to be introduced into the regression model. We
create a regressor, u, that takes the values 0 and 1 dependent on which of
the two categories that the observation belongs to. For example, a multiple
linear model with this dummy variable might look like this:

yi = α+ βuui + βxxi + ei (12)
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(R. Sundberg, 2020, p. 104 [7])

2.6 Akaike’s Information Criterion

Akaike’s Information Criterion (AIC) is an index used in a number of areas
as an aid to choosing between different competing models. It is defined as
follows:

−2Lk + 2k, (13)

where Lk is the maximized log-likelihood and k is the number of parameters
in the model. The index takes into account both the statistical goodness of
fit and the number of parameters that have to be estimated to achieve this
particular degree of fit, by imposing a penalty for increasing the number of
parameters. Lower values of the index indicate the preferred model, that is,
the one with the fewest parameters that still provides an adequate fit to the
data. (B. S. Everitt, A. Skrondal, 1998 [8])

2.7 R2 and R2
adj

The most common goodness-of-fit measure associated with linear models in
general, and multiple regression models in particular, is the coefficient of
determination, denoted R2. It can be defined as the proportion of the total
variation that is explained by the model. The formula of the coefficient of
determination is defined as follows:

R2 =
SSR

SST
= 1− SSE

SST
, (14)

where SSR =
∑
i

(ŷi − ȳ)2 , SST =
∑
i

(yi − ȳ)2 and SSE =
∑
i

(yi − ŷi)2.

The value of R2 varies between 0 and 1, where the higher value explains that
a model has a better fit to the observations. However, R2 can not exactly
be used to determine if a model is good or bad, rather to compare different
models with the same data set. However, R2 increases when adding variables
to the model, even though the variables do not explain the response variable.
In that case, it is more appropriate to use the measure R2

adj , that measures
how much the variation decreases in the actual model and takes the number
of parameters into consideration. The R2

adj is defined as follows:

R2
adj = 1− σ̂2

σ̂20
(15)

where σ̂2 is the estimated variance and σ̂20 =
∑
i

(yi − ȳ)2/(n − 1) is the es-

timated variance when there is no explanatory variable in the model. (R.
Sundberg, 2020, p. 86 [7])
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3 Data

The data that are used in this analysis are from July 2001, obtained from the
archive of the Journal of Statistics Education. It consists of 308 observations
of round diamond stones from brilliance.com. The data set is also used in
one of 14 projects in the course MT5001 at Stockholm University. However, I
have not been in touch with this data set before and no project that contains
this data.

3.1 Original data

The dependent variable is the Price of diamonds in Singaporean dollars and
the independent variables are Carat, Colour, Clarity and Certification.

3.1.1 Carat

The weight of a diamond stone is indicated in terms of carat units. One
carat is equivalent to 0.2 grams. The larger the diamond stone is the higher
the price, ceteris paribus.

3.1.2 Clarity

The majority of diamonds have inclusions that are only visible for a magni-
fying glass of a microscope. Diamonds with no inclusion, under a loupe with
a 10 power magnification, are labelled IF (”internally flawless”). Diamonds
that are not internally flawless, which are not free from inclusion, are cate-
gorised in descending order as ”very very slightly imperfect” VVS1 or VVS2
and ”very slightly imperfect” VS1 and VS2. The lesser visible inclusions
under the loupe the higher is the price of the diamond, ceteris paribus.

3.1.3 Colour

The most priced diamonds show colour purity. They are not contaminated
with neither yellow nor brown tones. Diamonds are colour graded on a scale
from D-Z, where top colour purity is the grade of D, and lesser degrees of
colour purity are E, F, G, etc. In this data set the colour grades D, E, F,
G, H and I are observed.

3.1.4 Certification

Certification bodies examine diamond stones and provide them with a cer-
tificate, where they list caratage, grade of clarity, colour and cut. The
certification bodies in this data set are New York based Gemmological In-
stitute of America (GIA), the Antwerp based International Gemmological
Institute (IGI) and Hoge Raad Voor Diamant (HRD). They are not ranked
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in any sense, however their reputation could be a factor in the pricing or
demand of the diamond stones.

3.2 Transformations and Data Processing

Since three out of the four independent variables are categorical, they will
be transformed into becoming numerical variables. The variables colour and
clarity are ranked, and therefore it is reasonable that some kind of rank is
also used when transforming them into numerical. They will be transformed
according as follows:

Colour Value Clarity Value

D 1 IF 1
E 0.83 VVS1 0.8
F 0.67 VVS2 0.6
G 0.5 VS1 0.4
H 0.33 VS2 0.2
I 0.17

Table 1: Transformation of Colour and Clarity

The calculations in Table 1 have been made with the same method. The as-
sumed highest ranked categories of Colour and Clarity, D and IF, are given
the highest numerical values. Since there are six categories for Colour, the
grade D gets the value 6

6 . The grade E will get the value 5
6 , the grade F will

get the value 4
6 and so on. This method is also applied to Clarity.

When transforming our third categorical variable, Certification, to nu-
merical, this method will not be applied since the categories are not ranked.
Instead we will be including two dummy variables into our models.{

ui = 1, if certificate of observation i is from GIA.

ui = 0, otherwise.

{
vi = 1, if certificate of observation i is from HRD.

vi = 0, otherwise.

Table 2 shows the amount of observations for the three categories.

In Table 3 and Table 4 we have the domains of the data set before and
after transformation. We are going to investigate these variables further in
the coming sections.

12



Category # of observations

GIA 151
HRD 79
IGI 78

Table 2: Number of observations of Certification

Price Carat Colour Clarity Certification

$16008 1.10 ct. D IF GIA
. . E VVS1 HRD
. . F VVS2 IGI
. . G VS1
. . H VS2

$638 0.18 ct. I

Table 3: Original data

Variable Type Max. Value Min. Value

Price Numerical 16008 638
Carat Numerical 1.10 0.18
Colour Numerical 1 0.17
Clarity Numerical 1 0.2
ui Dummy Variable 1 0
vi Dummy Variable 1 0

Table 4: Data after transformation

4 Statistical Analysis

In this section, we are going to put our theory into practice.

4.1 Analysis of Individual Variables

We start off by looking at plots of each of the explanatory variables against
the response variable. From these plots, we will analyse whether the rela-
tionships are linear or not. Since we have transformed three out of the four
variables - Colour, Clarity, and Certificate - these three variables are now
discrete and the fourth variable Carat is continuous. Therefore, linearity
between those three variables and the response variable will not be as clear
to detect as for the continuous one.
In Figure 1 we can observe the relationships between Y and the explanatory
x. Figure 2 shows us the residuals against fitted values of each explanatory
variables in a simple regression against the response variable.

13



Figure 1: Relationships between Price and explanatory variables

Figure 2: Residuals vs Fitted
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As mentioned in 3.1.1, heavier stones are more priced than the lighter
ones. This was a visible trend when looking at the first plot from the left in
Figure 2, where we can see that the scatters have a somewhat exponential
relationship with the price. Without transformation, the data would most
likely violate the assumption of homoscedasticity mentioned in 2.1.3. Fur-
ther investigation will therefore be made to determine which transformation
of Y to employ in the analysis.

4.2 Models

In this section, we are going to construct four different models. These models
are going to be compared later on to find the one with the best fit to the
data. To construct the models, we start off with the basic model

yi = α+ β1Carati + β2Colouri + β3Clarityi + β4ui + β5vi + ei.

When plotting the residuals for this model, a quadratic trend can be ob-
served. This is shown in Figure 6 in the Appendix. This clearly means that
we need a transformation to our basic model. But which transformation is
the most suitable? Since we observe a quadratic trend, we would suggest
that raising the model to the power of 2 will be helpful. Doing this is the
same thing as taking the square root of our response variable Y . We get the
following model:

Model 1:
√
yi = α+ β1Carati + β2Colouri + β3Clarityi + β4ui + β5vi + ei

In the next model we are going to take something more into account, namely
the observations we found in 4.1, where Figure 1 showed us that Carat does
not follow a linear trend. Figure 7 in the Appendix shows us what Carat
looks like after transforming it to Carat2. It becomes more linear. There-
fore the next model will be as follows:

Model 2:
√
yi = α+β1Carati+β2Carat

2
i+β3Colouri+β4Clarityi+β5ui+β6vi+ei

Instead of just estimating with the eye, there is another method that anal-
yses which the optimal number is for a power transformation on Y , namely
the Box-Cox method explained in Section 2.4. When applying this proce-
dure to the basic model, we get λ = 0.42. This is quite close to our self
estimated value 0.5, but since this has more statistic calculations behind it
it will be used to construct a third model.

Model 3: y0.42i = α+ β1Carati + β2Colouri + β3Clarityi + β4ui + β5vi + ei

15



In the fourth model the original data will be used, i.e. the one with the
categorical variables. The grade IF is selected as the baseline for Clarity.
The grade D is selected as the baseline for Colour and the Certification
denoted by GIA is selected as the baseline for Certification. The Box-Cox
results are the same as before for this model.

Model 4: y0.42i = α+ β1Carati + β2Ei + β3Fi + β4Gi + β5Hi + β6Ii

+β7V V S1i + β8V V S2i + β9V S1i + β10V S2i + β11HRDi + β12IGIi + ei

4.3 Non Multicollinearity Check

Now the models will be checked if they satisfy the assumption of non mul-
ticollinearity. This is done by calculating the VIF of every model.

Variable Transformed Data Original Data (df) Original Data VIF(1/(2df))

Carat 1.158288 1.687710 (1) 1.299119
Colour 1.036061 1.165812 (5) 1.015460
Clarity 1.358944 1.736131 (4) 1.071391

Certification 1.210990 2.129348 (2) 1.207985

Table 5: VIF of variables

As can be seen in Table 5, all the variables of the four different models have
relatively low VIF values. None of the values exceed 5, which means that
the assumption of non multicollinearity is satisfied. The values of the trans-
formed data are in average a bit larger than the values of the original data
when taking the degrees of freedom into account.

4.4 Residuals

In Figure 3 the residuals vs fitted plots can be observed for each model.
They are all quite similar. What can be observed is a couple of outliers in
all of the models. These outliers will be investigated further in Section 4.6.

4.5 Backward Elimination

A stepwise selection is now performed to see if some variable that is not
significant could be removed from the models. The results in Table 11 in
the Appendix are obtained from the backward elimination. All variables
seem to be significant at a significant level of 5%.
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Figure 3: Residuals vs Fitted

4.6 Cook’s Distance

In Figure 4, we can see that the most extreme outliers are identified as
observations 195, 158, 120 and 116. In Table 6, we take a closer look at
them to come to a conclusion of whether we should keep them or not.

Observation Price Carat Colour Clarity Certificate

195 16008 1.01 D VVS1 GIA
158 14051 1.00 E VVS1 HRD
120 13913 1.00 F IF GIA
116 15582 1.00 D VVS1 GIA

Table 6: Observations from Cook’s Distance

As we can see in Table 6, a common thing for the observations is that their
price is relatively high. However, we do not note anything that might be
wrong with the observations. Therefore, the observations are decided to be
kept since there is nothing wrong with the data.

4.7 R2
adj, VIF and Residuals

As mentioned in Section 4.3, the VIF values are very similar for the two
data sets, however the average VIF value is a bit lower for the original data
than the transformed data, when taking the degrees of freedom into consid-
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Figure 4: Cook’s Distance

eration.

Figure 5 shows the QQ-plots of the different models. It is clear that the
standardized residuals of Model 4 have the most linear trend of all models.
The remaining models deviate from the line just before point 2 of the theo-
retical quantiles on the x-axis. In Table 7 we can see that the value of R2

adj

is high on all of the models, namely 0.99.
From the VIF and the QQ-plots, it is reasonable to say that Model 4 has
the best fit to the data of all four models. This model uses the original data
set. From the models with the transformed data, Model 3 has the best fit.

4.8 Model Selection

To determine which model that represents data in the best way, the four
models will be compared with each other. The AIC values of the four mod-
els will be observed in Table 8. In Table 8 we can clearly see that Model 3
and Model 4 have the lowest AIC values. These two models are chosen as
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Figure 5: Normal QQ-plots

Model R2
adj

Model 1 0.9905
Model 2 0.9900
Model 3 0.9913
Model 4 0.9916

Table 7: Adjusted coefficients of determination

Model AIC

Model 1 1422.638
Model 2 1436.381
Model 3 876.8033
Model 4 874.6925

Table 8: Akaike’s Information Criterion

our final models to explain the price of diamonds.

4.9 Parameter Estimates

Table 9 and Table 10 shows the parameter estimates with standard errors
of our final models.
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Model 3

Variable DF Parameter Estimate Std. Error t value Pr> |t|
Intercept 1 0.2888 0.3132 0.922 0.357

Carat 1 39.2028 0.2592 151.236 <2e-16 ***
Colour 1 8.2091 0.2467 33.277 <2e-16 ***
Clarity 1 5.8892 0.2595 22.696 <2e-16 ***
ui 1 1.0390 0.1737 5.983 6.18e-09 ***
vi 1 1.0962 0.1981 5.533 6.83e-08 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 9: Parameter estimations and std. error of Model 3

Model 4

Variable DF Parameter Estimate Std. Error t value Pr> |t|
Intercept 1 15.724141 0.350861 44.816 <2e-16 ***

Carat 1 39.253360 0.261444 150.141 <2e-16 ***
E 1 -2.051235 0.286150 -7.168 6.12e-12 ***
F 1 -3.173580 0.268608 -11.815 <2e-16 ***
G 1 -4.292499 0.275710 -15.569 <2e-16 ***
H 1 -5.706503 0.279178 -20.440 <2e-16 ***
I 1 -7.473688 0.292662 -25.537 <2e-16 ***

VVS1 1 -0.984697 0.220032 -4.475 1.09e-05 ***
VVS2 1 -2.364316 0.204668 -11.552 <2e-16 ***
VS1 1 -3.488792 0.219688 -15.881 <2e-16 ***
VS2 1 -4.593414 0.235524 -19.503 <2e-16 ***
HRD 1 0.002652 0.147556 0.018 0.986
IGI 1 -1.018152 0.176463 -5.770 2.01e-08 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 10: Parameter estimations and std. error of Model 4

5 Results

In this section, we are going to interpret the results presented in Section 4.

When looking at the QQ-plots in Figure 5 we can see that the residuals
of Model 4 seem to have the best fit to the line. Otherwise, the plots look
relatively similar. The related R2

adj of the models also have very similar

values. The differences between the R2
adj of the models will not be relevant

to draw any conclusions from when comparing the models, since we would
for example prefer having lower multicollinearity for the cost of a higher R2

adj .

The VIF values are as well similar and only the variable Certification
from the original data set exceeds the value 2, when not taking the degree
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of freedom into consideration. Otherwise, all of the VIF-values are below 2,
which is relatively low and indicates that the variables are non multicollinear.

When analysing the results of the AIC values for each model, there is a
difference. It is clear that Model 4 and Model 3 have the lowest values.
Since Model 4 also had the best fit of the QQ-plot, this model is determined
to be the model that explain the data in the best way. Model 3 has the
lowest AIC value from the models with the transformed data, and therefore
we proceed with these two models to compare the parameter estimations.

Let us begin with examining the parameter estimate for Carat. The coeffi-
cient for Carat has very similar estimates in both models, 39.25 in Model 4
and 39.20 in Model 3. Both of the related t-values are relatively high and the
related Pr > |t| is low. This means that we may reject the null hypothesis
that says that the beta estimate equals zero.

The estimate of the variable Colour in Model 3 is 8.21. This means the
price of the diamond stone increases when the colour of the stone has a
higher rank. The same trend goes for the estimates in Model 4. However,
the values of the estimates are negative and becomes less negative the higher
ranking the colour has. The null hypothesis can be rejected in this case as
well. The same reasoning applies for the variable Clarity, where the param-
eter estimate is positive in Model 3, and in Model 4 it becomes less negative
the higher ranking the Clarity has.

As for the variable Certification, Model 3 shows a slightly positive trend for
the dummy variables. However, the t-values are relatively low so the null
hypothesis can not be rejected. For Model 4 the variable HRD is clearly
insignificant and the null hypothesis can not be rejected. However, the cer-
tificate body IGI has a significant estimate, which is negative. Since GIA is
selected as the baseline, it means that GIA has a higher ranking than IGI
and influences the price positive.

The results of the intercepts are very different between the models. In Model
3, the parameter estimate is approximately 0.29 and the null hypothesis can
not be rejected. In Model 4, the parameter estimate is 15.72 and the null
hypothesis is rejected.

6 Discussion

Apart from Carat, the variables Colour and Clarity were earlier believed to
affect the price of diamonds positively. This theory was correctly reflected
in the models. However, according to brilliance.com, the certification body
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of the diamonds should not affect the attributes of the diamonds. However,
some of our results show different. In Model 4 the null hypothesis can not
be rejected for IGI and HRD. In Model 3 the null hypothesis for β4 and β5
can be rejected, but ui and vi have approximately the same influence on the
price. This means that IGI has a smaller influence on the price than the
other two certification bodies. One reason of that could be that, according
to diamonds.pro, when comparing the institutes GIA, HRD, and IGI, GIA
is the most well-known and respected entity. They grade diamonds against
strict guidelines, while IGI and HRD are looser in their grading. HRD is
based in Europe and is the leading authority in Europe when it comes to
diamond grading. However, since they are less strict than GIA in grading
diamonds, that might affect the price of the diamond stone. For that reason,
HRD might have the same influence on the price as GIA has, even though
GIA is more well known. Another reason for these results might have been
the method for collecting the data, which will be discussed further later on.

When pricing diamonds, it is often talked about the ”Four C’s”, which
are Carat, Colour, Clarity and Cut. In this thesis, the variable Cut is not
examined. The reason for this is simply because this variable is not included
in the data set. Diamonds also have different shapes and depths and an-
other property is also which shine it gives when exposed to UV-light. These
variables are not used in the study and they might have had an influence
on the price of the diamonds. The data used in this thesis are only a small
sample of 308 observations among over 80 000 diamonds at brilliance.com.
When having a sample size like that, the method of collecting data could
be crucial for the results. For that reason, we can not be entirely sure if
the parameter estimates actually fit with the total pool of diamonds. A
collection method that could have improved the precision of the model even
more could have been if all the variables were collected orthogonal to each
other, i.e. that for each variable there are equal proportions of the values of
the other variables. That way, we can avoid correlations between variables
that might not exist in reality.

Since the response variable, yi, is defined as price, we always have that
yi ≥ 0. On the other hand, one of the classical assumptions in the regres-
sion analysis is that the errors ej are normally distributed. Therefore, the
right hand sides of the models could be negative. This problem could be
solved by using ln yi instead of y0.5 and y0.42. However, when applying the
logarithmic transformation to the models, the assumption of normality is
not satisfied, since the residuals clearly follow a quadratic trend which can
be observed in Figure 8 in the Appendix. To investigate this further, we
will look at the predicted values of yi and the upper and lower prediction
intervals. This is observed in Figure 9, where the blue line is the prediction
line, and the green and red lines are the upper and lower prediction inter-
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vals. As we can see, the probability that ŷi is negative is quite small.

When transforming Colour and Clarity to numerical variables, it is done
in such a way that subsequent classes have the same numerical distance.
However, there are other possible methods to use rather than this method.
For example we could have transformed all the categories to dummy vari-
ables. This is the kind of method that is used in Model 4, when for example
a diamond has the colour E the other colour categories in the model become
0. There are also other ways of transforming categorical variables into nu-
merical, and the transformation method that is used has have an impact on
the outcome.

The purpose of this thesis was to examine models that could explain the
pricing of diamonds. The models we have constructed could be used in
practice, however we have to examine the predictability and also compute
prediction intervals to investigate how well the models fit for this purpose.

7 Appendix

Figure 6: y = α+ β1Carati + β2Colouri + β3Clarityi + β4ui + β5vi + ei
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Figure 7: Price plotted against Carat respectively Carat2

Model 1 Model 2

Variable AIC RSS Sum of Sq Variable AIC RSS Sum of Sq

Intercept 546.57 1747 - Intercept 546.57 1747 -
Carat 1856.99 123849 122102 Carat 1856.99 123849 122102
Colour 1009.38 7902 6155 Colour 1009.38 7902 6155
Clarity 839.39 4550 2803 Clarity 839.39 4550 2803
ui 562.64 1853 106 ui 562.64 1839 106
vi 560.32 1839 92 vi 560.32 1853 92

Model 3 Model 4

Variable AIC RSS Sum of Sq Variable AIC RSS Sum of Sq

Intercept -1204.26 5.937 - Intercept -1.37 281.8 -
Carat -267.18 125.231 119.294 Carat 1336.17 21816.0 21534.1
Colour -1023.10 10.760 4.823 Colour 469.97 1344.9 1063.0
Clarity -1095.63 8.503 2.566 Clarity 307.06 787.3 505.5
ui -1147.95 7.174 1.237 Certification 29.29 315.4 33.6
vi -1158.81 6.926 0.989

Table 11: Backward Elimination Results
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Figure 8: ln y = α+ β1Carati + β2Colouri + β3Clarityi + β4ui + β5vi + ei

Figure 9: Prediction Line and the Prediction Intervals for Model 3
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