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Abstract

No machine learning algorithm is perfect, but some are superior

at providing accurate predictions and forecasts. In this report, we

compare the ability of random forests and LS Boost to produce one-

step forecasts. The study regards mainly the object of finding which

algorithm is able to attain the smallest forecast error for unseen data.

Different situations are considered to diversify the work and accom-

plish a fair comparison. Data is obtained from simulations, where

three established financial time series models serve as frameworks. In

order to understand and apply the algorithms correctly we introduce

the theory of regression trees, bagging and boosting. The specific algo-

rithm for random forests and LS Boost respectively is also presented,

along with some general knowledge about the three time series mod-

els. We find that LS Boost achieves lower forecast error in terms of

both mean squared error and mean absolute error for all simulations.

This is the case regardless of whether the parameters of the algorithms

are tuned. Random forests is close in performance though and does

actually approach the performance of LS Boost as the simulated data

becomes more sparse.
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Abstract

No machine learning algorithm is perfect, but some are superior at
providing accurate predictions and forecasts. In this report, we com-
pare the ability of random forests and LS Boost to produce one-step
forecasts. The study regards mainly the object of finding which al-
gorithm is able to attain the smallest forecast error for unseen data.
Different situations are considered to diversify the work and accomplish
a fair comparison. Data is obtained from simulations, where three es-
tablished financial time series models serve as frameworks. In order to
understand and apply the algorithms correctly we introduce the the-
ory of regression trees, bagging and boosting. The specific algorithm
for random forests and LS Boost respectively is also presented, along
with some general knowledge about the three time series models. We
find that LS Boost achieves lower forecast error in terms of both mean
squared error and mean absolute error for all simulations. This is the
case regardless of whether the parameters of the algorithms are tuned.
Random forests is close in performance though and does actually ap-
proach the performance of LS Boost as the simulated data becomes
more sparse.
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1 Introduction

Machine learning is a growing field of mathematical statistics and becomes
more relevant within several professions for each year. In turn, supervised
learning is the largest field of machine learning for justified reasons. One
reason is its applicability to real life problems. New algorithms or modifi-
cations of existing ones appear frequently, as there exists an endeavour to
beat established algorithms and reach the lowest possible errors.

Time series models possess some properties that make them different
from other regression models and they hence become interesting to under-
stand and predict. It is a difficult task, especially if the underlying model is
unknown. For this reason, we want to apply rather complex machine learning
methods along with linear methods for estimation on different time series to
evaluate their performance. Simulations will provide data from three com-
mon time series models.

Among the most popular machine learning algorithms are boosting and
random forest. They make an excellent subject for comparison, as they both
exploit the idea to combine many simple, often bad in their self, learners to
achieve better results. The learner is in this case regression trees, which are
inspired by the decision making process in real life and are easy to interpret.
These algorithms have proven to be highly competitive and not very hard
to implement, hence their popularity.

Random forests was developed from its precursor bagging and does not
have many well known variants. Boosting on the other hand, comes with var-
ious implementations and variants, each with a unique name. One of them
was proposed in the same year as random forests, namely the LS Boost al-
gorithm. This algorithm has a natural connection with regression problems
with a relatively simple implementation. Understanding LS Boost and gra-
dient boosting in general is a good idea before getting into the more recent
variants of boosting, such as LightGBM, XGBoost and CatBoost.

1.1 Outline

This paper starts off with a theory section, where the different subsections
follow a natural order so that it is preferable to read from beginning to end.
The purpose of this section is to give the reader proper information about
the algorithms. An experienced programmer should be able to implement the
algorithms without any prior knowledge of them. Following is the simulation
section, where the aim is to find out which algorithm performs best. Readers
with good background knowledge can skip to this section.
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2 Theory

2.1 General concepts of machine learning

This study falls into the category of supervised learning where the object is
to predict an output y from inputs x. We say that x is an observation from
the random variable X with unknown distribution. There are in general p in-
put variables such that X = (X1, X2, . . . , Xp) is multivariate. Furthermore,
y is an observation from Y that is assumed to be connected to X via

Y = f(X) + ε.

Hence, Y is another random variable. The term ε stands for the noise occur-
ring between Y and f(X). Noise can be explained as a random error that
is assumed to be 0 on average and independent of X. The aim is thus to
estimate f(X) only. We do this using a training set consisting of N paired
observations. Consequently, for observation i = 1, 2, . . . , N the input-output
pair is (xi, yi) where xi = (xi1, xi2, ..., xip). These notations are in line with
[1] (introduced in section 2.1, pages 15-16).

In the context of machine learning, bias and variance is vaguely defined
and referred to in many different situations. Formally, bias is defined as

Bias(f̂(X)) = E(f̂(X))− f(X)

for an estimator f̂(X) of the fixed but unknown true function f(X). This is
known as the systematic deviation of our estimator from the true function.
The variance is per usual defined as

Var(f̂) = E((E(f̂)− f̂)2)

where the dependence of f̂ on X has been made invisible for clarity. This
quantity is known as the source of error originating from the estimator’s
variation around its mean. It is a measure of sensitivity when small changes
are made in the training set. If we were to repeat an experiment on new data
points from the same distribution, high variance means that the estimates
would differ a lot on average. Note that the bias function is defined condi-
tionally on X, so it is actually a function of X, whereas X is random in the
definition of the variance. Now, from [1] (page 34, equation 2.7) we get that
the average squared prediction error on a previously unobserved data point
x0 can be decomposed as

E(y0 − f̂(x0))2 = Var(f̂(x0)) + Bias(f̂(x0))2 + Var(ε), (1)

which is known as the expected test mean squared error (MSE). The term
Var(ε) can serve as a threshold value for how low the MSE can go because
it is an irreducible source of variation. Equation (1) can be derived from

E(y − ŷ)2 = E(f + ε− f̂)2 = E(f − f̂)2 + Var(ε)
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since ŷ = f̂ . A separate testing set is thus required in order to estimate the
MSE.

Bias is in this report and occasionally in the literature referred to as
intercept or constant terms. It is also referred to as training error because
variance defined as above does not exist on training error due to the data
set being fixed. Bias in the setting of training error is closely related to the
concepts of overfitting and underfitting. When bias is very low the model has
probably picked up some of the noise, leading to an overfit. On the contrary,
high bias probably means that the important structures of the data are not
modelled entirely, which is known as underfitting. Meanwhile, variance is
sometimes referred to test error due to the evaluation on new data. It will
be clear from the context what each term stands for and it is usually the
definitions above.

2.2 Regression trees

Regression trees have a major role in both of the algorithms compared in this
report and is clarified later on. It is therefore critical for the purpose of the
analysis to understand them. A regression tree is a decision tree where the
response variable is continuous. They appeal to our intuition since many
decisions in real life are made using the same logic. All material in this
subsection will be taken from [2] (section 9.2) unless stated otherwise. The
implementation used here, called CART (classification and regression trees),
was introduced in [3].

Tree-based methods in general are powerful since they can capture non-
linear complex structures in the data and have low bias when grown deep,
see [2] (page 305). They are also simple from a computational perspective
and work with single as well as multiple regressors. The process of growing a
tree is recursive such that the data is splitted in a binary fashion according
to some condition in each step. In other words, the data is first divided into
two pieces, or branches, then each branch is divided into two parts and so
on. Eventually, a sufficient tree is formed in which the final partition defines
regions for the explanatory variables. The interpretability of this method is
one of its advantages, since they for instance are easy to display graphically.

A mathematical description will now be provided, in accordance with [2]
(page 307), and the notation here is used throughout the report. First off, a
decision is needed regarding how to model the final regions that the method
produces. This is an issue of how to make predictions of the response variable
within each region R1, R2, ..., RJ , where J is the total number of regions. The
common choice is to model the regions with different constants, that is, for
region j we model the response with a constant cj , but other functions could
be used as well. Only constants are considered from now on. It is easy to
show that the optimal constant according to the sum of squared deviance
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criterion is the average of the yi within the region. So for region j we set

ĉj = mean(yi|xi ∈ Rj),

corresponding to equation 9.10 in [2]. This can be shown by differentiating

L =
∑
xi∈Rj

(yi − cj)2

with respect to cj and then solve L′ = 0. One should interpret ĉj as the
optimal constant given a fixed training set.

Next up, we treat how the regions are formed by defining a similar pro-
cedure as in [2] (page 307). It is often impossible to find the best partition
of data in terms of least squares, which is one of the flaws that regression
trees exhibit. Instead, the way to go is to start with all the data in a greedy
approach. The task is to find an optimal variable k to split and an optimal
point s that splits the data into two regions, namely

R1(k, s) = {X|Xk ≤ s} and R2(k, s) = {X|Xk > s},

where the upper-case letters now denote unobserved quantities. To be pre-
cise, the split points are always chosen to be one of the values in the data,
for example x72, the seventh observation of the second explanatory variable.
Now, given the data points of pairs (xi, yi), we want to solve

min
k, s

min
c1

∑
xi∈R1(k,s)

(yi − c1)2 + min
c2

∑
xi∈R2(k,s)

(yi − c2)2

 .
This equation is gathered from [2] (equation 9.13). With insight from before
the inner sums are minimized by choosing the constants as the mean of the
response variables within the region, given k and s. It thus turns down to
scanning through the different explanatory variables and its different inputs,
which is very feasible for a computer (as long as the size of the data set is
not humongous). When the optimal values are found the algorithm can be
applied to each region in the new partition of the data. With a final tree,
one can predict a response from new input belonging to region Rj with the
value ĉj .

In Figure 1, there is an example of a regression tree. At first, the split
is made at x1 = 0 and divides the data into two parts where observations
larger or equal to 0 go down the right side of the tree. Then, more splits
are made, eventually resulting in five regions where c1, . . . , c5 are shown at
the terminal nodes. This tree includes two variables, but the dataset could
nevertheless consist of more, seemingly irrelevant, input variables.

The question arises when to finish the process, which is discussed in [2]
(page 308). This is an important question since overfitting will become an
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Figure 1: A simple regression tree including two variables

issue with a very large tree while a too small tree probably will underfit.
However, this is of less practical importance since the programs available of-
ten deal with this automatically in an effective way. Nevertheless, a preferred
method to address this, called cost-complexity pruning, will be described in
the following.

The term pruning comes from the idea of growing a large tree T0 as a
starting point and then trying to make it smaller without increasing the
sum-of-squares too much. The regions defined by T0 should only contain
some minimal number of data points, say 5, which governs how large T0 can
be. To begin with, let T ⊂ T0 be any subtree. That is, we can obtain T from
T0 with pruning, which means that regions are collapsed. Further, let |T |
be the number of resulting regions from T and denote by Nj the number of
observations within region Rj . We now adopt the cost complexity criterion
(cf. [2], equation 9.16)

Cα(T ) =

|T |∑
j=1

∑
xi∈Rj

(yi − ĉj)2 + α|T | (2)

that should be minimized for a given α ≥ 0. In fact, α is a tuning parameter
that controls the tradeoff between tree size and parsimonity. When α = 0
the solution is the full tree T0. One can show that for each α there exists
Tα, the smallest unique subtree that minimizes Cα(T ). To find this tree, one
should create a sequence of subtrees where two or more regions are collapsed
successively until there are no more branches or no decrease in Cα(T ). The
regions to collapse in each step should cause the double sum of squares in
(2) to increase the least and they should be determined by testing to cut
all nodes of the tree except the terminal ones. It is possible to show that
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the optimal tree is included in this sequence. Using cross-validation one
can find the optimal value of α, resulting in the tree Tα̂. For a description
of cross-validation, see [1] (pages 175-181). Pruning will not be used for
neither LS Boost nor random forests, but will come in handy when we want
to fit a single tree to data. One can argue that decision trees in general are
not optimal for regression problems, since they produce piecewise constant
approximations of a smooth function.

2.3 Random forests

2.3.1 Bagging

Bagging is the precursor of random forests. By describing bagging it is easy
to implement random forests since they only differ in a minor fashion. The
name is an abbreviation of bootstrap aggregating, a name that describes
the idea behind it. All information in this section about bagging is gath-
ered from [4], which is the original source of this algorithm. Following is a
brief introduction to the method in general, after which more details will be
presented. We will only consider the version of bagging used for regression
problems.

In [4] (section 1) the concept is introduced, but the notation differs from
the description here. Starting with a data set D with a response variable
and one or multiple explanatory variables, a predictor f̂(x,D) is formed that
depends on the training data D and the vector of explanatory variables x
to use in the prediction. Random forests and often bagging as well use a
regression tree as prediction function. The underlying idea of this method is
that many predictors outperform a single predictor. Hence, the assumption is
that there exists a sequence of data (learning) sets {Dk}, where k = 1, . . . , B,
that originate from the same distribution asD and consists ofN independent
observations. Only the sequence of predictors {f̂(x,Dk)} will be used in the
final prediction, not f̂(x,D). To obtain a prediction, one simply takes the
average of f̂(x,Dk) over all k.

It is not realistic to believe that the sets {Dk} already are available in
real life situations. The solution is to replicate the original data set D by
drawing bootstrap samples with replacement, see [4] (section 1). This means
that any observation (yi, xi) could appear multiple times in the bootstrapped
sample Dk or not at all. We draw B such samples in which each observation
from D is randomly selected with probability 1/N . The size of the boot-
strapped sample Dk is usually chosen to be N , the same size as D, which
thus on average contains about 1 − e−1 ≈ 63% distinct observations from
D. The latter statement can be verified from the binomial distribution with
parameters N and 1/N . Regression trees work well as prediction functions
f̂ in the bagging estimate since they generally are good but rather unstable
in regression problems. They are unstable in the sense that small changes
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in the data set can result in large changes in its predictions.
Let us now justify the bagging algorithm and show why it will work, as

presented in [4] (section 4.1). Assume that each observation in D is indepen-
dently drawn from a probability distribution P with f̂(x,D) as predictor.
The aggregated predictor over D can be defined as

f̂A(x) = EDf̂(x,D). (3)

Remember that the aggregated predictor takes the average of the different
predictions, which explains its connection to the expected value. The lowered
D in (3) clarify that the expectation is taken over the data set and not the
explanatory variables, and the lowered A denotes aggregation. Now, let y
be a response and x be taken as fixed input and write

ED(y − f̂(x,D))2 = y2 − 2yEDf̂(x,D) + EDf̂
2(x,D), (4)

corresponding to equation 4.1 in [4]. If the inequality EX2 ≥ (EX)2 is
applied to the third term in the right hand side of (4) and the substitution
in (3) is used afterwards one obtains

ED(y − f̂(x,D))2 ≥ (y − f̂A(x))2. (5)

Both sides of (5) can be integrated over the joint distribution of x and y.
This corresponds to taking the sum over all observations if D is estimated, as
discussed below. Then, the conclusion can be drawn that the mean-squared
error of f̂A(x) is lower than that of f̂(x,D) averaged over D. The size of the
difference of the two sides in the inequality is governed by how much bigger
the left side is than the right side in

EDf̂
2(x,D) ≥ (EDf̂(x,D))2.

We can interpret the past arguments as the original predictor having a vari-
ance around its own mean, which is decreased by aggregating, since the
mean is the theoretical bagging estimate. It is also easy to see why unstable
predictors benefit from bagging. If a replicate of D is used in the prediction,
causing it to change a lot, then the two sides in (5) will be far from equal.

So far we have assumed that the aggregated predictor depends on x and
implicitly on the distribution P , but a bagged estimate in practice depends
on another distribution PD, which is the bootstrap approximation of P . See
[4] (section 4.3). The distribution PD puts equal weight 1/N at each point
(yi, xi), i = 1, 2, . . . , N of D. Since B is a finite and often small number,
our estimate is an approximation of the true bagged estimate. In fact, it
is a Monte Carlo estimate of the estimate, converging to the true bagging
estimate as B →∞.

More insights can be given that further highlight the limitation of bag-
ging, see [4] (end of section 4.1). A stable predictor will produce an estimate
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from the data set similar or equal to the estimate of the corresponding ag-
gregated estimate that is based on the underlying distribution of the data.
This means that there are no gains in trying to estimate the distribution
through a bootstrap. Another drawback with bagging is that it will impair
predictions that are close to the lowest attainable limit in terms of standard
error.

The value of B does not need to be large, around 20 is often enough as
discussed in [4] (section 6), although it might be reasonable to increase this
number if the running time is low. Larger samples thanN make it more likely
for more distinct observations to be included in each sample, but are reported
not to improve accuracy. Overall, bagging is a simple method that is easy
to implement. When used on regression trees it almost certainly increases
accuracy, but the straightforward interpretation of one tree is ruined. This
comes from the fact that a bagged tree is no longer a tree.

2.3.2 Random forests algorithm

Random forests exploit the idea of bagging and are in many respects the
preferable choice. In this section, the general concept and the algorithm
will first be described, after which theoretical properties will be provided.
Random forests are popular and improve bagging on trees by trying to
reduce the correlation between the individual trees. Unless otherwise stated,
all the material referred to is taken from [2]. The original source is [5], but
it is not used here because the content of that article is presented mostly
in the setting of classification. The general procedure for random forest is
described in Algorithm 1, in similarity to [2] (algorithm 15.1, page 588).

A closer look at Algorithm 1 exposes a few tuning parameters: the num-
ber of trees B, the sample size N , the minimum region size nmin and the
number of variables m to split at random. We can see that the only difference
from bagging is that the candidates of variables to split should be chosen at
random, instead of all variables being taken into account. Thus, if we only
have p = 1 input variable or lag in a time series model, the result will be
identical to bagging. One could also use the regularisation described in the
regression tree section to obtain pruned and more optimal trees according to
the cost-complexity criterion, but it is not common and will be disregarded
here since random forests seldom overfit the training data. The output, or
estimator, corresponding to line 2 of Algorithm 1 can be expressed as

f̂rf(x) =
1

B

B∑
b=1

Tb(x).

The reason for the random variable split is to reduce the correlation
between trees and thus reduce variance of the estimate, see [2] (page 588).
Suppose that we have K i.i.d. random variables with variance σ2. An average

12



Algorithm 1 Random forests for regression

1. For b = 1 to B :

(a) Draw D∗, a bootstrap sample of size N from the data devoted to
training.

(b) Build a random-forest tree Tb, which is somewhat different from
the regular regression tree, to the bootstrapped data. The follow-
ing steps should be recursively repeated on each terminal node of
the tree, starting with the whole data set D∗, until this terminal
node contains at most the minimum number nmin of observations.

i. There are p input variables from which m should be chosen
at random.

ii. Among the m variables, pick the best variable to split and
the best splitting point of the data, according to the theory
of regression trees.

iii. Split the data into two new regions.

2. The output is now the ensemble of trees {Tb}B1 . To predict a response
from a new input, simply apply the input to all trees and take the
average.

of these variables has variance 1
Kσ

2. But if the variables are not independent
and have a pairwise positive correlation of ρ the variance of the average
instead becomes

ρσ2 +
1− ρ
K

σ2. (6)

The second term of (6) is neglectable when K is large, but the first term
remains. Random forests may increase the variance σ2 to some extent, but
will decrease ρ and therefore it is a better estimate, at least for large K. This
is the only way to improve the accuracy of an estimate with the bagging
technique because bias cannot be reduced by averaging. The past statement
follows from the fact that the expectation of one tree is the same as the
expectation over the average of many trees, implicating that the bias is the
same too.

In Algorithm 1, the parameter m is recommended to be p/3 rounded
down to the nearest integer (cf. [2], page 592), although in practice it is
good to try different values, especially the case m = 1. Also, the authors of
[2] recommend that the minimum size nmin of each region should be 5. The
number of bootstrap samples B need not to be very large, but increasing the
number of samples seldom affects the time it takes for computers to make
calculations. We will always set N to be the same number as the number of
training observations, which is the commonly accepted choice.
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Random forests only problem with overfitting occurs when there are
many variables, but few relevant ones. Choosing a higher value of m might
fix this if the data set is large. Also, if fully grown trees are used, with
nmin = 1, overfitting may occur as B → ∞. The reader is referred to [2]
(page 596) for a thorough discussion.

Some more aspects of random forests will now be considered, referring
to [2] (pages 597-599). First, denote by Θb the characteristics of the bth
tree such that T (x; Θb) is completely defined in terms of what variables and
values are splitted and the values of the final regions. Now, letting B →∞,
the estimator of the random forest becomes

f̂rf(x) = EΘ(T (x; Θ)), (7)

where it is understood that Θ depends on the data used for training and x
denotes a single new data point. From (6) we get that the variance of this
estimator is

Var(f̂rf(x)) = ρ(x)σ2(x).

Here, ρ and σ depend on x since they are defined as

ρ(x) = corr[T (x; Θ1(D∗1), T (x; Θ2(D∗2)]

and
σ2(x) = Var(T (x; Θ(D∗)).

That is, ρ(x) is a sampling correlation of two randomly drawn trees from
the forest built on randomly sampled data sets D∗1 and D∗2. Whereas σ2(x)
is interpreted theoretically as the, of any randomly drawn tree, sampling
variance. It is important to recall that this is only true as B converges to
infinity, whilst in practice the true estimate is an approximation of (7) of
varying accuracy.

There is an important feature with random forests that makes it more
practical than many other non-linear estimators, see [2] (page 593). It is
the use of so called out-of-bag (OOB) samples. If for each observation zi =
(xi, yi) we construct a random forest predictor by averaging the trees from
bootstrap samples in which zi did not appear, we can estimate the OOB
error. This estimate is obtained by taking the mean of the difference of the
predictions and the actual values. Performing N-fold cross validation is close
to an identical estimate, which thus shows the importance of this feature.
The process of fitting a random forest model can be done in one sequence,
terminating when the OOB error stabilises. OOB error is irrelevant in this
report, but the OOB samples prove to be useful anyway.

2.3.3 Variable importance

Variable importance needs to be discussed for random forests, see [2] (page
593). Unlike boosting, explanatory variables will not be entirely ignored in
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the process of growing the trees because of the random variable selection (un-
less for rare situations). This may be one of the weaknesses of random forests
as it tends to overrate the importance of some variables. Still, variable im-
portance tests can be performed to evaluate if some variables are neglectable.
One option is to follow the same procedure as for gradient boosted models.
Another option is to use the OOB samples in the following fashion. For the
bth tree, record the accuracy of the predictions made on the OOB sample,
after which the values for the jth variable should randomly be permuted
in the sample and the accuracy should be computed again. This generally
decreases the accuracy, where the important variables tend to decrease the
accuracy more as they are more common as split variables. The process is
done for each variable and the average of the decrease in accuracy of the
prediction error is taken over all the trees. If the accuracy on the shuffled
sample instead is increased, it basically means that the variable has very
small predictive power and should advantageously be excluded from further
analysis.

2.4 LS Boost

Boosting is a popular method because it has proven to be truly competitive,
see [2] (page 337). New algorithms keep getting developed to further improve
the performance. LS Boost is an application of regular gradient boosting
where the loss function equals the least squares, hence the name LS. The
general idea of boosting is to build trees sequentially, so that the next tree
is built conditionally on information from the previous tree. Modifications
to the original training set are made based on this information. Because the
next tree uses information from the past tree, this means that any tree in
the sequence depends on all the previous trees.

The idea that motivates the boosting procedure for regression trees is
that a single tree must be grown large to capture the patterns of the data,
making it sensitive to overfitting, cf. [1] (page 322). Boosting instead uses
small trees to slowly improve f̂ where it did not perform well. Other statis-
tical learning methods tend to perform well if they learn slowly. The reason
why small trees are used, other than making the predictor learn slowly, is
due to their low variance and bias, since boosting in theory only decreases
bias. Another factor is that overfitting seldom becomes a problem with small
trees.

2.4.1 LS Boost algorithm

In this subsection, most of the material is drawn from [7], where the defini-
tion of this algorithm for regression problems is established. However, it is
referred to as LS TreeBoost in the article even though it is not defined explic-
itly (see specifically algorithm 2 and 3). This is because LS Boost, as defined
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in [7], does not exclude the possibility to be used in conjunction with other
base learners than trees. The regression tree function is called a base learner
in this context, which basically means the function being boosted. Other
examples of base learners could be neural networks or k-nearest neighbour
algorithms. The algorithm used in this report is summarised in Algorithm
2.

Algorithm 2 LS Boost for regression trees

1. f0(x) = ȳ

2. for b = 1 to B do:

(a) ỹi = yi − fb−1(xi), for all i = 1, 2, . . . , N

(b) fit {Rjb}J1 , a tree with J regions on {ỹi, xi}N1
(c) γjb = meanxi∈Rjb

{yi − fb−1(xi)}, j = 1, . . . , J

(d) fb(x) = fb−1(x) + υ
∑J

j=1 γjb1(x ∈ Rjb)

3. output: fB(x)

Algorithm 2 uses the indicator function 1(·) that equals zero if its argu-
ment is false and 1 otherwise. Line 3, the output line, can equivalently be
expressed as

output: mean(y) + υ

B∑
b=1

J∑
j=1

γjb1(x ∈ Rjb).

We can see that the loss function L is least squares since line 2 (a) of Algo-
rithm 2 uses the gradient

−∂L(yi, f(xi))

2∂f(xi)
=
−∂(yi − f(xi))

2

2∂f(xi)
= yi − f(xi).

This also explains why the algorithm is called a gradient boosting algorithm.
In Algorithm 2, the first step is to determine a preliminary predictor ȳ

of the output. Proceeding to the loop, if ŷ is the predictor of y after b − 1
iterations, the residuals ỹ = ŷ − y are calculated during iteration b. Then,
a regression tree is fitted to these residuals using the explanatory variables.
The next step is to calculate the {γjb}Jj=1 values, which is a problem of
finding the optimal constants to piecewise update the output. Piecewise up-
dates refers to the fact that the tree {Rjb}Jj=1 decides boundaries according
to which the updates are made. Anyhow, the object of finding optimal con-
stants corresponds to solving

γjb = min
γ

∑
xi∈Rjb

L(yi, fb−1(xi) + γ)
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for an arbitrary loss function L. The least squares loss function gives the
solution of line 2 (c) in Algorithm 2, since

γjb = min
γ

∑
xi∈Rjb

(yi − (f0(xi) + γ))2 = min
γ

∑
xi∈Rjb

((yi − fb−1(xi))− γ))2.

This equation clearly has the solution

γjb = meanxi∈Rjb
{yi − fb−1(xi)} = meanxi∈Rjb

{ỹi}

according to previous statements, see for example the section about regres-
sion trees. Furthermore, the output function is then adjusted using these
constants shrinked by υ. This is afterwards repeated for the updated output
function until the process terminates. Note that the boundaries for x are
typically different in each iteration, so for example

{xi ∈ Rj=1,b=1} 6= {xi ∈ Rj=1,b=2}.

The point here is that the output function becomes more complex as b grows.
Note also that large residuals are given more weight than smaller ones as
they to some degree dictate how the regions are defined. An interesting result
of the algorithm is that the training error decreases for every iteration, since
the output by definition yields smaller residuals every time it is updated.

There are a few tuning parameters for this algorithm, including B, J and
υ. Empirical studies have shown that so-called stumps work well together
with large values of B and are sometimes even optimal, cf. [7]. Stumps
designate trees with only one split, that is, where J = 2 in this context.
It could be mentioned though that more input variables (a larger p) often
leads to a higher optimal value of J .

In the algorithms of [7] the parameter 0 < υ ≤ 1 is not included, but
suggested later in the article (section 5) as an improvement technique. It is
referred to as the shrinkage parameter. The process of updating the output in
Algorithm 2 can be counterproductive in prediction problems where training
data is fitted too closely. One obvious way to solve this is to choose the
value B from cross validation to make sure that the model does not overfit
the training data. A better option is to regulate υ, since it is found that
combining a smaller υ with a higher value of B provides better predictions
in general. This is a common technique in boosting methods, which gives
more accurate results in general at the cost of increased computational time.
However, this should not be a serious problem as large trees are not desirable
and unlikely to be necessary. Therefore the number of computations per
iteration b is kept so small that the total computation time remains feasible.

2.4.2 Variable importance

In [7] (section 8) it is described how to interpret a boosted model. When
boosting is applied to really small trees that only contain one split of the
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data, the ensemble fits an additive model, which follows from the fact that
each term involves only one variable. The advantage of this model lies in
interpretability, because the final predictor is just the arithmetic sum of the
effects of the individual predictors. Other than that, boosting is generally
difficult to interpret, but one can at least estimate the relative importance of
explanatory variables to attain some degree of interpretation. The following
measure will be used for a single tree T and it is defined in equation (44) of
[7] as

F 2
` (T ) =

J−1∑
t=1

ı̂2t I(v(t) = `). (8)

In a binary splitted tree with J terminal nodes are there J−1 internal nodes
(splitting points). The measure in (8) is defined as the squared relevance of
the input variable X`. The indicator function I(·) within the sum determines
whether variable X` was used in the split number t. Because t is an internal
node, v(t) is used to denote the index of the splitting variable. The value
of ı̂2t is simply the reduction in squared error due to the split t. For the
ensemble of B trees, this measure is generalised to be the average of (8)
applied to all trees, giving

F 2
` =

1

B

B∑
b=1

F 2
` (Tb).

This measure F 2
` is definitely more accurate than the corresponding measure

F 2
` (T ) for a single tree. Note that the tree Tb is in the setting of Algorithm

2 equivalent to {Rjb}Jj=1. From here on it is straightforward to compare the
variables, commonly by scaling such that the variable with the largest value
is scaled to 100 and the others accordingly. One must only remember to take
the square roots of the relevance values before comparing them.

2.4.3 Stochastic gradient boosting

A useful addition to the boosting method that exploits the main advantage
of bagging is to sample a fraction η without replacement from the training
data in each iteration and use that subsample to grow the next tree, see
[6]. This is called stochastic gradient boosting and it will be utilised in the
analysis section of this report. It can be shown to reduce variance with the
same type of reasoning as for bagging, and it also has the benefit of reducing
the computing time with the same fraction η. Nothing else is changed in the
algorithm. The standard value is η = 1

2 , but if the data set is large the
fraction could be chosen much lower. One downside with this modification
is that one more parameter η needs to be determined in the training process.
Returning to Algorithm 2, we would have to sample ηN data points in each
iteration and change N for ηN in line 2. (a) and (b) in order to implement
this idea.
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2.5 Time series models

The following models are common, or at least extensions of common models,
in financial time series analysis. They have been developed to explain some
of the patterns that such time series usually follow. Financial time series
could for example be asset returns. Less common to model is the actual
price of an asset. The models share the common feature that current values
express dependency on previous values in the series. This means that future
values can be predicted using a couple of recently observed values, which
is called forecasting. Data will be simulated from these models to compare
least squares boosting with random forests.

2.5.1 AR models

We start off with a simple model that is linear and lays the foundation of
other more complex models, the autoregressive (AR) model. The information
is gathered from [8] (pages 37-46). An AR(1) model has only one lag, that
is, it only depends on its last observed value and is defined as

rt = φ0 + φ1rt−1 + at. (9)

Here, φ0 and φ1 are constants and rt−1 is the previous value clarified from
its index. The chock at time t is denoted by at and is assumed to be a
random variable with mean 0 and variance σ2

a. The series {at} is called white
noise and deals with the randomness that usually appears in any type of
regression. It is also assumed that at−i and at are independent for any i 6= 0.
Note that we can rewrite (9) as rt = φ0 +φ1(φ0 +φ1rt−2 +at−1)+at provided
that rt−2 exists. This model can be viewed as a simple linear regression model
in which rt is the response variable and rt−1 is the explanatory variable.

It is straightforward to generalise an AR(1) model to an AR model with
an arbitrary number of lags, yielding the AR(p) model

rt = φ0 + φ1rt−1 + . . .+ φprt−p + at, (10)

see [8] (page 38, equation 2.9). This model can be interpreted in analogy with
(9). It is important to bear in mind that Var(rt) 6= σ2

a unless φ1, . . . , φp = 0,
which in the AR(1) case follows from the fact that there is variance in rt−1 as
well if it is unknown. In the AR(p) case, the different lags are correlated and
account for another source of variation. However, this is not of our concern
since we will only make one step forecasts. Hence, all the lags will be given
in our simulation study, so that

Var(rt|rt−1, . . . , rt−p) = σ2
a.

It could be helpful to know the mean of rt as it is generally not equal to
φ0. Taking the expectation of (10) and using the fact that E(at) = 0 yields
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E(rt) = φ0 + φ1E(rt−1) + . . . + φpE(rt−p). We know that E(rt) = E(rt−l)
for any l, yielding

E(rt) =
φ0

1− φ1 − . . .− φp
.

The past results are based on the assumption that the series is weakly station-
ary, see [8] (page 30) for details. This essentially requires that the solutions
to the polynomial equation

1− φ1x− φ2x
2 − . . .− φpxp = 0

for x should be greater than 1 in modulus according to [8] (page 46).

2.5.2 Threshold AR models

The threshold autoregressive (TAR) model is nonlinear and was originally
developed to deal with common behaviours of certain asset returns, cf. [8]
(pages 179-180). For example, the outcome of a series at time t might have
different dependencies whether the last observed value was negative or pos-
itive. On some markets, the expected value of a time series at time t given
the value at t − 1 could be positive if the last value was either negative or
positive, in contrast to the behaviour of the simple AR(1) model. As an
illustration one can employ the following 2-regime TAR(1) model, presented
in [8] (equation 4.8),

rt =

{
0.5rt−1 + at if rt−1 ≥ 0,

−1.5rt−1 + at if rt−1 < 0.

This model is piecewise linear and has threshold value 0. The two regimes
have different coefficients which makes the increasing and decreasing pattern
asymmetric. The interpretation is that a negative value of rt makes it likely
for the next value of the series to be positive, whilst a positive value of rt is
again likely to produce a positive value of rt+1, but with lower probability
due to the less explosive coefficient 0.5. A discussion of properties of this
model is outside the scope of this report and only models with one threshold
value will be considered. We can formally define the 2-regime TAR model
with threshold value c as

rt =

{
φ

(1)
0 + φ

(1)
1 rt−1 + . . .+ φ

(1)
p rt−p + at if rt−1 ≥ c,

φ
(2)
0 + φ

(2)
1 rt−1 + . . .+ φ

(2)
p rt−p + at if rt−1 < c.

A final note is that the mean of the series is generally not zero even if the
constant terms are zero, see [8] (page 179). Also, in the case with only one

lag, the model is stationary if and only if φ
(1)
1 , φ

(2)
1 < 1 and φ

(1)
1 ·φ

(2)
1 < 1. It

is possible to consider many variants of this model. For instance, the regime
condition that depends on rt−1 could instead depend on rt−d for any d > 0,
making the model even more complex.
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2.5.3 GARCH-M models

This model is nonlinear in mean as well as variance and is described in [8]
(page 142, equation 3.23 in particular). It is an extension of the GARCH
model which in itself is a generalisation of the well-known ARCH model.
It was proposed to deal with certain financial time series where the return
seemed to correlate with its volatility, with the volatility evolving over time.
The GARCH(1,1)-M model depends on the latest chock and the last measure
of volatility and it is the only model of this kind that will be considered in
this report. It is defined as

rt = µ+ cσ2
t + at, at = σtεt,

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

where {εt} is a sequence of independent identically distributed variables
with mean 0 and variance 1. The parameter c determines how much and
whether the return of the series is positively or negatively correlated with
its volatility. It is called the risk premium parameter.

Simulating from GARCH-series in general requires extra caution. For
the unconditional variance to be finite, we set the constraint α1 +β1 < 1, as
suggested in [8] (page 132). Also, we set α0 > 0 and α1, β1 ≥ 0 to make sure
that the variance is positive. With c = 0 and β1 = 0 this model reduces to
an ARCH(1) model. It could be useful to know that

E(a2
t ) =

α0

1− α1 − β1

for this particular model.

3 Simulation study

Three main simulations are performed in this study using the time series
models described previously. In the first experiment, we simulate from an
AR model. Many lags will be considered so that variable importance and
selection can be investigated in an appropriate way. Variable importance
is a vital tool in interpretation of boosting and random forest algorithms.
With that tool, we can say something about the models they provide and
compare them in a way that is complementary to predictive power. This
will also make it possible to examine the ability of the methods to handle
more input variables. We will include some lags that have no effect on the
response variable in the training process of the algorithms to test if these
variables properly get neglected.

In the second experiment, a rather simple TAR model will be considered
because the main focus is not to test variable importance. Instead, we are
primarily interested in comparing forecast accuracy given this particular
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nonlinear structure. It is also interesting to see how well a linear model,
such as the AR model, predicts in this case. This comparison could therefore
serve as justification to whether it is motivated to use the more complex
algorithms in the first place.

Together with AR and TAR, the third model captures a great variety of
established time series models. The GARCH-M model will test the abilities
of the algorithms to capture a different kind of nonlinearity. As the variance
of the white noise series for this model is not constant, the algorithms need
to distinguish what patterns are related to the mean of the series.

3.1 Preliminaries

This study only concerns one-step ahead forecasts. Multistep ahead forecasts
will use the previous forecasts to predict the next value and such forecasts
will not be considered here. For certain stationary models, this means that
the multistep ahead forecast will approach the mean of the time series as the
forecast horizon increases. In this study, we will instead forecast time series
where all the relevant inputs are given, which can be viewed as a typical
regression problem.

In terms of software, R will be used with the specific packages gbm (gra-
dient boosted models) and randomForest. If a single tree is grown for com-
parison, the package tree is used. The seed will be set to 1999, that is, we
use the command set.seed(1999) in R to make sure that the simulations
are reproducible.

To predict time series in the perspective of supervised learning, suppose
that we have observations y = rt for some consecutive values of t. Then the
first input variable x1 is simply x1 = rt−1 and the second input variable is
x2 = rt−2 and so on. An example is provided in the following table.

x1 rt
? 1
1 2
2 3
3 4
4 5
5 ?

In the table above, we have five observations of rt and five observations
of rt−1. Note that the rows containing question marks cannot be used, so
there are only four input-output pairs. Therefore, in experiments with x1 =
rt−1 as input we simulate r0, r1, r2, . . . , rT for some specified T and discard
r0, leaving a total of T observations for training and testing. If p lags are
included in the model we have to simulate T + p observations and discard
the p first values of the series. In this case we will still denote our reworked

22



series by r1, r2, . . . , rT for simplicity. Hence, r10 will always denote the tenth
value irregardless of the number of input variables.

As an example, assume that we have observations from the simple AR(1)
model (9) for t = 0, 1, . . . , 100. We chose to divide the data such that {rt}80

1

is used for training and {rt}100
81 for testing. An algorithm is trained using the

input-output pairs (rt−1, rt) for t = 1, 2, . . . , 80. When the training process
is over we end up with a model f̂(x). Now, we predict r81 using f̂(r80) and
record the error. The prediction of r82 is then unaffected by r̂81, since we
use the true value r81 in f̂(r81) to predict r82. This relates to the fact that
we only make one-step forecasts. The purpose of this example is to clarify
the procedure as working with time series and lags can be confusing.

3.1.1 Error measurements

The predictive performance measure used in this report has extensively been
the mean squared error, defined as

MSE =
1

n

n∑
i=1

(yi − ŷi)2,

where ŷi is the prediction of observation i. See [9] (section 2.1). This is the
main measure of prediction in this report and it will be used if nothing else
is stated. In previous sections, the object was to attain the least squares,
which is an equivalent problem as to minimise MSE. It is for example used
to determine the best splits in regression trees. In the context of time series,
MSE ought to be a good measure since it puts heavier weight on large errors.
Time series are notoriously noisy, meaning that one expects small errors and
the aim is generally to avoid making predictions far from the true value. MSE
is also easy to compare because of its relation to variance. It is possible to
obtain a lower bound of the MSE if the variance is known.

For robustness reasons it is still a good idea to consider other perfor-
mance measures than MSE. Also, it might not be fair to only consider MSE
because LS Boosting is specifically based on minimising that criterion. The
mean absolute error is defined as

MAE =
1

n

n∑
i=1

|yi − ŷi|

and it puts heavier weight on errors smaller than 1 compared to MSE, ac-
cording to [9]. This is a good alternative which is less affected by outliers.
If MSE in some sense relates to the mean, MAE instead relates to the me-
dian. MAE will be considered as the second most important measure in this
report.
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Another measure of prediction error is mean absolute percentage error,

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ .
MAPE might be intuitive, since the error’s size in relation to the size of
the observation is taken into consideration. However, it can be misleading,
especially for the simulated data sets used here. Observations close to zero
will cause the measure to be unstable. One can also realise that negative
prediction errors are given higher weights. These issues are discussed in [9]
(section 2.2), where the definition of MAPE includes multiplying by a factor
of 100 in contrast to the definition above.

If the individual predictions are not of interest, but only the total level
of the prediction error, one may consider the mean bias,

Bias =
1

n

n∑
i=1

(yi − ŷi).

This performance measure can be used to see if a predictor systematically
provides too low or too high estimates. It is actually an approximation of
bias as it is defined in section 2.1. Squared bias could explain high or low
MSE to some extent according to (1). If MSE is much larger than Var(ε)
whilst squared bias is low, we know that the variance of the estimator must
be high. Remember however that these measures are just estimates of the
true MSE and bias. There exist many other measures of prediction. An
example is mean absolute scaled error, which is generally applicable to time
series. It will not be used in this study, but its definition and supportive
arguments can be found in [9] (section 3).

3.1.2 LS Boost vs random forest

This subsection summarises various ways in which LS Boost and random
forests differ, based on material presented in the theory section. It addi-
tionally presents some practical differences between the two methods, not
discussed yet, as a preparation for the simulation study. A fundamental dif-
ference between random forests and boosting is that random forests reduces
variance while boosting reduces bias. As mentioned earlier, this implies that
random forests work best on large regression trees and boosting generally
performs best on very small trees. Remember that small trees have low vari-
ance and high bias because they usually underfit data, while the opposite is
true for large trees that are prone to overfitting.

Another major difference is that random forests are indeed random and
will produce slightly different results from new attempts. Further, a random
forest model is trained using a new bootstrapped dataset in each iteration.
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On the contrary, LS Boost adjusts the next dataset according to the resid-
uals of the current model in each iteration and thereby puts more weight
on places where the predictions in the previous step went wrong. This does
again relate to the different underlying objectives that the algorithms are
designed for.

Similar to bagging, boosting is a meta algorithm, which means that it
can be applied to many statistical learning methods to create an ensemble.
Random forests does not possess this feature and is hence more restricted.
However, LS Boost as it is defined here is also restricted to regression trees.
This does nevertheless imply that gradient boosting in general is a more
flexible algorithm. It is also easy to switch loss functions within the algorithm
to deal with other types of response variables.

When it comes to overfitting, random forests are more robust. With
limited computational power, a random forest model is impossible to overfit.
This also has the advantage of not needing to regulate the size of the forest as
long as it is not too small. LS Boost needs a moderate number of iterations
in order not to overfit nor underfit, although regulation can be made in many
ways so that overfitting is seldom a cause of concern with boosting. There is
no shrinkage in random forest implying that there is one less hyperparameter
to tune. Note also that we tune the depth J of each tree for boosting instead
of the terminal node size nmin. The main difference is, as the size of the data
set varies, that the same J produces equally many final regions.

One important question is which algorithm is faster to train. Some early
attempts show that the LS Boost algorithm is much faster to run through
in each of the three experiments when the same number of trees are used. It
might as well be an artifact of the implementation of the particular packages,
but it seems reasonable to be the case in general. That much smaller trees are
fitted for LS Boost is the main explanation of its computational advantage.
However, if we take into account the extended tuning process for boosting
and the fact that less trees are probably required for random forests to reach
its potential, this computational time difference may even out. It is therefore
difficult to reach a conclusion here as to which method is computationally
preferable, without performing a more detailed study.

3.2 AR simulation

We simulate from the following model,

rt = 0.9rt−1 − 0.8rt−2 + 0.7rt−3 − 0.6rt−4 + 0.5rt−5 − 0.4rt−6 + 0.3rt−7

− 0.2rt−8 + 0.1rt−9 − 0.1rt−10 + 0.1rt−12 − 0.1rt−15 + at
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where at ∼ N(0, 1). This series is stationary since all the solutions, both
real-valued and complex, of the equation

1− 0.9x+ 0.8x2 − 0.7x3 + 0.6x4 − 0.5x5 + 0.4x6 − 0.3x7 + 0.2x8

− 0.1x9 + 0.1x10 − 0.1x12 + 0.1x15 = 0

are greater than one in modulus. The equation only has one real root and
14 complex ones. We thus know that the series is weakly stationary and has
mean 0. From this model, 2000 observations are simulated with an initial
value r0 ∼ N(0, 1), of which 1600 are devoted to training the algorithms
and 400 to testing them out. Specifically, {rt}1600

t=1 is the training set and
{rt}2000

t=1601 is the testing set. The lags rt−11, rt−13 and rt−14 are also provided
to the algorithms as input variables in this experiment even though they
have no influence.

Main comparison

To begin with default parameters are used with one exception. We manually
set η = 1, because stochastic gradient boosting is actually the default choice
for the implementation in gbm with η = 0.5. The default parameters in the
random forest function is m = 5 (p/3 = 15/3) for the number of variables
to consider in each split and again nmin = 5 for the maximum node size
in the terminal regions. For the gbm function the shrinkage parameter is by
default υ = 0.1 and the number of splits for the trees is one (J = 2), that
is, stumps are the default types of trees used. Letting the number of trees
vary, we obtain the result of Figure 2.

In Figure 2, the black line at the bottom corresponds to the magnitude
of the irreducible error, that is, at least in theory the lowest attainable test
error. Test error here denotes the MSE calculated on test data. It is of
course possible to reach lower test error occasionally since it is an estimate
of the true MSE and we have a finite amount of data. The black line has
intercept 1 because the noise has variance 1. One should not think of adjacent
points in the plot as adding 5 trees to the existing ensemble. Completely new
ensembles are instead created at each point of the plot. This does not matter
for LS Boost though unless stochastic gradient boosting is used.

We can see that LS Boost outperforms random forests in Figure 2, al-
though for small ensembles, random forest achieves lower error. We can also
see that the random forest stabilises early, while the MSE for the boosted
model continues to decrease. Note further the behaviour of the different
curves. Random forests have scattered test results for small ensembles and
the error oscillates up and down even for the larger ensembles. Meanwhile,
LS Boost essentially improves in each step as the algorithm does not involve
randomness and apparently does not begin to overfit either. It seems like
boosting potentially can do even better with more iterations.
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Figure 2: Random forest vs LS Boost with default parameters, varying the
number of trees in the ensemble. The grid for the number of trees starts at
5 and grows by 5 for each point in the plot.

Now, we tune the parameters for both algorithms by further dividing the
training data into 1200 observations for pure training and 400 for validation.
This means that we train models on {rt}1200

t=1 using different parameteriza-
tions and record the MSE of each model on {rt}1600

t=1201. We then choose the
model achieving the lowest MSE. By doing this, we avoid overfitting the
test data. The procedure for trying different parameterizations is to vary
one parameter at a time and keep the others fixed.

After the tuning process we ended up with the following random forest
model: m = 9, nmin = 15 and we use B = 4000 trees for safety matters. Note
already now that this model is simpler than the default one, which makes
sense because of the relatively simple structure of the data. For the boosted
model the default value J = 2 was the best, again due to simple structure of
data. Regarding the shrinkage parameter and the number of iterations, we
got υ = 0.05 and B = 3000 respectively. These two parameters should not
be varied individually in the tuning process and were therefore regulated to-
gether; raising B generally implies reducing υ. Stochastic gradient boosting
did not achieve lower validation error so η was still kept at a value of 1. The
following results were obtained on the test data.
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MSE MAE MAPE Bias

Random forest 1.27 0.90 1.50 -0.018
LS Boost 1.17 0.86 1.69 -0.006
Single tree 1.38 0.93 1.93 -0.014

In the table above, we see that boosting wins according to all measures
except MAPE. It is however a bit weird that MAE is lower whereas MAPE
is higher for LS Boost, which showcases the deficiency of MAPE. The differ-
ences are however quite small between the two methods, especially according
to the MAE criterion. According to the bias measure, random forests on av-
erage predicts 0.018 lower than the actual value in this case. A single regres-
sion tree was also grown as comparison. The validation set was used to find
a suitable value for the penalising parameter α = 25. It does not perform
much worse than random forests, in line with the theory of bagging.

The training error was 1.20 and 0.72 for random forest and LS Boost
respectively for the tuned models. The much lower training error for boosting
might be concerning, but is not a matter of overfitting according to the
validation error. It is probably a consequence of the algorithm itself and we
did indeed use many trees in relation to the shrinkage parameter. It can
be added that the validation error was higher than the test error for both
models, so the true MSE of the algorithms might be slightly underestimated.

In Figure 3, we see the variable importance measures for the tuned mod-
els. Although testing errors showed promising results, here the downside of
the algorithms is clearly exposed. The lack of interpretation has been dis-
cussed earlier, but both algorithms are unable to estimate the importance
of variables correctly. It might be because there is high correlation between
the input variables. Lags adjacent to each other have about 0.5 correlation.
Anyhow, the stacks would be around 90 for x2 = rt−2 and slightly lower
than 80 for x3 = rt−3 and so on if the variable importance measures had
been correctly estimated. The importance of irrelevant lags are also incor-
rectly estimated compared to the less important but significant lags. To
nominate a winner, both LS Boost and Random forest node do relatively
well compared to random forest OOB. I would argue that LS Boost wins
again because without knowledge of the true importance, it is difficult to
know what measure to use for random forests. I also think that LS Boost
would achieve better results with fewer trees in this regard.

Alternative methods

Since the data is generated from a simple linear model, it is of course better
to use linear estimation methods. A Linear regression model created with
the lm command in R obtains 1.00 in test error. It does a great job with
parameter estimation as well by correctly neglecting the three irrelevant
variables as insignificant. All the other parameters are significant and overall
close to the true value.
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Figure 3: Variable importance. LS Boost and Random forest node use the
same method for estimation, described in the LS Boost section, whilst Ran-
dom forest OOB uses the decrease in accuracy, described in the random
forests section.

Employing an AR model to the data using the ar function from the stats
package in R is the best option. This function uses AIC to determine the
suitable amount of lags and then estimates the coefficients of the chosen
model by means of ordinary least squares. A model of order 15 is correctly
chosen and coefficients are estimated close to their true values, yielding a
test error of 0.99. This method has thus the advantage of not needing to
specify the amount of lags in advance. If we do not employ any model at all,
the best guess is to predict new values with the mean of the series, which
gives a test error of 2.02.

3.3 TAR simulation

TAR models can be made very complicated with many lags and regimes.
However, it is difficult to evaluate the properties of such models. It is possible
that weak stationarity is not fulfilled, meaning that the model is not even a
TAR model in the strict sense. We therefore simulate from a similar model
as the example in the theory section but with more explosive coefficients,
namely

rt =

{
0.7rt−1 + at if rt−1 ≥ 0,

−3rt−1 + at if rt−1 < 0,
(11)

29



−3

0

3

6

9

−3 0 3 6 9
x

y

Figure 4: Plot of the simulated data from the TAR model of equation (11).
Training data has been made transparent.

where at ∼ N(0, 1). This model is weakly stationary according to the discus-
sion about TAR models. A large trial simulation of 10 million data points
shows that the mean of the series is 1.33 after rounding. We can use this
to set the first value of the series equal to r0 = 1.33 + a0, after which 3000
observations are simulated accordingly. Again, the proportion of 80-20 is
used for training and testing, so that {rt}2400

t=1 observations are devoted to
training and the rest for testing. The single input variable is rt−1.

In Figure 4 we see the structure of the data. Note the choice of axes, we
do not plot y = rt against t but rather x = rt−1 to be able to observe the
influence of the covariate. The plot clearly shows the nonlinearity of data,
where x = 0 serves as a threshold value.

Main comparison

First off, we make a similar comparison as for the AR simulation, letting the
number of trees vary. The default parameters are chosen as before. Looking
at Figure 5, we see that boosting outperforms again, but now in an even
larger fashion, although random forests once more is better for very small
ensembles. Random forests seem to stabilise already at 30 trees and the test
error for LS Boost starts to decrease very slowly at 100 trees. It is remarkable
that the MSE of LS Boost even goes below the expected irreducible error
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Figure 5: Test error (MSE) comparison for models of varying size, based on
simulated data from the TAR model. The evaluation starts at 2 trees and
increases by the same number of trees in each step.

at 1, indicating that the model predicts almost perfectly. Taking the mean
squares of the error terms for the test observations however gives the value
0.96. This corresponds to taking

1

600

3000∑
t=2401

a2
t = 0.96.

So if our models had perfect forecast accuracy they would obtain 0.96 in
mean squared error for this experiment. Boosting does nevertheless a great
job here. The promising results with a small amount of trees may possibly
be explained by the fact that there is a single input variable.

Further, we tune the algorithms in the same fashion as before, despite
that boosting probably cannot improve significantly. Note that there is one
less parameter m to regulate for random forest since there is only one input
variable for this dataset. A high value of nmin = 60 for the maximal node
size was found to be optimal for the random forest model. This does not
necessarily mean that few splits are made, the data set happens to be large
and some regions may include many observations that do not need to be
splitted further, for example observations close to zero. Also, B = 2000
trees were grown.
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It was indeed difficult to improve the boosted model, changing the pa-
rameters does not change the predictive performance very much. The de-
cision to try stochastic gradient boosting was made so that a fraction of
η = 0.7 of the data is drawn in each iteration without replacement. The
shrinkage parameter was set to 0.005 and 5000 trees were grown. Stumps,
with one single split, is again the best option regarding tree size. We also
employ an AR model to the data using the same technique as described
earlier. The following results are obtained.

MSE MAE MAPE Bias

Random forest 1.04 0.82 2.06 0.11
LS Boost 0.98 0.79 1.93 0.10
AR model 2.06 1.06 3.03 0.07

Above, we can see that LS Boost wins in all cases. The differences are
nevertheless small and it is fair to say that random forests can compete
with LS Boost in this case. The linear alternative, AR, did not perform well,
besides the fact that the total error is low according to the bias measure.
This method barely turns out to be better than guessing, as expected. It can
be mentioned that the validation error was higher for all methods compared
to test MSE. Still, the results are remarkable and will be studied more
closely. We can also conclude that random forests did improve a lot with
some tuning.

In Figure 6 we illustrate how well the algorithms perform in relation to
the expected value E(rt|rt−1). In some sense, the expected value is the best
prediction. This is the only estimate r̂t that satisfy

E(r̂t − rt) = 0.

Bear in mind that E(rt|rt−1) can only be calculated if we know the under-
lying model, which we do in this case. This exhibits one of the benefits of
working with simulated data. Note that the expected value for this time
series model is never negative. In spite of this, LS Boost does extremely
well, since the two lines of Figure 6 a) are almost identical in most places.
Random forests also predicts well, as can be seen by looking at b), but in
this case it is easier to separate the two lines from each other. One way to
interpret the plots is that more green is worse as it preferably should be
covered by the black line. The most important thing to observe is whether
the predicted and expected values go in different directions. Overall, this
figure explains the low test errors we obtained earlier.

Further investigation

To make things slightly more complicated, we tried another simulation with
one additional independent variable. Keeping rt defined as in (11) we now

32



expected predicted

0

2

4

6

2900 2925 2950 2975 3000
t

va
lu

e

a) LS_Boost

0
1
2
3
4
5

2900 2925 2950 2975 3000
t

va
lu

e

b) Random forest

Figure 6: Expected values and predicted values for data from the TAR
model, based on model fits based on the a) LS Boost method, b) random
forests method. The green curve is thus the same in both plots. Only the
last 100 predictions are included.

simulate from

rt + 3 · sin
(

2π · t
365

)
.

This means that time (of the year) affects the return of the series. A third
input variable rt−2 will also be provided in an attempt to confuse the al-
gorithms. The three input variables are thus rt−1, rt−2 and t. The setup is
otherwise the same as before, except that every fifth observation will serve
as test set instead of the last 600. Hence, {r5, r10, r15, . . . , r3000} is the test
set. We would otherwise forecast values where t is greater than all t in the
training set, which both algorithms have difficulties to handle (see discus-
sion).

Instead of tuning the methods’ parameters we use the same settings
as before with some exceptions. The extra input variables motivate more
terminal regions for LS Boost, so we use J = 4 instead of 2. For random
forests the default m = 1 is used along with nmin = 20 instead of 60 due to
increased complexity in the data set. The following results are obtained.

33



MSE MAE

Random forest 1.11 0.85

LS Boost 1.01 0.81

In the table above, we can see that every error measure is higher in con-
trast to the previous investigation on the original data set. The errors are
still very low though. We also notice that LS Boost handles the extra com-
plexity marginally better than random forests. The results are in conclusion
reasonable since the variance of the white noise has not changed.

A quick look at variable importance measures shows that LS Boost does
a better job at neglecting the irrelevant variable, while random forests seems
to estimate the importance of t more accurately. The second statement has
not been properly examined, but LS Boost estimates that t has around 16%
influence in relation to rt−1. This estimate may seem low considering that
the mean of the series is increased by roughly 35% compared to the previous
data set. This might be due to the fact that t is used as input variable instead
of sin(t), but this is not the main point of the study and will not be further
investigated. The corresponding relative influence of t for random forests is
22% or 32% depending on estimation method.

Now, we repeat the past experiment with two different distributions for
the white noise series {at}. In the first case we make the modification at ∼
N(0, 2) to scatter the data while keeping the residuals normally distributed.
For the second case we set at ∼ t(3), that is, the white noise is t-distributed
with 3 degrees of freedom. The t-distribution is heavier tailed and should
yield more extreme values compared to the normal distribution. Results are
provided in Table 1.

Distribution at ∼ N(0, 2) at ∼ t(3)

Error measure MSE MAE MSE MAE

Random forests 2.07 1.16 3.94 1.30
LS Boost 1.89 1.11 3.91 1.28

Table 1: Test results for simulations from the TAR-model with time as an
added covariate, and different types of noise distributions.

Interestingly enough, LS Boost still wins, for both measures of predic-
tion, as can be seen in Table 1. This means that despite increased noise
LS Boost appears to be preferable in forecasting this particular time series
model one step ahead. However, random forests is even more competitive for
the t-distributed error terms, which has the highest variance of the models
considered so far. Compared with previous results, we conclude that ran-
dom forests responds better to increased variance relative to the case when
at ∼ N(0, 1). This is realised by comparing the relative margins at which
LS Boost wins for the different experiments.

34



3.4 GARCH-M simulation

Since GARCH(1,1) models are most common among GARCH models used
in practice so we simulate from the following GARCH(1,1)-M series,

rt = 2 ∗ σ2
t + at, at = σtεt,

σ2
t = 0.01 + 0.1a2

t−1 + 0.89σ2
t−1,

where εt ∼ N(0, 1) for all t. With prior knowledge of the parameters it is
possible to calculate

E(a2
t ) =

0.01

1− 0.1− 0.89
= 1

unconditional on t. Unconditional on t means that we have no information
about past chocks or variances. Also, since σ2

t > 0, it holds that the expected
value of rt is positive for all t because

E(rt) = 2E(σ2
t ) + E(at) = 2E(σ2

t ) + E(σtεt) = 2E(σ2
t ) > 0.

We used E(σtεt) = E(E(σtεt|rt−1)) = E(σtE(εt)) = 0 above. Observe that
the conditional variance σ2

t is much more dependent on the previous volatil-
ity σ2

t−1 than the previous shock a2
t−1 based on the coefficients of the model.

Conditional variance means that we know the previous chocks and variances
at time t. This is intentional because it prevents the series from reaching un-
desirable states where too large or small values occur. The comparison then
becomes unfair since one observation can determine the outcome. Anyhow,
1000 observations are simulated, of which 20% corresponding to {rt}1000

t=801

are devoted to testing as per usual. At t = 0 we set σ2
0 = 1 and hence

a0 ∼ N(0, 1) to generate r0, after which the rest of the observations are
simulated accordingly.

In Figure 7 we can see a plot of the data as it occurs in time. The local
peaks are apparent because of the return’s dependence on the conditional
variance, indicating temporarily high variance. Around time t = 800 there
are some really high returns in the figure. It is usually hard for other time
series models to exhibit similar patterns when plotted against t, but in this
case the moving average has a clear maximum within the time period of
high returns.

Main comparison

Now, using default parameter values, we make comparison of the algorithms’
predictive performance in a similar fashion as before. The default number of
trees is B = 100 for LS Boost and B = 500 for random forests. Even though
rt does not explicitly depend on rt−1, we still use it as the input variable.
We also fit a linear regression model to the data, as for the AR simulation,
and obtain the following results.
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Figure 7: Plot of the simulated data from the GARCH-M model. The blue
line represents a moving average of 9 values.

MSE MAE MAPE Bias

Random forest 1.63 0.97 1.55 -0.16
LS Boost 1.03 0.82 1.33 -0.21

Linear regression 1.11 0.81 1.51 -0.13

Once again, boosting wins according to the most relevant measures MSE
and MAE, compared to random forests, as we can see in the table above. If
we take the average of the variance and the squared white noise series we
get

1

200

1000∑
t=801

σ2
t = 0.85 and also

1

200

1000∑
t=801

a2
t = 0.69

respectively. The summations were taken over the test observations only, so
that the values can be compared with the test results. Note that the mean of
a2
t for these particular simulated data points is much lower than its uncon-

ditional expected value. In this regard, random forests does a terrible job,
which needs more investigation. The linear regression fit indicates that the
results of LS Boost are not that promising either. LS Boost does indeed pro-
vide worse forecasts compared to previous simulations if the smaller squared
error terms are taken into account. For the other simulations, it holds that
mean(a2

t ) ≈ 1 over sufficiently many t. In other words, it should be easier
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to make predictions for this particular simulation, because the white noise
series happened to have lower variance.

Changing the seed is one way to validate the results. Different seeds give
similar test results, although LS Boost performs better relatively speaking
than linear regression when the variance of the white noise series is high.
After experimenting with seeds, we can conclude that the size of the fluctu-
ations in data vary a lot for each simulation. Ideally, we would like a much
larger simulation, but it is not common in practice to possess such data sets.
Still, since the results are similar on different data sets, there should be ways
to improve the results on the current data set.

One option in attempting to achieve lower test errors is to tune the
models. It is always possible to reach a lower test error by making small
adjustments without a validation set, so we only try a few parametrizations
to avoid overfitting the test data. For the LS Boost algorithm, we try B =
3000, J = 5, shrinkage υ = 0.001 and stochastic data selection with η = 0.5.
This gives a slight improvement with MSE = 1.00 and MAE = 0.80. For
random forests, we use B = 4000 and nmin = 200 to obtain MSE = 1.13
and MAE = 0.84.

Further investigation

A final attempt to achieve better results is to change input variables. The
output variable rt depends on its previous value through the shock at−1.
Meanwhile σ2

t−1 is also important because it is highly correlated with the
return. A large value of rt thus means that σ2

t−1 is likely to be large and
so is rt−1 accordingly. In the light of this, we define one input variable
(rt−1−rt−2)2 to account for at−1 and a second input variable r2

t−1 to account
for σ2

t−1. Keeping the same parameter tuning for the algorithms as before,
with the addition m = 1 for random forests, yields the following results.

MSE MAE MAPE Bias

Random forest 1.00 0.79 1.40 -0.18
LS Boost 0.90 0.76 1.36 -0.19

Linear regression 1.22 0.84 1.34 -0.47

In the table above, we can see some improvement. The overall test errors
are now lower for LS Boost and random forest, while random forest seems to
capitalise slightly more from the new inputs. Still, boosting wins in a small
but clear fashion. Linear regression is now distinctly worse than the other
algorithms. In conclusion, it is a difficult task to forecast this time series
model, as further displayed in Figure 8.

The conditional variance of the time series as a function of time along
with the squared prediction errors of LS Boost is shown in Figure 8 for the
test set. For instance, at t = 900 the red curve shows (r900 − f̂B((r899 −
r898)2, r2

899)2 if f̂B denotes the boosting estimator. In the plot we can see
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Figure 8: The variance σ2
t and squared forecast error for LS Boost plotted

together for the GARCH-M time series.

some individual extremely large and small errors, where the errors are nat-
urally larger when the variance is high. The corresponding plot for random
forests looks similar and hence it is not included in the report. The short
leaps in the black curve for the variance σ2

t exhibit large values of a2
t−1. These

leaps seem to cause especially large forecast errors. It indicates that there
are still flaws in our choice of input variables, but also that neither of the
algorithms are able to provide solid forecasts for this simulated GARCH-M
dataset.

The past experiment was repeated with 100,000 observations to check its
robustness. The outcome was quite different in absolute terms, but identical
if the algorithms are ranked in terms of their MAE. Boosting achieved much
lower MSE than the other two methods. However, it could be considered as
an unstable measure here because the time series contains values as large
as 100 for this simulation. As a by-product, bias was approximately 0 for
all methods, suggesting that none of them have prediction errors with a
systematic component.
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3.5 Summary of results

In the first experiment, we simulated from an AR model. With default pa-
rameters LS Boost had lower MSE than random forests when the number of
iterations B was larger than 100. Random forests had lower MSE though for
smaller ensembles, with one reason being its use of larger trees compared to
LS Boost. Increasing B from this point on did not improve random forests
whilst the test error for LS Boost continued to decrease. At B = 500 the
values of MSE was about 1.2 and 1.3 for LS Boost and random forests re-
spectively. Tuning the parameters of the algorithms did not change much
as boosting still won with 1.17 in MSE and 0.86 in MAE compared to 1.27
and 0.90 respectively for random forests. A single regression tree was also
grown for comparison and was not much worse than random forests. Since
an AR model is linear in its parameters, we found that linear methods such
as linear regression were superior, achieving an MSE around 1.00.

In the second experiment, we simulated from a TAR model and after-
wards a modification of it. The results before tuning were similar in rela-
tive terms as in the AR simulation. Random forests did however improve
a lot with some tuning, even though LS Boost still had slightly lower MSE
and MAE. The MSE was close to 1 for both algorithms, which means that
variance as well as squared bias were close to zero according to (1). This
was confirmed since we estimated the squared bias to be around 0.01. We
also fitted an AR model to this data for comparison. It did not perform
well as expected given the nonlinear structure of data, obtaining a MSE of
2.06. Adding time as an explanatory variable did not confuse the algorithms
very much, although LS Boost handled these modifications better than the
other methods. After increasing the variance of the white noise series to 2,
LS Boost still won with approximately the same relative margin. However,
after changing to a heavier tailed distribution for the white noise series we
found that random forests came even closer at reaching the prediction error
levels of LS Boost.

In the third experiment, we simulated from a GARCH-M model and
afterwards an extended version of it to validate the results. Different seeds
were also tried since the variance series σ2

t varied quite a lot for each sim-
ulation. Boosting did once again outperform random forests according to
both criteria MSE and MAE. The difference in MSE was 0.60 with default
parameters, but dropped to 0.13 with a moderate amount of tuning. We also
evaluated the performance of linear regression for this data as comparison.
In fact, the linear estimator achieved lower MAE than LS Boost and lower
MSE than random forests. After changing input variables, both boosting and
random forests had lower MSE and MAE, while linear regression changed
in the opposite direction. Still, LS Boost performed the best.
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4 Discussion

Both algorithms random forests and LS-Boost provided accurate forecasts
in this study. It is easy to see why they are popular to use in practice when
prediction error is the most important concern. However, this does not mean
that they are perfect. One issue with the algorithms is that they do poorly
on new observations that are larger or smaller than the values used to train
them. This can be realised by studying the structure of a regression tree.
Unlike linear regression for example, a regression tree does not adapt to
new values. A much higher value will still be predicted by the mean of some
smaller values. However, it is generally not advisable anyway to predict
outside the scope of what the training data covers.

Statistical significance of our results has not been investigated in this re-
port, although we checked for robustness of the results from the GARCH-M
model by simulating much more data. Another way to validate the results
could be to repeat the experiment for say 10,000 different seeds and count the
number of wins for each algorithm according to MSE. If these counts weigh
heavily in the favour of either algorithm, say at least 95% wins, we can be
more certain of the results. This procedure does not prove statistical signifi-
cance in the strict sense, but is definitely an alternative to more formal tests.
One could assume that P (LS Boost wins) = P (random forests wins) = 0.5
is the null hypothesis and use the counts to test an alternative hypothesis
that the two methods have different probabilities of winning a comparison.
This is possible to test using a binomial distribution for the number of times
(say) LS Boost wins. Yet another option is to estimate the prediction vari-
ances of the models on unseen data and test whether they are equal or not.

Why does LS Boost win?

The better algorithm to make one-step ahead forecasts in this report is
LS Boost. There might be many answers to why this is the case. For all
simulations, the time series were strongly dependent on their explanatory
variables. We did for example exclude intercept terms in all simulated models
because they obscure the influence of lags. One could claim that there are
more to gain from reducing bias than variance in these simulations, hence
the better performance of LS Boost. This is because it is advantageous to
fit the data closely with the use of input variables. One way to test this is
by reducing the influence of lags and including an intercept term.

Another reason why boosting performed best in our study might be ex-
plained by the relatively large data sets. Smaller data sets are more likely to
vary as the experiment is repeated, making LS Boost easy to overfit. Tuning
the models also becomes more difficult as there are too few observations for
a validation and testing set. Further, similar studies indicate that random
forests perform better when the data is sparse, see related work in the sub-
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section below. Assuming that this is true, one could apply the algorithms
on real life situations in the following way. Random forests might be bet-
ter for forecasting returns on stocks of small companies, since data of such
stock prices probably are more noisy. Meanwhile boosting should be better
when forecasting stock prices of large, less volatile companies. This is of
course not shown in the report, but could be an interesting topic of further
investigation. Recall however what we saw in Table 1 that random forests
deteriorated relatively less than LS Boost for a more heavy tailed error term
distribution.

Improvement of random forests

One way to improve an estimator could be to use random forests in con-
junction with boosting. An idea is to apply random forests and then use
its output f̂r(x) as the first tree of the LS Boost algorithm instead of using
f0(x) = ȳ. Such an estimator would in theory achieve lower bias than ran-
dom forests alone. However, it would probably yield higher variance due to
tighter adaptation to existing observations. It is also a bit tricky though to
determine if the proposed method would improve LS Boost. In most cases, it
holds that Bias(f̂r) < Bias(f0), but we would expect that Var(f̂r) > Var(f0).
The second inequality is somewhat uncertain as both sides could possibly
have very low variance. Nevertheless, it may be too optimistic to believe
that the estimator would improve significantly after running through the
iterations of the LS Boost algorithm.

Another idea, which is inspired by boosting, is that random forests might
improve if the probabilities are adjusted in each iteration for every obser-
vation to be chosen. Preferably in a way that gives observations where the
prediction went most wrong a much higher probability to be selected in the
subsequent tree. This means that the first tree in the random forest ensemble
would still be grown on a bootstrap sample where the probabilities are 1/N
for all observations, but the next bootstrap sample would be drawn from
another probability distribution. One option for adjusting the probabilities
could be

P (selecting zi) =
(Tj(xi)− yi)2∑N
n=1(Tj(xn)− yn)2

,

where Tj is the current output of the algorithm (the average of j trees)
and zi = (xi, yi). This can be interpreted as follows. After j iterations we
adjust the probability of observation zi, i = 1, . . . , N to be its residual in
the current output relative to the total sum of residuals. This would make
it more likely for inaccurately predicted observations to have more influence
in the next tree. If the sample size remains N and selection is made with
replacement, then this new algorithm would definitely need some type of
shrinkage. It would probably work best with shrinkage anyway, since slow
learning tends to yield better results.
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Limitations of this study

This is a small study including few simulations. Much space is devoted to
theory and we have not proved anything. We have only shown some exam-
ples of time series models where LS Boost seems to be slightly superior to
random forests in terms of one-step ahead forecast accuracy. If the study
was enlarged many more simulations would be included from other types
of time series models. Another extension could be to include multivariate
time series, which requires a definition of multiple output regression trees.
There are also too few theoretical aspects presented, especially concerning
gradient boosting. Hence, based on this study alone we cannot make firm
recommendations of situations in which the algorithms are suitable, or if
they should be used on time series at all.

4.1 Further reading and related work

For more information and details on regression trees, see [3]. A more nuanced
description is provided there, along with statistical properties. Regarding
random forests, see for example [10] to get a deeper insight. This is a chapter
in a book about ensemble learning methods and should be excellent for
interested readers. To learn more about boosting, one should read [11], the
article where this method was formally introduced. For more theory and
applications of different time series models, see [8].

A more comprehensive study is performed in [12], although the focus is on
classification problems rather than regression. This study compares bagging,
Adaboost and randomization. Random forests was yet to be introduced
when the article was published, although the algorithm is almost identical
to randomization. He finds that boosting is superior in a situation with
little or no classification noise. Bagging had however better accuracy for
noisy data sets. Another similar but larger study can be found in [13], where
multiple machine learning algorithms are compared in terms of forecasting
time series data. For a more recent study, see for example [14]. Random
forests and boosted regression trees are compared here along with other
machine learning algorithms to predict stock market prizes. One can also
scan through [2] for several examples of boosting versus random forests.
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