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Abstract

In this thesis we compared two Markov Chain Monte Carlo al-

gorithms; the Random Walk Metropolis algorithm and the Adaptive

Metropolis Algorithm. The latter can be viewed as an extension of

the former and our aim was to see if its efficiency is improved by the

alteration. To do this, we defined a Bayesian model for logistic regres-

sion on a simulated data set. The posterior inference was based on

samples from the Random Walk Metropolis and Adaptive Metropolis

algorithms. We also introduced methods for assessing convergence of

the chains. In our analysis, the Adaptive Metropolis algorithm proved

more efficient than the Random Walk Metropolis algorithm.
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1 Introduction

Bayesian statistics have found practical use in many areas of research such as the
social and behavioural sciences, ecology, genetics and more. The specification of
a Bayesian model begins with the choice of a statistical model that incorporate
a set of statistical assumptions. The defining characteristics of a Bayesian sta-
tistical model is that the observed data and unobserved parameters are given
a joint probability distribution with two key components: the likelihood and
the prior distribution, which are combined using Bayes’ theorem to form the
prior distribution. The choice of a prior distribution is typically done before
observing the data and can be based on previous studies or assumptions about
the parameters. Once we’ve determined a prior distribution and observed the
data our knowledge about the parameters are updated by combining the likeli-
hood and prior information using Bayes’ theorem, which results in the posterior
distribution. The posterior distribution contains all the information about the
unobserved parameters given our model and the observed data and is used for
statistical inference.

The basis for Bayesian statistics was first described by Reverend Thomas Bayes
in an essay on inverse probability in 1763. However, it was not until 50 or
so years ago that Bayesian statistics became a viable option for more complex
statistical models. The reason for this is that the posterior distribution is typ-
ically impossible to express in closed form and hence posterior inference must
rely on numerical estimates or simulations of the posterior distribution, which
is typically done with the aid of computers.

A class of methods called Markov chain Monte Carlo (MCMC) are able to
draw samples from any prior distribution through simulation methods based on
Markov chain theory. While these methods can produce a sequence of simulated
draws that are (eventually) distributed according to the posterior distribution,
they may only be guaranteed to do so in theory. Hence, in practice, where we
are only able to produce a finite sequence of simulated draws, we have to ask
our selves if the generated sequence is long enough to provide reliable estimates
of the posterior distribution. This raises the following two questions; is our
sequence long enough to provide reliable estimates and how do we construct
efficient MCMC algorithms such that reliable estimates can be obtained within
a reasonable time frame?

The aim of this thesis is to introduce the use of Markov Chain Monte Carlo
methods for posterior sampling within a Bayesian model, with a particular focus
on comparing two different sampling algorithms; the Random Walk Metropolis
(RW) and Adaptive Metropolis (AM) algorithms. Since convergence is only
guaranteed in theory (see, for example (Hill and Spall, 2019) for the RW algo-
rithm and (Haario et al., 2001) for the AM algorithm) we make use of several
diagnostic tools to assess the convergence of both algorithms. These include
trace plots, the R̂-statistic and the effective sample size, which are common di-
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agnostic tools for MCMC. We further introduce some improvements proposed
by (Vehtari et al., 2021), which advise that rank plots could be used in place

of trace plots and that some improvements can be made for the R̂-statistic and
the effective sample size. These diagnostic tools further serve as a metric of
efficiency and are used to compare the algorithms. We use both algorithms to
sample from the posterior distribution of a logistic regression model which is de-
fined in Section 2. The construction of the RW and AM algorithm is presented
in Section 3 together with the necessary theory of Monte Carlo integration and
Markov chains. Results are presented in Section 4 and discussed in Section
5. We find that the AM algorithm outperforms the RW algorithm in terms of
greater efficiency with regards to the R̂-statistic and the effective sample size,
and argue that this is because some of the posterior parameters are highly cor-
related. This serves as an example as to how improvements to MCMC sampling
methods can be implemented, yielding more efficient algorithms.
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2 Logistic regression

The theory on logistic regression where retrieved from the book written by
(Agresti, 2013), chapter 4 and 5.

2.1 Definition of logistic regression

According to (Agresti, 2013) the most important model for categorical response
data is logistic regression. For observations of a binary response Y and ex-
planatory variables X, logistic regression models the probability π that Y is
in either one of the two possible categories as a nonlinear function of X.
We will now define the logistic regression model for data consisting of N ob-
servations, a binary response variable Y that assumes the values 0 or 1, and
M explanatory variables Xi = (X1i, X2i, ..., XMi). First, define the probability
function as

π(Xi) = P (Yi = 1|Xi) = 1− P (Yi = 0|Xi) for i = 1, 2, ..., N.

Furthermore, let β be a (m + 1)-dimensional vector of regression coefficients
such that

ηi = βTXi = β0 + β1X1i + β2X2i+, ...,+βMXMi

is the linear predictor for observation i. Since π is a probability it must be
restrained to the interval [0, 1] on the real line. Hence, if we wish to use the
linear predictor in our model we must transform it so that it is restrained to [0, 1]
on the real line. The logistic function applied to the linear predictor achieves
this. Consequently, the logistic regression model is defined as

π(Xi) =
exp (ηi)

1 + exp (ηi)
for i = 1, 2, ..., N. (1)

To better understand logistic regression we begin with a definition of the odds
for a success probability π, which is quoted verbatim from (Agresti, 2013) page
44.

Definition 2.1. For a probability π of success, the odds are defined to be

odds Ω = π/(1− π).

Now, if we compute the odds for probability (1) and apply the logarithm to
both sides we obtain the following,

log
π(Xi)

1− π(Xi)
= βXi,

which shows that the log odds of Y = 1 is a linear function of the explanatory
variables.
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2.2 The likelihood equation for logistic regression

The theory on the likelihood function (Section 2.2) and Bayesian logistic re-
gression (Section 2.3) is retrieved from the book written by (Held and Bové,
2014).

Definition 2.2. For a statistical model parameterized by β, the likelihood func-
tion L(β) is the joint probability mass or density function of the observed data
as a function of β.

As in the previous section, assume that we have data consisting of N obser-
vations and lets further assume that the N binary responses are independent.
Then, we may view every outcome yi of Yi as a realisation of an independent
Bernoulli trial with success probability πi = π(Xi), having probability mass
function

f(yi) = πyi

i (1− πi)
1−yi .

In the frequentist approach to statistical inference, the aim is to infer the values
of the parameters in the model from the data. This can be done by maximizing
the likelihood function, which is the probability mass or density function of
the data as a function of the parameters. The values of the parameters that
maximizes the likelihood function is called the maximum likelihood estimate,
and it is the value for which the observed data has the highest probability given
our model.
For logistic regression as defined in Section 1, the likelihood function L(β) is
given by

L(β) =

N∏
i=1

f(yi) =

N∏
i=1

πyi

i (1− πi)
(1−yi).

The log-likelihood function ℓ(β) becomes a sum of the log-densities, i.e.

ℓ(β) =

N∑
i=1

log
(
πyi

i (1− πi)
(1−yi)

)
=

N∑
i=1

yi log(πi) + (1− yi) log(1− πi)

=

N∑
i=1

log(1− πi) +

N∑
i=1

yi log

(
πi

1− πi

)

= −
N∑
i=1

log(1 + exp (βi)) +

N∑
i=1

yiβXi . (2)

According to (Agresti, 2013) page 192, the log-likelihood is used to fit the
logistic regression model. In the next section, we will see that the likelihood
function plays a central roll in the Bayesian approach to statistical inference as
well.
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2.3 Bayesian logistic regression

We will now extend logistic regression to a Bayesian model, for which we will
need the following theorem.

Definition 2.3. (Bayes’ theorem)
For any two events A and B with P (B) > 0, Bayes’ theorem states that

P (A|B) =
P (B|A)P (A)

P (B)
.

In the Bayesian approach to statistical inference the parameters of the model
are viewed as random and hence follow some probability distribution. Before we
observe the data, we must select a prior distribution for the model parameters.
Once the data are taken into account we apply Bayes’ theorem in order to get
the posterior distribution, which contains all available information about the
model parameters given the observed data and the prior distribution.

Definition 2.4. (The posterior distribution)
Let Y = y denote the vector of an observed realisation from a random vector
Y with joint density function f(y|θ), where θ is a unknown parameter vector
with parameter space Θ. By specifying a joint prior distribution π(θ) for the
unknown parameter vector θ, we can compute the joint density function p(θ|y)
by an application of Bayes’ theorem:

p(θ|y) = f(y|θ)π(θ)∫
Θ
f(y|θ)π(θ)dθ

. (3)

The density function p is called the posterior distribution for θ.

Remark. In the enumerator on the right hand side of the posterior distribution
the term f(y|θ) is the joint likelihood L(θ) for the data given θ. In the denom-
inator, we marginalize the likelihood over θ and, once data has been observed,
we’re left with some constant that ensures that the posterior density integrates
to one. This implies that the joint posterior distribution is proportional to the
product of the joint likelihood and joint prior distributions, which we write as
p(θ) ∝ L(θ)π(θ).

With Bayesian inference we need to select a model that describes the data as
well as specifying prior distributions for the unknown parameters of the model.
One of the greatest challenges in Bayesian modelling is choosing an appropriate
prior. Therefore we resort to using a default prior for logistic regression coef-
ficients as proposed by (Gelman et al., 2014) on page 415. In order to use the
default prior, the data are scaled in the following way:

1. Binary inputs are shifted to have a mean of 0 and differ by 1 in their
lower and upper conditions;
2. Continuous inputs are set to have a mean of 0 and scaled to have a
standard deviation of 0.5.
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The default prior for the logistic regression coefficients on the scaled data are
then set as independent Cauchy distributions with center 0 and scale 2.5. For
the constant term (intercept) we set a Cauchy distribution with center 0 and
scale 10.

Definition 2.5. (Bayesian Logistic Regression with Default Cauchy Priors)
Under the same setting as with logistic regression where the data has been scaled
as proposed by (Gelman et al., 2014), the Bayesian model with default Cauchy
priors is defined by the following quantities:

1. The posterior

p(β) =
L(β)

∏M
j=0 fj(βj)∫

L(β)ΠM
j=0fj(βj) dβ

;

2. The likelihood

L(β) =

N∏
i=1

πyi

i (1− πi)
(1−yi);

3. The prior distributions

f0(β0) ∼ Cauchy(0, 10),

fj(βj) ∼ Cauchy(0, 2.5) for j = 1, ...,M.

For computational reasons, we may be interested in the log-posterior, which is

log p(β) ∝ ℓ(β) +

M∑
j=0

log fj(βj),

where ℓ(β) is equal to equation (2).

For statistical inference we are often interested in the posterior mean E(β|y),
the posterior variance var(β|y) and the posterior standard deviation, which is
the square root of the posterior variance. Furthermore, if we want to provide
an interval for which the parameter of interest is contained with a certain prob-
ability, we can provide a credible interval. The following definition of a credible
interval for a scalar parameter β is quoted essentially verbatim from (Held and
Bové, 2014), page 172.

Definition 2.6. (Credible intervals)
For a fixed γ ∈ (0, 1), a γ · 100% credible interval is defined through two real
numbers tl and tu, that fulfill ∫ tu

tl

p(β|y)dβ.

The quantity γ is called the credible level of the credible interval [tl, tu].
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3 Markov chain Monte Carlo methods

We recall that we have a statistical model parameterized by β and wish to
conduct statistical inference using the joint posterior distribution

p(β|y) = L(y|β)π(β)∫
X L(y|β)π(β) dβ

.

However, direct inference using the posterior distribution is typically not possi-
ble because the normalization constant in the denominator is only expressible
as an analytically intractable integral. In circumstances where we can not de-
termine the posterior distribution directly we may have to resort to methods
of computer simulation. If we are able to generate sufficiently many simulated
draws from the posterior these can be used for empirical estimates of the pos-
terior (van de Schoot et al., 2021).

In what follows, we will introduce two simulation methods that only depend on
the posterior distribution through the ratio

p(·|y)
p(·|y)

=
L(y|·)π(·)
L(y|·)π(·)

.

Therefor, these methods of simulation allow for indirect posterior inference with-
out the need to determine the normalizing constant. Before we present the meth-
ods that allow for posterior sampling in Section 3.2, we will introduce how the
samples may be used for estimates of the posterior mean E(β|y) and posterior
variance Var(β|y) for any scalar parameter β.

3.1 Monte Carlo integration

In order to compute estimates of posterior quantities like the posterior mean
and posterior variance when we rely on samples from the posterior distribution,
we may use Monte Carlo integration, which will now be defined. The theory
on Monte Carlo integration is retrieved from the book (Held and Bové, 2014),
chapter 8.

Definition 3.1. (Monte Carlo integration)
If we have simulated S independent draws β(1), ..., β(S) from the posterior dis-
tribution p(β|y) of interest, then, for any suitable function g,

Ê(g(β)|y) = 1

S

S∑
s=1

g(β(s)) (4)

is the the Monte Carlo estimate of E(g(β)|y) obtained through Monte Carlo
integration.

Remark. If we set g(x) = x in equation (4) we obtain the Monte Carlo estimate
of the posterior mean and with g(x) = x2 we obtain the Monte Carlo estimate
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of E(β2|y). These estimates can be used to obtain the Monte Carlo estimate of

the posterior variance, V̂ar(β|y) = Ê(β2|y)− Ê(β|y)2.

With the law of large numbers, it can be shown that the Monte Carlo estimate
of E(g(β)|y) is a simulation-consistent, meaning that the estimate converges
to E(g(β)|y) as S → ∞. Simulation-consistency may hold even if the samples
β(1), ..., β(S) are not independent, but the accuracy of the Monte Carlo estimate
is reduced if the samples are positively correlated.

Furthermore, if we want to use our samples to provide a symmetric 95% credible
interval for any scalar estimand β, we may use the 2.5% and 97.5% quantiles of
the ordered set of simulated draws (van de Schoot et al., 2021).

3.2 Markov chain Monte Carlo

There exist several ways to simulate draws from the posterior distribution but
we will focus on a method that belongs to a class of techniques known as Markov
chain Monte Carlo, abbreviated as MCMC. In order to use MCMC for posterior
inference we construct a Markov chain, a sequence of random variables, such
that the sequence will (at least eventually) represent draws from the posterior
distribution. The defining characteristic of a Markov chain is the Markov prop-
erty, which states that the conditional probability by which the sequence moves
to the next state only depends on the current state of the sequence.

This section is mainly concerned with how to construct a Markov chain such
that its stationary distribution is the posterior of interest. Since these methods
are applicable outside of Bayesian statistics it is common to say that we want
to sample from some target distribution, and henceforth we will use posterior-
and target distribution interchangeably. Certain Markov chains will have a
stationary distribution, meaning that its distribution remains the same as the
sequence progresses. Our aim is to construct a Markov chain such that its
stationary distribution is the target distribution. In order to do this we will
consider Metropolis chains, which are Markov chains modified to have the target
distribution as its stationary distribution. We begin by defining Markov chains
and further present the theory necessary to prove that a Metropolis chain has
the correct stationary distribution. The theory in Section 3.2.1 and 3.2.2 were
retrieved from (Ross, 2019) and (Levin et al., 2017).

3.2.1 Markov chains

A stochastic process {Xt, t ∈ T} is a sequence of random variables with indices
from a index set T which takes on values in a set X . The set X is called the
state space of the process and the index set T is commonly interpreted as time.
Hence, we say that the process is in state x ∈ X at time t whenever Xt = x.
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We will consider a discrete-time process where T = {0, 1, 2, ...} and where the
state space X is finite.

A Markov chain is a discrete-time stochastic process that moves along the state
space as follows: if the process is currently in state x ∈ X there exists some
fixed probability P (x, y) that it will make a one-step transition to state y ∈ X
that only depends on the current state x. This is known as the Markov property
and it may formally be expressed as

P (x, y) = P (Xt+1 = y|Xt = x,Xt−1 = xt−1, ..., X1 = x1, X0 = x0)

= P (Xt+1 = y|Xt = x),

for all states x, y ∈ X and for all t ≥ 0. We will refer to P (x, y) as the one-step
probabilities of the Markov chain.

For any Markov chain with a finite state space X we may construct a |X |× |X |-
dimensional matrix P with entries P(x, y) = P (x, y) for all x, y ∈ X . The
matrix P is called the one-step transition matrix and is constructed such that
each row represents a probability distribution. Particularly, if the process is in
state x at time t, row x in P is the probability distribution forXt. Consequently,
obeying the axioms of probability, each row in P must sum to one.

Now we will show that for any t ∈ T , the distribution of Xt can be found
through matrix multiplication. If we let πt denote the distribution of Xt we
have that

πt(x) = P (Xt = x) for all x ∈ X .

By conditioning on all previous states at time t− 1, we see that

πt(y) = P (Xt = y)

=
∑
x∈X

P (Xt = y|Xt−1 = x)P (Xt−1 = x)

=
∑
x∈X

P (Xt−1 = x)P(x, y)

=
∑
x∈X

πt−1(x)P(x, y) for all y ∈ X ,

where the third equality follows from the Markov property. The preceding
equation can be rewritten in vector form as

πt = πt−1P for t ≥ 1.

Now that we have introduced Markov chains we will show how we can adapt
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its transition matrix P such that the sequence generated by the Markov chain
converges to any probability distribution π on X . We begin with the following
definition.

Definition 3.2. (The limiting distribution)
For a Markov chain {Xt, t ≥ 0} with a finite state space X , the probability
distribution π is called the limiting distribution of the Markov chain if

πt(y) = lim
t→∞

P (Xt = y|X0 = x)

for all x, y ∈ X .

Definition 3.2 is concerned with the long-term behaviours of the Markov chain.
We give the remark that limiting distributions do not always exists, but when
they do, they are equal to the stationary distribution of the chain, which is
defined next.

Definition 3.3. (The stationary distribution)
For a Markov chain with finite state space X and transition matrix P, any
probability distribution π on X that satisfies

π = πP

is stationary for P.

Now that we have defined the stationary distribution, we are ready to give the
following important theorem which will be used to prove the result of the next
section.

Theorem 1. Consider a Markov chain with a finite state space X , transition
matrix P and let π be any probability distribution on X . If π satisfy the following
equations,

π(x)P(x, y) = π(y)P(y, x), (5)

for all x, y ∈ X , then π is stationary for P.

Proof. We sum both sides of equation 5 over all y in X , and using that each
row in P must sum to one, we obtain∑

y∈X
π(x)P(x, y) =

∑
y∈X

π(y)P(y, x) = π(x).

The equations (5) are known as the detailed balance equations.
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3.2.2 Metropolis chains

Suppose that we have a Markov chain with finite state space X and wish to
construct a transition matrix P such that it has a stationary distribution equal
to some target distribution π on X . To do so, let Q be a symmetric transition
matrix on X satisfying that Q(x, y) = Q(y, x) for all x, y ∈ X . Now, we shall
modify Q such that we obtain a Markov chain with stationary distribution π.

The central idea behind the Metropolis chain is to sequentially generate a se-
quence of random variables Y0, Y1, Y2, ... such that P (Yt+1 = yt+1|Yt = yt) =
Q(yt, yt+1) for all t ≥ 0 and yt, yt+1 ∈ X , forming a Markov chain with transi-
tion matrix Q and state space X , and at each state correct the chain such that
its stationary distribution is the target distribution π. In order for the corrected
chain to have the correct stationary distribution we introduce a new transition
matrix P on X , defined as

P(x, y) =

{
Q(x, y)α(x, y) if y ̸= x

1−
∑

z:z ̸=x Q(x, z)α(x, z) if y = x
, (6)

where α(x, y) = min
(
1, π(y)

π(x)

)
,

for all x, y ∈ X . Since the transition probabilities defined by P only depend
on the current state x, the Markov property is preserved. That it also has
stationary distribution π is confirmed by the following proposition.

Proposition 1. Given a Markov chain with symmetric transition matrix Q
and finite state space X , and for any distribution π on X , the transition matrix
P as in (6) has stationary distribution π.

Proof. The proposition holds if P and π satisfy the detailed balance equations
(5). To show this we have to consider the two cases where either

π(y) ≤ π(x) or π(y) > π(x).

We begin with the former case. If x ̸= y and π(y) ≤ π(x) then α(x, y) =
π(y)/π(x) and α(y, x) = 1 by definition. Using that Q is symmetric, it follows
that

π(x)P(x, y) = π(x)Q(x, y)α(x, y)

= π(x)Q(y, x)π(y)π(x)

= π(y)Q(y, x)α(y, x) = π(y)P(y, x).

The second case is shown analogously and is presented for completeness. If
x ̸= y and π(y) > π(x) then α(x, y) = 1 and α(y, x) = π(x)/π(y). Again, using
that Q is symmetric, it follows that
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π(x)P(x, y) = π(x)Q(x, y)α(x, y)

= π(x)Q(y, x) q(y)q(y)

= π(y)Q(y, x)α(y, x) = π(y)P(y, x).

Since π and P satisfy the detailed balance equations it follows that π is the
stationary distribution of P.

According to (Ross, 2019), page 262, a sufficient condition that the stationary
distribution of the Metropolis chain also is the limiting distribution is that
P(x, x) > 0 for some x. Hence, if a sufficiently long chain is generated where
P satisfies the previous condition, it will correspond to simulated draws of the
target distribution.

3.3 The Random Walk Metropolis Algorithm

The method of sampling from a distribution π on a finite state space X with
Metropolis chains can be extended to the continuous case where the underlying
Markov chain is replaced with a Markov process on a continuous state space Θ,
the transition matrix is replaced by a transition kernel, and the target distri-
bution p can be any probability density function on Θ. For a comprehensive
review on the theory of convergence and stationarity in the continuous case, we
refer the reader to (Hill and Spall, 2019).

We will now present how the previous method of sampling from a target distri-
bution can be used within Bayesian analysis to sample from a posterior distri-
bution that cannot be determined analytically. The methods we will present are
the Random Walk Metropolis (RW) and Adaptive Metropolis (AM) algorithms.
Remember that our aim is to derive inference about a statistical model based
on the posterior distribution p of the model parameters β, using the likelihood
function and a prior distribution on the parameters.

The Random Walk Metropolis algorithm is presented with the notation consis-
tent with (Gelman et al., 2014) page 278. Suppose that we are interested in
generating samples from the joint posterior distribution

p(β|y) = L(y|β)f(β)∫
Θ
L(y)f(β) dβ

(7)

where L(y|β) is the joint likelihood-function and f(β) is the joint prior distri-
bution function for β.
For a given starting value β0 the RW algorithm proceeds by iteratively propos-
ing a new value for β∗ at step t, which is drawn from a symmetric proposal
distribution q(·|β(t−1)). The proposal is either accepted or rejected based on
the ratio r of the following densities
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r =
p(β∗)|y)

p(β(t−1)|y)
.

If the proposed value β∗ is in a higher density region of the posterior distribu-
tion than the current value β(t−1) the ratio r will be greater than 1 and the
proposal is accepted. In this case, we will always move to a region with a higher
posterior density. If the ratio is less than 1, implying that β(t−1) is in a higher
density region than the proposal, the proposed value β∗ is either accepted with
probability r or rejected with probability 1 − r. If the proposal is accepted
the chain moves to a region with a lower posterior density. If the proposal is
rejected, we set β(t) = β(t−1).

Since r is the ratio of the posterior distribution, the normalizing constant
1/

∫
Θ
L(y|)f(β) dβ will cancel, from which it follows that

r =
p(β∗|y)

p(β(t−1)|y)
=

L(β∗|y) · f(β∗)

L(β(t−1)|y) · f(β(t−1)))
.

From this it follows that for a sufficiently large value of t such that the chain
has reached its stationary distribution, we can draw samples from the posterior
distribution by only knowing the likelihood-function and the prior distribution
function. We summarise the steps in the RW algorithm below.

The Random Walk Metropolis Algorithm

For (t = 1, ..., T ), given a starting value β(0), repeat:

1. Draw a proposal β∗ from q(·|β(t−1))

2. Compute the ratio

r =
L(β∗) · f(β∗)

L(β(t−1)) · f(β(t−1)))

3. Set

β(t) =

{
β∗ with probability min(1, r)

β(t−1) otherwise.

One problem that arises is how to select the the proposal distribution q. In
(Gelman et al., 2014) page 296, it is suggested that a common approach is to
set

q(β∗|β(t−1)) = N(β∗|β(t−1), σΣ), (8)
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i.e. a multivariate Gaussian distribution with mean equal to β(t−1) and co-
variance matrix Σ scaled by a tuning parameter σ. The proposal distribution
is hence centered around the current value β(t−1) and fulfills the symmetric
condition on q.
With q as in (8) the specification of the proposal distribution comes down to
specification of Σ and σ. One way to determine these parameters are to consider
the proportion of jumps that are accepted. In (Gelman et al., 2014), page 296,
it is suggested that an optimal acceptance rate for the Metropolis algorithm
with a Gaussian proposal distribution centered at the current value of sequence
is about 0.44 in one dimension and around 0.23 in higher dimensions.

When implementing the Random Walk Metropolis algorithm we utilize several
concepts presented in Appendix C.3 in (Gelman et al., 2014). Firstly, we work
on the log-scale to avoid computational underflow (or overflow) when multi-
plying many factors. This entails specifying the unnormalized posterior as the
sum of the log-likelihood and the log-prior density function. Furthermore, this
means that the ratio r of the two densities will be computed as the difference
of the log-densities. Step 3 is implemented by generating a point u from the
uniform distribution U(0, 1) and comparing it to the ratio r.

Pseudo-code for implementing the Random Walk Metropolis algorithm is pre-
sented below.

symbol description
α the acceptance rate
β the parameter we wish to sample
σ a the tuning parameter that scales the proposal distribution
T the number of iterations
p the unnormalized posterior distribution
Ct the estimated covariance matrix at iteration t

Table 1: Description of the symbols used in Algorithm 1 and 2.
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Algorithm 1: Random Walk Metropolis

1 α← 0

2 β(1) ← β0

3 for t = 2, 3, ..., T do
4 - generate a proposal β∗ ∼ N(β(t−1), σI)

5 - compute r = log(p(β∗))− log(p(β(t−1)))
6 - generate a random number u ∼ U(0, 1)
7 if u ≤ min(1, exp(r)) then
8 β(t) ← β∗

9 α← α+ 1
10 else
11 β(t) ← β(t−1)

12

13 α← α/T
14 return β, α
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3.4 The Adaptive Metropolis Algorithm

According to (Haario et al., 2001) it is essential to choose an effective proposal
distribution for the Random Walk Metropolis algorithm. In the previous section
we argued that the effectiveness of the Random Walk Metropolis algorithm is
highly effected by the acceptance rate, which is tuned by scaling the proposal
distributions appropriately. Rather than tuning the algorithm ad hoc by running
it several times until an optimal acceptance rate has been achieved, one may
consider an algorithm that iteratively uses the accumulated samples to approxi-
mate the covariance structure of the target distribution and adjust the proposal
distribution accordingly. One such algorithm is the Adaptive Metropolis Algo-
rithm which was introduced by (Haario et al., 2001). Other than adjusting
the proposal distribution the Adaptive Metropolis algorithm is identical to the
Random Walk Metropolis algorithm.

For the proposal distribution q(·|X1, ...,Xt−1) in the adaptive Metropolis algo-
rithm, (Haario et al., 2001) proposes a multivariate normal distribution centered
at the current point Xt−1 and covariance matrix

Ct =

{
C0, t = t0

sd(cov(X1, ...,Xt−1) + εId), t > t0
.

Here, sd is a scaling parameter that only depends on the dimension d of the
parameter β of interest, ε > 0 is a constant that may be chosen very small and
Id is the d-dimensional identity matrix. The quantity εId is added to ensure
that Ct will not become singular (Haario et al. (2001)). Notice that we let the
covariance of the proposal distribution to depend on all the previous samples
up until time t. This allows the proposal distribution to adapt to the covariate
structure of the target distribution. One caveat is that the proposal distribution
depends on the whole history of the chain up until t− 1 and hence the Markov
property is lost. Even without the Markov property, the chain as defined by
the Adaptive Metropolis algorithm is shown to have the correct stationary dis-
tribution by (Haario et al., 2001).

For computational efficiency, (Haario et al., 2001) suggest using the following
recursive calculation of the covariance matrix Ct,

Ct+1 =
t− 1

t
Ct +

sd
t
(tX̄t−1X̄

T
t−1 − (t+ 1)X̄tX̄

T
t +XtX

T
t + εId), (9)

where X̄t denotes the mean of accumulated samples up until time t and X̄t is
the vector transpose of X̄t. Pseudo-code for the Adaptive Metropolis algorithm
is presented below.
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Algorithm 2: Adaptive Metropolis

1 α← 0

2 β(1) ← β0

3 for t = 2, 3, ..., T do
4 - compute covariance matrix Ct using β(1), ..., β(t−1)

5 - generate a proposal β∗ ∼ N(β(t−1), Ct−1)

6 - compute r = log(p(β∗))− log(p(β(t−1)))
7 - generate a random number u ∼ U(0, 1)
8 if u ≤ min(1, exp(r)) then
9 β(t) ← β∗

10 α← α+ 1
11 else
12 β(t) ← β(t−1)

13

14 α← α/T
15 return β, α
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4 Assessing convergence of Markov chains

A concept common to chains generated by Markov chain Monte Carlo methods
are how well they are mixing, which refers to how well the chain is exploring
the support of the target distribution and thus how representative the samples
are. When we initialize a chain it may take many iterations before the chain has
reached its stationary distribution. Samples that were drawn during this initial
phase are often disregarded since they don’t represent the target distribution,
and keeping with the conventions of (Gelman et al., 2014) we say that these
samples represent the warm-up period.

In the previous section we introduced two MCMC algorithms whose stationary
distributions can be shown to converge to the target distribution. However, in
practical application we will only have a finite amount of samples for which the
theoretical results may not hold. In the article written by (van de Schoot et
al., 2021) three commonly used methods for assessing convergence of Markov

chains are presented. These are trace plots, the R̂-statistic and the effective
sample size. However, as Vats and Jones noted on page 701 in (Vehtari et
al., 2021): ”Diagnostics based on the simulated values cannot prove that the
simulation is providing representative samples, and the best we can hope for is
that it indicates when a problems has occurred.”

A common approach to check for poor mixing is to run multiple independent
chains with various starting points and check whether their distribution is sim-
ilar. From now on we assume that we have ran m independent chains and that
the samples form the warm-up period have been disregarded.

4.1 Trace plots

With trace plots we visualize the path of the chain by plotting the simulated
values on the y-axis against the iteration number on the x-axis. For m indepen-
dent chains drawn in the same plot, the trace plot can be used as a qualitative
diagnostic regarding poor mixing both within and between chains.

4.2 The R̂-statistic

The R̂-statistic is a quantitative measure of how well the chains are mixing.
Following the definition in (Gelman et al., 2014), the m chains are halved
giving a total of M = 2m chains. Suppose that each chain contains N samples
and let βij denote the ith sample from the Mth chain (i = 1, ..., n; j = 1, ..,M)
of a scalar estimand β.
Now, let

β̄.j =
1

N

N∑
i=1

βij and β̄.. =
1

M

M∑
j=1

β.j
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denote the within-sequence means and total (pooled) mean of any scalar esti-
mand β, respectively. Then we may express the between-chain variances B and
the within-chain variances W as

B =
N

M − 1

M∑
j=1

(β̄.j − β̄..)
2 and W =

1

N − 1

N∑
i=1

(βij − β̄.j)
2.

An estimate for the posterior variance var(β|y) is given by

v̂ar
+
(β|y) = n− 1

n
W +

1

n
B,

which is unbiased under stationarity (Gelman et al., 2014), page 284. The

R̂-statistic is then defined as

R̂ =

√
v̂ar

+
(β|y)
W

. (10)

At convergence the within and between chain variances should be equal and,
consequently, R̂ ≈ 1 indicates that the chains have converged. In (Vehtari et

al., 2021) the authors present what they call the improved-R̂, which is defined

in the same way as R̂ but computed on the rank normalized samples. This new
version of R̂ is defined even when either the posterior mean, variance or both
are undefined. The authors assert that a value of R̂ greater than 1.01 may be a
sign of poor mixing.

4.3 The Effective Sample Size (ESS)

As noted in Section 3.1, the Monte Carlo estimates are less efficient when com-
puted on samples with positive correlation. With the effective sample size we
try to estimate how many independent draws our dependent draws correspond
to. For the effective sample size n̂eff we will use the definition in (Gelman et
al., 2014), page 286.
For m chains with n samples each, representing the draws of some scalar pa-
rameter β, the effective sample size n̂eff is defined as

n̂eff =
mn

1 + 2ΣT
t=1ρ̂t

, (11)

where ρ̂t is the estimated autocorrelations at lag t and T is the first odd positive
integer for which ρ̂T+1 − ρ̂T+2 is negative. As noted by (Vehtari et al., 2021),
the effective sample size in Definition 11 should only be thought of as being the
approximate number of independent samples for the bulk of the distribution.
Furthermore, the authors recommend that effective sample size should be at
least 100 per chains used.
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4.4 Rank plots

Rank plots where suggested by (Vehtari et al., 2021) as an improvement to
trace plots and are histogram of the sample ranks rather than their actual value.
The ranks are computed on the pooled sample of all chains, and are thereafter
displayed in histograms where the sample ranks are again grouped by which
chain they belong to. Similarity between all rank plots indicate that the chains
have mixed well.
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5 Results

5.1 Visualizing the Random Walk and Adaptive Metropo-
lis Algorithm

In this section we will use the Random Walk Metropolis Algorithm as well as
the Adaptive Metropolis Hastings Algorithm to sample from a known target
distribution. As mentioned in Section 3.3 the efficiency of the Random Walk
Metropolis Algorithm is directly determined by the acceptance rate, which is
tuned by modifying the scale of the proposal distribution.
In both examples the target distribution is a bivariate normal distribution with
mean vector µ and covariance matrix Σ set to

µ =

(
0
0

)
and Σ =

(
1 0.8
0.8 1

)
. (12)

The Random Walk Metropolis Algorithm was implemented in R by following
the pseudo-code of Algorithm 1. The proposal distribution was set to a bi-
variate normal distribution centered at the previous draw, with independent
components and scaled by a tuning parameter σ.

Random Walk Metropolis sampling from a bivariate normal distribution

Figure 1: The Random walk Metropolis was used to draw samples from a know bivariate normal
distribution with parameters as in (12). The ellipses are the 95% probability regions of the target
distribution. A total of 100 samples were drawn with three different settings of the tuning parameter
σ.

Figure 1 visualizes how the random walk Metropolis algorithm behaves for dif-
ferent settings of the tuning parameter σ. With a high acceptance rate (left)
the algorithm explores the target distribution through small steps, yielding inef-
ficient sampling. With an acceptance rate of 0.45 (middle), close to the optimal
rate of 0.44, the algorithm explores the target distribution more efficiently. If
the scale of the proposal distribution is too high (right) many proposals will be
within a low density region of the target distribution and hence are unlikely to
be accepted, thus yielding inefficient sampling.
Now we use the Adaptive Metropolis algorithm to sample from the same target
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distribution as in the previous example. The shape of the proposal distribution
is shown for three stages of the chain, giving some insight into how the algorithm
adapts to the covariate structure of the target distribution.

Adaptive Metropolis sampling from a bivariate normal distribution

Figure 2: The AM algorithm was used to draw samples (blue points) from a know target distribution
(a bivariate normal distribution with highly correlated components). The solid ellipse is the 95%
probability region of the target distribution. The dashed ellipse is the 95% probability region of the
proposal distribution. As the algorithm progresses, the proposal distribution adapts to the covariate
structure of the target distribution. At 2500 iterations, the covariance of the proposal distribution
is visually proportional to that of the target distribution.
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5.2 Comparing the Random Walk and Adaptive Metropo-
lis Algorithm on a simulated data set

5.2.1 Simulated data

In this section we will compare the RW and AM algorithms on the simulated
data set from Default (Witten et al., 2013) which is available in the R package
ISLR. The data contains 10.000 rows. Every row correspond to a customer, and
for each customer the following 4 variables are available:

• default: a factor with levels ”Yes” and ”No”, indicating whether the cus-
tomer defaulted on their loan,

• student: a factor with levels ”Yes” and ”No”, indicating whether the
customer is a student or not,

• balance: the average balance the customer has remaining after making
their monthly payment,

• income: income of customer.

The proportion of students were computed to be (”Yes”, ”No”) = (0.706, 0.294).
Our aim is to employ logistic regression with default Cauchy priors as presented
in Section 2.3, and the data are processed accordingly. Ten observation selected
at random from the original data set are displayed in the table below, together
with the corresponding observations in the processed data set.
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5.2.2 The model

Using the definitions provided in Section 2, our model is defined as follows.
We have N = 10000 observations and M = 4 explanatory variables. Letting
i = 1, ..., N denote the ith observation, the probability π is

πi = P(default i = 1) = 1−P(default i = 0) for i = 1, ..., 10000. (13)

The linear predictor η of explanatory variables and regression coefficients β is

ηi = β0 + β1 × student i + β2 × balancei + β3 × incomei,

and the probability πi is hence given by

πi =
exp (ηi)

1 + exp (ηi)
for i = 1, ..., 10000.

The likelihood function is

L(β) =

10000∏
i=1

π
defaulti
i (1− πi)

(1−defaulti). (14)

The log-likelihood function is

ℓ(β) =

10000∑
i=1

default i · ηi −
10000∑
i=1

log(1 + exp (ηi)).

With the likelihood as in (14), the posterior distribution is

p(β) =
L(β)

∏M
j=0 fj(βj)∫

L(β)ΠM
j=0fj(βj) dβ

,

where the prior distributions are

f(β0) ∼ Cauchy(0, 10) and βj ∼ Cauchy(0, 2.5) for j = 1, 2, 3.
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5.2.3 MCMC results and diagnostics

In this section we present the results from the Bayesian model in Section 5.2.2
using the Random Walk Metropolis and Adaptive Metropolis algorithms to
sample the posterior distributions. In both cases we used four independent
chains with varying starting points for each parameter. The simulations ran for
10.000 iterations each and the initial 2000 samples were disregarded as warm-
up. Model summaries are presented in Tables 2 and 3. Each summary contains
the estimated posterior means and standard errors, an estimated 95% credible
interval as well as the improved-R̂ statistics and bulk effective sample sizes.

mean se CI (95%) R̂ bulk-ESS
intercept -6.156 0.182 [-6.513, -5.799] 1.0039 474
student -0.646 0.227 [-1.089, -0.209] 1.0035 491
balance 5.532 0.215 [ 5.117, 5.949 ] 1.0048 465
income 0.076 0.210 [-0.334, 0.470 ] 1.0046 518

Table 2: Model summary (Random Walk Metropolis)

mean se CI (95%) R̂ bulk-ESS
intercept -6.162 0.191 [-6.544, -5.796] 1.0025 1914
student -0.639 0.230 [-1.095, -0.205] 1.0026 1837
balance 5.538 0.225 [ 5.109, 5.988 ] 1.0033 1965
income 0.085 0.215 [-0.349, 0.495 ] 1.0020 1830

Table 3: Model summary (Adaptive Metropolis)

Figure 3 show pairwise plots, histograms of marginal posterior draws and cor-
relation between the samples for each parameter. The graphical diagnostics
presented in Figure 4 and 5 include trace plots, autocorrelation plots and rank
plots. The trace plots show the path of each chain which are distinguished by
different shades of blue. For rank plots the parameter with the lowest bulk
effective sample size is shown. In Figure 6 we plot the bulk effective sample size
and improved-R̂ for an increasing numbers of iterations. Both plots represents
these measures for the parameter balance, since it had the over all lowest bulk
effective sample size.
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Pairwise plotting of posterior draws

Figure 3: Pairwise plots of the posterior draws obtained from the Random Walk Metropolis (upper)
and Adaptive Metropolis (lower) algorithms. The diagonal display the marginal posterior draws
for the parameters, and the upper part shows their correlation.
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Random Walk Metropolis diagnostics

Figure 4: Graphical diagnostics of the Random Walk Metropolis algorithm. ∥ The left column
displays the trace plots for every parameter, for which four chains each were used. ∥ The middle
column shows the auto correlation plots for each parameter. ∥ The right column shows the rank
plots for each parameter.

Adaptive Metropolis diagnostics

Figure 5: Graphical diagnostics of the Adaptive Metropolis algorithm. ∥ The left column displays
the trace plots for every parameter, for which four chains each were used. ∥ The middle column
shows the auto correlation plots for each parameter. ∥ The right column shows the rank plots for
each parameter.
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Figure 6: The bulk effective sample size and improved-R̂ were computed for an increasing number
of iterations. The dashed lines represents the thresholds of 400 (100 per chain) for bulk effective

sample size and R̂ = 1.01.

6 Discussion

6.1 Results

Both algorithms have yielded similar posterior estimates. The most notable
difference in the summaries of Table 2 and 3 are the bulk effective sample sizes.
While both algorithms have estimates that exceed the threshold of 400, the bulk-
ESS is far greater for the AM algorithm across all parameters. If we observe
the autocorrelation plots in Figure 4 and 5 we see that the draws from the
RW algorithm suffers from high autocorrelation even at high lags while the AM
algorithm fares better. To see why, we turn to the pairwise plots in Figure 3.
Here, its clear that the parameters student and balance are highly correlated
with an estimated correlation of 0.77. This is presumably the reason as to why
the AM algorithm is more efficient than the RW algorithm in this particular case,
since the former adapts to the covariate structure of the posterior distribution.
Since the RW algorithm was tuned to have an efficient acceptance rate we may
have had to set the scale in such a way that the proposal distribution does not
propose too many values in a low density region of the posterior. For a posterior
with a complicated covariate structure, this can yield the same behaviour as in
Figure 1 where the algorithm moves slowly through the target distribution. This
in turn may explain the high autocorrelation observed in the samples from the
RW algorithm. Finally, if we look at the evolution of the bulk effective sample
sizes and improved-R̂ in Figure 6 we see that the AM algorithm reached the
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respective thresholds much faster than the RW algorithm. This means that the
AM algorithm yields more effective Monte Carlo estimates for a lower number
of iterations than the RW algorithm, and in some sense is more efficient.

6.2 Summary

In this thesis we have compared two Markov Chain Monte Carlo algorithms; the
Random Walk Metropolis algorithm and the Adaptive Metropolis Algorithm.
The latter can be viewed as an extension of the former and our aim was to see
if its efficiency is improved by the alteration. To do this, we defined a Bayesian
model for logistic regression on a simulated data set. The posterior inference was
based on samples from the Random Walk Metropolis and Adaptive Metropolis
algorithms. We also introduced methods for assessing convergence of the chains.
In our analysis, the Adaptive metropolis algorithm proved more efficient than
the Random Walk Metropolis algorithm.
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