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Abstract

In this thesis the aim is to get a mathematical understanding

of how individuals of varying reproductive fitness propagate through

time. We analyze this using the Wright-Fisher model where every gen-

eration is of the same population size. Using this model we assume at

first that the whole population is equally fit and obtain some interest-

ing results. Thereafter we assume that the population can be divided

into two sets where one is more fit in a reproductive sense than the

other. In other words the more fit individuals carry mutated alleles

and are therefore better adapted to their environment. From this we

get the mathematical results needed to find the expected number of

mutants for any given generation. At last we briefly discuss a growing

population size.
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1 Introduction

The aim of this thesis is to get an understanding of the mathematics of how a
population of individuals propagate through time. It is of interest to see how
this population grows given that there are different individuals of varying de-
grees of reproductive fitness. For the size and time given for this thesis we will
only consider two types of individuals, where one class of them are more fit
in a reproductive sense, i.e. the mutants, and will have more of their children
represented every generation.

In Section 1.1 and 1.2 we introduce the basics of genetics and the mathematics
of reproductive fitness. We then go on to define the Wright-Fisher model in
Section 2 which is the model we will use to explain how a population grows
through time. In Section 2 it is assumed that we have a stable population for
every generation. Before we go on and explore the model using two classes of
individuals of different reproductive fitness we assume that they are equally fit.
Doing so reveals some interesting results such as the coalescent theory, which is
how one can calculate the different expected time of when two genetic lineages
converge in generational time.

We then go on in Section 4 to add the assumption that there are individuals
of different reproductive fitness in our population. We derive the mathematics
of assuming this which will be used going on to Section 5, where we answer at
what generation we can expect that the more fit individuals have out-competed
their less fit counterparts.

At last we go briefly in Section 6 into what happens if we assume a growing
population size for every generation.

1.1 Basic genetics

In order to study how species propagate throughout time we need to have a
basic understanding of genetics.

Four molecules called nucleotides are the building blocks of DNA. These molecules
are adenine, guanine, cytosine, and thymine. Sequences of DNA are called genes.
Every organism has genomes which are a complete set of genetic information
(Pierce 2012, p. 4). In a genome of an organism the genetic locus is a location
on the said genome (Durrett 2008, p. 5). The genes that code for phenotypic
traits are called alleles. An example of this is the genes that code for coat colors
in cats (Pierce 2012, p. 11). The coat color can come in different colors such as
black, orange or white. Eye colors in humans are also an example of different
types of alleles.

It is important to distinguish between traits and genes. It is the genes that
are passed on from generation to generation and the genes are responsible for
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certain traits that are formed by environmental factors (Pierce 2012, pp. 11-12).
The phenotype of an organism is a trait encoded in the allele.

There are diploid and haploid organisms. Haploid organisms have only one
copy of their genetic material while diploid organisms have two copies. Each
copy in a diploid organism is given by each parent respectively (Durrett 2008,
p. 4). The copies are given by chromosomes, which are a bundle of genes. Each
copy of the chromosome is usually alike in structure and size and fill the same
function. What differs in the two chromosomes are their alleles. One chro-
mosome might for example code for black hair color while the other codes for
blonde hair color. However they fill the same function, in this case hair color
(Pierce 2012, p. 19).

1.2 Reproductive fitness

In order to study genetic fitness there needs to be a distinction between individ-
uals. It is of interest to consider one individual more fit than another. Usually
the fitness of an individual is determined by the differences in phenotypic traits.
For example a white coated polar bear has a better survival advantage in a snow
ridden climate than a brown coated polar bear, and is therefore more fit. As
stated above these phenotypic differences are encoded in the allele.

To make this more general in this thesis we will consider two types of alle-
les. Allele of type A and a. One allele is more advantageous in a reproductive
sense, in this thesis it is always assumed to be an allele of type a. Mathemati-
cally we can assume that an individual X that carries an allele of type A has a
Poisson amount of children, such that

X ∼ Poisson(λ),

where λ ≥ 1 in order to have an expected stable population. In other words X
is the distribution of offspring. An individual Y that carries an allele of type a
is then said to have

Y ∼ Poisson(λs),

where s > 1 is the beneficial mutation factor. The expected amount of children
that individual Y has is E[Y ] = λs which is larger that the expected amount of
children X has which is just λ (Alm and Britton 2008, p. 87).

This means that individual Y is likely to give birth to more children than X.
This in of itself does not translate necessarily to reproductive fitness so an equiv-
alent way of thinking about this is that individual Y will have more children
that survive than individual X. The fact that the probability that more children
of allele type a are represented in a population is an indication that that specific
phenotype has an evolutionary advantage over the phenotype that is expressed
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by allele of type A.

2 The Wright-Fisher model

In the Wright-Fisher model it is assumed that we have an environment for which
there are always 2N individuals in each generation where N is a natural number.
In our specific case each generation n are made up of m individuals of allele type
a, where n ≥ 1 and 2N ≥ m ≥ 1. Given this there are 2N −m individuals of
allele type A, such that the sum of all individuals is 2N .

Figure 1. A demonstration of the Wright-Fisher model.

2.1 Clustering allele types

Every individual i where 1 ≤ i ≤ 2N in generation n can give birth to a
stochastic amount of children such that

Xn,i ∼ Poisson(λn,i). (1)

In what we are modeling in this thesis every λn,i assumes either λ or λs.

One of the neat properties of the Poisson distribution is that the sum of in-
dependent Poisson distributed variables is also a Poisson distributed variable.
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Therefore in generation n all individuals i of allele type a will in total give
birth to a Poisson amount of individuals such that

m∑
i=1

Xi = Xa ∼ Poisson(λsm). (2)

In the same way all individuals of allele type A will in total give birth to random
amount of children such that

2N∑
i=m+1

Xi = XA ∼ Poisson(λ(2N −m)) (3)

(Held and Bové 2020, p. 360). Another useful result is that the total amount
of children that can be born is

Xa +XA ∼Poisson(λ(2N −m) + λsm) (4)

=Poisson(λ(2N −m+ sm)).

Using these results will greatly simplify a lot of calculations.

2.2 The auxiliary step

As stated in (4) the total amount of children that will be born is Poisson(λ(2N−
m + sm)) distributed with an expected amount being λ(2N − m + sm) (Alm
and Britton 2008, p. 87). However in the Wright-Fisher model we condition on
there being 2N individuals every generation. This will lead to the assumption
that

E[Xa +XA] = λ(2N −m+ sm) ≥ 2N (5)

for any given generation n. Therefore it is expected that λ has been chosen
which would make (5) true. The reason for this is that we can not have the
probability of having less children born be smaller than 2N, for then the Wright-
Fisher model would no longer hold.

The second point is that the amount of children born is Xa +XA, which could
very well be larger than 2N. In fact as stated by (5) it is in expectation. In-
between every generation n and n+ 1 there is an auxiliary step na where there
are Xa +XA individuals. These individuals are the actual children born from
generation n. We then choose 2N uniformly at random from na which then
will become the individuals that make up generation n + 1. In practice this
corresponds to there being some amount of children born in na but because of
environmental factors some of them die off leaving only 2N to survive.

3 Equal fitness

Assume that individuals with allele type A and a have the same reproductive
fitness, meaning that s = 1 and all individuals i in generation n such that
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1 ≤ i ≤ 2N and 1 ≤ n can give birth to a stochastic amount of children such
that

Xn,i ∼ Poisson(λ).

Every individual has therefore the same expected amount of children, E[Xn,i] =
λ. Using result (5) also gives us that

E[Xa +XA] = λ(2N −m+m) = λ2N.

3.1 Children choosing their parents

In this specific case we can circumvent the process of going from the auxiliary
step na to n+1 by having the individuals from generation n+1 choose uniformly
at random their parents from generation n. The reason they do not choose from
na and instead choose directly from n is because all the individuals in generation
n are equally and independently distributed.

Another result of thinking this way is that the probability that an individ-
ual i in generation n is the parent of k individuals in generation n+ 1 is given
by

P (Xn,i = k) =

(
2N

k

)( 1

2N

)k(
1− 1

2N

)2N−k

. (6)

This is just the probability of individual i choosing k individuals in generation
n + 1 where the probability of success, a child choosing the one right parent
is 1

2N , and there are
(
2N
k

)
ways of choosing k children from generation n. Yet

here again we circumvent na. Note that the number of children of individual i is
Bin(2N, 1

2N ) distributed. This is not the same as the amount of children that
individual i will give birth to which is Poisson(λ).

A more extensive way of looking at it is by regarding at generation n a subset S
of 2N such that |S| = L and 1 ≤ L ≤ 2N. The probability that all individuals
in the subset S gives birth to k children in total is given by

P
(∑

i∈L

Xn,i = k
)
=

(
2N

k

)( L

2N

)k(
1− L

2N

)2N−k

. (7)

Note that in the subset S some may birth no children and the others might
birth all the K children in total. This is analogous to (6) where the difference
is that the probability of success is L

2N , given by the fact that a child chooses
uniformly at random from a population of 2N. The probability of choosing one
right parent from the subset S is just L

2N . Therefore the amount of children is

Bin(2N, L
2N ) distributed.

However in our model we have only two alleles present and so we can forgo
the analysis of individual parents and look only at how the two alleles A and a
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propagate. In this case the probability of having j alleles of type A in the next
generation when there are i present is said to be

p(i, j) =

(
2N

j

)
pi

j(1− pi)
2N−j , (8)

where pi =
i

2N (Durrett 2008, p. 6). It can be stated that we have a Markov
Chain as each successive generation is only dependent on the previous state. In
these terms it is not hard to see that we have two absorbing states, XT = 2N
or XT = 0 (Durrett 2008, p. 6).

3.2 Large population size

Using (7) and having a population 2N be very large, which is in practical
terms a realistic assumption, reveals that as 2N goes to infinity we get that
Bin(2N, L

2N ) → Poisson(L) in distribution (Alm and Britton 2008, p. 171).
The expected amount is therefore L children.

This result shows therefore that the expected amount of children that survives
from one individual i, where L = 1 is 1.

In the same way (8) will give us that as 2N goes to infinity

p(i, j) ∼ Poisson(i).

3.3 The coalescent theory

We will now under the assumption of equal fitness between individuals of allele
type A and a study when two lineages coalesce in time, in other words at what
generation does two individuals share a common common ancestor?

3.3.1 Two individuals

The probability that two individuals share the same parent one generation ago
is

1

2N
,

meaning that there is a one hundred percent guarantee that allele 1 has a parent
and the chances that the second allele shares the same parent is 1

2N . Given this
we can calculate the probability of when two alleles coalesce t generations back
by (

1− 1

2N

)t−1(
1

2N

)
,

which we observe as a geometric distribution (Nordborg 2000, pp. 5-6). It can
be explained by the fact that for each generation, the probability that the two
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alleles in question do not share a parent is(
1− 1

2N

)
.

If they coalesced t generations back then they do not share the same parent for
t− 1 generations hence (

1− 1

2N

)t−1

.

At last when they finally do share the same parent we multiply with the last
factor (

1

2N

)
.

Taking the expected value of an geometric distribution yields us 2N, which is
the expected number of generations back in which two alleles might coalesce
(Held and Bové 2020, p. 359).

Note that we will not study when k > 2 individuals coalesce. The probabil-
ity that k individuals share the same parent one generation ago is(

1

2N

)k

=
1

(2N)k

which if 2N is considered very large will give an probability that is increasingly
too small.

3.3.2 Two individuals from a sample of k individuals

So far we have examined the coalescence of sampling at random two individuals
from the total 2N population. Let us say we want to instead find the coalescence
of a sample of k and see how two individuals from our sample of k coalesce. We
know from our previous results that the probability of coalescence one generation
back for an arbitrary sample of two individuals is

1

2N
.

Choosing two individuals from a sample of k can be done in(
k

2

)
=

k(k − 1)

2

ways. This means that for each way there is a 1
2N chance that those two chosen

individuals might coalesce one generation back. Hence the probability of two
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individuals from a sample of k coalescing one generation back is(
k
2

)
2N

.

In the same way the probability of them not coalescing t generations back and
then finally coalescing is (

1−
(
k
2

)
2N

)t−1((k
2

)
2N

)
.

The expected time here as we yet again have a geometric distribution is

2N(
k
2

) (9)

(Held and Bové 2020, p. 359). Given this result we have the expected time
of when two individuals coalesce from a sample of k. Once they do coalesce we
have a new sample of k−1 left. We choose two from this population and repeat
the process and get the expected time of coalesces using (9) to be

2N(
k−1
2

) .
3.3.3 Most recent common ancestor

We can keep reapplying (9) and continue this process until we find the most
recent common ancestor (Durrett 2008, p. 9). This gives us the relative propor-
tions of how the expected time of different lineages coalescing looks like, where
the branches are shorter signifying that they diverged not too long ago from
each other and successively getting longer signifying that the expected time of
divergence is further back in time.
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Figure 2. A realization of the coalescent for a sample of size 5 (Durrett 2008, p. 9).

To demonstrate this given a population of 2N and a sample size of 5 we can find
the different expected generational times of when two individuals coalescence
in generational time tk, where k signifies how many individuals we have. The
results are

E[t5] =
2N

10
, E[t4] =

2N

6
, E[t3] =

2N

3
, E[t2] = 2N

(Durrett 2008, p. 9).

If we sample n individuals then T1 is the amount of time needed to get to
the most common ancestor (Durrett page 9). In other words

T1 = tn + ...+ t2.

Thanks to the properties of expected values we can find the expected time
needed to find the most recent common ancestor as finding the expected time
of the sum tn + ...+ t2 (Alm and Britton 2008, p. 120), we get that

E[T1] =
2N(
k
2

) = 2N · 2
n∑

k=2

(
1

k − 1
− 1

k

)
= 4N ·

(
1− 1

n

)

(Durrett 2008, p. 9). We know that E[t2] = 2N implies that when n is suffi-
ciently large E[T1] converges to 4N. This means that half the expected time to
find how a sample of k individuals coalesce is spent in the last coalescence t2.
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4 Mutations

Now we will re-implement a beneficial mutations into our model, i.e. when the
beneficial mutation factor s > 1, and see how the individuals with the mutation
will propagate throughout time.

4.1 The auxiliary step with mutations

As written in Section 2.2, result (5) shows that the expected amount of children
born from generation n into the auxiliary step na is

λ(2N −m+ sm).

We now have to find a way to uniformly choose from this auxiliary step so that
the chosen individuals make up generation n + 1. The solution will utilize the
Poisson process.

4.1.1 Part 1

Definition 1
Allan Gut states one of the definitions of a Poisson process as the following (Gut
2009, p. 222):

a) the increments {X(tk)−X(tk−1), 1 ≤ k ≤ n} are independent random vari-
able for all 0 ≤ t0 ≤ t1 ≤ t2 ≤ ... ≤ tn−1 ≤ tn and all n;

b) X(0) = 0 and there exists λ > 0 such that

X(t)−X(s) ∈ Po(λ(t− s)), for 0 ≤ s < t.

The constant λ is called the intensity of the process.

For a given generation n and using (1) defined in Section 2.1, the stochastic
amount of children individual i will give birth to is

Xi ∼ Poisson(λi).

In our special case λi assumes either only λ or λs but there is no reasons not to
have more than two types of λi corresponding to different levels of reproductive
fitness. Note that

X1, X2, ..., X2N

are all independent. Using Definition 1 we can find tk such that

Xi = X(ti)−X(ti−1) ∼ Poisson(λ(ti − ti−1)) = Poisson(λi),

for 0 ≤ ti ≤ 2N.
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What this implies is a Poisson process of intensity λ with a line divided into
2N parts corresponding to the 2N individuals. In this thesis the individual
segment lengths ti − ti−1 of the line are either equal to s or 1. Each increment
is an independent random variable which is Poisson distributed. This means
that the arrival times in each increment is Poisson distributed with λi where
the expected amount of arrivals is λi. (Alm and Britton 2008, p. 87).

Figure 3. The Poisson process with 2N increments.

4.1.2 Part 2

Theorem 1
Sheldon M.Ross (p.327-328) defines the amount of events over an interval (0, t)
in a Poisson process as N(t) (Ross 2019, pp. 327-328). Given that N(t) = n,
the n arrival times of the n events S1, ..., Sn are uniformly distributed over the
interval (0, t). Note that the events are considered as unordered random vari-
ables.

In our specific case t =
∑2N

i=1 λi, which means our interval is the sum of all
λi. The reason why this result is so useful is that instead of having an auxiliary
generation na, the 2N individuals from generation n + 1 can uniformly choose
their parents at random from a line of length t. In this line each segment is pro-
portional to the expected amount of children each individual i from generation
n will have. Therefore we can circumvent the process of uniformly excluding
individuals at random in the auxiliary step. Note that the expected amount of
children for each parent is still λi even though they might have less or more
children than that.

Assume that the sum of children that generation n has given birth to is

2N∑
i=1

xi = Xc, xi ≥ 0.

Mathematically we want to find

P (X1 = x1, X2 = x2, ..., X2N = x2N |Xc = 2N), (10)
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given that Xi ∼ Poisson(λi). This probability is equal to a multinomial distri-
bution of character

Multinomial

(
2N,

λ1∑2N
i=1 λi

,
λ2∑2N
i=1 λi

, ...,
λ2N∑2N
i=1 λi

)
,

(Agresti 2014, pp. 7-8). Note that it is possible for one or more individuals to
not have any children survive to generation n+ 1. In that case their unique λi

does not get represented the next generation, resulting in fewer overall different
types of λi.

4.1.3 Part 3

As stated in Section 2.1 in (2) and (3) the total amount of children of allele type
A born into the auxiliary step is XA and the total amount of children born with
allele type a into the auxiliary step is Xa. Because we are interested of how
the beneficial mutation propagates, i.e. individuals of allele type a, leads us
therefore to regard all individuals of the same allele types as one large organism
and see how many children that organism will have represented into the next
generation n+ 1. The only λi we therefore need to focus on is given by (2) and
(3) as λsm and λ(2N −m). Visually this would correspond to a Poisson process
of intensity λ with the interval (0, (2N − m) + sm) divided into two parts of
length 2N −m and sm.

Figure 4. The Poisson process with 2 increments.

We can now therefore imagine having 2N points representing the individuals in
generation n+ 1 and uniformly at random place them on this line. Depending
on what interval they are placed into will constitute what allele they will carry.

Using (10) and applying it to our specific case yields

P (Xa = xa, XA = xA|xa + xA = 2N) (11)

∼ Multinomial

(
2N,

λsm

λsm+ λ(2N −m)
,

λ(2N −m)

λsm+ λ(2N −m)

)
.

The probability density function of (11) is

2N

xa!xA!

(
λsm

λsm+ λ(2N −m)

)xa
(

λ(2N −m)

λsm+ λ(2N −m)

)xA
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(Alm and Britton 2008, p. 135). However because xa + xA = 2N implies
xA = 2N − xa we get that

2N

xa!(2N − a)!

(
λsm

λsm+ λ(2N −m)

)xa
(
1− λsm

λsm+ λ(2N −m)

)2N−xa

(12)

=

(
2N

xa

)(
sm

sm+ (2N −m)

)xa
(
1− sm

sm+ (2N −m)

)2N−xa

which we see is the probability density function of an binomial distribution vari-
able with n = 2N and p = sm

sm+(2N−m) (Alm and Britton 2008, p. 77).

Note that (12) implies that (11) is not dependent on the intensity λ of the
underlying Poisson process. We can therefore see the λ as an scaling factor
which can be arbitrarily chosen.

Define αn as the number of individual with the beneficial mutated allele type
a in generation n, such that 0 ≤ αn ≤ 2N for any 1 ≤ n. In conclusion the
amount of individuals in generation n+1 with the beneficial allele type a given
that there were m individuals of allele type a in generation n is given by

αn+1|αn = m ∼ Bin

(
2N,

sm

sm+ (2N −m)

)
. (13)

4.2 The expected number of mutants

Using the results found in Section 4.1.3 and result (13) we get

E[αn+1|αn = m] =
2Nsm

sm+ (2N −m)
, (14)

which is the expected amount of individual with allele type a in generation
n + 1 given that there were m such individuals the previous generation (Alm
and Britton 2008, p. 77). However if we assume that we do not know what
value αn takes then (14) becomes

E[αn+1|αn] =
2Nsαn

sαn + (2N − αn)
, (15)

which is a function of the stochastic variable αn. What we want to determine is
E[αn+1], which is the expected amount of individuals in generation n+ 1 with
an allele type a unconditioned on generation n. It is also known that

E[αn+1] = E[E[αn+1|αn]] (16)
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(Gut 2009, p. 34). Therefore with the definition of expected value for a function
we yield the following (Alm and Britton 2008, p. 59):

E[αn] = E[E[αn+1|αn]] = E

[
2Nsαn

sαn + (2N − αn)

]

=

2N∑
k=0

2Nsk

sk + (2N − k)

(
2N

k

)(
sαn−1

sαn−1 + (2N − αn−1)

)k(
1− sαn−1

sαn−1 + (2N − αn−1)

)2N−k

.

The sum above is therefore a function of αn−1. The reason for this is that
2Nsαn

sαn+(2N−αn)
is

Bin

(
2N,

2Nsαn−1

sαn−1 + (2N − αn−1)

)
distributed. Unless we know what value αn−1 has taken the expected value
E[αn] will be a function of αn−1.

5 Expected convergence of mutants

It is now of relevance to find a numeric way of calculating at what generation
the population is made up entirely of individuals carrying the beneficial mutated
alleles. In other words at what n can we expect αn = 2N.

5.1 The initial stages

What we like to determine is E[αn], which to clarify is the expected amount of
alleles with a beneficial mutation in any generation. We would like to calculate
it without having to condition on any previous generations. Using (15) from
Section 4.2 we yield

E[αn+1|αn] =
2Nsαn

sαn + 2N − αn
=

sαn
sαn

2N + 1− αn

2N

. (17)

If 2N is considered really large which is a fair assumption to make as in prac-
tical applications the population size in question is very large, then we get the
following result using (17):

lim
2N→∞

E[αn+1|αn] = sαn.

Note however in order for this to be true αn has to be of a much smaller order
then 2N in order for the quotient αn

2N to converge to 0. If that is true we can
approximate the expected value as

E[αn+1|αn] ≈ sαn. (18)
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Applying (18) to (16) gives us

E[αn+1] =E[E[αn+1|αn]] (19)

≈E[sαn]

=sE[αn].

Reapplying (19) to itself gives us

E[αn+1] ≈ s2E[αn−1].

Continuing this process until the first generation , given that snα1 ≤ 2N we get
that

E[αn+1] ≈ snE[α1] = snα1, (20)

because α1 is the amount of individuals with the beneficial mutation in gener-
ation 1, this is not a stochastic variable and therefore known (Allen p.34). The
expected amount of individuals with mutations will therefore grow exponen-
tially for each successive generation with a factor of s, which is the beneficial
mutation factor.

There are two cases where (20) will not hold. The first is that the mutant
population in the early stages have their highest probability of dying off in the
first initial generations. This is especially true if α1 makes up a very small per-
centage of the population size, i.e. α1

2N ≈ 0. When this happens we enter one
of the absorbing states discussed in Section 3.1. Once the mutants makes up a
more substantial percentage of the population the chances of them dying out
decreases and (20) can be used. Therefore (20) is best used for the initial first
generations.

The second case is when the the quotient αn

2N can no longer be approximated to
0. Then (20) will be unsuitable to use as we have assumed the quotient to be
approximated to 0.

5.2 The later stages

We will now handle the case where the approximation used in (20) does not
hold. In order to solve this issue we will introduce a new random variable

αn

2N
.

We therefore want to analyze the random variable αn

2N and see for what n

E

[
αn

2N

]
= 1 (21)

which is equivalent to at what generation the whole population is said to be
mutant.
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5.2.1 The variance

Assume that for every αn it holds that

αn = 2N · cn,

where 0 ≤ cn ≤ 1. The following variance given that αn

2N = cn is

V

(
αn+1

2N

∣∣∣∣ αn

2N
= cn

)
(22)

=E

((
αn+1

2N
− E

(
αn+1

2N

∣∣∣∣ αn

2N
= cn

))2∣∣∣∣ αn

2N
= cn

)
.

(Gut 2009, p. 36). Now using Theorem 2.2 a) in An intermediate Course in
probability, we get that (22) becomes

V

(
αn+1

2N

∣∣∣∣ αn

2N
= cn

)
(23)

=E

((
αn+1

2N
− 1

2N
E(αn+1|αn = 2Ncn)

)2∣∣∣∣αn = 2Ncn

)

=E

(
1

(2N)2

(
αn+1 − E(αn+1|αn = 2Ncn)

)2∣∣∣∣αn = 2Ncn

)

=
1

(2N)2
E

((
αn+1 − E(αn+1|αn = 2Ncn)

)2∣∣∣∣αn = 2Ncn

)

=
1

(2N)2
V (αn+1|αn = 2Ncn)

(Gut 2009, p. 36). Using the distribution given by (13) from Section 4.1.3 and
(23) gives us that

V

(
αn+1

2N

∣∣∣∣ αn

2N
= cn

)
(24)

=
1

(2N)2
2N

s2Ncn
s2Ncn + 2N − 2Ncn

(
1− s2Ncn

s2Ncn + 2N − 2Ncn

)

=
1

2N

scn
1 + scn − cn

1− cn
1 + scn − cn

=
1

2N

scn − sc2n
(1 + scn − cn)2

(Alm and Britton 2008, p. 77). The following results gives us an expression for
the variance of αn+1

2N

∣∣ αn

2N = cn.
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5.2.2 Chebyshev’s inequality

Let us substitute the random variable αn+1

2N

∣∣ αn

2N = cn asX and E
[αn+1

2N

∣∣ αn

2N = cn
]

as µ. Using Chebyshev’s inequality we get that

P (|X − µ| ≥ a) ≤ σ2

a2

⇒1− P (|X − µ| ≥ a) ≥ 1− σ2

a2

⇒P (|X − µ| < a) ≥ 1− σ2

a2

(Alm and Britton 2008, p. 68). Now we can substitute a for 1

(2N)
1
4

as the

requirements for a is that it is strictly larger than 0. We also substitute σ2 for
1

2N
scn−sc2n

(1+scn−cn)2
using (24) and get

P

(
|X − µ| < 1

(2N)
1
4

)
≥ 1− 1

2N

1√
2N

scn − sc2n
(1 + scn − cn)2

(25)

⇒P

(
|X − µ| < 1

(2N)
1
4

)
≥ 1− 1

2N1.5

scn − sc2n
(1 + scn − cn)2

Now assume that the population 2N is very large. Having used this assumption
(25) yields

lim
2N→∞

P

(
|X − µ| < 1

(2N)
1
4

)
≥1− 1

2N1.5

scn − sc2n
(1 + scn − cn)2

=P (|X − µ| < 0) ≥ 1

but because a probability is never larger than 1 we get that

P (|X − µ| < 0) = 1

given that the population size 2N goes to infinity. However if 2N is sufficiently
large enough which in practical sense is a realistic assumption to make, the
probability is

P (|X − µ| < 0) ≈ 1.

What this means is that the stochastic variable X and its expected value µ are
roughly always the same such that we can assume that for any outcome of X
we get that

αn+1

2N

∣∣∣∣ αn

2N
= cn ≈ E

[
αn+1

2N

∣∣∣∣ αn

2N
= cn

]
. (26)
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5.2.3 The expected value

Note that using (26) and (16) from Section 4.2 gives us that

E

[
αn+1

2N

]
=E

[
E

[
αn+1

2N

∣∣∣∣ αn

2N

]]

≈E

[
αn+1

2N

∣∣∣∣ αn

2N

]
.

At last we can use the results found in Section 5.2.1 and 5.2.2 and (14) from
Section 4.2 and get that

E

[
αn+1

2N

∣∣∣∣ αn

2N

]
(27)

≈E

[
αn+1

2N

]

=E

[
E

[
αn+1

2N

∣∣∣∣( αn

2N

∣∣∣∣αn−1

2N

)]]

=E

[
1

2N
E

[
αn+1

∣∣∣∣( αn

2N

∣∣∣∣αn−1

2N

)]]

=
1

2N
E

[ 2Ns

(
αn

2N

∣∣∣∣αn−1

2N

)
2N − (s− 1)

(
αn

2N

∣∣∣∣αn−1

2N

)]

≈E

[ sE

[
αn

2N

∣∣∣∣αn−1

2N

]
2N − (s− 1)E

[
αn

2N

∣∣∣∣αn−1

2N

]].
In conclusion we get a recursive formula where we reapply (27) until we get to
generation 1. With very tedious calculations it is possible to find at what n (21)
roughly holds true.

6 Growing population size

So far the Wright-fisher model has only allowed for a constant population of
size 2N to take place in every generation. It is of interest to study a changing
population size for every generation.

Assume we know a function f(n) which is a function of the generation n. The
function f(n) is not a stochastic variable and is therefore known beforehand.
This means that we already know how many individuals the environment in
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question can sustain and keep alive for every generation. For every n we are
looking at f(n) is a contestant no different than 2N. We can therefore substitute
2N for f(n) and have the result

αn+1|αn = m ∼ Bin

(
f(n),

sm

sm+ f(n)−m

)
. (28)

hold true given by result (13) from Section 4.1.3.

Instead of the 2N children choosing uniformly at random their parents in a
Poisson process we instead have that f(n) children choose their parents uni-
formly at random from generation n − 1. Note however that (28) builds upon
(11) from Section 4.1.3 where in generation n

P (Xa = xa, XA = xA|xa + xA = f(n))

∼Bin

(
f(n),

sxa

sxa + f(n)− xa

)
.

The assumption we are making however is that xa + xA = f(n). Therefore the
probability in the auxiliary generation na that Xa+XA ≥ f(n) has to be fairly
large to insure a growing population. Otherwise if it is too low the individuals
can not give birth to sufficient amount of children to fill up the next generation
of capacity f(n).

7 Discussion

7.1 Results

In this section we will present the main conclusions gathered in this thesis.

The auxiliary step posed a problem presented in Section 2.2. However we have
found a way to circumvent this in a population of equal fitness in Section 3.1
and later with individuals having a mutation in Section 4.1. What is interesting
in both of these cases is that the children themselves choose their parents from
the previous generation, instead of uniformly at random excluding children from
the auxiliary step. This method of uniformly choosing at random is also used
in Section 3.1 discussing the coalescent theory.

Using the results gathered in Section 4 we answered the question of the ex-
pected amount of mutants in a given generation n. The reason that this is of
special interests is that we can find at what generation it is expected that we
only have mutants. In Section 5.1 we explain the problem of having too small of
a percentage of mutants but later go on to discuss the first up-jump of mutants.
In the first few generations we can use the results presented in Section 5.1 to
calculate the expected amount of mutants in those first generations. However
it is shown that these results do not hold once the mutants start to grow more
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significantly and make up a larger percentage of the population. It is therefore
in Section 5.2 where this problem is dealt with and we find a way to calculate
the expected number of mutants in every generation. We can therefore conclude
that using both this methods in conjugation with each other can guarantee a
relatively good method of calculating the expected number of mutants in every
generation.

7.2 Improvements

In this section we will discuss what improvements and ideas could be explored
given more time.

What could be interesting is to delve into what happens if there is a popu-
lation where there are more than two types of alleles. These alleles correspond
to different types of reproductive fitness. Seeing how they will propagate and
at what generational time one allele is fully represented would be interesting to
explore. It is also interesting to go further into the coalescent theory and see
how that would relate to a population of unequal fitness.

Another point to mention here is what would happen if a mutation could ran-
domly appear in any given generation. Also some simulations added to explore
numerically the results presented in this thesis, especially in relation to muta-
tions would have been beneficial to understanding these concepts better. At
last the most interesting idea is to explore a changing population. In this case
it could be strictly growing, decreasing or be of a random stochastic nature. I
think this reflects reality the best as the environment can shift and is not always
assumed to be known in advance.
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