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Abstract

In this thesis, we are to compare two commonly used methods when

working with prediction; neural networks and linear regression. We

begin by covering the relevant theory for both methods. Further, we

simulate three different data sets where one is a linear data set and

the other two are non-linear. We are to train models using the two

methods in order to then use these models for predicting values. First

of all, how do we compare these two methods? In which situations

do we prefer one method over the other? These are both methods

used as machine learning algorithms and we will use techniques alike

in this thesis. The calculations of the parameters of each method differ,

which will lead to the results being different. Since linear regression

can have a hard time fitting to a non-linear data set, one interesting

factor is how well the neural network will handle the same situation.

There are techniques available when working with linear regression so

that the method is applicable to non-linear data. This is, however,

done manually with a basis function. The comparison is made using

three different performance measures. These are calculated for each

model in order for us to obtain the one that fits best for each of the

methods. We conclude that the neural network fits the data well for

all the data sets used in this thesis. However, linear regression has a

clear advantage in the linear data set, not only when comparing the

performance measures but also for further observation since a linear

regression model is much easier to analyse. For the non-linear data

sets, we can observe a difference in the two methods. Where the neural

network still performs well, we now see a worse outcome from the linear

regression model.
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Acknowledgements

I sincerely want to thank my supervisors Ola Hössjer and Kristof-
fer Lindensjö for their meaningful feedback and guidance during
the writing of this thesis.

iii



Contents
1 Introduction 2

2 Theory 3
2.1 Linear model for regression . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 The Linear Model . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Least Squares Estimator . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Assumptions of the linear regression model . . . . . . . . . . 6
2.1.4 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Obstacles with linear regression . . . . . . . . . . . . . . . . 8

2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Setup of the Network . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Fitting a Neural Network . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Error Backpropagation and Gradient Descent . . . . . . . . 12
2.2.4 Obstacles with Neural Networks . . . . . . . . . . . . . . . . 13

3 Simulation and Fitting Models 14
3.1 The neuralnet package . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Fitting the Linear Regression Model . . . . . . . . . . . . . . . . . 15
3.3 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . 15

MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
MAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.1 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Choice of network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Testing 17
4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 First Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Second Data Set . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Third Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Neural network iteration . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Results 20
5.1 First Data Set - Linear Regression . . . . . . . . . . . . . . . . . . 20
5.2 Second Data Set - Nonlinear Regression I . . . . . . . . . . . . . . 22
5.3 Third Data Set - Nonlinear Regression II . . . . . . . . . . . . . . . 24

6 Conclusion 26

7 Discussion 27

1



1 Introduction
The first section is an introduction to the thesis, a summary of what is included
as well as the objective of the study.

The phenomenon of prediction is a widely analysed topic. Being able to observe,
analyse, visualise and use past data in order to, in the best way possible, use these
for new values on new data is a topic of growing importance. What might look like
a simple task can become very difficult when dealing with different characteristics
of data. For instance, if we would be able to predict future values with precise
accuracy within a large business corporation, the sales made and the profit of this
corporation would be at its highest efficiency since they would tweak production
and price according to the analysis of the prediction.[4] However, one cannot
predict the future and sometimes hundreds of factors play a key role for future
actual values. But even though this is a difficult task to do, there are several
methods available to create mathematical models in order to predict future values.
Models that to some extent are wrong, but might be useful.

In this paper, we will perform prediction using two kinds of methods. These
methods are widely used in the field of Machine Learning [7], where we first train
the model using some training data set and then test the model with another
unseen data set from the same distribution. The two methods are Neural Networks
and Linear Regression. In the next section, we offer theoretical explanations of
the two methods that will be used and algorithms used for fitting these models.
They are different in their way of fitting and so also different in performance. An
underlying hypothesis throughout this thesis is whether each of the two methods
is better in a specific situation and why.

The third section will focus on simulation of data sets in order to analyse the
methods in different situations. Here, three data sets are simulated with different
characteristics. These are then trained with cross-validated data sets and further
compared using different performance measures. These performance measures
have the advantage that they can be calculated for both methods, that can then be
used to analyse and compare the two methods in terms of prediction performance.

In the fourth section we will deep dive into the analysis of the simulated data sets
as well as the fitting of the networks to these data sets and how we eventually
end up with a desired model fit for each of the two methods.

The fifth section will be a presentation of the results yielded by fitting of the net-
works. Here, we will include plots of predicted against actual data. Additionally,
we will present tables containing the values of the performance measures for the
fitted models obtained with each of the two methods, that is, those two fitted
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models that performed best. Such a comparison is presented for each of the data
sets.

We conclude the thesis with a conclusion of the results as well as a discussion.

2 Theory
This section provides the theory and information needed for the understanding of
the two methods. This is divided into two section with Linear Regression being the
first method and Neural Networks being the second. Explanation such as fitting a
model, error terms as well as obstacles of each methods will also be provided.

The theory section will focus on the two chosen models, Linear Regression and
Neural networks, and their characteristics respectively. A large portion of the
theory has been obtained from [1], [2] and [3]. Apart form these three references,
we will notify if information has been provided elsewhere.

2.1 Linear model for regression
The use of a linear model when performing regression and predictions has become
a fundamental part of statistical data analysis. The assumptions behind the model
are usually easy to understand and analyse, which makes the model a frequently
used one in statistical analysis as well as in machine learning situations.

2.1.1 The Linear Model

The linear model for regression provides a simple yet effective way of estimating
a model from several exploratory variables. It does assume that the expected
response E(Y |X) is linear in the input data X, also referred to as the explanatory
variables. Further, the goal of regression is to predict one or several response
variables from these explanatory variables. A common procedure is that of cross
validation. In order to explain this concept, we first need to explain the concepts
of training and validation data. Having a set D of data, we can further divide this
data into subsets. One subset may consist of training data which are being used
to train the actual model, using regression techniques. From there, after choosing
a model that seems like a good choice, predictions of the rest of the data subset
are made to test or validate the model. Cross validation is a procedure for fitting
parameters to training data, when all observations of training data alternate to
serve as a validation set of size 1, as they are predicted from a model fit based on
the remaining parts of training data. Once the model has been fitted in this way,
so that all observations of training data are predicted as well a possible, focus is
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on using new input variables of the validation dataset in order to predict their
associated response variables.

We can express the linear model with input vector X = (X1, X2, ..., Xp)T as

Y = β0 +
p∑

j=1
βjXj + e = β0 + β1X1 + β2X2 + ...+ βpXp + ε

which is simply known as Multiple Linear Regression for the values of X consist of
more than one explanatory variable. With this setup, it can be seen that E(Y |X)
is a linear combination of the input variables and the objective is to estimate the
parameters βj. Each βj parameter describes how much the explanatory variable
Xj effects the expected value of the variable Y . The first regression parameter,
β0, is added as the intercept of the model, having a pre-fixed value X0 = 1 of its
input parameter. Additionally, an error term ε is added to the model. This is
a random variable with E(ε) = 0 and V ar(ε) = σ2. If there is implication that
more than one explanatory variable might be effecting the response values then
multiple regression come in handy. Further, if we are interested in n of these
observations, we can express the response value Yi as

Yi = β0 +
p∑

j=1
βjXji = β0 + β1X1i + β2X2i + ...+ βpXpi + εi

for i = 1, ..., n where εi are independent error terms with E(εi) = 0 and V ar(εi) =
σ2.

For simplicity, we can represent the variables in matrix form as

Y =


Y1
Y2
...
Yn

 , X =


1 X11 X21 · · · Xp1
1 X12 X22 · · · Xp2
... ... ... . . . ...
1 X1n X2n · · · Xpn

 , β =


β0
β1
...
βp

 , ε =


ε1
ε2
...
εn

 ,

which yields the representation output Y = βX + ε for all Yi, i = (1, ..., n). As
for the intercept, we have added a first column of ones in X, which is multiplied
by β0 in the matrix multiplication.

Further, when obtaining data, the values of Yi as well as Xi = (X1i, X2i, ..., Xpi)
are known. The goal of prediction is to use these past data values and train
the model which involves specifying the unknown parameters β = (β1, β2, ..., βp)T

and ε = (ε1, ε2, ..., εn)T . Given the multiple linear regression model above, it
is close to impossible to obtain a model that, with perfection, position all data
((X1i, ..., Xpi), Yi) along a hyperplane in (p+1)-dimensional Euclidean space. The
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data points from the actual regression model will rather have an added error
term vector ε. These errors consist of the difference between the true line of
the regression model and the actual data points. Further, assumptions are made
about the error vector ε that the distribution of the terms is multivariate normal
ε ∼ N((0, . . . , 0)T , σ2In), where In is the identity matrix of order n.

2.1.2 Least Squares Estimator

The creation of a model is typically focused on estimating the unknown parameters
β. The most frequently used estimation method involves the minimization of the
residual sum of squares, RSS. That is, we want to minimize

RSS =
n∑

i=1
(yi − β0 −

p∑
j=1

βjXji)2.

This method is referred to as the least square method.

The least square method is overall a satisfying method to use due to its simple
nature. Since it measures fits a linear regression plane to the data it is very often
used for all kinds of data.

So, minimizing the RSS is the strategy for obtaining a good model for prediction.
For each collection of vectors X i = (X1i, . . . , Xpi)T , we can express the RSS as a
matrix calculation in the form of

RSS = (Y−Xβ)T (Y−Xβ)

where X is defined as the n x (p + 1) matrix, each row (1,XT
i ) being an input

vector with the value 1 as its first position. Additionally, Y is defined as the n x
1 response value vector with respective values in the training set.

Further, by differentiating with respect to β, we obtain

∂RSS

∂β
= −2XT Y + 2XT Xβ.

Setting the expression equal to zero yields

XT Xβ̂ = XT Y

which finally results in the unique solution

β̂ = (XT X)−1XT Y.
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whenever XTX has full rank p+ 1. So, using the input data of X, we obtain the
least square estimator β̂. It then implies that

Y = Xβ + ε = Xβ̂ + e

where X contains the inputs and e now is the residual vector, that is, the part of
data not explained by the fitted model. Further, using the fact that Xβ̂ = Ŷ, we
get that ε = Y−Yest.

Figure 1: Least Square Method: Fitting data points to a estimated plane. Inspi-
ration from [2].

2.1.3 Assumptions of the linear regression model

For the linear regression model to hold, certain assumptions have to be met. We
have briefly mentioned that the function of regression E(Y |X) has to be linear in
the parameters. This holds even though the input data is so called non-linear.

We have also mentioned the error term vector of the model, which is distributed as
ε ∼ N(0, σ2In). This does tell us that the conditional expected value of the error
terms to the inputs are zero, i.e. E(ε|X) = 0. Additionally, we see that E(εi) =
E(E(εi|Xi)) = E(0) = 0, for i = 1, 2, ..., n, which implies the unconditional
expected values are also zero. This further implies that E(Y|X) = Xβ.
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Additionally, we expect homoscedasticity, meaning that the values of the ex-
planatory variables is independent of the error term variance, V (εi|Xi) = σ2

for i = 1, 2, ..., n. Meanwhile, the value of σ2 stays constant for all error terms.

We assume X to be a full rank n x k matrix, meaning that no column is a linear
combination of another column and that there are at least k observations.

We expect no autocorrelation in the model, meaning that the covariance value of
any two error terms terms (εi, εj) is independent of any value of the corresponding
explanatory variables. This can be stated as Cov(εi, εj|Xi,Xj) = 0, ∀ i 6= j.

Lastly, we assume that the error terms are normal distributed which results in
the model being multivariate normal distributed as ε|X ∈ N(0, σ2In).

2.1.4 Basis Functions

An important characteristic of the regression model is that the βj parameters have
a linear effect on the model. Thus, the model becomes rather limited when fitting
a linear model on non-linear data. As a solution, we do have the possibility to
remedy this using basis functions. The basis functions are used as transformations.
Since the input variables XT = (X1, X2, ..., Xp) are known, these can be modified
using some functions φj(Xj). What characterizes the model as linear are the
actual βj parameters. It is also common for the covariates to be measured in
different ways on different scales, which makes the basis functions practical to use
whenever this is the case.

Again we have the regression model as

Yi = β0 +
p∑

j=1
βjXji + εi.

We further apply the basis functions to the covariates in order to extend this
model. We now have

Yi = β0 +
p∑

j=1
βjφj(Xji) + εi.

Recall, the parameters βj as well as the intercept still make the model linear, even
though the input data Xji are transformed by possibly non-linear functions.

Very common choices of basis functions include the identity basis φ(Xji) = Xji,
quadratic basis φ(Xji) = X2

ji and the log basis φ(Xji) = log(Xji). All these basis
functions preserve the linearity of the model, since the relationship between the
expected outcome and the parameters is still linear.
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2.1.5 Obstacles with linear regression

While the linear regression model is widely used for fitting and predicting data,
its simple nature makes it limited to more complex data characteristics. Since we
expect the explanatory variables to have a linear relationship with the expected
response, we directly put restrains to the model. However, this restriction can
be relaxed by with the use of basis functions, as stated above. A problem with
the basis function approach for linear regression is that it is only practical to use
when the number of explanatory variables and hence the number of parameters
is small. Since you have to add each basis function φj to each of the explanatory
variables explicitly, with a large number of explanatory variables in a model, this
task can becomes overwhelming. Additionally, with a high number of explanatory
variables it can be very challenging applying the most appropriate basis function
to each explanatory variable.

2.2 Neural Networks
Neural network as a term was first introduced in 1943.[8] It is largely focused
on the information processing of the human brain and trying to mimic it using
mathematical approaches and models. As input data are being observed, each of
these inputs are being processed by a neuron within a layer of the network. Since
each layer may consist of several neurons, each data point must now pass through
the full layer and hence pass through every neuron. After each point has passed
through all neurons of the first layer, each value of the neuron connects with the
next layer in the same way with an entirely new set of neurons to be processed.
This process is repeated until we finally connect with a set of output neurons or
the output layer, where we now obtain the values that aim to approximate the
expected response variable(s) associated with the input data.

This process is known as feed-forward neural network - the connections move from
one layer to the next until all layers are passed through. Further explanation will
be made below with more mathematical terms.

2.2.1 Setup of the Network

Throughout this thesis, we will consider a neural network for prediction with a
single output variable. The network consist of three main parts; Input layer, one
or more hidden layers and lastly, an output layer. For this thesis, we will restrict
the number of hidden layers to be either one or two. The input layer consists of
nodes with the actual input data. Hence, this connection does not have an effect
on the data. From here, the neurons within the input layer are connected with
the nodes within the second layer, which is the first (and sometimes the only)
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hidden layer. These connections now have an effect on the output data due to the
way signals are propagated through the network.

With the former statement, we can describe the input network withK constructed
linear combinations as

ak =
p∑

j=0
w

(1)
kj xj = w

(1)
k0 + w

(1)
k1 x1 + ...+ w

(1)
kp xp

where k = 1, ..., K, w(1)
kj is the j’th weight of linear combination k and it is mul-

tiplied with data value xj, where xj ∈ {x0, ..., xp}. Note that the equation above
defines the actual connection of weights and the superscript (1) defines which
hidden layer the weights are connected to. The weights have a large impact on
the properties of the nodes, the training of the network and the actual predicted
values. For j = 0, we assign data point x0 = 1 and hence the first term of the right
hand side of the above equation is w(1)

k0 . This is referred to as the bias parameter of
the current k’th node. Weights and bias parameters are referred to as regression
coefficients and intercept, respectively, in analogy with linear regression notation.

We do define the term as ak for being the quantity of the activations - depending
on the values obtained from the previous layer of nodes, the quantities of this
layer of nodes are modified by the activation function. Each of the ak’s is now
transformed using a non-linear activation function, most likely a logistic sigmoidial
or a tanh function, which here functions as a type of basis function similar to the
one of linear regression. The knowledge of these non-linear activation functions
play a central role in the training of the network, where a differentiable function
is needed.

We can describe this new data set as sk = h(ak) where h(·) is the activation
function. The variables sk now function as the different values of the nodes within
the first hidden layer. When all the quantities of activation ak, k = 1, ..., K have
been calculated, new connections are made to the next layer of nodes. This could
very well be another hidden layer or the output layer.

So far, we have an input layer, the first hidden layer and a set of weights connecting
these two. For the next hidden layer, we obtain another set of connections in the
form of

bl =
K∑

k=0
w

(2)
lk sk,

where we now consider sk as the data from the first hidden layer with k = 1, ..., K
outputs as well as l = 1, ..., L being the number of nodes within the new hidden
layer. Now, all w(2)

lk denote the values of the weights in the connection between the
first and the second hidden layer and w(2)

l0 will again function as a bias parameter.
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Since we are using the neural network for regression, i.e. to predict a certain value
of a response variable associated with the input data, a wanted output value
consists of only one variable. We further add an output layer, constructed as

cm =
L∑

l=0
w

(3)
ml tl,

where m = 1, ...,M is the new set of nodes within the output layer and tl = h(bl)
is the data from the second hidden layer. By settingM = 1, the output layer now
consist of one node and it is connected with the second hidden layer, resulting in
only one predicted value ŷm. As a matter of fact, since the last activation function
for a regression is the identity function, the output value will be ŷM = cM ,M = 1.
We will denote the actual output values as ŷm.

With the above notation of every layer respectively, we are now ready to formulate
a neural network mathematically with input layer, two hidden layers and output
layer with weight connections between them. We denote this as

ŷm(x,w) = g

 L∑
l=0

w
(3)
mlh

 K∑
k=0

w
(2)
lk h

 p∑
j=0

w
(1)
kj xj


=

L∑
l=0

w
(3)
mlh

 K∑
k=0

w
(2)
lk h

 p∑
j=0

w
(1)
kj xj

 = fm(x,w)

where we remove the function g(·) since, in case of regression, it is the iden-
tity function whereas h(·) is the within node activation function. We also define
fm(x,w) for upcoming sections.

2.2.2 Fitting a Neural Network

Now, how do we make a network to estimate its parameters from training data
in order to predict the outcome variables of validation data? As the feed-forward
procedure are active, the weight and bias parameters that connect the nodes from
one layer to another are to be estimated. Reaching the last layer of the network,
the output layer, a prediction is made. From these values, we can now derive a
so called loss function. This is closely related to that of linear regression, where
the interest lies in minimizing the sum of squared prediction errors.

For input data x = (x0, x1, . . . , xp) we further denote θ as the full set of weights.
This now includes K(p + 1) connection of weights from the input of p values to
the first hidden layer of K nodes. For any node of the hidden layer each of the p
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Figure 2: A neural network with two hidden layers. Inspiration from [2].

input variables contribute with one parameter, and the last parameter denotes the
bias parameter, representing wk0x0 = wk0. Likewise, we obtain another L(K + 1)
connection of weights from the first hidden layer of K nodes to the second hidden
layer of L nodes. Finally, the connection between the second hidden layer and
the output layer consists of another M(L + 1) parameters. Again, since we are
using the network for regression, we want one output as prediction and hence,
M = 1. As we now obtained the first predicted value ŷim = fm(xi) of each
response variable yi based on the corresponding input data xi = (xi0, . . . , xip), the
objective is to minimize the sum of squared errors, represented as

R(θ) =
M∑

m=1

n∑
i=1

(yim − fm(xi))2 =
n∑

i=1
Ri(θ).

This approach of minimization in a feed-forward network will make use of gradient
descent, a technique where we use the activation functions within the neurons
that are differentiable using the chain rule of differentiation. We now move in the
opposite direction, backwards, to receive information about the gradient vector of
R(θ) to change θ along this direction and thereby further reduce the value of the
loss function. When this is done, the feed-forward process is applied again, now
with updated weights and biases, to obtain possibly better predicted values. This
process, that is repeated back and forth until the predicted values converge, is
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called error back propagation.

2.2.3 Error Backpropagation and Gradient Descent

Let us look at this in more detail. When the feed-forward calculations have been
made, we obtain an output value which is the predicted value of the response
variable that we want to examine. Further, the loss function is calculated using
the predicted value minus the actual value of the output as prediction error. The
gradient of the loss function value is then calculated, this with respect to each
single weight that has been calculated during the feed-forward process in the
network. Since each of the nodes within the network has a non-linear activation
function, the gradient is then a non-constant value and therefore applicable for
gradient descent. In other words, for all i, j, k, l and m = 1 we calculate

∂Ri

∂w
(1)
kj

,
∂Ri

∂w
(2)
lk

,
∂Ri

∂w
(3)
ml

.

We can now use these gradient values as gradient descent updates. Further,
dividing the network process into two parts, we then have a forward sweep, which
includes input of data, propagating this input data using the current weights, to
the hidden and output layers, and finally calculating the loss function. Given the
above derivatives of the loss function with respect to the weights, we now perform
a backward sweep, where each parameter is updated from iteration r to r + 1 in
the form of

w
(1)(r+1)
kj = w

(1)(r)
kj − γr

n∑
i=1

∂Ri

∂w
(1)(r)
kj

,

w
(2)(r+1)
lk = w

(2)(r)
lk − γr

n∑
i=1

∂Ri

∂w
(2)(r)
lk

,

w
(3)(r+1)
ml = w

(3)(r)
ml − γr

n∑
i=1

∂Ri

∂w
(3)(r)
ml

.

This subtraction of the gradient from the weight value will reduce the error value.
Since the gradient is the actual direction of the steepest descent, by subtracting
this from the weights with a somehow good choice of learning rate γr, the updated
value of the loss function will be close to a point of local or global minimum.
These are different points within the gradient space that functions as minima of
the loss function. The learning rate is commonly a constant, chosen with respect
to obtaining a balance between accuracy and the number of iterations while not
making the network spend too much time iterating. It is, however, possible to
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find an optimal γr using gradient techniques as well, but this is often an expensive
calculation in high-dimensional space.

A scenario where we end up in the global minimum of the loss function is typically
not desired, since this is likely to overfit the model. Because the network needs to
handle derivatives of non-linear functions, it may not need to access this global
minimum but instead one of many local minima that are present. Further, one
can compare these minima to eventually choose which one may suit the model
best.

2.2.4 Obstacles with Neural Networks

As mentioned, a common problem during fitting of a neural network model is
the amount of parameters that is estimated. This can often lead to an overfit to
data and leads to the loss function ending up in the global minimum. Overfitting
is when a model is fitted to the training data too well. It is then difficult for
the model to generalize to new data. The most common solution involves early
stopping, a technique where we use the cross-validated data in groups of Dt as
the training data and Dv as validation data. As we trained the network with Dt

we now use Dv and implement an intentional iteration stop whenever we think
that the network is within or very close to a local minimum of the loss function.
In this way, the network will not iterate in the wrong direction of the gradient
descent. For another method, similar to that of the ridge regression which is a
type of shrinkage method (along with Lasso), a penalty value is added to the
error function. This happens in the form of R(θ) + λJ(θ) for a constant tuning
parameter λ ≥ 0. The penalty can be expressed as

J(θ) =
∑
k,j

w
(1)
kj +

∑
l,k

w
(2)
lk +

∑
m,l

w
(3)
ml .

A value of λ is usually estimated by cross-validation.

Standardization of the inputs is another important factor when dealing with neural
networks. To be sure that all input data is treated the same, standardization
are made so that inputs have mean equals zero and standard deviation equals
one. This also ensures that the first connection of weights between the input
layer and the first hidden layer has a range well optimized for input data. These
first connections are typically randomly simulated from a uniform distribution
with range [−0.7, 0.7]. This is also used in the following simulations. Starting
with weights being equal to zero will lead to zero derivatives within the network,
whereas large values of starting weights tend to effect the results badly.
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3 Simulation and Fitting Models
Chapter 3 will focus on the creation of models to simulate data from, and how to
evaluate their performance. We will explain the technical parts of of fitting linear
regression models and neural networks, the performance measures that are being
used in order to compare the models, the data simulation structure as well as what
types of networks to choose from when creating neural network models.

The following simulation study will largely focus on three specific data sets. These
data sets have been simulated to train models that has been fitted using either
linear regression or neural networks. We will be using packages from R, namely
neuralnet package and the lm function. The lm function is frequently used for
fitting linear models and performing linear regression analyses. The neuralnet
package might be less common since it primarily focuses on neural network anal-
yses. Therefore, a short description is made for further understanding of the
network fitting used in the simulations. Further, we will also introduce different
measures of performance for comparison between the fitted models. Mentioned in
the previous chapters is the sum of squared errors as the loss function. We can
further use the mean squared errors, simplified as MSE, to use as a performance
measure. We will compare this with the mean absolute error, simplified as MAE.
Lastly, the coefficient of determination value R2 will be calculated in order to
assess whether a model has a good fit or not. The data sets will be arranged
into cross-validated subsets of training, validation and test data. The choice of
network structure will be presented after iterating through models with either one
or two hidden layers with one to ten nodes in each.

3.1 The neuralnet package
To able to fit the neural networks provided in this study, we make use of the
neuralnet package. Being a flexible package, it is very much up to the user to
choose the number of input nodes, the number of hidden layers, the number of
nodes within each layer as well as an output layer. A primary concern is usually
the amount of hidden layers as well as the amount of nodes within each of the
layers. Since we need to choose a network structure before fitting the network,
we decided to first find the best network structure in an iterative way, and then
use this structure for comparing its fit with that of a linear model.

Even though this package competes with other packages, like nnet and AMORE,
the neuralnet is built more towards training networks for the sake of regression
and thus was the clear choice when choosing how to fit the network.[6]
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3.2 Fitting the Linear Regression Model
For the fitting of the linear regression model, we use the lm function which is a
standard built in function within R.

3.3 Performance Measures
To be able to compare the two models we are in need of diverse measures. These
measures make use of the sum of the errors but in unique ways for each of them.

MSE

The MSE is defined as
MSE = 1

n

n∑
i=1

(yi − ŷi)2

and is a common technique to measure the performance. The result is obtained
from calculating the difference of the actual value and the predicted value of
each response variable for the used model in order to analyse if the fitted model
performs well. However, since MSE is calculating the square residual, some data
points have an effect on the MSE that might be misleading. Outliers, for example,
have a bigger impact on the MSE. This is something to consider when analyzing
the data sets that have been simulated. Further, a smaller MSE generally tends
to indicate a better fit of the model to data.

MAE

We define the mean absolute error as

MAE = 1
n

n∑
i=1
|yi − ŷi|,

which measures the average absolute difference between the response variables
and the predictions of them obtained from the model fit. MAE is commonly used
for prediction accuracy in forecasting, but also for calculating average error for
model performance.[9] Outliers are handled better by the MAE measure since
large prediction errors have a lower impact compared to the MSE criterion. Since
we are calculating absolute values, the measure can be interpreted as an average
distance between the data points and the projections of the data points on the
fitted hyperplane. It is therefore also always positive.

R2
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The R2, also known as the coefficient of determination, is a commonly used value
in determining the proportion of the total sample variability of the response values
that is explained by the covariates of the chosen model. We define this as

R2 = SSreg

SStotal

= 1− RSS

SStotal

,

where SSreg is the regression sum of squares, SStotal is the total sum of squares
and RSS is the residual sum of squares. The value of R2 ranges from 0 to 1. This
is a very convenient range for assessing whether the fitted model explains the data
well whereas it is more difficult to interpret the other performance measures. This
measure R2 is used here to confirm that a model provides a good fit to the test
data.[5]

3.4 Simulated data
We have simulated three different data sets with unique characteristics. This in-
cludes data sets from one linear model and two non-linear models. The simulation
is described in more detail in section 4. Next, standardization of the explanatory
variables of input data is made with mean µ = 0 and standard deviation σ = 1.
This standardization is usually made so that the parameter estimation of the net-
work converges faster than otherwise since the data processing is simplified. We
will further perform model fitting and performance tests on the different data sets.
With each data set we perform cross-validation in order to train and test the two
models.

3.4.1 Cross-Validation

Each of the simulated data sets has been divided into three subsets using cross-
validation of training, validation and test data. While the training and the val-
idation data is a 80:20 split, we simulate another set of data from the same
distribution and use this as the test data set. This is then repeated for each of the
three different kinds of data sets. We do this to avoid any over- or underfitting of
the models.

3.5 Choice of network
While the neuralnet package performs the calculations in order to fit the network,
the structure of the network has to be chosen at first in order to perform the model
fitting. The structure involves the input weights connection between the input
data and the first layer of nodes, the number of nodes within this first layer and
whether we want a second layer for which the number of nodes has to be decided.
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The connection of weights between the input data and the first hidden layer are
randomly chosen from a uniform distribution over the range of (-0.7, 0.7). The
number of variables that are generated depends on the number of nodes within
the first hidden layer. For the first test, the first hidden layer will now contain
one single node which increases with one node for each iteration. Meanwhile, all
the above performance measures will be calculated. Further, we will perform the
same type of test but for a second hidden layer, resulting in ten times as many
iterations. Like before, the performance measures are calculated and presented.

4 Testing
The fourth section investigates in detail the prediction performance of the linear
and neural network models. This is mainly focused on the simulated data as well as
an explanation of the iteration procedure needed to obtain the best neural network
model.

The data sets are all simulated using the standard library within R as well as
using the mvrnorm function. Further, we will cross-validate the data as previously
mentioned. The modelling and the fitting of the two methods are performed on
each of the data sets where the linear regression is fitted with the lm function to
obtain predictions of response variables in the validation dataset. With the neural
network, we use the neuralnet package to fit the model and perform the iteration
procedure as mentioned above. This will yield several fitted models to along with
the associated MSE, MAE and R2 values for each neural network model. These
performance measures, and the corresponding ones for linear least squares, are
further compared and used to draw conclusions about each of the methods.

4.1 Data description
4.1.1 First Data Set

The simulation process has been divided into different parts for each of the data
sets. The explanatory variables in the first data set are simulated from a multivari-
ate normal distribution with mean (0, 1, 5) and the identity matrix as covariance
matrix with the number of observations being n = 500. This result in a design
matrix with p + 1 = 4 columns, with 500 observations in each column. Further,
we simulate and add the error term vector ε, whose components εi are indepen-
dent with a normal distribution with mean µ = 0 and standard deviation σ = 1.
Lastly, in order to generate response variables Yi we add to the error terms εi,
the intercept term β0 as well as a linear combination of the effect parameters βj

and covariates xji for j = 1, 2, 3. The intercept and the three effect parameters
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were given values β0 = 10 and β1 = 5, β2 = 1.7 and β3 = 1.2 respectively. This
data set is intended to be fitted well from both the trained linear regression model
and the trained neural network since both the linear regression method and the
neural network method will be able to fit a model where the expected value of the
response variables depends linearly on the explanatory variables.

4.1.2 Second Data Set

For the second data set, the explanatory variables are simulated differently for
each column of the design matrix. The column that corresponds to the first
explanatory variable is a sequence of equidistant and deterministically chosen
numbers (0.05, ..., 15) with an distance of 0.05 for each number. The columns
that correspond to the second and third explanatory variables are simulated from
a uniform distribution on the interval [2, 3] and a Poisson distribution with mean
λ = 0.7, respectively. The number of observations is n = 300, resulting in a design
matrix with p+ 1 = 4 columns and n = 300 rows. Further, we simulate the error
term vector ε with independent components from a normal distribution with mean
µ = 0 and σ = 1. The intercept term β0 = −20 as well as a non-linear function
of the three effect parameters β1 = 30, β2 = 3,β3 = −2 and covariates x1i, x2i, x3i

are then added to the error term in order to generate response variables

Yi = β0 + β1x1i

1 + x1i

+ β2x2i + β3x3i + εi.

These simulated values are now used as response variables of a a non-linear re-
gression model, since the expected value of each response variable is a non-linear
function of the corresponding explanatory variables. This data set is further
intended to catch the difference between the methods as the neural network is ex-
pected to perform better than the linear regression method due to the non-linear
characteristic of the data set. However, we do have the interest to apply a basis
function transformation to one or more of the explanatory variables within the
linear regression model to increase its accuracy.

4.1.3 Third Data Set

The third data set is also intended to showcase the difference between the two
methods. The simulation of the explanatory variables is similar to that of the
second data set - the column of the design matrix that corresponds to the first
explanatory variable is a sequence of equidistant numbers (−2, ..., 3.98) with a
distance of 0.02. The column that corresponds to the second explanatory variable
has independent and normally distributed components with mean µ = 1 and
standard deviation σ = 2 and the column that corresponds to the third column
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is generated from a uniform distribution on the interval [2, 3]. Each of these
columns consists of n = 300 observations. We also simulate another n = 300
error term observations with mean µ = 0 and standard deviation σ = 1. As
previously, the intercept term β0 = 2 as well as the three effect parameters β1 = 2,
β2 = −1.3 and β3 = 0.2 are then added to the model. For each observation
the explanatory variables and effect parameters are transformed non-linearly, and
then the intercept and the error terms are added, in order to generate the response
variable

Yi = β0 + β1x
2
1i

2 + sin(5x1i)
+ β2x2i + β3exp(x3i) + εi.

This data set is intended to demonstrate the difficulty in having a good fit of a
linear least squares model, even when one or several of the explanatory variables
are transformed by basis functions.

4.2 Neural network iteration
As mentioned previously, one of the core challenges when fitting a neural network
is to choose the number of hidden layers and the number of nodes within each of
them. Using the simulated data with standardized explanatory variables, we first
perform the fitting of ten neural networks with only one hidden layer, ranging from
one node to ten. Whenever these networks are trained, we apply the performance
measures in order to obtain a network that fits data in the best way.

Further, we iterate in the same way but now with two hidden layers of each
network. This also involves more calculations. Starting of with a two hidden
layer network with one node in each layer, we increase nodes within the second
layer as we fit networks. Reaching a maximum of ten nodes within that second
hidden layer, we then add another node to the first layer, so that it contains two
nodes. The second layer is refreshed with one node and the iteration is repeated
until the second layer has ten nodes. The size of the first hidden layer is then
iteratively increased to have up to ten nodes, with ten choices of second layer for
each. This gives a total of 100 fitted neural networks, all with their corresponding
performance measures of the validation data. This simplifies the task of choosing
the right structure for the network that we want to showcase when comparing
the prediction ability of the neural network to that of the least squares method
for the linear model. We then use the network that yields the best performance
measures from the validation data on another test data set. For this data set we
predict response variables and calculate the performance measures. This is the
result that will be presented in the next section.
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5 Results
As the simulation, the fitting and the calculations of the performance measures
has been presented, we provide the results of the simulations in this section. Here,
we focus mainly of the obtained values of the performance measures as well as to
visualize these result.

5.1 First Data Set - Linear Regression
Since both the neural network and the linear regression methods make use of the
least squares method for fitting and that both methods temper linear data well,
the results of both methods are similar to each other. Observing the actual data
against the predicted data points for the test data, we see that the two methods
yield almost identical results (see Figure 1). This suggest a good predictive
ability for both methods when applied to this first dataset.
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Figure 3: Comparisons of plots of actual versus predicted response variables for
data set 1.

The performance measures also give similar results for the two methods, with a
slight advantage of the fitted linear regression model when comparing the MSE
and and the MAE. The coefficient of determination is also presented to evaluate
the fit of the model (Table 1). We showcase the neural network model with
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the lowest MSE with NN(MSE) and likewise for the MAE. The linear model is
simply LR-model. This is somewhat expected, since the linear model is described
with less parameters than the neural network, and since data is simulated from
a linear model. We also observe that the same neural network model, with four
nodes within the single layer gives the lowest MSE and the highest coefficient
of determination value. Interesting enough, the lowest MAE value is present for
another, more complicated neural network. This model consist of four nodes
within the first layer and six nodes within the second.

Table 1: Performance Measures - Data set 1. The num-
bers K and L refer to the number of nodes of the first
and second hidden layer of a neural network, with a line
when such a layer does not exist.

Type K L MSE MAE R2

LR-model - - 0.02709 0.13398 0.97446
NN (MSE) 4 6 0.0401 0.1627 0.9551
NN (MAE) 2 6 0.0406 0.1626 0.9547

Table 2: Topp 10 neural networks with lowest MSE for
dataset 1.

K L MSE MAE R2

4 6 0.0401 0.1627 0.9551
3 - 0.04029 0.16318 0.95495
3 6 0.0404 0.1631 0.9548
2 10 0.0404 0.1634 0.9548
2 3 0.0406 0.1637 0.9546
3 5 0.0406 0.1636 0.9546
2 6 0.0406 0.1626 0.9547
2 8 0.0406 0.1626 0.9546
2 - 0.04069 0.16262 0.9545
6 6 0.0408 0.1648 0.9543
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5.2 Second Data Set - Nonlinear Regression I
For the result of the first dataset from a non-linear regression model we immedi-
ately see a difference in performance of the two methods. Observing the actual
against predicted plots the linear regression struggles to fit to the data while the
neural network performs well (see Figure 2).
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Figure 4: Comparisons of plots of actual versus predicted response variables for
data set 2

Since the neural network is adapting to the non-linear data through the non-linear
activation function, the training algorithm is able to utilize the gradient descent
in a better way in order to fit a network to the training data.

22



Observing the table, we get a better understanding of the performance measures.
The linear regression method does a poor job of fitting the simulated data as well
as producing predictions of the response variables. However, the use of a basis
function to transform the input data improves performance of the linear regression
method. This can be seen in the table as well. We now obtain a significantly
better model for the data after using a φ(X) = log(X) transformation. After
such a transformation the linear least squares method performs almost as well as
the neural network.

The result of the fitted neural networks is that one and the same model obtains
the best results when analysing the MSE, the MAE and the coefficient of
determination. The results are also better than the fit from the linear regression
model, either with or without the transformation of input data (see table 3).

Table 3: Performance Measures - Data set 2.

Type K L MSE MAE R2

LR-model - - 0.29314 0.42041 0.5812
LR-model, transformed - - 0.05843 0.19345 0.91541
NN (MSE) 2 2 0.0304 0.1467 0.9583
NN (MAE) 2 2 0.0304 0.1467 0.9583

Table 4: Topp 10 neural networks with lowest MSE for
dataset 2.

K L MSE MAE R2

2 2 0.0304 0.1467 0.9583
5 4 0.0307 0.1472 0.9579
4 2 0.0309 0.1471 0.9577
10 2 0.0311 0.1472 0.9573
5 2 0.0314 0.1506 0.9569
3 3 0.0316 0.1499 0.9566
9 4 0.0317 0.1527 0.9565
2 8 0.0321 0.154 0.9559
2 9 0.0321 0.1541 0.956
2 6 0.0322 0.1544 0.9558
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5.3 Third Data Set - Nonlinear Regression II
The final data set is generated from another non-linear regression model, with
a more complex characteristic. In the plot where we analyse actual against
predicted values, we observe a similar situation as with the previous data set.
The linear regression method gives a poor fit to the data (Figure 3). However,
applying a polynomial basis function transformation increases the accuracy to
fit a model using the linear regression method (table 3). It does not match the
performance of the neural network as can be compared in the same table.
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Figure 5: Comparisons of plots of actual versus predicted response variables for
data set 3
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The neural network with the best performance is shown below (see Table 3).
We conclude that the neural network performs well again, with a coefficient of
determination value of 0.97 which shows that such a model fits well to the test
data. We get the same network structure for each of the performance measures
which indicate a model that is applicable for prediction of response variables.

Table 5: Performance Measures - Data set 3.

Type K L MSE MAE R2

LR-model - - 0.47088 0.51291 0.51476
LR-model, transformed - - 0.19757 0.30585 0.79806
NN (MSE) 3 10 0.03 0.1341 0.9702
NN (MAE) 3 10 0.03 0.1341 0.9702

Table 6: Topp 10 neural networks with lowest MSE for
dataset 3.

K L MSE MAE R2

3 10 0.03 0.1341 0.9702
5 10 0.0328 0.1423 0.9675
7 5 0.033 0.1455 0.9672
4 6 0.0346 0.1387 0.9656
4 7 0.0354 0.1578 0.9648
6 9 0.0357 0.1507 0.9645
8 - 0.03594 0.15276 0.96424
6 8 0.0362 0.1456 0.9641
6 5 0.0365 0.1506 0.9637
3 7 0.0378 0.1552 0.9624
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6 Conclusion
The main goal for this thesis was to compare the two chosen methods, neural
networks and linear regression, when fitting models to use for prediction. The
theory part of the thesis showcases how a model is fitted for each of the methods
and how the calculations of this fit are made. For a neural network model, the
importance lies in the number of hidden layers and the number nodes for each
of these layers, being referred to as the structure of the network. After we have
chosen the structure of the network, we make the calculations of the weights that
connect the nodes to each other. These weights are the parameters of the network
and play an important role. A loss function is calculated when the calculations of
the weights has been finished. This loss function is the minimization of the sum
of squared errors. To be able to improve the prediction of a network model, we
make use of the gradient descent in order to lower the error of the network.

The explanatory variables of the data sets were simulated from different distribu-
tions. This was made for each of the data sets. The response variables were then
calculated using these explanatory variables in their own unique way for each of
the data sets. This was made so that the three data sets had different character-
istics in order to observe in what situations one of the methods are to prefer over
the other.

To be able to compare the methods and to pick the best model, we calculate
different performance measures. In this thesis, the performance measures were
the MSE, MAE and the coefficient of determination. These are calculated for
each model in order to choose the best fit for the current dataset out of the three
simulated data sets. Further, we presented the results with plots that compare the
actual values of the response variables against what the chosen model predicts.
This gives a clear view of the difference between the actual performance and the
models. We also showcase the model, for each of the methods, with the best fit
according to the performance measures.

Throughout the study, when analyzing performance measures, we obtained a high
value for the coefficient of determination for the neural network model that was
selected, all being above R2 > 0.95. This indicates that the network model fits
well to the data. Observing the results of the first linear data set suggests that
the linear regression model is a better fit than the neural network model. Since
data is simulated from a linear model, this comes as no surprise. The result of the
second data set clearly suggests a neural network model over the linear regression
model. However, by applying a log transformation type of basis function to one
of the explanatory variables, the result of a transformed linear regression model
is close to that of the neural network. Since a linear regression model is easier
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to understand as well as to analyse, a transformed linear regression model can
be a better pick even though the result is slightly worse than that of a neural
network model. Lastly, the result of the third data set indicates that a neural
network model fits better to data than the linear regression model. Here, the
linear regression model obtains a small R2 value while for the neural network R2

still had high value.

7 Discussion
During testing, we also experimented whether a third hidden layer would be pos-
sible or not. This would result in ten times as many neural network models,
meaning we would be able to choose from another 900 models. The main issue
here was that fitting different models with three hidden layers was too time ex-
pensive. With this result, the thesis focused on one hidden layer or two hidden
layers for the neural network models.

Observing the results of the second data set, a basis function applies well to the
data and we are were able to obtain results for the linear regression model that
were close to the results of the neural network. The question remains whether or
not the performance of the two models is close enough for actually choosing the
linear model. An advantage is that a linear regression model is much easier to
analyse and understand and could therefore be a better choice.

For the third dataset, a basis function transformation did increase the perfor-
mance of the linear regression model. However, there was a difference between
the neural network model that fitted the best and the transformed linear model
when comparing the coefficient of determination. So even though an appropriate
basis function transformation for the linear model was found, the neural network
still had a better performance and was preferable to use in comparison to the
linear regression.

When simulating the data, the goal was to simulate the explanatory variables that
were being used. We then generated the response variables by adding simulated
error terms to a pre-chosen function for the mean response. Models are then fitted
to training data and compared in order to choose the model that fit response
variables of test data the best. This makes it possible to choose the best model
as the one for which the outcome of data can be compared to an estimate of the
expected value of the outcome. From the results, we can conclude that the models
are able to predict well when tested with the test data set, but these findings might
not generalize well to other data sets.

For further analysis, an interesting approach is to implement other machine learn-
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ing methods to analyze the simulated data as done in this thesis. With compar-
isons of several methods and models, it can be simpler to outrule a method that
does not fit the data well. This could very well be one of the methods above. In
that way, comparing several methods is efficient in order to choose the best one
and obtain a model that fits the data in the best way possible.
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