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Abstract

When one-inflation in data arises due to samples from individuals
being misidentified as samples from non-existent with probability p,
a large bias arises in the population estimate if the inflation is not
taken into account. This inflation causes a greater bias compared to
previously analysed inflation where it arises due to individuals with
some probability pB succeed in deviating from being observed more
than once (Böhning and Heijden (2019), Godwin (2017)). By using
distributions that take into account that data contains one-inflation
of the type miss identification, we can reduce the bias. With the same
parameters in a base distribution and p = pB, inflation that arises due
to incorrect identification is always expected to give greater bias and
variance on the population estimate than the corresponding behav-
ior caused inflation population estimate. When we apply our models
to brown bear data from the department of Environmental Research
and Monitoring at the Swedish Museum of Natural History we see no
evidence of one-inflation and note that further analysis regarding indi-
vidual heterogeneity of the bears is required for a reliable population
estimate.
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Introduction

To draw conclusions about a populations size is an important problem in animal
monitoring as well as other areas where the amount of information about the
target group’s behavior is limited. A common method is capture-recapture
where a part the population is observed as well as identified and one with
the help of the observed individuals attempt to estimate the total underlying
population size. The problem can be summarized as wanting to estimate the
size of the total population N , which is the sum of the number of observed
individuals n and the number of unobserved individuals n0. Since n is known
from data, the problem is reduced to finding n0. A common approach to yield
inference about n0 is to use the available data to estimate the parameters of the
zero-truncated distribution which corresponds to the distribution of number of
samples per individual. Using this approach there are several different methods
for dealing with problems such as individual heterogeneity and contamination,
e.g. Chao (1987) and Zelterman (1988), but as shown in Godwin and Böhning
(2017), they fall very biased in the presence of one-inflation. One-inflation in
data means that, as e.g. post-collection error or due to a behavioral change
in the population, extra ones occur compared to the underlying distribution.
The special case of one-inflation have been discussed in previous mathematical
reports, methods and models for dealing with the problem have been developed.
In Godwin and Böhning (2017) inflation occur as a consequence of behavioral
change as some individuals change their behavior after being observed once and
succeed in avoidance from further observations. In the report we see how one,
with the probability of this behavioral change pB , can adjust an underlying
poisson distribution to include these extra ones. A more general variant of
the method is developed in Böhning and Heijden (2019) where the one-inflated
distribution for an arbitrary base probability density function (PDF) f with
parameter θ = (θ1, ..., θi) and corresponding zero-truncated PDF f+ is shown
to follow

{
(1 − pB) + pBf+(x, θ) for x = 1,

pBf+(x, θ) for x > 1.
(1)

In this report we will look at the previously untreated one-inflation which occur
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when a sample from an individual with some probability p is incorrectly iden-
tified as a non-existent individual (ghost). Ghost inflation in data could occur
due to genotyping errors or if photo identification is used. The case of ghost
inflation differs from behavior inflation in a number of ways. One difference
which is that the extra ones generated by ghost inflation does not represent real
individuals, but in in behavior inflation they do. A second main difference is
that the base distribution is affected by the inflation as the ghosts in data occurs
at the expense of observations of real individuals with the same probability for
all individuals, in contrast to behavior inflation where individuals who does not
change their behavior is unaffected by the inflation. A third main difference
is that the extra number of ones generated by individual i in ghost inflation
is p · E[Yi], where Yi is the random variable which corresponds to the number
of observations of said individual, where as in behavior inflation one individual
only can contribute with one extra one. Because of the differences between
ghost and behavioral inflation, the problems are obviously not equivalent, but
as we will see later in this report, they are closely related.

The purpose of developing the models in this report is to apply them to data
regarding the brown bear population in Sweden. Regions of Sweden which
are inhabited by brown bears are divided into four parts which all have been
monitored by the department of Environmental Research and Monitoring at the
Swedish Museum of Natural History (NRM) since 2015. The bear population
is surveyed in each region with five year intervals (one region each year and
one year without survey). During the survey hunters in the region are asked to
collect scat-samples. These samples are sent to the NRM, where samples are
genotyped and stored in a database of observed individuals.
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Method

We will assume that the population is closed during an ongoing inventory, which
means that no individuals die, are born, move in or out. Our goal is to estimate
the population size denoted N which then is a constant. We assume that data
consists of one or more times observed individuals and the number of times each
individual was observed. This means that our goal is reduced to estimating the
number of unobserved individuals n0, which is assumed to be unknown. One
can summarize the most common method of estimating the population in this
kind of setting (known as a capture recapture) as:

1. Fit observation data to its corresponding zero-truncated distribution f+
to estimate its parameter/parameters θ

2. Estimate N and n0 with the non-zero-truncated variant of the distribution
f and the estimation of θ, denoted θ̂, from step 1.

The approach can be considered relatively simple, but problems may arise along
the way, for example, for small sample sizes it can be difficult to get a reliable es-
timate of θ and it is not always obvious from which distribution data originates.
Fitting data to an incorrect distribution can lead to devastating consequences as
small differences in the base distribution can lead to large differences regarding
inference about the population.

Population estimation

To estimate the population in a capture-recapture setting a variant of the
Horvitz–Thompson estimator (Horvitz and Thompson (1952)) is commonly
used. The modified Horvitz–Thompson estimator is N̂HT = n/(1 − f(0, θ̂)),
where θ̂ is the estimated distribution parameter and n is the number of observed
individuals. The estimator can be motivated by noting that N = E[n]/(1 −
f(0, θ)). The estimator is often suitable as it is asymptotically unbiased under
the condition that θ̂ is unbiased. However, if one-inflation in data is not taken
into account N̂HT is strictly biased.
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In Böhning and Heijden (2019) it is noted that in a similar way that N̂HT can
estimate the number of individuals that have been observed zero times, it can
be used to estimate the number of individuals that have been observed once.
Thus, if we suspect that the number of individuals observed once is inflated, we
can filter the ones out of the data and try to estimate the correct number of
individuals observed as

n − n1

1 − f(1, θ̂)
. (2)

Here n1 denotes the total number of ones in data. If we now combine (2) with
N̂HT , we get an estimator for the entire population where the number of ones
and zeroes are estimated as per

N̂ = n − n1

1 − f(0, θ̂) − f(1, θ̂)
.

In Böhning and Heijden (2019) the estimator is further developed to count the
extra ones, but in our case this is not desired as the extra ones does not represent
real individuals. The estimator N̂ is thus useful for both our zero-truncated one-
inflated and zero-one-truncated models, that we shall derive later in this report.
Hence, N̂ will be used to estimate the population for these models in this report.

Poisson model

There are many different ways to model the number of samples per individual. A
common starting point in count data, where we will also begin, is to use a Poisson
distributed number of samples per individual with no individual heterogeneity.
Under this distribution, the number of samples from one individual is assumed to
be independent of other individuals and the number of samples is assumed to be
equally distributed for all individuals. We then have that the number of samples
per individual is IID for all individuals according to Yi ∼ Po(λ). However, since
our observed data will not contain the number of individuals for which Yi = 0,
the observed data will follow the zero-truncated Poisson distribution (ZTP, also
called positive Poisson). If we now introduce one-inflation by assuming that
each samples from all individuals with some probability p ∈ (0, 1) is incorrectly
identified as a non-existent non-previously observed individual (ghost), then the
number of observation per individual will be distributed according to Bin(Yi, 1−
p) and as we are unable to distinguish real individuals from ghost individuals,
our collected data will include Yi − Bin(Yi, 1 − p) ghost observations. Let us
denote the PDF of the poisson distribution as p(x, λ), the number of individuals
observed k times as nk and let
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Ia(b) =
{

1 if a = b,

0 if a ̸= b.

Then the distribution for the number of observations in the zero-truncated one-
inflated poisson (ZTOIP) distribution can be found by first noting that

E[n1] = E[Bin
( N∑

i=1
I1(Yi), 1 − p

)
] + E[Bin

( N∑
i=1

Yi, p

)
]

= (1 − p)E
[ N∑

i=1
I1(Yi)

]
+ pE

[ N∑
i=1

Yi

]
= N(1 − p)E[I1(Yi)] + NpE[Yi]
= (1 − p)Np(1, λ) + Npλ

= Np(1, λ(1 − p)) + Npλ,

E[nk] = Np(k, λ(1 − p)), for k = 2, 3, ...

With this result we get the one-inflated zero-truncated poisson PDF denoted as
p+1(x, λ, p) with

p+1(1, λ, p) = E[n1]∑∞
k=1 E[nk]

= Np(1, λ(1 − p)) + Npλ

N [
∑∞

k=1 p(k, λ(1 − p))] + Npλ

= p(1, λ(1 − p)) + pλ

1 − p(0, λ(1 − p)) + pλ
,

p+1(k, λ, p) = p(k, λ(1 − p))
1 − p(0, λ(1 − p)) + pλ

, for k = 2, 3, ...

Which as shown in Appendix (1) can be rewritten to resemble the distribution
of previously analyzed inflation in i.a. Böhning and Heijden (2019) with the
help of the zero-truncated poisson PDF p+ and ω = 1/(1 + pλ/(1 − p(0, λ))) as

p+1(x, λ, p) =
{

(1 − ω) + ωp+(x, λ(1 − p)) for x = 1,

ωp+(x, λ(1 − p)) for x = 2, 3, ...

The ZTOIP PDF p+1 can be used to carry out the first step in estimating popu-
lation size, i.e. to estimate the parameters of the underlying distribution, which
in this case is assumed to be the Poisson distribution. However, as we will see
later in this report, the ZTOIP model leads to bias in the estimation of p (p̂)
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when the real value is low. This in turn leads to a bias in the population esti-
mate. One way to avoid this bias is by using a zero-one-truncated distribution,
in this case the so-called zero-one-truncated Poisson (ZOTP) distribution. The
PDF of the ZOTP distribution is

p++(x, λ) = p(x, λ)
1 − p(0, λ) − p(1, λ) = λx

(eλ − λ − 1)x! .

As we know from the derivation of p+1, we must adjust the distribution pa-
rameter to take inflation into account. Hence, the parameter of p++ when
one-inflation is present is λ(1 − p). Note that if we use the ZOTP distribution
to estimate λ(1 − p), we do not need to know the exact value of either λ or p to
estimate the size of the entire population as it is not necessary in N̂ . We will
also use the ZTP distribution to estimate the population. When we use this
distribution, we will ignore inflation in the data and look at the effect of in the
population estimate. The density function for the ZTP distribution is

p+(x, λ) = p(x, λ)
1 − p(0, λ) = λx

(eλ − 1)x! .

Negative binomial model

All individuals being observed with the same probability is rarely the case. We
are therefore very interested in introducing individual heterogeneity by allowing
individual probability of observation. One way of introducing individual ob-
servation probability is by expanding our previous Poisson base distribution by
letting the parameter for each individual be determined by a random variable.
We choose to let the distribution parameter for individual i denoted as λi be
distributed according to a Gamma distribution, more precisely λi ∼ Γ(kλ, k)
where λi is a random variable, λ is the expected value. In this distribution we
are able to adjust for over dispersion by adjusting k. We can also introduce infla-
tion as λi(1−p) ∼ Γ(kλ, k/(1−p)). In this distribution E[λi(1−p)] = λ(1−p),
V ar[λi(1−p)] = λ(1−p)2/k. Note that the distribution collapses to Po(λi(1−p))
as k → ∞. By using the Gamma distribution to determine λi we bring pleasant
properties as we know from e.g. Wikipedia (2022) that for an arbitrary random
variable X it holds that

X ∼ Γ(r,
p

1 − p
) ⇒ Po(X) d= NBin(r, p).

Which when applied to our situation reveals that

λ(1 − p) ∼ Γ(kλ,
k

1 − p
) ⇒ Po(λ(1 − p)) d= NBin(kλ,

k

1 − p + k
). (3)
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This means that the number of observations per individual is negative binomial
distributed. Note that we can allow all k > 0 by using the extended negative
binomial distribution which extends the binomial coefficient to all real-values
using the gamma function. Let us denote the PDF of our base distribution
NBin(kλ, k/(1 − p + k)) from (3) as g(x, λ, k, p). Similarly to the poisson mod-
els we want to construct two different models for estimating the total popu-
lation; zero-truncated one-inflated negative binomial (ZTOINB) and zero-one-
truncated negative binomial (ZOTNB). In the ZOTNB model we get PDF

g++(x, λ, k, p) =
Γ(x+kλ)
x!Γ(kλ)

(
1 − k

1−p+k

)x

(
k

1+k−p

)−kλ

− 1 − kλ
(

1 − k
1+k−p

) .

As shown in Appendix (1), in the case of the ZTOINB model the PDF can
be constructed similarly to the ZTOIP model using the zero-truncated Gamma
distribution g+ with the addition of ω = 1/(1 + pλ/(1 − g(0, λ, k, p))) to adjust
the extra mass at 1. Hence, we have the ZTOINB PDF

g+1(x, λ, k, p) =
{

(1 − ω) + ωg+(x, λ, k, p) for x = 1,

ωg+(x, λ, k, p) for x = 2, 3, ...

Bear data

The distribution for the number of samples per individual each year can be
seen in Figure 1. Note that the survey of 2015 and 2020 was done in the same
region. In Figure 1 we see that most bears were observed only a few number
of times and that the most common number of observations is one, for all five
years. It is conceivable that some of these ones occur due to genotyping errors
when identifying the bears which would lead to ghost inflation. An existing
one-inflation in data will cause an overestimation of the population in data as it
will increase the estimation of n0. As we expect heterogeneity in the brown bear
population we will investigate the suspected inflation by applying our negative
binomial models to data which largely provides a good fit.

Simulations

All parameter estimates are calculated via the maximum likelihood method.
Our zero-one-truncated and zero-truncated one-inflated models will both use N̂
to estimate the population and our zero-truncated models, which does not take
into account that data includes inflation, will use N̂HT . Since the likelihood
functions of some of our models are unable to be maximized algebraically all
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Figure 1: Histogram of number of samples per bear

likelihoods will be maximized numerically for the sake of comparability. An
important note is the fact that the negative binomial model is rather unsta-
ble when using numerical maximization and therefore some non-existent trends
might be visible for even very large simulations. A link to all the code used in
the creation the simulations as well as a complete summary of the simulation
results can be found in the Appendix.
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Results

Since we want to see how well our different models estimate the population, a
natural starting point is to use simulation study. We will start by looking at
the consequences of not taking ghost inflation into account to then move on to
our models that include inflation.

Simulations

To begin our analysis we simulate data from the ZTOIP distribution and esti-
mate the population with the regular ZTP model using N̂HT , which does not
take into account that data is inflated. Results of the simulation are shown in
Figure 2. The mean percent error of the population estimate (100 · N̂/N) for
each combination of λ, p and N is calculated from 100 simulations. A compar-
ison with the bias in the case of behavior inflation from Godwin and Böhning
(2017) can be seen in Table 1.

Table 1: Percentage bias of N̄ZT P for diffrent inflation types as N
= 500

p/pB λ % bias of N̄ZT P Type
0.1 1 6.2 Behavior
0.3 1 23.2 Behavior
0.1 2 3.0 Behavior
0.3 2 12.0 Behavior
0.1 1 27.6 Ghosts
0.3 1 121.4 Ghosts
0.1 2 32.6 Ghosts
0.3 2 137.9 Ghosts

To see how well our ZTOIP and ZOTP models are able to estimate the popu-
lation we simulate data from the ZTOIP distribution 1000 times for each com-
bination of three different values for N , λ and p. For each simulation the base
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Figure 2: ZTP, relative bias of mean population estimate

distribution parameters are estimated using the ZTOIP, ZOTP and ZTP models
and the population size is estimated with N̂HT for ZTP and N̂ for ZTOIP and
ZOTP. To get an understanding of how the variance and bias differ between the
ZTOIP and ZOTP population estimators we observe Table 2. In the table, to-
gether with the mean percent error, we see the root-mean-square error (RMSE)
as well as 90% and 99% confidence intervals. The bounds of our two-sided confi-
dence intervals are chosen from our population estimates and contains 90% and
99%, respectively, of the estimates.

As we expand our model and introduce individual heterogeneity in the negative
binomial distribution the effects of the population estimate as λ, N and p varies
are unaltered (Appendix (3)). Therefore, we will focus on the consequences on
our population estimates as k varies. In Table 3 the mean percent error, RMSE
and 90% and 99% confidence intervals can be seen for the ZOTNB population
estimate of 1000 simulations repeated for different combinations of λ and k.
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Table 2: ZTOIP, ZOTP and ZTP, confidence intervals and RMSE
of pupulation estimate as N = 500 and λ = 2

Type p N̄ 90% CI 99% CI RMSE
ZOTP 0.00 500 [450, 552] [430, 583] 31
ZOTP 0.05 502 [446, 563] [420, 584] 35
ZOTP 0.10 503 [445, 568] [418, 595] 38
ZTOIP 0.00 493 [450, 526] [430, 538] 24
ZTOIP 0.05 502 [446, 563] [420, 584] 35
ZTOIP 0.10 503 [445, 568] [418, 595] 38
ZTP 0.00 501 [482, 519] [475, 525] 11
ZTP 0.05 578 [550, 604] [542, 616] 80
ZTP 0.10 666 [627, 704] [612, 721] 168

Table 3: ZOTNB, confidence intervals and RMSE of population
estimate as N = 500 and p = 0.1

λ k N̄ 90% CI 99% CI RMSE
1 0.2 115418 [142, 718583] [118, 993213] 268513
1 0.6 83239 [193, 687465] [153, 1035121] 249703
1 1.0 86196 [204, 705441] [172, 1070459] 266781
1 2.0 62574 [241, 567445] [212, 1144568] 235195
2 0.2 56004 [275, 468107] [248, 1554165] 253450
2 0.6 4904 [342, 1060] [311, 2342] 78061
2 1.0 2153 [369, 837] [336, 1331] 50749
2 2.0 532 [381, 776] [354, 1109] 190
3 0.2 3721 [354, 1026] [332, 3346] 78915
3 0.6 513 [412, 656] [391, 801] 84
3 1.0 509 [427, 626] [404, 717] 63
3 2.0 504 [444, 583] [428, 635] 43

Application on bear data

Before we apply our models to bear data it is important that we get an under-
standing of how well bear data fits a negative binomial model. We do this by
creating QQ-plots where we compare the distribution of our bear data, as seen
in Figure 1, with the theoretical quantiles of a zero-truncated negative binomial
(ZTNB) distribution with parameters estimated by the ZOTNB model. The
result can be seen in Figure 3. It is important to notice that the data which
consists of all years combined (All) does not meet the model assumptions to
the same degree as one year separately since some bears have been observed
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during two different surveys and therefore have a much higher probability of
being observed.

In Table 4 the estimated underlying distribution parameters from the ZTOINB
distribution are shown together with the estimated population size by all of our
three negative binomial models.
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Figure 3: QQ-plot, bear data and theoretical NBin quantiles

Table 4: Population and samples per bear distribution paramter
estimates

Year n λ̂g+1 k̂g+1 p̂g+1 N̂g+1 N̂g++ N̂g+

All 3076 1.821 0.189 0.000 6659 11484 6564
2015 1016 2.512 0.197 0.000 1722 1732 1722
2016 336 1.722 0.656 0.000 526 700 518
2017 636 1.818 0.280 0.004 1168 1168 1231
2019 344 1.158 0.711 0.000 672 829 668
2020 1154 1.641 0.265 0.000 2350 2713 2338
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Discussion

In Godwin and Böhning (2017) where the inflation parameter pB directly cor-
responds to the expected number of extra ones generated by one individual,
the estimation of the population for the regular ZTP model is positively biased.
From Table 1 where the bias of the ZTP model in our simulations is compared
to the bias in Godwin and Böhning (2017) we can see that the two different
types of inflation result in much different bias, more precisely the bias of our
estimator when ghost inflation is present is much greater than for behavioral
inflation. In the case of behavioral inflation the bias reduces as λ increase, which
is not the case for ghost inflation where the opposite is true. The difference can
be explained as in behavioral inflation, when λ increase, the expected number
of extra ones generated by the inflation does not change, but λ̂ will increase
which makes n̂0 and the positive bias decrease. In the case of ghost inflation
an increased λ also means an increased number of extra ones which will lead
to negative bias in λ̂. This negative effect dominates the positive effect on the
bias previously described which causes n̂0 to increase and the positive bias in N̂
increase. As can be seen in Figure 2 the relative bias of the estimator grows ex-
ponentially as p increase and the lower the value of λ the more does an increased
population size reduce the bias. In Godwin and Böhning (2017) a similar result
for behavioral inflation can be observed as an increased population size reduce
the relative bias more for lower values of λ and the relative bias also grows
exponentially as p increase.

As both the ZTOIP and ZOTP models in our modeling for ghost inflation use
akin population estimators one could suspect their result to be similar. However,
as can be seen in Table 2, their population estimates differ, especially for low
values of p. Both of the models suffer positive bias as a consequence of high
uncertainty for low values of λ and N (see Appendix (2)), but for low values of
p the positive bias in the ZTOIP model is dominated by a negative bias. The
negative bias can be explained as the ZTOIP model will estimate p > 0 in about
half of the cases where p = 0 due to variance in the number of ones in data.
The negative bias decrease as N increases since data then converge towards
theoretical distribution and the relative variance in the number of ones decrease.
One possible way to remove this bias would be to expand the model to allow
deflation, i.e. | p |< 1, as this would create a symmetry in p̂ for low values of p
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which is currently missing (see Appendix (4)). In Godwin and Böhning (2017)
deflation is allowed and as a result the ZTOIP population estimate does not
suffer from negative bias. However, the method used is not directly applicable
to our models and another approach is necessary in the case of ghost inflation.
Due to the negative bias of the ZTOIP estimator, the ZOTP estimator is a better
alternative for low values of p, and since we can see in Table 2 that ZTOIP and
ZOTP converges towards each other for higher values of p, ZOTP looks to be the
better estimator between the two. Its however important to mind the high bias
of the ZOTP population estimator when λ is small. If we compare our ghost
inflation estimator ZOTP to the behavior inflation estimator ZTOIP in Godwin
and Böhning (2017) we see that the our estimate is much more sensitive to low
population sizes, low values of λ and high inflation parameters and is always
expected to giver higher bias and error. The difference is expected as the ZOTP
estimator does not take into account the number of ones and ghost inflation
means a greater number of ones and zeroes compared to behavioral inflation.
This also implies that if one were to find an estimator in ghost inflation which
allows deflation it is expected to give greater bias and error compared to the
corresponding estimator in behavioral inflation.

As we expand our model to NBin(kλ, k/(1 − p + k)) and introduce k to adjust
for over dispersion we get a heavier tail on our base distribution compared
to a poisson distribution with the same λ and p. As a result the variance
of our population estimations increase. As can be observed from Table 3 the
ZOTNB confidence intervals and RMSE is strictly greater than for the ZOTP
estimator using the same λ and p in Table 2. The result is expected due to the
increased variance of the negative binomial model. As can be seen in Appendix
(3) and the full data of our ZTOINB simulations, for low values of λ and high
values of k the ZTOINB model provide better estimates and should definitely
be considered when choosing a model. A better understanding of the difference
between the poisson and the negative binomial distributions can be obtained
by studying the difference between the two distributions shown in Appendix
(5). In Godwin (2017) the effect of behavioral inflation in the negative binomial
model is examined and for λ = 2, N = 500 and p = 0.1 the ZTOINB population
estimate when behavioral deflation is present (which allows deflation) has less
bias and variance compared to our ZOTNB estimator for ghost inflation. The
difference is explained analogously to that in the poisson model.

When estimating the bear population and distribution parameters for the num-
ber of observations, we can from Table 4 see that the inflation for all year except
2017 is estimated to be zero. Assuming that the negative binomial distribution
provides a good fit with data this result go against the hypothesis that bear data
include inflation. Based on QQ-plots in Figure 3, data seem to fit the negative
binomial distribution quite well for lower values, however the distribution fits
poorly on data for higher values. This is not be overlooked as the negative bino-
mial distribution is very flexible and existing discrepancy is alarming. Therefore,
to say that the data fits the distribution well would not be true. The problem
of finding the correct model has proven to be very difficult in capture-recapture
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and from Link (2003) we know that it is impossible to distinguish among rea-
sonable models of heterogeneity (without additional information) even though
they can yield very unlike inferences about population size. This makes the
problem of finding a better fit for bear data very difficult and more information
should be taken into account for reliable estimates.

It is possible that there often exists an understanding of how a possible inflation
value p can arise and be distributed. In the case of genotyping errors this is
especially true since there in many cases is possible to get a good understanding
of what the probability error can be based on the method used (Pompanon
et al. (2005)). If we prior to our study have an understanding of our inflation
parameter p, priori distributions can be of use. In Tuoto, Di Cecco, and Tancredi
(2022) the use of priori in behavior inflation is introduced and similar work would
be interesting to apply to the case of ghost inflation.

A summary from our analysis is that ghost inflation compared with behavioral
inflation always leads to more uncertain population estimates when p = pB and
the same base distribution is used. As mentioned previously an improvement of
zero-truncated one-inflated estimates can be done by expanding the model to
include deflation and such a model would in most scenarios be ideal. However,
this improvement does not mean that population estimate in ghost inflation will
be as good as in behavior inflation as the expected bias and error still will be
higher using the same base distribution and when p = pB .
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Appendix

All the code used in the production of this report can be found at
https://github.com/herm4np/A-zero-truncated-one-inflated-model-with-
application-to-population-monitoring.
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(1) Derivation of ω

From the derivation of the ZTOIP distribution in the method chapter we find
that

p+1(1, λ, p) = E[n1]∑∞
k=1 E[nk]

= p(1, λ(1 − p)) + pλ

1 − p(0, λ(1 − p)) + pλ
,

which for an arbitrary base PDF f translates to

f+1(1) = pE[Yi] + (1 − p)f(1)
pE[Yi] +

∑∞
k=1(1 − p)f(k)

= pE[Yi] + f(1, p)
pE[Yi] + (1 − f(0, p))

= pE[Yi]
1 − f(0, p) + pE[Yi]

+ f(1, p)
1 − f(0, p) + pE[Yi]

= 1 − 1 − f(0, p) + pE[Yi]
1 − f(0, p) + pE[Yi]

+ pE[Yi]
1 − f(0, p) + pE[Yi]

+
f(1,p)

1−f(0,p)
1−f(0,p)+pE[Yi]

1−f(0,p)

= 1 − 1 − f(0, p) + pE[Yi]
1 − f(0, p) + f+(1, p)

1 − pE[Yi]
1−f(0,p)

=
(

1 − 1
1 − pE[Yi]

1−f(0,p)

)
+ 1

1 − pE[Yi]
1−f(0,p)

f+(1, p)

= (1 − ω) + ωf+(1, p)

⇒ ω = 1
1 − pE[Yi]

1−f(0,p)

.
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(2) Relative bias of mean population estimate

Faceted with respect to N . ZTOIP (left) and ZOTP (right).
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(3) Log-bias of NBin population estimates

Faceted horizontally with respect to k. Log for improved visibility.
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(4) Histogram of p̂

Estimated by ZTOIP. Faceted horizontally with respect to N and vertically to
p. λ ∈ {1, 2, 3}.
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(5) Comparison of base distribution NBin and Po

Poisson distribution shown in grey, extra ones excluded, λ = 2 and p = 0.1.
Faceted horizontally with respect to k.
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