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Abstract

Predicting the price of a stock is a task that could be highly prof-

itable. There are several techniques and methods to do this, while my

goal is to look into how well this could be achieved using sentiment

analysis. Four stocks have been analyzed. First calculating the daily

sentiment for a given stock, and then using these sentiment values to

try predicting the future stock returns. When using vector autore-

gression models the lagged sentiments were insignificant. However,

the instantaneous sentiment showed significance.
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2 Introduction

What would happen if you knew the future price of some financial asset.
You would probably become very rich. In reality, we would never be able to
predict the future price with complete certainty, we would have to make a
calculated guess. There are various methods to make this guess more accu-
rate, using different models and indicators. In this thesis, we shall further
analyse the predictive power of social media sentiment. The sentiment is in
short the feeling one might express in a text about some entity. This could
for example be split into positive/negative. For a few stocks, we will gather
social media data from a site called StockTwits. Using autoregressive mod-
els we will test if we can make a better guess using these sentiments, than
without.

In the first section, we are going over the theory being used. Most of the
methods used in this thesis are explained in this section. However, I will
assume that the reader possesses some basic statistical knowledge. In the
next section, we are doing a summary of the data. In the section that follows
we are doing the analysis. This section is divided into two subsections
whereas we first analyse the sentiment data, and then the modeling. We
then discuss the results and present some improvement opportunities.
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3 Theory

The time series theory and notation are based on the book Analysis of time
series written by Ruey S. Tsay.[12]

3.1 Time series

Time series data contains information about a subject over time. For exam-
ple, we consider the GDP of a country to be a time series. This type of data
is different in comparison to the more standard cross-sectional data where
we consider multiple subjects over different variables at one specific time.
The order of a time series has apparent importance, which cross-sectional
data lacks. Thus they also differ when analysing. With cross-sectional data,
one seeks to explain or predict one response variable using other explana-
tory variables. With time series we want to predict or explain the series
using lagged (i.e, past) values. Note that we will introduce theory for both
univariate and multivariate time series. Multivariate time series is just the
extension when we study multiple time series over time, whereas we not only
consider relationships with lagged values but also among the series.

3.2 Stationarity

In time series analysis stationarity is the basis of many models. This could
be seen visually but also tested using various statistical tests. If a series is
non-stationary one would often have to transform the series into a stationary
one. The transformation usually consists of differencing the series, meaning
we take the difference of consecutive values. First of all, there is strict
stationarity, with a strong condition. A time series is said to be strictly
stationary if the joint distribution of a sample of the series is identical to
the joint distribution of another sample, shifted in time. I.e, if the joint
distribution of

(xt1 , · · · , xtk)

is identical to the joint distribution of

(xt1+t, · · · , xtk+t),

for all t, t1, · · · , tk, and k is a positive integer, {xt} is a strictly stationary
time series. This means the joint distribution of (xt, · · · , xt+k) is time-
invariant. However, this condition is not easy to fulfill in practice, we often
consider weak stationarity instead. For a series to be weakly stationary its
mean and autocovariance should be time-invariant. This means that the
series has a constant mean and that the covariance between any two time
points, t and t+ k only depends on the lag k and the difference between the
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two times. We also indirectly assumes the first two moments to be finite.
Visually we would thus want the series to fluctuate equally random around
a fixed mean (i.e. without showing a trend). If a series is concluded to be
strictly-, or weakly stationary, we can then for example apply models to
forecast future values.

3.2.1 Augmented Dickey-Fuller

A non-stationary series that have a systematic pattern, a trend, is often
called a random walk with drift. If such a trend exists in a series we say
that we have a present unit root. To test the null hypothesis of a present unit
root one can use the augmented Dickey-Fuller test (ADF), an augmented
version of the Dickey-Fuller test, modified to handle more complex models.
The null hypothesis is that we have a unit root and the alternative hypothesis
is stationarity or trend-stationarity. Suppose that we want to test if there
is a unit root in an AR(p) (see section 3.5) process, for the series xt. Then
we may test H0 : β = 1 against H1 : β < 1 using

xt = ct + βxt−1 +

p−1∑
i=1

φi∆xt−i + et,

where ct is a deterministic function that could be zero, a constant or ct =
w0 +w1t. Also, ∆xj is the first difference of the series xt where ∆xj = xj −
xj−1. We estimate the β with the least-squares estimate β̂. The augmented
Dickey-Fuller test statistic is then given by

ADF =
β̂ − 1

std(β̂)
,

where we reject the null hypothesis with some level of certainty if the t-ratio
statistic exceeds a critical value.

3.2.2 KPSS

To complement the ADF test, one could also use the Kwiatkowski-Phillips-
Schmidt-Shin [5] (KPSS) test. On the contrary, this tests the null hypothesis
of stationarity against the alternative hypothesis of a present unit root.
Suppose we want to test for stationarity in a time series yt. The test involves
decomposing the series into the sum of a deterministic trend, a random walk
and a stationary error

yt = ξt+ rt + εt,

where rt is the random walk defined as

rt = rt−1 + ut.
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Furthermore, ut are iid distributed with zero mean and variance σ2
ε . Under

the null hypothesis that σ2
ε = 0 the series is considered to be trend stationary.

If we also use the special case that the series is instead decomposed using
ξ = 0 the null hypothesis would imply level stationarity. To test this we
would go on to use the statistic

η̂ = T−2
∑

S2
t /s

2(l)

for the hypothesis σ2
ε = 0. We define the partial sum process of the residuals

St as

St =
t∑
i=1

ei, t = 1, · · · , T.

Also, s2(l) is a consistent estimator of σ2
ε . It follows that

η̂ −→
∫ 1

0
V2(r)2dr,

where V2(r) is a second-level standard Brownian bridge. For further notes
see [5].

3.3 Return

When dealing with financial data, and in particular stock price data, one
might consider the price as a time series. However, this is not a good idea.
The reason being is that the price of a stock is not stationary in its foun-
dation. The price varies in trends, having peaks and lows that contradict
the definition of stationarity. To solve this problem it is common to instead
consider the return of a stock. The return has better statistical properties
than the price, one being that it often holds weak stationarity. Thus a better
fit for time series analysis. There are different ways of defining return. In
all cases though, we are not including any dividend, as one might think of
returns.

Simple return

We let Pt denote the price at time t of a stock. The simple return for holding
the stock one period is then defined as

Rt =
Pt
Pt−1

− 1.

If we buy one stock at time t − 1 and sell it at time t, we would get the
return of Rt on our investment. The simple gross return is then defined as
Rt + 1. If we would consider to buy and hold our stock for more than one
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period, i.e. buying the stock at t−k and selling at t, the simple gross return
would be

1 +Rt[k] =
Pt
Pt−k

=
k−1∏
j=0

(1 +Rt−j).

Log return

The natural logarithm of the simple gross return is called the log return and
is defined as

rt = ln

(
Pt
Pt−1

)
. (1)

The log return hold some pleasant statistical properties. When holding a
stock for multiple time periods the log return is the sum of every one-period
log return. If we hold the stock for k periods, from t− k to t the log return
is

rt[k] = rt + rt1 + · · ·+ rt−k+1.

3.4 Correlation

Correlation coefficient
Correlation is the statistical relationship between two random variables.
The correlation coefficient is a measure of this relationship. It is a value
between −1 and 1, for the strength of the linear dependence. The coefficient
being zero equals zero correlation. For two random variables X and Y , the
correlation coefficient is

ρx,y =
Cov(X,Y )√

Var(X)Var(Y )
=

E[(X − µx)(Y − µy)]√
E(X − µx)2E(Y − µy)2

,

with µx = E(X), µy = E(Y ) and we assume that the variances exists.

Autocorrelation function

When dealing with time series the correlation coefficient is extended to the
autocorrelation function. Here we instead study the linear dependence be-
tween a time series and its lagged values. Consider {rt} to be a time series
of log returns from a stock, we assume the series rt to be weakly stationary.
The correlation coefficient between rt and the lagged value rt−` is the lag-`
autocorrelation or ρ` of rt. Similarly to the correlation coefficient we then
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define the lag-` autocorrelation

ρ` =
Cov(rt, rt−`)√

Var(rt)Var(rt−`)
=

Cov(rt, rt−`)

Var(rt)
,

with simplifying the equation by using the properties of weakly stationarity.
Further, we conclude that rt is not serially correlated if and only if ρ` = 0
for all ρ > 0. In practice we would estimate ρ` by

ρ̂` =

∑T
t=`+1(rt − r̄)(rt−` − r̄)∑T

t=1(rt − r̄)2
, 0 ≤ ` ≤ T − 1,

where T is the sample size. Under some conditions this estimate is a con-
sistent estimate of ρ`. Further we can test the hypothesis that individual ρ`
equals zero.

Portmanteau Test

More importantly, we can also jointly test the hypothesis that multiple lag-`
autocorrelations ρ` equals zero. This is done with the Portmanteau test,
first stated by Box and Pierce (1970). This statistic was later modified by
Ljung and Box (1978), to be more accurate in finite samples. Suppose that
we state the hypothesis H0 : ρ1 = · · · = ρm = 0 against the alternative
hypothesis H1 : ρi 6= 0 for some i ∈ {1, · · · ,m}. The Ljung-Box statistic is
defined by

Q(m) = T (T + 2)
m∑
`=1

ρ̂2
`

T − `
.

Under the null hypothesis and some regularity conditions, Q(m) follows a
chi-squared distribution with m degrees of freedom. We then reject the null
hypothesis if the statistic Q(m) is greater than some significant percentile
of the χ2(m) distribution.

3.5 AR

An AR (autoregressive) model is very similar to a linear regression model.
In a linear regression model, we want to explain or predict the value of a
response variable with the use of various explanatory variables. The AR
model instead uses lagged values as explanatory variables, in its attempt
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to explain or predict the time series. The hyperparameter to tune in such
model is the amount of lagged values, p.

AR(1)

We start by defining the simplest form of an AR model, the AR(1) model.
Consider {rt} to be the time series of log returns from a stock, then

rt = φ0 + φ1rt−1 + at

is an AR(1) model, where {at} is assumed to be a white noise series with
zero mean and variance σ2

a.

AR(p)

Directly from the AR(1) model we can proceed to define the AR(p) model
as

rt = φ0 + φ1rt−1 + · · ·+ φprt−p + at, (2)

where p is defined as the positive integer for the amount of lagged values
to be considered, and {at} a white noise series. To estimate the parameters
φ we could use the fact that Eq.(2) is similar to a linear regression model.
Thus we can estimate the parameters using the least squares method.

Estimation

In short the least squares method is based on the idea that we want to
minimize the residuals of the actual time series rt and the fitted r̂t. We fit
r̂t by estimating φ as φ̂. The fitted model is given by

r̂t = φ̂0 + φ̂1rt−1 + · · ·+ φ̂prt−p,

with the residuals

ât = rt − r̂t.

The least squares method finds the estimates for φ so that the residuals are
minimized. We rewrite Eq.(2) as

rt = XB + at,

where we define X to be the design matrix containing lagged values of the
series and B the coefficients. The time series is of length n, and we will have
the equation
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
rt
rt−1

· · ·
rt−n

 =


1 rt−1 rt−2 · · · rt−p
1 rt−2 rt−3 · · · rt−p−1

· · ·
1 rt−n−1 rt−n−2 · · · rt−n−p



φ0

φ1

· · ·
φp

+


at
at−1

· · ·
at−n

 , (3)

where rt, at are vectors of length n − p, X a (n − p) × (p + 1) matrix and
B a vector of length p+ 1. Furthermore the least squares estimate for B is
given by

B̂ = (XTX)−1XT rt.

Forecasting

Forecasting is the basis of our study. The goal is to find a model that
could forecast future stock prices, given the information we have at time
t. It is possible to forecast different horizons, meaning we can forecast the
return for a stock one day, two days or even a week from now. Longer
horizons are followed with higher uncertainty. It can be shown that for
a stationary series the forecast will converge to the mean E(rt) when the
forecast horizon increases. In this study we will focus on the one step ahead
forecast, forecasting only one day in the future. With an AR(p) model the
forecasting is straightforward using the fitted model. Consider the situation
that we are at time index h and want to forecast one period ahead h + 1.
Now let r̂th(`) be the `-step ahead forecast of rh+`. The one-step-ahead
forecast is then given by

r̂h(1) = φ̂0 +

p∑
i=1

φ̂irh+1−i.

3.6 Order determination

When fitting an AR(p) model on real data we have to come up with a way
to pick the amount of lagged values p that best fit our data. This task is
referred to as order determination. There is essentially two main ways to
go. The first is to use the partial autocorrelation function (PACF) and the
other to use an information criterion.

3.6.1 PACF

Suppose that we want to fit a series rt to an AR(p) model. We start by
considering an AR(1) model to fit to our data. We add one more lag to create
an secondary AR(2) model, and uses a F-test to see if the new contribution is
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significant. The idea is to keep doing this until we see that every contribution
is getting less significant for every added lag to some limit j > k. We then
choose p = j for our model. Typically we would use a plot where we can see
the p-values of each added lag.

3.6.2 Information Criterion

The Akaike information criterion (AIC) is a common information criterion
based on likelihood. It is defined as

AIC =
−2

n
ln(L̂max) +

2

n
× (k),

with L̂max being the maximum value of the likelihood function for the model
and k the amount of estimated parameters in the model. Given a set of mod-
els we would choose the model with the lowest AIC. As similar information
criteria, AIC encourages goodness of fit by the likelihood function, but also
punishes overfit by the penalty of + 2

n for every parameter included. Usually
the goodness of fit is increased by more estimated parameters, while we also
increase the risk of overfitting, what AIC tries to counter.

3.7 Multivariate time series

With multivariate time series we are extending the theory of univariate
time series to the analysis of multiple time series. In finance we can of-
ten see dependencies between various markets, opening up new ideas for us
to model the world. In our paper this will enable us to analyse the rela-
tionship between the return of a given stock and some other time series. In
most aspects the theory can be generalized directly from the univariate case.

Multivariate time series consists of multiple univariate time series, or com-
ponents. The notation of these series makes use of vectors and matrices.
So for an example, lets assume we have two series rt and st. Whereas rt is
the log returns of a stock and st the daily sentiment, where we assume that
they have the same length. For now we will not define the daily sentiment
further, think of them as some indicator of sentiment for each day t. We
can then write them together in a more concise manner as rt = (rt, st)

′.
The bold font indicates that we are dealing with a vector. Also, r′t is the
transpose of rt.
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3.7.1 Stationarity

The vector series rt is weakly stationary if its first two moments are time
invariant, i.e. constant over time. The first two moments being the mean
vector and the covariance matrix. For such 2-dimensional time series rt we
defined its mean vector and covariance matrix as

µ = E(rt), Γ0 = E[(rt − µ)(rt − µ)′].

Further we define the lag-` cross-covariance matrix of rt as

Γ` = E[(rt − µ)(rt−` − µ)′],

where the matrix Γ` is a measure of the lead-lag relationship between the
two component series in rt. For a weakly stationary series Γ` is only a
function of ` and not the time t.

3.8 VAR

An extension of the auto regressive model in multivariate time series is the
vector autoregressive (VAR) model. Here we want to model one series using
its lagged values and the lagged values of other series. When using the other
series we might also want to include the instantaneous values i.e. not only
the lagged values but also the present values of those series. We could use
multiple series, but in our thesis we will only consider the case of using two
series. Suppose we have the mentioned series rt and st, then we define the
VAR(p) model as

rt =

p∑
j=1

αt−jrt−j +

p∑
j=1

βt−jst−j + u1,t,

st =

p∑
j=1

λt−jrt−j +

p∑
j=1

γt−jst−j + u2,t.

(4)

where rt−j is the t−j lagged return and st−j the lagged sentiment values. For
both equations in the VAR model, we will estimate the coefficients similarly
to how we did for the AR model. We can treat each equation separately
as an AR model. We will use the least squares method to estimate the
coefficients, by including the necessary lagged values in the design matrix.

3.9 Efficient Market Hypothesis

The efficient market hypothesis[8] states that the price of a financial asset
(i.e. stocks), reflects all available information at that time. Thus implying
there is no way to consistently predict future prices with historical data.
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The market would price the asset with all information available and would
therefore always reflect the correct valuation. If this is true, we would not
be able to fit any models to forecast future stock prices. There is both a
large number of supporters and critics of this thesis. Several reports have
concluded that the thesis is correct. Critics tend to use human behavior
as a counterargument, for example, that overconfidence or fear might lead
to inaccurate prices that could be exploited. Depending on our results, we
would either have evidence to reject the hypothesis, or not.

4 Data

We are to fetch data during the period 2020-01-01 to 2021-02-01. To get
reliable estimates of the sentiment it is important to use a large dataset. The
number of messages posted about a certain stock varies and is dependent
on the popularity among investors. I chose to randomly pick four stocks
from the Dow Jones Index. This index consists of 30 American companies,
all having a high market value. I reasoned that these companies would
have high popularity as well. The randomly chosen stocks turned out to be
American Express, Boeing, McDonald’s, and Walt Disney.

4.1 Stocktwits

In this paper, we are using social media content from Stocktwits, a mi-
croblogging platform for stock-related content. Stocktwits was created in
2008 and quickly became a popular platform for discussions regarding the
stock market. The Stocktwits users can discuss and post their ideas about
certain stocks. In every post, you include a ”cashtag”, the symbol of the
company or companies that are being discussed. It is a popular platform,
now getting a large amount of traffic every day, with users responding to
real-time events constantly. With that being said, it suits our purpose to
have plenty of data that are up-to-date, and relatable to the stock market.
One might also speculate that its users have a greater understanding of the
stock market, even though there are no requirements needed to create an
account or post.

The data is retrieved using a written software in R that interacts with Stock-
twits API. We are restricted to only make 200 request calls per hour, with
every request giving us 30 posts. The total amount of posts retrieved is
426978. The distribution of these message is seen in Table.1. There is a
big difference, with Walt Disney and Boeing having the most amount of
observations.

Every post contains a lot of valuable, and unnecessary information. We
have in total 86 columns with only 4 being interesting for us. These are
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Distributions of messages

American Express McDonald Walt Disney Boeing Total

6180 14400 107757 298641 426978

Table 1: Summary of the amount of observations distributed over the stocks.

the messages, the date of which the post was created, its entities, and the
basic sentiments. The first two are self-explanatory. The entities give us
information about which companies the author is writing about. This will
prove to be useful later when we want to classify the unclassified sentiments.
The basic sentiments are the pre-classified sentiments. Every author has the
option to include if they are bullish or bearish when posting a message. Of
our data 49% is pre-classified, so our task is to classify the other 51%. We
will later analyze how the models will perform using only the pre-classified
sentiments, and the combined sentiments.

It is important to know that the messages of the pre-classified sentiments
hold low quality. The authors can express their sentiment by changing the
”status”, which means that they tend to not express any, or little, sentiment
in the text. A large portion of these messages are impossible to classify, even
for a human.

4.1.1 Data preprocessing

Text data is a messy format, containing lots of noise, but also a great deal of
information. When analysing text data it is crucial to preprocess the data,
clean it from unnecessary information. If this is not done properly it could
affect the accuracy of the classification model. The basic and most obvi-
ous actions include removing links, additional spaces, punctuations, special
characters, and numbers. We want to perform these simplifications mainly
for one reason; to lower the number of words considered, making it faster to
fit a model, but also to remove noise that could lead to misunderstandings
in the classification.

However, while preproccessing is absolutely necessary, too complex meth-
ods does not only have a very slight improvement, it could also lower the
performance shown in some reports. Citing from [6]

”Some linguistic modifications using WordNet, stemming, nega-
tion, and collocation were tested too. However, these were not
helpful and actually degraded the classification accuracy”.
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4.2 Stock price data

We have retrieved the stock price data from yahoo finance, using the R pack-
age tidyquant. For each company chosen we have daily stock data for the
low, high, open, close and adjusted close price. We are using the adjusted
close price which is adjusted for all applicable splits and dividend distri-
butions. See Figure.1 for plots of each stock price. In each plot the title
corresponds to the stock symbol for each company with AXP being Ameri-
can Express, BA for Boeing, DIS for Walt Disney and MCD for McDonald’s.

Stock Prices

DIS MCD

AXP BA

jan 2020 apr 2020 jul 2020 okt 2020 jan 2021 jan 2020 apr 2020 jul 2020 okt 2020 jan 2021
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Figure 1: Adjusted price for each stock, over our given time period.

One problem with financial data, is the missing values on weekends and
holidays. This will create problems when we eventually deal with sentiment
data, that exists for every day. To fix this we apply a rolling mean function
to extend the data. Visually this would look like connecting the ends where
data is missing, see Figure.2 for an example.

Furthermore, looking at Figure.1 these time series do certainly not look sta-
tionary. We will instead consider the log return of the adjusted price, given
by Eq.(1) in section 3.3. For each company we will have a series rt,j that
corresponds to its log returns, where j ∈ {1, 2, 3, 4}. See Figure.3 for a plot
of each series. The price fall in Figure.1 and the large values in Figure.3
during late February 2020 is the financial market’s reaction to the coron-
avirus outbreak.
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Extended Stock Prices

Price Extended price
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Figure 2: Example of the extended stock prices for American Express during
January 2021.

5 Analysis

The analysis will consist of two parts. First we will analyse the sentiment of
our text data, and then try to model any relationship between the sentiment
and log return.

5.1 Sentiment analysis

This section will explain how to analyze the sentiment for user-created con-
tent. Sentiment analysis is the practice of analyzing text to conclude what
sentiment, attitude, or emotion the writer intent [6]. It could be seen as
a subfield of natural language processing (NLP). NLP is the more general
field, containing methods for machines to interact with human languages.
When analysing sentiment regarding the stock market, our purpose is to
see if the writer has a ”bullish”, ”bearish” or neutral sentiment. These are
standard lingo’s being used in the industry. Bullish means that the writer
is optimistic about the stock price, hoping it to increase, and bearish is the
opposite. What we want to accomplish is to automatically classify tens of
thousands of posts as bearish, bullish or neutral.

When classifying text several problems could occur. A simple sentence as
”I love this company” is considered to be an easy text to classify. However,
it gets more complicated when the writer is being sarcastic or writing in a
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Figure 3: Log return of the adjusted price.

manner where the order is important. For example, simpler models could
have problems classifying ”I don’t love this company”. In this paper, we
are not going to use the most advanced methods, but a suitable method
that can classify the messages with decent accuracy and speed. With more
complex models we would see significantly larger computing times.

Our goal is to analyse the sentiment for posts that we assume are created by
one user, and who expresses their opinion on a single entity. These assump-
tions generally hold for all posts, with some exceptions. In some posts, the
user expresses comments regarding multiple entities (companies). With the
format of Stocktwits, the users have tags for the intended companies they
are commenting upon. This simplifies things, making it easy for us to filter
so the posts only contain opinions of one particular stock. If not, we remove
the observation from our dataset. With these assumptions in place, we can
treat sentiment classification as a classical text classification problem. [6]
We could then use any supervised learning algorithm to solve this problem.
In other reports, they have found Näıve Bayes classification, and Support
vector machines to be especially successful. [9] [1].

When applying supervised learning algorithms it is key to find useful fea-
tures. In the context of text classification, one typical approach is to use a
bag-of-words approach for every sentence, that contains each word and its
frequency. We gather every ”possible” word as an element in a vector. For
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example, one could expect to have a 1000 long vector with every position
reflecting a word. This vector contains 1’s for every word that is in a given
post, and zero else were. This approach would ignore the order of the words,
but it can be expanded to consider doublets or more. To get a more complex
model we would have a longer list, and hence considering the sentiment val-
ues of even more words, with the cost of computing power. There are also
other features containing information of the part of speech for each word,
sentiment shifters, and so on. The crucial part of classifying the posts using
a supervised model would be to have labeled data. With our data, we have
some observations that are pre-classified as bullish/bearish. We would have
to extend this by labeling thousands of posts as neutral as well. This would
be a highly time-consuming task. Additionally, the pre-classified posts hold
low quality and are not suited for training a model. For these reasons, we
move on to consider an unsupervised approach.

A popular unsupervised method is the lexicon-based approach. This method
involves using a pre-made lexicon containing words combined with a senti-
ment value. These lexicons are often made with more sophisticated machine
learning models. There are multiple lexicons available, and some are specif-
ically made for financial content. In the most basic way, one would classify
a post by considering the sum of every sentiment value each word holds.
If the sum is positive, we classify the post as positive. There are however
extensions that deal with contextual valence shifters. Valence shifters being
words that alter, intensify, or diminish the sentiment value of a polarized
word. We will use this method to classify our text data.

To implement the lexicon-based approach in an optimized manner, we will
use the R package ”sentimentr”[11]. This package utilizes valence shifters
when calculating the sentiment for a text. Usually, this leads to higher ac-
curacy, with the cost of speed. The balance between accuracy and speed
is what the author had in mind when creating the package. The equation
for calculating the sentiment is best explained by the author in the given
reference, but in short:

Every sentence is broken down into an ordered bag-of-words,
where every word is compared with a given sentiment lexicon.
If there is a match we consider that word, two words before and
two words after to be a sentiment ”cluster”. We give the cluster
a value of +1 if the said word is positive and −1 if negative.
Further, the cluster value can alter, increase and decrease de-
pending on other words in the cluster. All these other words in
the cluster are compared to a valence shifter lexicon. Finally,
we calculate the sentiment as the sum of all clusters divided by
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the square root of the word count in that sentence.

When using the lexicon-based approach, our performance will be dependent
on which sentiment lexicon we are using. There is a variety of lexicons
available, with different accuracy. We will try to analyze our data using
three different lexicons; Augmented Jockers & Rinker’s sentiment lexicon,
Loughran-McDonald sentiment lexicon [7] and NTUSD-Fin sentiment lex-
icon [3]. The augmented Jockers-Rinker and Loughran-Mcdonald lexicons
are both retrieved using the R package ”lexicon”[10]. Out of these three, we
want to pick the lexicon that has the highest accuracy of classification. To
evaluate this we will use the pre-classified sentiments and consider the ac-
curacy of how many correct classifications we can obtain using the lexicons.
It is not beneficial for us to evaluate the lexicons using the whole data set of
pre-classified sentiments, this would take too much time. Therefore we will
instead consider a sample of 20000 posts.

Lexicon Evaluation

Lexicon Accuracy Non-neutral Size

Jockers-Rinker 0.6008557 13088/20,000 11710

Loughran-McDonald 0.5932174 5691/20,000 2702

NTUSD-Fin 0.5746058 9577/20,000 8331

Table 2: The accuracy of the non-neutral classifications, on our sample of
20000 observations. Non-neutral is the amount of classifications that are
classified as bullish or bearish to the total amount.

See Table.2 for the evaluation of all three lexicons. Recall from section 4.1
that the pre-classified sentiments only consist of bullish or bearish values,
while we classify messages as neutral as well. When using the sentiments in
the prediction modeling we will ignore all neutral sentiments. Thus we only
calculate the accuracy of the bullish or bearish classifications.

Often a post is classified as neutral if there is no polarized word in the post,
matching a word in the given lexicon. Additionally, this could come from
either the post or the lexicon being short. This is in line with Table.2, where
we can see that the amount of non-neutral classification increase with the
lexicon size. The accuracy is similar for all three lexicons, but they have ap-
parent differences regarding the amount of non-neutral classifications. Since
we are not taking the neutral sentiments into consideration, we want to keep
the non-neutral as high as possible. Especially when this evaluation data
only consists of non-neutral sentiments. From this evaluation, it is evident
to pick the Jockers-Rinker lexicon. See Table.8 and Table.9 in Appendix
A, for examples of the used lexicons. Note that the accuracy can not be
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directly compared with other reports, because of the mentioned inaccurate
labeling of our pre-classified sentiments. The accuracy is only a measure to
evaluate the best fitting lexicon for our data.

We continue by further evaluating the results of using the Jockers-Rinker
lexicon. See Table.3 for a confusion matrix for the results. From this, we
can calculate the accuracy of bullish sentiments as 5735/9474 ≈ 60.5% and
bearish sentiments as 2129/3614 ≈ 58.9%. We have similar accuracy for
both classifications.

Confusion Matrix

Predicted - Bullish Predicted - Bearish

Actual - Bullish 5735 3739 9474

Actual - Bearish 1485 2129 3614

7220 5868 13088

Table 3: Confusion matrix from the evaluation of Jockers-Rinker lexicon.

We proceed by calculating sentiment for all unclassified posts using the
lexicon-based classifier and Jockers-Rinker lexicon. We now have access to
the sentiment of every post in our given time period. With this we can do
some data analysis.

Using our sentiment data we can now do some basic data analysis to get
some grasp of our contents. For all classifications, there are 65.7% bullish
posts and 34.3% bearish. This suggests that there is an overall optimistic
view of the stock market during our time period. Also, we can analyse when
most of the posts are published in Figure.4. Most of the posts happen after
the market has closed. Specifically, 13.6% are published before the market
opens, 26.2% during market hours, and 60% after.

5.1.1 Aggregated Sentiment

Related reports suggests using a bullishness index [2][1] to aggregate the
sentiment value for every day. We define this as

st,j = ln

[
1 +BULLt,j
1 +BEARt,j

]
, j ∈ {1, 2, 3, 4} (5)

where st,j is the bullishness index for stock j, BULLt,j the number of bullish
messages at time t and BEARt,j the bearish messages. The time series st,j
is then a index for the daily sentiment.
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Figure 4: Histogram that shows the distribution of messages for all sentiment
data. The blue highlighted bars corresponds to when the market is open for
trade.

5.2 Modeling

We will start by fitting AR(p) models to our return series. These will be
our base models. While the base models find linear relationships in the log
returns, we will then see the effect of adding the daily sentiment in the fol-
lowing models. We denote the base models as MODEL1,j for j ∈ {1, 2, 3, 4}
where j corresponds to one of the stocks.

5.2.1 Stationarity

Before fitting any model we will control the assumption of stationarity in
our time series. With an Augmented Dickey-Fuller test we will test the
null hypothesis that a unit root is present in the series, with the alterna-
tive hypothesis of stationarity. From Table.4 we can conclude that the null
hypothesis of a present unit root can safely be rejected, with all p-values
being less than 0.05, for both the log returns and the daily sentiment in-
dex. Note that we are using the series scombined

t,j containing both classified
and pre-classified sentiments. For a test on the daily sentiments based on
pre-classified text exclusively see Table.10 in Appendix A.

Further, we complement this test by also using the KPSS-test, with the null
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Augmented Dickey-Fuller Tests

Stock j Statistic(rt,j) P-value(rt,j) Statistic(st,j) P-value(st,j)

American E. -10.1397 <0.01 -5.8445 <0.01

Boeing -8.4095 <0.01 -5.7042 <0.01

Walt Disney -8.0787 <0.01 -3.4258 0.0498

McDonald -8.1772 <0.01 -5.6682 <0.01

Table 4: Augmented Dickey-Fuller tests for each stock on the lag order 7.

hypothesis of stationarity against the alternative hypothesis of a unit root.
In Table.5 we can see that the null hypothesis will not be rejected for rt,j
since all p-values > 0.05, but not for the daily sentiments st,j . To fix this
we will instead consider the first difference of st,j . This would mean that we
instead consider the series

s∗t,j = st,j − st−1,j

as the daily sentiment. However, we will keep the notation of st,j to keep
the language consistent. After differencing the sentiments the KPSS test
was successful for the sentiments as well. For all series st,j the p-values were
larger than 0.1.

KPSS Test for Level Stationarity

Stock j Statistic rt,j P-value rt,j Statistic st,j P-value st,j
American E. 0.1552 >0.1 0.5002 0.0416

Boeing 0.1807 >0.1 3.6944 <0.01

Walt Disney 0.4243 0.067 1.8099 <0.01

McDonald 0.0585 >0.1 1.0365 <0.01

Table 5: KPSS tests on each stock, with truncation lag parameter being 5.

5.2.2 Base models

Having the stationarity checked we move on to fit an AR model on the log
returns. First of all we will split the data into training sets and a test sets.
We will set aside the first 75% observations to train our models, and the
other to test.

To choose appropriate amount of lags we will first consider the partial au-
tocorrelation functions seen in Figure.5. For American Express and Boeing
we can see that 11 lags seem to be the best choice. For McDonald 12 lags,
and for Walt Disney there is some tendency that points to using 15 lags as
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well as 11.
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Figure 5: Partial autocorrelation function for the log returns rt,j .

We can complement the PACF by also considering AIC. To do this we fit
AR(p) models for each rt,j series with p ∈ {1, · · · , 26}. We would then go on
to choose the model with lowest AIC. In Table.11 in Appendix A we can see
the corresponding AIC to each value of the parameter p. The AIC points in
the same way as what we concluded from the PACF. For Walt Disney the
second lowest AIC was 11. We use p = 11 for all series except Walt Disney
where p = 12. Our base models are then

(American Express) MODEL1,1 : AR(11)

(Boeing) MODEL1,2 : AR(11)

(Walt Disney) MODEL1,3 : AR(12)

(McDonalds) MODEL1,4 : AR(11).

We proceed by checking the significance of all lags being used. The models
is estimated using maximum likelihood, thus the coefficients are going to be
asymptotically normal distributed. We then calculate the corresponding z-
statistics by dividing the coefficients for each model by their standard errors
(estimation error), and then calculate the p-values. We successively set the
insignificant (p > 0.05) estimates to zero and get the final base models

24



MODEL1,1 : r̂t,1 = −0.100481rt−5,1 − 0.118500rt−7,1 − 0.264070rt−8,1

+ 0.135863rt−9,1 + 0.230631rt−11,1

MODEL1,2 : r̂t,2 = 0.271069rt−1,2 + 0.09993rt−4,2 − 0.191571rt−8,2

+ 0.153586rt−9,2 − 0.118568rt−10,2 + 0.144093rt−11,2

MODEL1,3 : r̂t,3 = 0.160780rt−9,3 + 0.160062rt−11,3

MODEL1,4 : r̂t,4 = 0.095862rt−5,4 − 0.234231rt−8,4 + 0.146311rt−11,4.

Additionally we check if there is any serial correlation in the residuals of
the base models. This is done using a portmanteau test. See Table.12 in
Appendix A where we have used the Box-Ljung statistic Q(m) for m ∈
{10, 15, 20}. For each stock we are unable to reject the null hypothesis on
all levels of m. We assume the residuals to not be serially correlated, and
thus the base models seems to be adequate.

5.2.3 Alternative Models

We go on to further create models that include the daily sentiment series
st,j . To test if the sentiment have a significant effect on the return we will
use a Granger’s causality test[4]. This is a method first mentioned in 1969
by Clive Granger. Suppose we have two series X and Y . We then say that
X ”Granger Causes” Y if we are better off to predict Y with the information
from X than without. Note that this is not equivalent with real causality,
but a rather weaker statement. Formally we are going to fit a vector au-
toregression (VAR) model, and use a F-test to see if the sentiment estimates
are significant. From the VAR model we are also able to test if the relation-
ship is reversed, with return predicting the sentiment. The VAR model is
evidently a linear model, but could also interpret non-linear relations if we
perform non-linear transformations of the data. This is something we will
skip. We will do these tests using both the pre-classified sentiments and the
combined sentiments.

Now we will fit VAR(p) models to our data. The equation of the model is
given by

rt =

p∑
j=1

αt−jrt−j +

p∑
j=1

βt−jst−j + u1t,

st =

p∑
j=1

λt−jrt−j +

p∑
j=1

γt−jst−j + u1t.

(6)

as we presented in section 3.8. In this first step we will tune the parameter
p by choosing the VAR(p) model with lowest AIC. We got similar values of
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p as we used in the base models, but slightly higher in some of the stocks.
After we fit each VAR(p) model, we will do a F-test. The purpose is to test
the null hypothesis that all coefficients for the lagged sentiments is equal to
zero. I.e. H0 : βt = 0 for all t ∈ {1, · · · , p}. The alternative hypothesis is
H1 : βt 6= 0 for at least one t ∈ 1, · · · , p. See Table.6, the daily sentiment
turned out to show low significance when explaining the log returns. Only
the pre-classified sentiments were significant for one stock, Walt Disney. The
fact that the pre-classified sentiments were significant, and not the combined
are signs of inaccuracy in our sentiment classification. For the other stocks
the p-value was also slightly lower for the pre-classified sentiments. Further
we can conclude that the sentiments Granger causes the log returns for Walt
Disney. In the other stocks we consider the base model to be superior.

Granger’s Causality Test (F-test)

Stock Lags P-values

American E. 11 0.6324

Boeing 12 0.6356

Walt Disney 7 0.0739

McDonalds 13 0.9830

(a) Combined Sentiments

Stock Lags P-values

American E. 13 0.989300

Boeing 12 0.588800

Walt Disney 5 0.009929

McDonalds 13 0.531200

(b) Pre-Classified Sentiments

Table 6: F-test for all lagged sentiment coefficients to equal zero.

We also tested the reverse relationship, i.e the second equation in Eq.(6).
The null hypothesis that all coefficients for the lagged log returns were zero
for explaining the sentiment series. We could not reject the null hypothesis
for any stock, using either combined or pre-classified sentiments. For now,
we continue by further analysing the VAR model for Walt Disney using pre-
classified sentiments. First of all, we checked the adequacy of the model by
using a portmanteau test on the residuals. For each value of m ∈ {10, 15, 20}
the p-values exceeded 0.15 which is above any critical value. Thus, we can
not reject the null hypothesis of no serial correlation in the residuals. We
continue by now comparing the prediction from the VAR(5) model and the
base model (MODEL1,3) on the test set. See Figure.6 for the one-step-ahead
forecasts. It is hard to reveal any result from the plot. The VAR model
seems to predict the negative spikes better than the base model, whereas
both underperform on the large positive spikes.

To simplify the result we can instead consider the classifications up/down.
We classify each value to ”Up” if it is positive and ”Down” if negative. In
this way we can create a confusion matrix again, to further analyse the mod-
els. Consider the confusion matrix in Table.7, we can calculate the accuracy
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Figure 6: Predictions on the Walt Disney test set using the fitted AR and
VAR model, compared with the actual log returns.

for each model. The VAR model has 49/99 ≈ 49.5% accuracy and the AR
model also ≈ 49.5%. There is really no difference, and we are actually not
better off using the daily sentiment compared with the base model. If were
to guess the future return by only predicting that the future log return would
be positive we would probably be better off, since there is generally more
”Up” than ”Down”, (54/99 ≈ 54.5%). This suggests that we can not con-
sider the sentiment to Granger cause the log returns for Walt Disney either,
when using classifications up/down.

Considering the other series we can also test if the returns can be explained
by the instantaneous sentiment value. If we were to have the sentiment
value st at time t, when predicting the rt at time t, and their respective
lagged values as well. When adding the instantaneous sentiment value to
any existing model, its estimate was significant (p-value < 0.05) for all
stocks and for using both combined and pre-classified sentiments. In this
case, the relationship between the returns and sentiments was significant in

27



Prediction Confusion Matrix

Actual\Predicted Up Down

Up 24 30

Down 20 25

(a) VAR model

Actual\Predicted Up Down

Up 30 24

Down 26 19

(b) AR model

Table 7: Confusion matrix for predictions made by the VAR and AR model.
The actual values are on the horizontal, and predicted on the vertical.

both directions. This suggests that we are able to explain each component
rt, st if we assume to have instant information.

6 Discussion

Our results goes in line with the efficient market hypothesis. For three of our
stocks, the lagged sentiments proved to be insignificant when explaining the
one-step-ahead log returns. For Walt Disney, the estimates were significant
if we used the pre-classified sentiments. We also got significant estimates for
the lagged log return, which certainly goes against the efficient market hy-
pothesis. Even though the estimates were significant, it turned out to not be
enough to give any potential profit, since the predictions of the test set were
≈ 50%. According to the efficient market hypothesis, the current price of a
stock reflects all available information. I would argue that more complex in-
formation that requires substantial work to be done is not per se ”available”
for everyone. A more complex model, that also grasps nonlinear relations
would be interesting to further analyse. Either way, our results suggest that
we are not better off using the daily sentiment to predict future stock prices.

While the lagged sentiments showed weak/non significance, the instanta-
neous sentiments were significant in all stocks. This mean that the latest
information possible is preferable. In our model we are using sentiments for
the past day while we could also use the sentiments for all data before the
market opens in each day. Too illustrate this idea further consider the Fig-
ure.4 again, where we see the hourly message distribution. All information
prior to the market open is actionable. As we concluded, this data consists
of 13.6% messages of the whole day. To get access to this information we
could simply consider the sentiment series st to be daily sentiments for a
modified period of time. Where we instead consider a day to being when
the market open. Thus we would get all information prior to market open in
the lag-` of the daily sentiment st. Essentially we would then get access to
the most recent sentiment information, and might be better off predicting
the future log returns.
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Furthermore, the pre-classified sentiments turned out to be better than the
combined sentiments. This indicates that our sentiment classifications are
inaccurate. As I mentioned earlier our lexicon-based method is simple. For
further analysis one would probably have to consider choosing a more com-
plex method, to get more accurate classifications.

Our models are a very simplified view of reality. I did not expect the mod-
els to accurately predict the future. To get a more accurate prediction
one would probably have to consider a model that can capture nonlinear
relationships. It would also be a good idea to include more explanatory
variables. Although, the goal was to see if daily sentiment could increase
the predictability. The results indicated that we are not better off with
adding the sentiment in general. However, for Walt Disney, it at least got
significant estimates. This suggests that it could be useful in predicting the
price of some type of company. Further research could be done to find what
elements such companies share. I would say that the social media sentiment
in general, is the voice of normal living people. Especially the authors at
Stocktwits. For a stock to be influenced by people, it might have to be a
smaller company. Now in retrospect, I regret choosing such similar sized
companies, all from the Dow Jones. There is not evidence enough for us
to claim that sentiment does not increase the predictability for any stock.
All we can say is that in some cases it does not have a significant effect in
predicting the log returns.
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A Appendix

Jockers-Rinker Lexicon

word sentiment

deflate -0.50

criminals -1.00

legacy 0.60

rollicking 0.60

haughty -0.75

selfhumiliation -0.25

unavailable -0.50

grievous -0.50

vociferous -0.25

clueless -0.50

Table 8: Example of Jockers-Rinker sentiment lexicon.

Valence Shifter Lexicon

word y

acute 2

hardly 3

barely 3

only 3

kind of 3

sure 2

but 4

no 1

mightn’t 1

severely 2

Table 9: Example of the valence shifter lexicon. Here y corresponds to
a number 1-4, with 1 =Negator, 2 =Amplifier, 3 =De-amplifier and 4 =
Adversative Conjunction.
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Augmented Dickey-Fuller Tests

Stock j Statistic (spre-classified
t,j ) P-value (spre-classified

t,j )

American E. -5.4392 <0.01

Boeing -5.5442 <0.01

Walt Disney -3.1089 0.1089

McDonald -4.3959 <0.01

Table 10: Augmented Dickey-Fuller tests for each stock on the lag order 7.

AIC

Stock Lags

American Express 11

Boeing 11

Walt Disney 1

McDonald 12

Table 11: Amount of lags that corresponds to the lowest AIC for each log
return series.

Portmanteau Test Of Residuals

Stock m Statistic p-value

10 8.841 0.5473
American Express 15 18.624 0.2313

20 29.805 0.07307

10 4.1231 0.9416
Boeing 15 11.125 0.7437

20 14.466 0.8061

10 7.0536 0.7204
Walt Disney 15 13.435 0.5687

20 17.123 0.645

10 5.3181 0.8689
McDonalds 15 11.196 0.7386

20 14.939 0.7799

Table 12: Test of serial correlation in residuals for each base model, using
the Box-Ljung test.
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