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Abstract

In this thesis we investigate the bias in the current method of es-

timating the brown bear population in four regions of Sweden using a

simulation study. The method currently used is the genetic capture-

recapure with scat samples collected by volunteers. One region is

surveyed each year with every fifth year being an off year. The source

of bias we are specifically investigating is the one caused by the tem-

porary migration of bears across the region borders. This migration

causes bears to possibly be counted for the population in more than

one region in addition to bias in the estimation of the parameters

used in the genetic capture-recapture models. Combined these cause

an on average overestimation of the regions population. An alterna-

tive method were we take the positions of the found scat samples into

account will also be tried to see if the bias of the standard estimate

can be mitigated. The findings of the simulation study suggests that

the current method used will on average overestimate the bear pop-

ulation by somewhere inbetween 7 and 17 percent depending on the

region. The alternative method was found to mitigate the bias by a

relatively large amount, however in the worst case it would still on av-

erage overestimate the bear population in one of the Swedish regions

by 7 percent. Switching to the alternative method would in theory

reduce the bias in the estimation of Swedish brown bear population,

however a better method would be extending the search of scat sam-

ples to a distance outside of the currently surveyed region. This way a

better understanding of the border problem in the Swedish case could

be achieved.
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Introduction

The bear survey.

For several years now the population size and trends of brown bears in four regions of Sweden have and
continues to be monitored. The total population and how it changes over time is important for conservation
efforts and the setting of hunting quotas. If the hunting quotas are too large, the survival of the brown bear
species could be in jeopardy. On the other hand if it is too low the population could grow large enough to
cause problems in the ecosystem and for the local human population. The monitoring and estimation of the
bear population is done through the collection of scat samples. The collection is done by volunteers. The
genotypes are then identified through DNA analysis and used to get an estimate of the number of bears
from which a scat sample has been obtained. We also expect that for a certain number of bears no samples
will be found and as such the amount of such bears must be estimated statistically. The collection of spill
samples takes place over a cycle of 5 years. Each year, spill samples are collected in one out of four regions
in order. Every fifth year is an off year in which no collection takes place. Region 1 consists of the counties
of Gävleborg and Dalarna, Region 2 is Västerbotten county, Region 3 consists of Västernorrland county
and Jämtland and Region 4 is Norrbotten county. The samples are collected over 11 weeks in which the
volunteers takes note of the location of the spill and collects a small piece to send for DNA analysis.

The total bear population in Sweden is currently estimated using the Capture-Mark-Recapture method. The
exact methods used is documented in Kindberg et al. (2011). Traditionally the Capture-Mark-Recapture
method involved physically capturing the animals in question. With advancements in DNA analysis it is
now possible to perform the analysis by just “capturing” the DNA of the animals instead. This method is
sometimes referred to as “Genetic mark-recapture methods.” While similar the underlying models at work
are quite different. When collecting scat samples for example there is no beforehand known upper limit to
the number of “captures” as there is when using traps.

A problem with the division of Sweden into regions in the way the survey is performed is that brown bears do
not care for these arbitrary borders. A bear could perform a temporary migration from the region it spends
most of its time in to a neighbouring region and then possibly leaving a scat sample there. Should this
happen, the bear could be counted twice for the census of the total population in Sweden which introduces
bias to the estimation. Another problem with this is deciding which region a bear belongs to. One could
assume that each bear has a territory that it wanders throughout regularly. Whichever region contains the
largest share of this territory, or that contains the territories midpoint (activity center) could be considered
the bears home region. Another method would be counting the bear as the ratio of its territory that lies
within each region. Trying to estimate a bears territory only using the location of scat samples is difficult.
For bears which only a single sample has been found, you can only get a rough idea of where that bears
territory is located. For the bears from which no samples were discovered, there is no way to estimate a
territory. Another complication with the border is how it affects the numbers of samples found for each bear.
To estimate the number of bears for which no samples are found, the rate at which samples are observed
needs to be estimated. In the method currently utilized, the rate is assumed to be constant for each bear.
But due to the way the collection of samples is performed, only samples inside the current region can be
found. As such a bear that has its territory close to the border is going to have their samples found at a
lower rate than one far away from any border. This causes bias in the estimation of the rate of samples
found, and therefore also in the estimation of the number of bears that go unobserved. The impact of these
various sources of bias on the estimate of the bear populations do vary. It depends on the actual rate of
samples found and the size of the bears territories relative to the regions. Should the rate of found samples
be very high, the number of bears for which no samples are found will be close to zero. If bears have very
small territories, then the probability that a bears territory will span more than one region is also very
low. The capture-recapture methods that take the positions of animals into account is referred to as spatial
capture-recapture. In this case it would specifically be spatial genetic capture-recapture or spatial genetic
mark-recapture methods. A thorough explanation of the whys and hows of spatial methods can be found in
Royle, Fuller, and Sutherland (2018).

To analyse how temporary migration affects the estimation of the bear population, we have performed a
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simulation study. By simulating a random number of bears over a region, varying the rate at which samples
are found and the size of bears territories, the bias can be measured and illustrated. An alternative method
for estimating the population, by summing the estimated ratio of a bears territory that lies within the region
is also analysed to see if the bias can be mitigated. The simulation values will be chosen based on the
values observed for the Swedish survey samples. The population estimates will be performed separately
for the male and female bears, as we assume the size of their territories to be significantly different. An
extra computationally intensive method will also be utilized on the Swedish survey samples as well to get
an alternative estimate for the population. Finally we will also use the bias estimated from the simulation
to create a theoretically unbiased estimate for the Swedish survey.

Conclusions

Using the simulation study we observed that the bias in the population estimate scales close to linearly with
the size of the bears territories relative to the regions size. The majority of the bias in the estimate was
found to be caused by the observation of a large number of bears from outside the region currently being
surveyed.

If applied to Swedish samples the relative bias was estimated to lie somewhere between 7% and 17% depending
on region and the gender of the bear. However as the estimation of the size of the bears territories and the
rate at which samples are discovered were found to be on average underestimated, the actual bias is assumed
to be even larger, especially for regions with large territories and spill rates. The largest region, whose
population was estimated to be 1033 bears was estimated to on average be overestimated by more than 127
bears using the standard estimation methods. However the largest difference between the simulation and
the Swedish samples is the presence of the Baltic Sea on the eastern border of Sweden. As brown bears do
not live in the sea, bears from outside the region are not observed along it while in the simulation, outsider
bears are observed along all borders at the same average rate. However even accounting for this fact, the
current methods used will on average overestimate the regions population. While changing the method for
estimation does mitigate the bias somewhat, it still causes an on average overestimation of the population
size. A better way to fix the bias in the estimation was deemed to instead be changing the method used
for the collection of scat samples. By in addition gathering samples a distance outside of the currently
surveyed region, bears from outside the region could more easily be identified and better estimates of the
bears territory sizes and rate of samples observed could be obtained. This would in turn lead to better
estimates of the regions populations.

Acknowledgments

I would like to thank Martin Sköld for his advice and guidance.
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Method

We will be using R (R Core Team (2021)) as programming language to perform the simulations and analysis.
The R package sf (Pebesma (2018)) will be used to create polygonal areas for the spatial part of the analysis.
The R package polyCub (Meyer (2019)) will be used to numerically calculate integrals of bivariate normally
distributed distribution functions over polygonal areas.

Statistical models and assumptions

For any area S in the two dimensional Cartesian plane we are performing a survey on, we define the area that
lies within distance l from the border of S as O and W as the union of S and O. Both S and O have different
bear populations and population densities that are not necessarily the same, however the population density
is close to equal along the border between S and O.

In Miller, Joyce, and Waits (2005) a Multinomial distribution is used as a model for the number of samples
found for each individual. The idea is that we condition on the total number of samples observed, and for
each sample assume that each bear has an equal probability of expelling the sample in question. As such the
number of samples left by any bear is Binomial(M, 1/N) where M is the total number of samples and N
is the total population of bears in the region. Since we condition on the total number of samples found the
binomial distribution for each bear is not independent of the other bears. The multinomial distribution is
slightly difficult to work with, especially as due to spatial reasons the number of samples we expect to observe
from each bear is not equal. Since the observed values for M is relatively large and 1/N is relatively small, we
could approximate the binomial distribution with the poisson distribution Poisson(M/N) = Poisson(λ0).
However these Poisson distributions would not be independent of each other as the binomial distributions we
are approximating from are not independent. However in McDonald (1980) it is shown that approximating
the multinomial distribution with independent Poisson distributions is a reasonable option. As such we
choose to use independent Poisson distributions for the number of samples observed for each bear.

We first define the naive model that does not take the locations of the bears or their samples into account.
We assume that the number of samples observed from bear number i is Ki ∼ Poisson(λ0). Any bear for
which a sample has been observed belongs to the current region being surveyed.

Next we define the spatial model that does take the locations of the bears and samples into account. Each
bear in W has an activity center µi = (x, y) ∈ W . Bear i belongs to S if and only if µi ∈ S. We assume
that the number of samples that bear number i leaves is K

′

i ∼ Poisson(λ′). For each bear that has left a
sample the j:th sample from the i:th bear has a location that is bivariate normally distributed N(µi, σ0I).
Let ϕ be the standard bivariate normal distribution. Then ϕ( x−µi

σ0
) is the probability density function for the

location of bear number i’s samples. We also use this function to describe the bears territory. The amount
of time that a bear spends in any area A is

∫
A

ϕ( x−µi

σ0
) dx. For every sample left by a bear in S, it will be

observed with probability p. if the sample is not in S, then the probability of it being observed is zero. Let
Ii =

∫
S

ϕ( x−µi

σ0
)dx, then the number of samples that bear number i leaves inside S is K

′

Si ∼ Poisson(Iiλ
′)

distributed. Since these samples are only observed with probability p, the distribution for the number
of samples observed by bear number i is binomially distributed Binomial(K ′

Si, p), which is a conditional
distribution. The binomial distribution where the number of repetitions is conditioned on the outcome of
a poisson distributed variable is also poisson distributed. As such Binomial(K ′

Si, p) ∼ Poisson(pIiλ
′). As

we are not specifically interested in neither p nor λ
′ , we can replace pλ

′ with λ0 and focus only on the
rate at which samples are observed. Therefore the number of observed samples left by bear number i is
Ki ∼ Poisson(Iiλ0).

Simulation

For this simulation W is a 9 × 9 square with center in origo of the two dimensional Cartesian plane and S is
the 2 x 2 square centred around origo. We want S and O to have the same average population density. Since
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S has an area of 4 square units and W has an area of 36 that is 9 times larger, we simulate the population
of W from a Poisson(9µ) distribution where µ is the mean population size of S.

To simulate µi we choose to use a homogeneous poisson process throughout the plane. As such for simulated
bear number i µi = (Xi, Yi) ∼ Uniform(W ). Any bear with µi ∈ S is marked as a “True bear” and the rest
as “False bear.” The total number of “True bears” N is what we are trying to estimate, so for each simulation
we include a count of the number of observed “True bears.” For each simulated bear we simulate the number
of samples they leave from a Poisson(λ) distribution. Each simulated sample then has its location simulated
from the bivariate normal distribution N(µi, σI). Any sample that is not contained in S is then removed,
then any bear with zero samples is also removed and the remaining samples are considered observed.

λ is estimated using the maximum likelihood estimate for a zero truncated poisson distribution, since we
cannot observe the bears with zero samples observed.

Let Nobs be the number of bears observed, Nobs
T be the number of true bears observed and Nobs

F be the
number of false bears observed. We begin by defining the “standard estimate” that uses the naive model.
Under this model Nobs = Nobs

T . Since we cannot observe the number of bears who left no samples, the
number of samples left by the observed bears is zero-truncated Poisson distributed. Since the probability
that an outcome of a Poisson(λ) distribution is 1 or larger is (1 − e−λ), then according to our model we
have

E(N)(1 − e−λ) = E(Nobs).

To use this to estimate N we first need to estimate λ. Since the number of samples from each observed bear
is independent and identically distributed with zero-truncated Poisson distributions with parameter λ, we
can use the maximum likelihood method to estimate it. We choose to perform this estimate numerically.
Let λ̂ be the MLE of λ, then the standard estimate for the total number of bears in S is

N̂ = Nobs

1 − e−λ̂
.

To see the shortcomings in the naive model we now use the spatial model instead. First of all, λ̂ is biased
since the actual distribution for Ki is Poisson(Iiλ) distributed. As such the distributions are not identically
distributed and the rate of observation of samples from several bears is strictly smaller than λ. As such we
can expect λ̂ to be on average underestimated. Furthermore the standard estimate is performed under the
assumption that Nobs = Nobs

T , however in the spatial model Nobs = Nobs
T + Nobs

F , which means that

N̂ = Nobs
T + Nobs

F

1 − e−λ̂
.

Now the bias in the estimator; N̂ − N can be divided into two terms like this,

N̂ − N = Nobs
F

1 − e−λ̂
+ ( Nobs

T

1 − e−λ̂
− N).

The left term is the part of the bias introduced by the number of false bears that are observed. The right
term is the bias we would observe if we could identify and remove all false bears. With the bias divided like
this we can get an idea of how much of the bias is caused by the observation of false bears. The division is
not as clean as we would want it to be as both terms are influenced by the estimate of 1/(1−e−λ) whose bias
in part depends on the false bears observed. As such the right term is not independent of the bias caused by
the false bears. However if the left term dominates the sum we can conclude that the majority of the bias
is caused by the observation of the false bears.

In addition to the standard estimation of N , we also want to try a different method. First we estimate the
ratio of an observed bears estimated territory that lies within S as
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Îi =
∫

S

ϕ(x − µ̂i

σ̂
)dx,

where µ̂i is the mean of the observed sample’s latitudinal and longitudinal coordinates. σ̂ was estimated
using the pooled sample variance method. Bears for which only one sample was observed have been removed.
Since the standard deviation in longitudinal and latitudinal direction is σ and independent of each other, we
treat each sample as two measures of the deviation. Calculating Ii requires integrating a bivariate normal
distribution function over some irregularly shaped intersections between the territories and the S. These
integrals need to be performed numerically. With this in hand, instead of using Nobs in our estimation of
N , we instead use

Nobs
RatioSum =

Nobs∑
i=1

Îi,

where bears are indexed in the order they were observed. In addition when estimating λ instead of assuming
each bear has the same rate of samples found, we instead assume each bear has their samples found at a
rate of Poisson(Iiλ). Let p(n, λ

′) be the probability of getting the value n from a zero-truncated Poisson
distribution with parameter λ

′ . For our estimate of λ we choose the value that maximizes the likelihood
function

f(λ) =
Nobs∏
i=1

p(ki, Îiλ).

The maximization is performed numerically. We’ll write this estimate of λ as λ̂RatioSum. We’ll then write
the ratio sum estimate as

N̂RatioSum = Nobs
RatioSum

1 − e−λ̂RatioSum
.

For the simulation we also need to choose values for µ, λ and σ. Preferably we want to choose these values
close to the ones observed in the Swedish samples. A slight complication is that the parameter σ also
represents the radius of a circular territory in relation to the area of the region which contains its center.
Therefore we need to normalize σ in some way to make comparisons between regions of different sizes. The
solution we choose is that for any region A, we divide σA by the square-root of the area of A;

σ = σA√
Area(A)

.

However since all we want to do is compare the values observed in the Swedish regions with the ones from
the simulation, we instead for any region A choose to use “simulation normalized” σ;

σ = 2σA√
Area(A)

.

If A is the area used in the simulation then we just get back σA after the normalization since the simulation
area has area 4. For any non-simulation area we normalize σ and then by multiplying it by 2, convert it
to the same scale as the one used for the simulation values. Henceforth whenever σ is mentioned, it is the
simulation normalized value. Figure 1 illustrates the size of the territories in relation to the simulation area
for two values of σ. For λ we choose values 2, 3 and 4 and for σ we use 0.025, 0.05, 0.075, and 0.1. There
is little reason to use λ values higher than 4 because in our estimate of the total population size we use the
transformation 1/(1 − e−λ) instead of just λ by itself. When λ is larger than 4 the transformations value
changes very little as can be seen in Figure 2. We choose to keep µ at a constant value of 500 as the relative
bias in the population estimate does not change with different average populations. A simulation was run
to illustrate this and the results can be seen in figure 3.
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Application to the Swedish survey

For the real data we assume that all the assumptions of the simulation are true. Since male bears are known
to wander further than female bears and as such would have very different values of σ, we choose to estimate
their populations separately. To make comparisons between the real data and the simulated data we use the
simulation normalized values for σ. Our estimates of µi are going to be biased since all observed samples
are located inside S so to account for that we will apply an optimizing function to each bear. We find the
value of µi that maximizes the likelihood

l(µi) =
Ki∑

j=1
log(ϕ((xj − µi)/σ)/

∫
S

ϕ((x − µi)/σ) dx)

where xj is the location of the bear in questions sample j. The function applies a penalty to µi further
from the border which allows µi from outside S to be possible outcomes. We replace our initial estimates
of µi with the new estimates we get from maximizing the likelihood. As this optimization is performed
numerically and includes a numerically calculated integral, running it thousands of times to test its results
was deemed to take too much time, which is why we only use it on the Swedish samples and let its results
be judged by the soundness of our arguments.

For the estimate of N , we use the standard estimate N̂ along with three alternative methods for the estimate.
The first is the Ratio Sum estimate N̂RatioSum. Second is the “Removing Outsiders” estimate defined as
follows. We first define NEstF alse as the number of bears for which µi was adjusted to lie outside of the
region and λ̂AltRatioSum as the ratio sum estimate of λ done after the adjustments of the bears activity
centers is completed. Our estimate is then

N̂RemovingOutsiders = Nobs − NEstF alse

1 − e−λ̂AltRatioSum
.

For the last estimate we want to try to use the mean bias for N̂ we estimate using our simulation to adjust
N̂ . Let g(σ, λ) be the mean relative bias estimated using the simulation for N̂ for the parameter values σ
and λ. We use this to create the “Simulation Unbiased” estimate

N̂SimUnbiased = N̂

1 + g(σ̂, λ̂RatioSum)
.

As we do not have simulated results for the exact values of σ and λ for the values estimated from the Swedish
samples, we choose to use rough estimates based on the values we do have for the values of g. The values
we end up using to make these estimates are illustrated in Figure 4 in the results section.
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Figure 1: Illustrating the bears territory for two different values of σ in relation to the surveyed region (black
box). The bear spends more time in the red area than in the yellow.8
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Results

Simulation results

Bias relative to true population
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Figure 4: Mean relative bias of N̂ .
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lambda = 2 lambda = 3 lambda = 4
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Figure 5: Relative bias of N̂ divided into the bias caused by the number of observed false bears; Nobs
F
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and

the bias if all the false bears were to be removed; Nobs
T

1−e−λ̂
− N .
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Figure 6: Mean bias in the standard estimations of the parameters λ and σ.
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Figure 7: Comparing mean relative bias for N̂ and N̂RatioSum.
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Figure 8: Comparing mean bias of the maximum likelihood estimate of λ between the standard λ̂ and
λ̂RatioSum estimate methods.
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Figure 4 shows how the mean bias in N̂ grows seemingly linearly as σ grows. The mean bias grows faster
as the value of λ increases. Furthermore in Figure 5 we can observe how the majority of the bias in N̂
can be attributed to the number of false bears observed. If all false bears could be identified and then
eliminated from the sample, the remaining relative bias would not exceed 2.5%. Figure 6 then also shows
that the standard methods utilized always underestimate both of the parameters and the bias grows along
with σ and λ. As both parameter estimates are biased, we cannot directly use the simulated data to get an
exact estimation of the mean bias in a sample for which the underlying parameters are unknown unless σ is
relatively low.

Figure 7 shows that the ratio sum method for estimating N is still biased but the rate at which it grows is
smaller than the standard method for the same parameter values. For small values of σ and λ, it is close to
unbiased. In addition, Figure 8 shows that λ̂RatioSum is a better estimator for λ than λ̂. Just as in Figure 7
the bias is less than the bias for the standard method for all parameter values.
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Swedish survey results
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Figure 9: Estimation of the Swedish bear population in region 1, region 2 and region 3 using four different
methods.
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Figure 10: Estimation of the Swedish bear population in Region 3 in the years 2015 and 2016 using four
different methods.
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In figure 9 and 10 we see that N̂RemovingOutsiders does not differ much from N̂ . N̂RatioSum is noticeably
lower than N̂ and N̂SimUnbiased is even lower.
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Discussion

The bias in the population estimate grows as the parameters of the distribution functions used in the
simulation, λ and σ grows. This bias can be attributed to the bears from outside for which samples have
been observed and to the bias in the estimation of λ. However the bias introduced by bears from outside
vastly exceeds the bias from the estimation of λ. The mean bias in N̂ can be seen as a function of the
underlying parameters λ and σ. As such, if we could calculate an expression for this bias function and knew
the values of these parameters for a collection of samples, then we could get an estimate of the bias in that
collection. However for a real collection of samples these parameters must also be estimated first. This
is a problem, since the estimates for them are biased and the bias is larger the higher the values for the
parameters are. However in addition for this to be a good method, the assumptions made for the simulation
must hold true.

For each of the 4 regions in Sweden and for each sex separately σ is estimated to lie somewhere in-between
0.043 and 0.092. The simulation estimates would suggest that the relative bias lies in-between 7 and 17
percent. However the Swedish regions do differ from the simulation in certain ways. For example: part
of each Swedish region borders the Baltic Sea in which brown bears are not known to live. As such the
assumption that the population density of the outside region is the same as in the inside region along the
border does not hold for any of the Swedish regions. A better approximation of the bias could be achieved
by multiplying the bias by the ratio of the border that does not touch the Baltic Sea.

While the simulation most likely differs from the Swedish survey in more ways, if the spatial part of the
collection of samples is ignored, then bears from outside the region will be counted twice for the total survey.
λ will also be underestimated, which will cause an on average over-estimation of the regions bear population.
By how much is difficult to say. While the ratio sum method could theoretically give better estimations
changing the current surveying methods to better take the problem caused by the borders into account
would be more likely to get better results. A way to get a better understanding of the border problem would
be to extend the search for samples to some distance outside of the region currently being investigated. That
way you could remove bears observed close to the new border for better estimates of λ without losing too
much information. We would simultaneously be able to better identify bears from outside the region, which
would mitigate the bias caused by them.
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Appendix
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Figure 11: Bias in the transformation 1
1−e−λ of λ which is used in N̂ .
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Table 1: Population and parameter estimates for Sweden.

year sex
Standard
Estimate

Outsiders
Removed
Estimate

Ratio
Sum

Estimate

Standard
Lambda

Estimate

Alternative
Lambda

Estimate

Simulation
Normalized

Sigma
2015 Male 438.9666 437.2374 419.2321 4.706508 4.905714 0.0762118
2015 Female594.2778 592.4432 569.7841 3.801252 3.946863 0.0574793
2015 Total 1033.2444 1029.6805 989.0162
2016 Male 143.5283 140.1657 136.7642 2.438544 2.529981 0.0654466
2016 Female225.3331 223.2975 219.6450 2.405327 2.448531 0.0432451
2016 Total 368.8614 363.4631 356.4092
2017 Male 272.2243 259.0285 248.5888 3.188547 3.356554 0.0669158
2017 Female390.7397 386.9825 374.3613 3.211857 3.320572 0.0518495
2017 Total 662.9639 646.0110 622.9501
2019 Male 176.2526 173.7480 165.3290 2.025502 2.125154 0.0915389
2019 Female228.2444 224.1914 212.1645 1.840133 1.940800 0.0656059
2019 Total 404.4969 397.9395 377.4935
2020 Male 440.1865 438.4731 422.6845 3.434908 3.559724 0.0657033
2020 Female764.4728 759.9292 736.3503 3.042619 3.138866 0.0439210
2020 Total 1204.6593 1198.4023 1159.0348

Table 2: Simulated bias estimate for Sweden

year sex
Standard
Estimate

Simulated Unbiased
Estimate

Simulated Relative Bias
Estimate

Estimated
Simulated Bias

2015 Hane 438.9666 375.1851 0.17 63.78148
2015 Hona 594.2778 530.6052 0.12 63.67262
2015 Total 1033.2444 905.7903 127.45410
2016 Hane 143.5283 128.1502 0.12 15.37803
2016 Hona 225.3331 210.5917 0.07 14.74142
2016 Total 368.8614 338.7420 30.11945
2017 Hane 272.2243 240.9064 0.13 31.31784
2017 Hona 390.7397 358.4768 0.09 32.26291
2017 Total 662.9639 599.3832 63.58075
2019 Hane 176.2526 153.2631 0.15 22.98947
2019 Hona 228.2444 207.4949 0.10 20.74949
2019 Total 404.4969 360.7580 43.73895
2020 Hane 440.1865 389.5456 0.13 50.64092
2020 Hona 764.4728 701.3512 0.09 63.12161
2020 Total 1204.6593 1090.8968 113.76253

Link to github repository containing the code and materials used in this project.

(https://github.com/Martin4188/Bears-Across-Borders)
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