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Abstract

In this thesis we investigate the estimation of the Swedish brown

bear population. Especially, we look into whether problems connected

to individual heterogeneity and identifiability occur for the Swedish

brown bear monitoring program. In former studies it has been ar-

gued that problems connected to these things are a general problem

for wildlife studies. In this thesis, based on the Swedish brown bear

population we look into these kinds of problems. We fit different sta-

tistical models of individual heterogeneity to the data from the mon-

itoring program and check whether these models provide a good fit

and whether they can be distinguished.

We find that problems related to individual heterogeneity do indeed

occur in the Swedish brown bear program. Several statistical models

can be fit well to data but the models estimation of the population

size varies a lot. This makes the estimation difficult since it is not

clear which model is the optimal one to use for the estimation. This

means that even though a good fit have been find you cannot know

for sure that the estimate provided by that model is a good estimate.

The choice of the model and method will matter a lot for the final

estimate but there is no clear way to distinguish these models. Fur-

thermore, we compare the different statistical models and find some

general information of what to expect from them when using them for

this kind of estimation.
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for his inputs, ideas and encouragement which has been useful throughout the
writing process. Without him the project would not have been the same. Fur-
thermore, I would like to thank the Swedish Museum of Natural History for
providing data and making this interesting project possible.

i



Contents

1 Introduction 1

2 Materials and Methods 3
2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Current approach . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Distributions and choices of Pθ . . . . . . . . . . . . . . . 5
2.2.3 Confidence intervals . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Numerical methods for fitting . . . . . . . . . . . . . . . . 9

3 Results 10
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Fitted models and estimates . . . . . . . . . . . . . . . . . . . . . 12
3.3 Confidence intervals and non-observed individuals . . . . . . . . 16

4 Discussion 18

Appendix 20

References 24

ii



1 Introduction

The problem of determining unknown size of wildlife population is of great
importance and is relevant in many cases. Applications of such estimates of
population sizes includes quality control, regulation, information of wildlife ar-
eas and so on. In general, these estimates of population sizes are commonly
made using capture-recapture methods. Capture-recapture methods consist of
combining information of observed individuals with plausible statistical models
of the observation process. Combining these may lead to an estimate of the
non-observed individuals and thereby an estimate of the whole wildlife popula-
tion. The statistical theory behind the capture-recapture methods for wildlife
estimation have been used for many years. Already in [Eberhardt, 1969] an ap-
proach where the observed captures is assumed to be zero-truncated was used
and this problem was studied further in [Sanathanan, 1977]. This is the same
kind of approach that will be used in this bachelor thesis.

Elements and choices of the method in the above described procedure may
make the final estimate more or less precise. And there can be many problems
involved in making these estimates in wildlife studies. This project will look
into the problem of individual heterogeneity and its consequences for wildlife
estimation. Individual heterogeneity occurs when the probability of being cap-
tured vary among individuals. This can be due to several things for example
variation in effort from the sample collectors, some individuals may live in more
easy accessible areas, some animals may spend much time outside the surveyed
area and so on. There are strong evidence of individual heterogeneity in many
cases. When captures of an individual is assumed to follow a Poisson distribu-
tion, individual heterogeneity manifest as a variance larger than the mean.

This project will be based on data from the Swedish brown bear monitoring
program and look into whether problems related to individual heterogeneity
hold for the monitoring program. Individual heterogeneity can be put into the
statistical model in different ways. In [Link, 2003] he argues that different mod-
els of individual heterogeneity may lead to very different estimates and that
these models can be difficult to distinguish. He shows that several models for
individual heterogeneity can be fitted well to data but that the population es-
timates are very different in the models. Even a 95% confidence interval of the
population estimate do not overlap for some of the models.

In this thesis we will mainly work with zero-truncated models. In a zero-
truncated model no zero-valued observations can occur and the distribution will
have support only on the strictly positive numbers. For example will a zero-
truncated Poisson model, which is the basis distribution used in the analysis in
this thesis, have a probability mass function on the form

P (Y = y) = pλ(y)/(1− pλ(0)), y = 1, 2, . . . ,
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where pλ(y) = exp(−λ)λy/y!, y = 0, 1, . . ., is the probability mass function of
the Poisson(λ)-distribution. If we assume that captures from each individual fol-
low the Poisson distribution but that observed captures follow a zero-truncated
Poisson distribution then we can fit the zero-truncated model to data. Then
we can estimate the zero-valued observations or the non-observed individuals
as pλ̂(0). So with zero-truncated models we have a clear procedure to find the
probabilities to zero.

The overall problems connected to individual heterogeneity are that there are
different models that can fit the captures of the observed individuals. But these
fitted models put very different weight to the bears with no captures at all. In
[Link, 2003] as well as in [Huggins, 2001] they argue that from a theoretical
perspective, when the fitted densities of the observed individuals are close to
each other then should the estimate of the non-observed individuals be close
to each other as well. Essentially, they find that two candidate models that
generate the same zero-truncated distribution must give the same probability
to zero when not truncated. But if the captures are assumed to come from a
zero-inflated distribution then it is not possible to determine the population size
since it would require information about the amount of zero-inflation. In a zero-
inflation model we know that zero-valued observations happen but we do not
know how many zero-values to expect. This is different from the zero-truncated
models where we always have a procedure to determine the probabilities to zero.
However, [Link, 2003] finds that also with zero-truncated models problems of
identifiability occur as explained above. Models that generate the same zero-
truncated distribution provide different probabilities to zero when not truncated.

Both [Link, 2003] and [Huggins, 2001] look into circumstances and restrictions
in the observation process that could make these problems of nonidentifiability
between the models possible. They do indeed find some conditions that should
rule out the possibility of nonidentifiability. But these conditions are not always
suitable and in line with data and [Link, 2003] finds different cases and situ-
ations where problems of identifiability occur. In this thesis we investigate if
these problems also occur for estimation of the size of the Swedish brown bear
population.

In this project, we will do a similar approach as in [Link, 2003] to determine
whether the same problems hold for the Swedish brown bear program. The
Swedish brown bear monitoring program is carried out every year by volun-
teer sample collectors. A detailed description of the program and the current
method for estimating the population size is described in [Kindberg et al., 2011].

We will use an approach where we look at total counts and assume that the
capture probability follows a mixture of Poisson distributions. We the fit differ-
ent kind of these mixture distributions to the data. This is different from [Link,
2003] and most earlier literature where they look at binary capture histories
and look at a mixture of Binomial distributions. However, most of the mixture
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models in the case of using total counts corresponds to similar mixture models
in the case of binary capture histories and Binomial distributions. In this thesis,
some of the conclusions are the same as in [Link, 2003]. This project shows that
problems related to individual heterogeneity also occur in the Swedish brown
bear monitoring problem. It is very difficult to distinguish some of the models
we have been working with as we will show later on. However, the final estima-
tion of the brown bear population size is quite different for some of these models.

This means that there are some uncertainty in the final estimation and it is
not clear which model and method may be the best to use for the estimation of
the population size.
Everything in this bachelor thesis will be based on the Swedish brown bear mon-
itoring program. However, the results and theories may be relevant for similar
kind of wildlife population estimation and other areas where similar problems
of individual heterogeneity occur.

2 Materials and Methods

2.1 Materials

As earlier mentioned, the dataset used in this bachelor project is from the
Swedish brown bear monitoring program. The program usually takes place ev-
ery year in different counties in Sweden. The program is based on volunteers
collecting scat samples. Later, DNA-analysis will show which bears the samples
comes from and how many samples there are collected for each bear [Kindberg
et al., 2011].

The datasets analysed in this project are from the 2015, 2016, 2017, 2019 and
2020 monitoring program. The datasets consist of all the captures made during
the program including information about place, identification number and sex.
Male bears may have a tendency to behave more irregular than female bears
[Kindberg et al., 2011]. To make sure that this has not caused extreme data
points which could make the fitting of the models difficult and interfere with the
focus of this project, samples from the male bears have been removed from the
dataset. Therefore, the datasets analysed in this project only consist of samples
data for the female bears.

2.2 Methods

In general, we will assume that the number of captures for each bear follows a
Poisson distribution with support in the natural numbers including zero. In the
dataset, we do not observe the bears with no captures. Therefore, the observed
captures in the dataset will follow a zero-truncated Poisson distribution. The
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probability mass function is then

P (Y = y) = pλ(y)/(1− pλ(0)), y = 1, 2, . . . ,

where pλ(y) = exp(−λ)λy/y!, y = 0, 1, . . ., is the probability mass function of
the Poisson(λ)-distribution. The expected proportion of the total population
that are not encountered is pλ(0) = exp(−λ) and we may estimate the total

population size as N̂ = n/(1− exp(−λ̂)), where n is the number of unique indi-
viduals captured.

It is well known in the literature that ignoring individual heterogeneity as in the
model above will lead to a significantly underestimation of the true population
size. So we want our statistical model to include individual heterogeneity. This
is, that not every bear has the same probability of being captured. The way we
model this is by a mixture of Poisson distributions. So if we let ni be the num-
ber of times individual i is captured, then we assume ni ∼ Poisson(λi) where
λi ∼ Pθ independently for all i and where Pθ is a distribution that describes the
individual variation in catchability.

2.2.1 Current approach

The current approach for estimating the size of the Swedish brown bear popula-
tion is not based on total counts and mixture of Poisson distributions. Instead,
it is expected that the surveys generate binary capture histories for each indi-
vidual. This require that the surveys are repeated. The Swedish monitoring
program is carried out during around 11-12 weeks. In the current approach
each week is used as a session for capture-recapture and then there are 11-12
repeated surveys [Kindberg et al., 2011].

With binary capture histories we only look at whether the individual was cap-
tured or not. So for each survey we have a success if the individual is captured at
least once and a failure if the individual is not captured at all. For example will
an animal captured in the first and last survey out of five generate the capture
history y = (0, 1, 0, 0, 1). To estimate the population size it is then necessary
to estimate the animals never encountered which is equivalent to animals with
capture history y = (0, 0, 0, 0, 0).

In the current approach, individual heterogeneity is taken into account as mix-
ture of binomial distributions or similar models. Different models are fitted to
data and the model with the best fit is used to estimate the population size. In
the case that two or more models cannot be distinguished, a combination of the
best models is used for the estimation [Kindberg et al., 2011].

There can be arguments in favour of and against using a binary capture history
as in the current approach. Some issues with this approach includes that the
division into weeks are arbitrary but may change the estimate. Furthermore,
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there may be information lost when splitting into weeks and ignoring the to-
tal count for each individual. Another problem is that weekly estimates are
required which implies that many parameters have to be fitted. Some of these
issued can be dealt with when using an approach of using total counts and a
mixture of Poisson distributions.

2.2.2 Distributions and choices of Pθ

In the analyses in this thesis we use total counts and fit models that are a
mixture of Poisson distributions as explained earlier. This is, we use different
models for Pθ and fit all of these to the data. We have looked at four differ-
ent choices of Pθ. These are a Gamma(α, β) distribution, a LogNormal(µ, σ2)
distribution, a 2-point discrete mixture and a 3-point discrete mixture. Fur-
thermore, we have fitted the simple Poisson distribution in order to compare it
with the mixture of Poisson distributions.

All of these models of individual heterogeneity have been used in a similar
way in earlier capture-recapture literature. The discrete mixture models have
been suggested for wildlife applications by [Norris III and Pollock, 1996]. The
Poisson-Lognormal model corresponds to a logit-normal model when consider-
ing capture histories as binary which has been studied by [Coull and Agresti,
1999]. The Poisson-Gamma model corresponds to a beta-binomial model in the
binary case which was suggested in wildlife applications by [Dorazio and An-
drew Royle, 2003].

In the case of the simple Poisson model we have that the observed captures
follows a zero-truncated Poisson model. This is, that the density is

P (X = x) = pλ(x)/(1− pλ(0)) =
λxe−λ

x!

1− e−λ
=

λx

(eλ − 1)x!

for y = 0, 1, 2 . . . , where pλ(x) is the density of a standard Poisson model.

In the case where the captures of each individual bear follows a mixture of
Poisson-Gamma distribution, we have that the probability mass function is

P (Y = y) =

∫ ∞
0

fPoisson(λ)(y)fGamma(α,β)(λ)dλ =∫ ∞
0

λye−λ

y!

βα

Γ(α)
λα−1e−βλdλ =

βα

y!Γ(α)

∫ ∞
0

λy+α−1e−(1+β)λdλ =

βα

y!Γ(α)
Γ(y + α)

1

(1 + β)y+α
=

Γ(y + α)

y!Γ(α)

βα

(1 + β)y+α
,

for y = 0, 1, 2 . . . ,. We recognise this as the density of the negative binomial
distribution with parameter r = α and success probability p = 1

β+1 .
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The observed captures then follow a zero-truncated negative binomial distri-
bution. The density is

P (X = x) =
pr,p(x)

1− pr,p(0)
=

Γ(y + r)

y!Γ(r)

(1− p)rpx

1− (1− p)r
,

for x = 1, 2 . . . ,. With this probability mass function we can now determine the
log-likelihood function and by maximizing the log-likelihood function we get the
MLE estimates for the parameters in the model r and p [Lauritzen, 2021, p. 59-
60]. In a similar way we have worked with the densities of the other statistical
models.

For the Poisson-Lognormal model we have that the density is

P (Y = y) =

∫ ∞
0

fPoisson(λ)(y)fLognormal(µ,σ2)(λ)dλ =

1√
2πσy!

∫ ∞
0

λy−1e−λ−
(log(λ−µ))2

2σ2 dλ

for y = 0, 1, 2 . . . ,. The observed captures then follow a zero-truncated Poisson-

Lognormal model. The density has the form P (X = x) =
pµ,σ2 (x)

1−pµ,σ2 (0)
for

x = 1, 2 . . . ,. By the method of maximum likelihood we want to fit the model
and determine estimates of µ and σ.

The discrete statistical models are a discrete mixture of the Poisson model.
Thus, the probability mass function of the 2-point discrete mixture model is

P (Y = y) = π1pλ1
(y) + π2pλ2

(y)

for y = 0, 1, 2 . . . , where the π’s sum to 1. The observed captures then follow
a discrete mixture model of zero-truncated Poisson distributions. Thus, the
density of the observed captures is

P (X = x) = π1pλ1
(x)/(1− pλ1

(0)) + π2pλ2
(x)/(1− pλ2

(0))

for x = 1, 2 . . . , where the π’s again sum to 1. In a similar way we get that with
the 3-point discrete mixture model, the density of the observed captures is

P (X = x) = π1pλ1
(x)/(1− pλ1

(0)) + π2pλ2
(x)/(1− pλ2

(0)) + π3pλ3
(x)/(1− pλ3

(0))

for x = 1, 2 . . . , where the π’s again sum to 1. Therefore, we have six parame-
ters to fit in the 3-point discrete mixture model which are the three π’s and the
three λ’s. Again, we will use the method of maximum likelihood to determine
the parameters.

These are the models and distributions that have been used for the analysis
in this project.
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2.2.3 Confidence intervals

For every estimate of the population size we have calculated a confidence in-
terval. Two different approaches have been used. For all five statistical models
used in this project, it has been possible to make a confidence interval using
a bootstrap procedure. For the simple Poisson model and the Poisson-Gamma
model it has furthermore been possible to calculate theoretical confidence inter-
vals.

The bootstrap procedure has been carried out by resampling the datasets. This
has been done after the dataset has been ordered by individuals and their num-
ber of sample captures. Therefore, the total number of uniquely observed in-
dividuals will remain constant. But the number of counts per individual will
be resampled. This procedure may make the confidence intervals a bit smaller
than if the unordered dataset had been resampled.
We have resampled the datasets 3000 times and computed the population es-
timates for each of the resamples. After this, a basic bootstrap method also
known as reverse percentile interval have been used to calculate the confidence
interval based on the estimates of the resampled datasets [Kashin, 2013]. In
some cases this leads to intervals including negative numbers. The size of the
population is known to be at least as large as the number of uniquely identified
individuals. So in practice the lower bound of the confidence intervals could be
cut off there. But we have left the intervals as they are to illustrate the change
in variance between the different models. Therefore, the results in this project
contain some confidence intervals with negative values.

For the computations of the theoretical confidence intervals, asymptotic the-
ory has been applied. In the case of the simple Poisson model, it has been
possible to calculate theoretical Fischer information and thereby constructing
a Wald confidence interval [Lauritzen, 2021, p. 69-73]. The probability mass
function of the zero-truncated Poisson model is

P (X = x) =
λx

(eλ − 1)x!
.

Hence, the loglikelihood function of just one observation is

lx(λ) = x log(λ)− log(eλ − 1)− log(x!).

The score function and information for all n observations are then

Sn(x, λ) =

n∑
i=1

xi
λ
− eλ

eλ − 1

In(x, λ) = −∂Sn
∂λ

= −
n∑
i=1

− xi
λ2

+
eλ

(eλ − 1)2
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Then the Fischer information can be calculated

E(In) =
neλ

(eλ − 1)2
+

1

λ2

n∑
i=1

E(xi) = n

(
− eλ

(eλ − 1)2
+

eλ

λ(eλ − 1)

)
The variance of the MLE parameter λ̂ will then asymptotically be the inverse
Fischer information [Lauritzen, 2021, p. 69-73]. So

var(λ̂) =
1

n
(
− eλ

(eλ−1)2 + eλ

λ(eλ−1)

) .
We can then calculate the asymptotically variance of the population estimate
N̂ by using the delta-method [Lauritzen, 2021, p. 166]. For the simple Poisson
model we have that N̂ = n

1−e−λ̂
. Therefore, we have that

∂N̂

∂λ̂
=

−n
(1− e−λ̂)2

e−λ̂.

By the delta-method we then have that

var(N̂) =

(
−n

(1− e−λ̂)2
e−λ̂

)2

var(λ̂)

Now we can construct a classic 95% confidence interval by C0.95(N̂) = N̂ ±
z0.025σ where σ is the standard error of N̂ and z0.025 is the 0.025 fractile of the
standard normal distribution. This procedure has been used for all five surveys
to construct a confidence interval of the estimate provided by the simple Poisson
model.

For the Poisson-Gamma model we have not calculated the theoretical Fischer
information. Instead, we have used the observed Fisher information. The ob-
served Fisher information is provided through the Hessian matrix when we use
the optimization function in [R Core Team, 2021]. The variance matrix Σ of the

parameters in the model

(
p̂
r̂

)
is given as the inverse Hessian matrix. For the

Poisson-Gamma model we have that N̂ = n
1−(1−p̂)r̂ . Therefore, the Jacobian

matrix of partial derivatives is given by(
∂N̂
∂p

∂N̂
∂r

)
=
(
−nr(1−p)(r−1)

(1−(1−p)r)2
n(1−p)r log(1−p)

(1−(1−p)r)2

)
.

By the delta-method [Lauritzen, 2021, p. 166] the variance of N̂ is then given
by

var(N̂) =
(
∂N̂
∂p

∂N̂
∂r

)
Σ

(
∂N̂
∂p
∂N̂
∂r

)
.
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When this variance has been computed then we can calculate a standard 95%
confidence interval as described before. This procedures has been used for all
five surveys to construct a Wald confidence intervals for the Poisson-Gamma
model.

2.2.4 Numerical methods for fitting

Since the probability mass functions are quite complex it has been necessary
to use numerical methods to compute the MLE estimates. For the Poisson-
Gamma distribution and Poisson-Lognormal distribution optimization functions
in [R Core Team, 2021] have been used. These functions uses the Nelder-Mead
method.

For the discrete mixture models we have used an EM algorithm to handle the
optimization. The general setup for the EM algorithm is based on a missing
data setup. We have some observed data and some missing data coming from
the same distribution. So if we denote the observed data as Y and the distri-
bution it is assumed to follow as gθ then we have Y ∼ gθ. In our cases the
missing data is the non-observed individuals with no captures. We assume that
the density is on the form gθ(yi) =

∑m
j=1 πjφj(yi) where the πj ’s are positive

and sum to 1 and the φj ’s are some densities. Hence, gθ is a discrete mixture
of some densities. In our case we assume that data follows a discrete mixture
of Poisson distributions. Therefore, we have that φj(yi) is the density of the
Poisson distribution with parameter λj . The density of only the observed data
is different since we have some missing data. It will be on the form

hθ(yi, zi) =

m∑
j=1

1zijπjφj(yi)

where zij indicates that individual i comes from component j since the observed
data must come from one of the m components. In our case the density above
reduces to a discrete mixture of zero-truncated Poisson distributions.

With an EM algorithm, instead of maximizing the log-likelihood function di-
rectly we maximize the following operator iteratively

Q(θ|θ(t)) = E
[
log hθ(Y,Z)|y, θ(t)

]
,

where hθ is the density of the complete data meaning only the observed data.
The θ(t) is the parameters at time t. The density has the form hθ(yi, zi) =∑m
j=1 1zijπjφj(yi) as explained above. The πj determines how much the j’th

density is weighted. Hence, the πj will sum to 1 [Tatiana et al., 2009, p. 3-5] .

The algorithm consist of an expectation (E) step and a maximization (M) step.
In the E-step we calculate the operator mentioned above. The parameter θ
include both the π’s and the densities φ. In our case the densities will always
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be from a zero-truncated Poisson distribution but the parameter λ may change.
In the M-step we maximize the operator with respect to λ and set the value of
λ in optimum to the new λ(t+1). In practice, this is done by defining

τj(yi, λ) =
π(t)φj(yi, λ

(t)
j )∑m

h=1 πhφh(yi, λ
(t)
h )

Then we have that

Q(λ|λ(t)) =

m∑
j=1

n∑
i=1

τj(yi, λ
(t)) (log πi + log φj(yi, λj)) ,

where we have n data points and m different weighted densities. We can maxi-
mize the outer sum by maximizing each element in the sum with respect to λj .
Since λ(t) is given, τj(yi, λ

(t)) will be a constant. We also have that πj is a con-
stant. Hence, the problem reduces to maximizing

∑n
i=1 τj(yi, λ

(t)) log φj(yi, λj)
for each λj and τj . Since φj(yi, λj) is the density of the zero-truncated Poisson
distribution we get

n∑
i=1

τj(yi, λ
(t)) log

(
λyij

(eλj − 1)yi!

)
=

n∑
j=1

τj(yi, λ
(t))
(
yi log(λj)− log(eλj − 1)− log(yi!)

)
The first order condition with respect to λi is

n∑
i=1

τj(yi, λ
(t))

(
yi
λj
− eλj

eλj − 1

)
= 0

Solving this equation with respect to λj gives the λj that maximize Q(λ|λ(t)).
This is the new λ(t+1).

Furthermore, the algorithm consist of letting π(t+1) =
∑n
i=1 τj(yi,λ

(t))

n .

After this we go back to the E-step and compute the new τj(yi, λ
(t)). This

procedure is repeated until the loglikelihood function ly(λ(t), π(t)) is very close
to ly(λ(t+1), π(t+1)) [Tatiana et al., 2009, p. 3-5].

In our application of the algorithm we have set ly(λ(t+1), π(t+1))−ly(λ(t), π(t)) <
0, 00001 for the algorithm to stop. More details can be seen in the R-document.

3 Results

3.1 Overview

As earlier mentioned, fitting of the models have been done for each survey for
the 2015, 2016, 2017, 2019 and 2020 monitoring program. An overall summary
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off the five surveys can be seen in Table 1.

Table 1: Summary of surveys. Samples is total number of samples collected
in the survey. Unique is total number of unique bears captured in the survey.

Survey year Regions Samples Unique
2015 Jämtland and Västernorrlands län 2259 581
2016 Norrbottens län 542 205
2017 Dalarnas and Gävleborgs län 1255 375
2019 Västerbotten 419 192
2020 Jämtland and Västernorrlands län 2326 728

An illustrative view off the fitting can be seen in Figure 1. Here we have plotted
the densities of the fitted zero-truncated models on top of a histogram showing
have many bears have been captured a specific number of times. Figure 1 shows
all five statistical models fitted to the 2020 survey. The histograms have been
cut off so they do not include bears that have been captured more than twenty
times. For the 2020 survey this excludes one bear that have been captured 37
times. We observe that the density of the the simple Poisson model does not
seem to follow the histogram very well. All the four other models seem to pro-
vide a much better fit just by looking at the illustrative fit in Figure 1. If all
four models can fit the data of the observed captures well, the interesting thing
is then to see how the models estimate the number of individual bears that have
not been captured at all. Furthermore, it is interesting whether the four models
can be distinguished at all. The overall picture of these illustrative fittings are
the same for the other surveys which can be seen in Appendix. The density of
the fitted simple Poisson model clearly fails to follow the histogram. However,
the four other models seems to follow the histograms quite well.
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Figure 1: Illustrative plots of the fitting to the 2020 survey

3.2 Fitted models and estimates

For each model we have fitted, we have computed a range of goodness-of-fit
statistics. Furthermore, we have calculated the final estimates and the confi-
dence intervals. The results of the analyses are summarized in Table 2, Table 3,
Table 4, Table 5 and Table 6. The tables contain all the values of the maximum
likelihood parameters, statistics of the fits and the estimates.

Model A is a simple Poisson model and seems to be a poor fit for all of the
surveys indicating that individual heterogeneity do indeed occur. That the
model is a poor fit can be seen by the very low p-values and the large ∆AIC’s.
However, the remaining four models all provide good fits for some of the sur-
veys. Model B and C are the Poisson-Gamma model and the Poisson-Lognormal
model respectively. They seem to provide a good fit for all of the surveys and
the difference in AIC for these two models is lower than 10 for all surveys. The
p-values are quite high and the ∆ AIC’s are low for these two models indicating
that they are fitting data well.
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Table 2: Results for 2020 survey.

N̂ Bootstrap CI Wald CI ∆ AIC χ2 p-value
A 764 (753, 773) (759, 770) 691,51 4.97 · 1023 < 0.001
B 1549 (739, 1877) (948, 2151) 0 202.97 0.02249
C 1040 (951, 1109) N/A 2.63 40.81 0.5722
D 855 (810, 886) N/A 97.15 7.39 · 1010 < 0.001
E 916 (833, 982) N/A 35.42 4.2 · 105 < 0.001

A: Simple Poisson model with λ = 3.04

B: Poisson-Gamma model with r = 0.415 and p = 0.784

C: Poisson-Lognormal model with µ = 0.323 and σ = 0.992

D: 2-point discrete mixture placing masses {0.816, 0.184} on {1.71, 8.13}
E: 3-point discrete mixture placing masses {0.642, 0.319, 0.0382} on {1.15, 4.95, 13.6}
N̂ is the maximum likelihood estimator of the population N . Bootstrap CI is a 95% confidence

interval based on bootstrap procedure. Wald CI is a theoretical confidence interval which has

been calculated for model A and B. ∆AIC is the difference between the AIC of the model

and that of the model with the best AIC. χ2 and p-value summarize a Pearson’s chi-squared

goodness-of-fit test.

Model D and E are the 2-point discrete mixture model and 3-point discrete
mixture model respectively. The 2-point discrete mixture model provide a poor
and unacceptable fit for the 2020, 2017 and 2015 survey as seen in Table 2,
Table 4 and Table 6. However, the fit for the 2019 and 2016 survey seems to
be good. Model E provide an unacceptable fit for the 2020 survey and for the
2015 survey the fit seems rather poor with a quite low p-value. But for the three
remaining surveys the model provide a good fit with high p-values and low ∆
AIC’s.

Table 3: Results for 2019 survey.

N̂ Bootstrap CI Wald CI ∆ AIC χ2 p-value
A 229 (212, 240) (220, 238) 38.52 9.16 · 103 < 0.001
B 387 (-154, 497) (-200, 974) 0 7.42 0.7666
C 306 (304, 352) N/A 0.31 5.88 0.9115
D 262 (206, 286) N/A 6.73 20.1 0.1164
E 279 (226, 309) N/A 7.77 5.09 0.933

A: Simple Poisson model with λ = 1.83

B: Poisson-Gamma model with r = 0.802 and p = 0.574

C: Poisson-Lognormal model with µ = 0.0086 and σ = 0.783

D: 2-point discrete mixture placing masses {0.821, 0.179} on {1.13, 4.46}
E: 3-point discrete mixture placing masses {0.504, 0.466, 0.0305} on {0.609, 2.54, 7.38}
Column names meaning the same as for Table 2.

Taken all five surveys into account there seems to be no clear pattern in which
statistical model that is the optimal one for the estimation. Only the simple
Poisson model can be rejected as an acceptable model since it is not suitable
for any of the surveys. In general, we have four models out of the five statistical
models we have analysed that provides what we would describe as a good fit
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for some of the surveys. However, we have that only the two models Poisson-
Gamma and Poisson-Lognormal provides a good fit for all five surveys analysed
in this project.
In addition to this, it is worth noticing that some of the surveys have some
extreme observations where samples from some bears have been captured a
lot of times. This might make the fitting of the discrete models difficult since
they convergence to zero faster than the Poisson-Gamma model and Poisson-
Lognormal model. If the discrete models do not place any mass near the extreme
observations then will the extreme observations make the fit a lot worse. For
the 2020 survey, samples from one bear have been collected 37 times. For the
2015 survey, samples from one bear have been collected 33 times. That is a
lot of samples from the same bear and these two observations are by far the
most extreme observations in the datasets. We notice that these two surveys
are exactly the ones where the 3-point discrete model does not provide a good
fit to data. Furthermore, the 2-point discrete model do not fit data well for
these two surveys. And these surveys are two out of the three surveys where
the 2-point discrete model is not suitable to describe data. This indicates that
if such extreme observations were removed from the dataset or if we looked at
data without such extreme observations then the two discrete mixture models
D and E might have an even better chance of fitting data well. Hence, these
problems related to individual heterogeneity would be even more clear since
more models would fit data well.

Table 4: Results for 2017 survey.

N̂ Bootstrap CI Wald CI ∆ AIC χ2 p-value
A 391 (384, 395) (388, 394) 322.2 5.07 · 108 < 0.001
B 696 (299, 845) (308, 1085) 0 27.39 0.4553
C 511 (452, 553) N/A 8.35 32.83 0.6152
D 437 (382, 458) N/A 42.6 1.47 · 103 < 0.001
E 524 (472, 574) N/A 2.19 65.33 0.03698

A: Simple Poisson model with λ = 3.21

B: Poisson-Gamma model with r = 0.513 and p = 0.778

C: Poisson-Lognormal model with µ = 0.454 and σ = 0.962

D: 2-point discrete mixture placing masses {0.762, 0.238} on {1.68, 7.45}
E: 3-point discrete mixture placing masses {0.331, 0.571, 0.0984} on {0.226, 3.34, 10.2}
Column names meaning the same as for Table 2.

When we look at the final estimation provided by the models with a good
fit then we observe that the final estimation varies a lot. For the 2020 survey,
model B gives an estimate of 1549 individual female brown bears in the regions
surveyed while model C gives an estimate of 1040 bears as seen in Table 2.
This is a huge difference. Especially, when considering that a great deal of the
estimation comes from observed individuals. In the 2020 survey there were 728
observed individual female brown bears. So the Poisson-Gamma model estimate
more that double as many non-observed individuals as the Poisson-Lognormal
model. The estimates of the non-observed bears can be seen in Figure 2. So for
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the 2020 survey there is a huge difference in the estimates of the two different
models B and C but it is not possible to say which model provide the best fit
since both models fit data quite well.
The same thing holds for the other surveys. For the 2019 and 2016 survey we
have four suitable models to describe data. In Table 3 we have the results from
the analysis of the 2019 survey. We observe that the estimate of model B is
387. This is much higher than for model C, D and E which also provide a good
fit. Actually, the estimate of 387 is not even in a 95% confidence interval of the
estimate for any of the three other models. So the estimates are indeed very
different. But again we cannot distinguish the four different models and tell for
sure which model is most likely to provide a correct estimate.

Table 5: Results for the 2016 survey.

N̂ Bootstrap CI Wald CI ∆ AIC χ2 p-value
A 225 (217, 231) (220, 231) 36.67 2.56 · 103 0.001499
B 281 (207, 316) (-205, 768) 0.0935 17.81 0.2569
C 262 (231, 282) N/A 0 15.05 0.4403
D 242 (200, 255) N/A 7.12 25.23 0.07246
E 257 (220, 278) N/A 6.77 11.68 0.6002

A: Simple Poisson model with λ = 2.41

B: Poisson-Gamma model with r = 1.78 and p = 0.52

C: Poisson-Lognormal model with µ = 0.532 and σ = 0.626

D: 2-point discrete mixture placing masses {0.821, 0.179} on {1.69, 5.24}
E: 3-point discrete mixture placing masses {0.38, 0.594, 0.0258} on {0.802, 2.96, 9.04}
Column names meaning the same as for Table 2.

Taken all five surveys into account we observe some clear patterns and we notice
these kinds of problem with individual heterogeneity in all of them. The Poisson-
Gamma model provide a much higher estimate that the Poisson-Lognormal
model. The two discrete mixture models then have an even lower estimate. In
Figure 2 this is shown clearly by using the results of the analysis. Even though,
the discrete mixture models D and E are not a good fit for all surveys we still
have problems related to individual heterogeneity for all five surveys. We can-
not distinguish the Poisson-Gamma model and the Poisson-Lognormal model
but they have a very different estimate in all surveys. And as explained earlier
the poor fits of the discrete models may be due to extreme observations. So
we do potentially have four models with very different estimates and we cannot
distinguish the models.

Table 6: Results for the 2015 survey.

N̂ Bootstrap CI Wald CI ∆ AIC χ2 p-value
A 594 (589, 598) (592, 597) 613.8 4.76 · 1016 < 0.001
B 864 (721, 955) (512, 1215) 0 57.5 0.1454
C 722 (681, 754) N/A 5.56 33.64 0.7311
D 643 (623, 656) N/A 44.7 1.36 · 107 < 0.001
E 653 (585, 669) N/A 18.2 618.9 0.003498
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A: Simple Poisson model with λ = 3.8

B: Poisson-Gamma model with r = 0.738 and p = 0.78

C: Poisson-Lognormal model with µ = 0.746 and σ = 0.903

D: 2-point discrete mixture placing masses {0.776, 0.224} on {2.09, 9.1}
E: 3-point discrete mixture placing masses {0.719, 0.259, 0.022} on {1.87, 7.46, 16.6}
Column names meaning the same as for Table 2.

For all five surveys there are models that cannot be distinguished. These mod-
els that cannot be distinguished provide a different estimate of the size of the
female brown bear population in all five surveys. For a few models some of the
estimates are quite close as for example in the 2016 survey as seen in Table 6.
Here is the estimate obtained by using the Poisson-Lognormal model 262 while
the estimate obtained by using the 3-point discrete mixture model 257. So these
two estimates are close to each other. However, the Poisson-Gamma model has
in the 2016 survey a quite higher estimate of 281 and the 2-point discrete mix-
ture model has a lower estimate of 242 and we cannot distinguish any of these
four models. In general, these estimates of the size of the population vary quite
a lot. The 95%-confidence intervals of the estimates do in some cases contain
the estimates of the other models. But this is not always the case. These things
are illustrated more clearly in Figure 2.

3.3 Confidence intervals and non-observed individuals

If we take a closer look at the estimates of the non-observed bears and their
confidence interval we get a clear picture of how much these estimates varies.
In Figure 2 we have gathered the estimates of the number of non-observed fe-
male bears among with a bootstrap confidence intervals for all surveys and all
models. We have also added the official estimate by the Swedish Museum of Nat-
ural History for every survey [Åsbrink et al., 2021], [Åsbrink et al., 2020],[Levin,
2018],[Levin, 2017b] and [Levin, 2017a]. We observe some clear patterns through
all five surveys. The Poisson-Gamma model provide the highest estimate of non-
observed bears in all surveys. This estimate by the Poisson-Gamma model is
in several cases more than double as high as the second largest estimate. Fur-
thermore, we observe that the Poisson-Gamma model by far has the largest
95%-confidence interval in all cases. The simple Poisson model has the lowest
estimate in all cases and also the smallest confidence interval. However, the fit
of the simple Poisson model is poor so we would never use these estimates any-
way. But the simple Poisson model provide a estimate with quite low variance.
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Figure 2: Bootstrap confidence intervals and estimate of non-observed individ-
uals for all surveys and all models. 1: Official estimate. 2: The simple Poisson
model. 3: The Poisson-Gamma model. 4: The Poisson-Lognormal model. 5:
The 2-point discrete mixture model. 6: The 3-point discrete mixture model.

For the other models we observe that the Poisson-Lognormal model in gen-
eral provide the second highest estimate. However, the official estimate by the
Swedish Museum of Natural History, the Poisson-Lognormal model, the 2-point
discrete mixture model and the 3-point discrete mixture model all provide es-
timates of the non-observed individuals that are somewhat close to each other
with the 2-point mixture model providing the lowest estimate. However, the
differences between these models varies from survey year to survey year and
there are still differences in these estimates. In addition to this, we observe that
the confidence intervals in these four situations are also of similar size in most of
the surveys. The method used for the official estimate have change a bit during
the surveys. However, for most of the surveys the official estimate is lower than
the estimate made from the Poisson-Lognormal but greater than the estimate
from the 2-point discrete mixture model and seem in general to be nearest the
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estimate from the 3-point discrete mixture model.

4 Discussion

The conclusions from this bachelor project is that the problems related to indi-
vidual heterogeneity in wildlife estimation do occur in estimation of the Swedish
brown bear population size. Several models are very difficult to distinguish but
they provide very different estimates of the population sizes. This brings a lot
of uncertainty to the final estimation since the estimate will depend of which
statistical model is used. But it is not clear which statistical model should be
used since several models all fit data well and cannot be distinguished. Overall,
this means that models and methods for the capture-recapture method means
a lot and should be taken into account when estimating wildlife population.

Of the four statistical models used in this thesis for describing individual hetero-
geneity, two of them are suitable to describe data for all five surveys. This is the
Poisson-Gamma and Poisson-Lognormal model. Furthermore, the two remain-
ing models the 2-point discrete mixture and 3-point discrete mixture are suitable
to describe data in some of the surveys. That these two discrete models seem
to be a worse fit in some cases may be explained due to extreme observations.
The simple Poisson model do in all surveys provide a poor and unacceptable fit.

The final estimates provided by these four models of individual heterogene-
ity are however very different. In addition to this, the confidence intervals of
the estimates are very different and of different size and length. Especially the
Poisson-Gamma model provides estimates and confidence intervals that are very
different from the other models. However, the Poisson-Gamma model is a good
fit for all surveys analysed in this thesis.

Overall, this thesis shows and explains that it is possible to fit several mod-
els to data of the number of observed captures. However, how these models
then estimate the bears with no captures seems to be very different and with
no clear correlations. That is the main conclusion of this project and the con-
tribution to future wildlife estimation studies.

Furthermore, we find that of the statistical models analysed in this project we
in general get the highest estimate by using the Poisson-Gamma model. Fur-
thermore, the Poisson-Gamma model is the model with the biggest confidence
interval of the estimate. The simple Poisson model with no individual hetero-
geneity provides the lowest interval and the smallest confidence interval. The
remaining statistical models estimates and the official estimate of the popula-
tion sizes are in between these two models’ estimates for all five surveys analysed.

Future research could look into whether it is in some ways possible to distin-
guish the different statistical models. What are the benefits and downsides for
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each model and how does that accord with the problems of wildlife estimation?
If some models could be distinguished then the problems shown in this bachelor
project would be a smaller issue and it would be more clear which methods
should be used for the population estimation.

In addition to this, it could be investigated why the confidence intervals are
so different and which types of datasets that makes some of models less likely
to be a suitable description of the data. Would it for an example be a good idea
to remove too extreme observations in order to make some models more likely
to be a good fit?

There could also be done some more research about when these cases of non-
identifiability occur. Would some restrictions about the data or the observation
process rule out the possibility that the same problems of nonidentifiability as
described in this thesis could occur? This and similar things could be relevant
future research.
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Appendix

A Tables and Figures

Figure 3: Illustrative plots of the fitting to the 2019 survey
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Figure 4: Illustrative plots of the fitting to the 2019 survey
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Figure 5: Illustrative plots of the fitting to the 2017 survey
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Figure 6: Illustrative plots of the fitting to the 2016 survey
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Figure 7: Illustrative plots of the fitting to the 2015 survey

B Code

All code used in this project to fit the statical models, get the estimates of the
population, compute plots, etc. is available at a public GitHub repository at
https://github.com/PeterHjortAnd/thesis.
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