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Abstract

In this thesis we investigate the effects of inclusion of superspread-

ers in a SIR epidemic model. We create a standard SIR epidemic

model and a two-type SIR epidemic model with the same basic repro-

ductive number R0, to describe an epidemic in a homogeneous pop-

ulation and in a heterogeneous population respectively. Then, with

the help of branching process approximation of these models we cal-

culate the probability that the epidemic in the two cases stays small,

and conclude that it is higher in the case of superspreaders. We then

investigate the expected size, when observing an emerging epidemic

at some future generation, k in the homogeneous and heterogeneous

case respectively. We could then conclude that we will expect the size

of the epidemic in generation k to be bigger if the population contain

superspreaders.
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1 Introduction

This thesis focuses on infectious diseases that spreads from person to person
in a population. Example of such diseases are Covid-19, the common cold,
measles, influenza etc. We do not consider sexually transmitted diseases
since the assumptions needed for these kind of diseases differ from the non-
sexual transmitted ones. Our analysis is first and foremost be based on the
SIR epidemic model which is described in Section 2. In the simplest of SIR
epidemic models, every individual in the population spreads the infectious
disease to others with the same rate. The population in this case is called
homogeneous. This is a helpful model but it does not represent a real life
scenario all that well. In the real world, the rate in which a infectious in-
dividual transmits the disease to others differ from person to person. That
leads us to so called superspreaders. A superspreader is a person that is
responsible for more of the spreading of the disease than the average indi-
vidual in the population. This can for example be a person that attends
parties with a lot of people while being infectious. In an article by (Lloyd-
Smith et al. 2005), the authors provides an analysis about superspreaders in
the SARS-epidemic in Singapore, in which it is concluded that the majority
of infected individuals were barely infectious while a small fraction of the
infected were highly infectious. Since a model with superspreaders seems
to represent the real world better than the standard SIR model, a further
investigation of the impact of superspreaders in a model is worth to look
into, which is the purpose of this thesis.

One can think of superspreaders in two different ways. The first way
is that all people, before getting infected have the same properties, but by
randomness, some of the infected will be more infectious for some reason like
for example attending a so called superspreading event. These individuals
will therefore be seen as superspreaders. This is the way that (Lloyd-Smith
et al. 2005) chooses to think of superspreaders in their analysis but in this
thesis we think of this in the second way; we assume that all people have
different properties from the beginning that determine whether or not a
person is a superspreader. This results in the population being split into
two groups; non-superspreaders and superspreaders. Note that these two
approaches are just two different ways of thinking regarding the same thing,
meaning they are equivalent in terms of modelling.

By analyzing the impact on the epidemic of these superspreading events,
one can get a better understanding on how an epidemic is going to play out in
different situations and from that knowledge being able to set up necessary
restrictions in case of more serious diseases.

In Section 5 we analyze the difference between a homogeneous SIR epi-
demic model and a SIR epidemic model with two groups of individuals with
different infectious rates. In the sections previous to Section 5 our two mod-
els will be defined.
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2 Definition of model

In this section we will define the standard SIR epidemic model and the
two-type SIR epidemic model, which are the ones we later compare to each
other. The majority of the theory in this section is retrieved from the book
written by (Andersson and Britton 2000).

First we want to introduce an important number when analyzing epi-
demics; the basic reproduction number, R0. This is the expected number
of secondary infections caused by one typical infected individual when the
whole population is assumed to be susceptible. A large outbreak of the dis-
ease is possible if and only if R0 > 1 (Barratt, Kirwan, and Shantikumar
2018).

2.1 The standard SIR epidemic model

The letters S, I and R in the standard SIR epidemic model stands for the
states susceptible, infectious and removed respectively. A susceptible indi-
vidual is one that is not infected and therefore susceptible for the disease.
An infectious individual is one that is infected and have the possibility to
spread the disease further to those still susceptible. Eventually after some
time, an infected individual either dies or recovers and is therefore immune.
This individual is then in the removed state and plays no further roll in the
epidemic.

In this model we assume that the population in question is closed and,
like mentioned in the introduction assumed to be homogeneous. We also as-
sume that it is homogeneously mixing, meaning that we do not take different
social groups and structures into account, i.e every individual is equally likely
to come in contact with any of the other individuals in the population.

Let S(t), I(t) and R(t) denote the number of susceptible, infectious
and removed in the population respectively, at time t after the start of the
epidemic. Then we assume that S(0) = n, I(0) = m and R(0) = 0.

Every infected individual is infectious for a period with distribution ac-
cording to a random variableD, where all of the individual infectious periods
are independent of each other. We are going to assume that D is exponential
distributed with mean µ. While infectious, an individual makes infectious
contact with others at time points following a homogeneous Poisson process
with a rate λH , where H stands for homogeneous. These Poisson processes
are independent of each other as well as of the infectious periods. If an in-
fectious individual makes contact with a susceptible individual it is assumed
that the susceptible immediately gets infected and thereby becomes infec-
tious as well. We denote this process as (Andersson and Britton 2000), by
En,m(λH , D).

According to (Andersson and Britton 2000), the basic reproductive num-
ber, for this model is given by R0 = λHµ since an infected person is on aver-
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age infectious for a period of length µ and during this time infects initially
susceptible individuals with rate λH .

2.2 The two-type SIR epidemic model

In reality it is not that likely that all individuals have the same properties.
Therefore we introduce the two-type SIR epidemic models that assumes that
the population is split into two groups with different properties. This is a
special case of the multi-type SIR epidemic model. We assume that individ-
uals of type 1 is non-superspreaders and those of type 2 is superspreaders.

The population in this case is still considered to be closed, but are no
longer homogeneous. We do not take into account for social structures in
this case either and the rate at which the infected makes infectious contact
with a susceptible is only dependent on the type of that infected individual.

Let us denote the number of susceptible, infectious and removed in the
whole population as above and assume again that S(0) = n, I(0) = m and
R(0) = 0. Then we let Si(t), Ii(t) and Ri(t) be the number of susceptible,
infectious and removed respectively of type i at time t, i = 1, 2. Assume
then that there are initially ni susceptible and mi infectious of type i, so
that

n = n1 + n2, m = m1 +m2.

Let the fraction of superspreaders in the population be π2 = π = n2
n ,

and the fraction of non-superspreaders be π1 = 1− π = n1
n .

Every infected individual, regardless of which group they belong to is
infectious for a period with distribution according to the same random vari-
able D introduced in the standard model. Under this period an infectious
individual of type i makes infectious contact with others at time points fol-
lowing a homogeneous Poisson process with rate λi. All infectious periods
and Poisson processes are assumed to be independent of each other. Here
we have assumed that all individuals in the population has the same possi-
bility to get in contact with an infectious individual. Let λ1 = λM , where
M stands for multi-type. The superspreaders in this model are assumed
to be x, x > 1 times more infectious than the non-superspreaders, giving
superspreaders the infection rate λ2 = xλM .

Let n = (n1, n2) andm = (m1,m2), and denote this process by En,m(λM , D, x).

3 Branching Process

In this section we are going to discuss two types of branching processes; the
single-type branching process and the two-type branching process, where the
latter is a special case of multi-type branching processes. The reason for this
is that these branching processes can represent an approximation of the two
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SIR models described in the previous section. More of this approximation
will be explained in Section 4.

The following theory is mainly retrieved from (Allen 2015).

3.1 Single-type branching process

A single-type branching process is a process in which the element of the
branching process, let us call them individuals, give birth to other individuals
independently and identically distributed. Let Y be the so called offspring
random variable, representing the number of children of an individual. Let
us denote the branching process {X(t); t ∈ [0,∞)}, which consists of a
set of discrete random variables with non-negative integers as values. We
then say that X(t) represent the number of individuals in the branching
process at time t. In our case we also assume that the process have the
Markov property, thus being a Markov chain in continuous time and the
time between events being exponentially distributed. From this assumption
it follows that the individuals in the branching process have a independently,
equally and exponentially distributed life-spans. During their life-spans they
give birth to others according to a Poisson process. We also assume that
the process is homogeneous in time.

We let the transition probability for the process to get to state j in the
time period ∆t when in state i be denoted by

pij(∆t) = P (X(t+∆t) = j;X(t) = i).

According to (Allen 2015, p. 2), the transition probabilities satisfy the
following.

∞∑
j=0

pij(t)s
j =

 ∞∑
j=0

p1j(t)s
j

i

, s ∈ [0, 1].

Implying that a branching process that begins with i individuals, i.e X(0) =
i, is equal to the sum of i processes where X(0) = 1.

(Allen 2015, p. 3) also states an assumption regarding the offspring which
is that for the probability, p0 of extinction at each generation in the process
the following is true.

0 < p0 < 1.

That is, the probability for the process to reach the zero-state is positive for
t > 0. If X(t) = 0 for some t > 0 there are no individuals left to give birth
to more individuals, thus the zero-state is an absorbing state. The goal from
the application of branching processes in this thesis is to find the probabil-
ity of ultimate extinction, q for the approximating branching process, as it
equals the probability for the epidemic to stay small. To calculate q we need
to know what the so called probability generating function of the offspring
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random variable Y is. The following definition is stated by (Gut 2009, p. 59).

Definition 1
Let X be a non-negative integer valued random variable. The probability
generating function of X is

gX(t) = E(tX) =

∞∑
n=0

tn · P (X = n).

From this definition we get that the probability generating function of
the offspring random variable Y is

gY (s) =
∞∑
j=0

sk · pk, s ∈ [0, 1].

The probability generating function, gY is well defined and continuously
differentiable on [0, 1] with the properties

gY (0) = p0,

gY (1) = 1,

g′Y (1) =
∞∑
k=0

kpk.

Then the probability of ultimate extinction is given by the minimal so-
lution to the equation

gY (s) = s, s ∈ (0, 1].

(Allen 2015, p. 4) states this in the following theorem, while also giving
a proof of this.

Theorem 1
The probability of ultimate extinction of X(t) as X(0) = 1 is given by the
smallest fixed point, q∗ of the offspring probability generating function gY
on (0, 1].

The assumptions stated above results in that the probability of ultimate
extinction for a branching process that begins with m individuals, X(0) =
m, is equal to q = (q∗)m where q∗ is the probability of ultimate extinction
for a branching process where X(0) = 1.

It can also be shown that a fixed point smaller than 1 of gY exists
if g′Y (1) > 1. If g′Y (1) ≤ 1 then the only fixed point is 1 and therefore
q∗ = 1. In that case, ultimate extinction is certain, and if g′Y (1) < 1 then
the branching process is said to be subcritical and if g′Y (1) = 1 it is called
critical. But in the case if g′Y (1) > 1 then the branching process is not
certain to die out and in that case it is said to be supercritical.
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3.2 Two-type branching process

Let X(t) be a vector of two stochastic processes, {X1(t); t ∈ [0,∞)} and
{X2(t); t ∈ [0,∞)}. Then {X(t); t ∈ [0,∞)} is a multi-type branching pro-
cess of two dimensions, i.e a two-type branching process.

We denote the transition probability for this process to get to state
j = (j1, j2) from state i = (i1, i2) in a time period ∆t by

pij(∆t) = P (X(t+∆t) = j;X(t) = i).

Now let Yij be a discrete, non-negative random variable corresponding
to the number of offspring of type j from an individual of type i. Assume
that every individual of type i gives birth independently of each other with
the same probability at all times. Let the probability that an individual of
type i, i = 1, 2 gives birth to k1 offspring of type one and k2 offspring of
type two be

pi,k = P (Yi1 = k1, Yi2 = k2), k = (k1, k2).

Then the probability generation function of the offspring random variable
Yi = (Yii, Yij) is given by

gYi(s) =
∑
k

sk · pi,k =

∞∑
k1=0

∞∑
k2=0

sk11 · sk22 · pi,k.

Let gY1 and gY2 be the probability generating functions of the offspring
from an individual from type 1 and 2 respectively. From this we can get
the probability of ultimate extinction vector q∗ = (q∗1, q

∗
2) by the following

theorem, which is a modification of theorem 1.2 in (Allen 2015, p. 9).

Theorem 2
The probability of ultimate extinction of the continuous-time branching
process X(t) when Xi(0) = 1 and Xj(0) = 0, i ̸= j, is the fixed point
q∗ = (q∗1, q

∗
2) of the system consisting of gY1 and gY2 where q

∗
1, q

∗
2 ∈ [0, 1]. The

probability of ultimate extinction ofX(t) whenX1(0) = m1 andX2(0) = m2

is given by q = (q∗1)
m1 · (q∗2)m2 .

4 Branching process approximation

The two SIR epidemic models described in Section 2 can be approximated
with a single-type- and two-type branching process respectively. Where
the state of a branching process corresponds to the number of infected in
the epidemic. The birth of an individual in the branching process equals the
event that a new individual has been infected and the death of an individual
equals that individual to be removed from the epidemic. Ultimate extinction
of the approximating branching processes implies that the epidemic stays
small.
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4.1 The homogeneous case

Firstly we assume that the branching processX(t) starts withm individuals,
X(0) = m. Then we make the assumption that each individual have a life-
span distributed as the random variable D described in Section 2.1. During
this time, the individuals give birth at time points from a Poisson process
with intensity λH . Let us denote this process as (Andersson and Britton
2000), by Em(λH , D).

According to (Andersson and Britton 2000, p. 32), I(t0) in the epidemic
process En,m(λH , D) in Section 2.1 converges to X(t0) for each fixed t0
almost surely. Thus we approximate our standard SIR epidemic model,
En,m(λH , D) by the single-type branching process, Em(λH , D).

4.2 The two-type case

In the two-type case we assume that the branching process X(t) starts with
m1 and m2 individuals of type 1 and type 2 respectively and let m =
(m1,m2). Assume then that each individual in the branching process has a
life-span with distribution according to the random variable D, and during
this time, an individual of type i gives birth to another individual of type j
at time points from a Poisson process with intensity λiπj , where λ1 = λM

and λ2 = xλM and π1 = 1− π is the fraction on non-superspreaders in the
population and π2 = π is the fraction of superspreaders. We then denote
this branching process by Em(λM , D, x).

Let M be a matrix with element mij corresponding to the average sec-
ondary cases of type j generated by an individual of type i.

M =

(
µλ1π1 µλ1π2
µλ2π1 µλ2π2

)
=

(
µλM (1− π) µλMπ
µxλM (1− π) µxλMπ

)
.

According to (Andersson and Britton 2000, p. 61) we can approximate
the process En,m(λM , D, x) in Section 2.2 with the branching process Em(λM , D, x)
when n is large, which we assume. Then the basic reproduction number, R0

is given by the largest eigenvalue of the matrix M, which turns out to be
µλM (1 + π(x− 1)).

5 Results

5.1 Distribution of the offspring random variable

In this section, we want to get the distribution of the offspring variables Y
and Yi in the branching approximations of the standard SIR epidemic model
and the two-type SIR epidemic model respectively. To do this we seek the
probabilities pk and pi,k.
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Like we mentioned before, in the model of an epidemic with one type,
every infected individual is infectious for a period D ∼ Exp(µ) with proba-

bility density function fD(x) =
1
µe

− 1
µ
x
. During this time they infect others

according to a Poisson process with rate λH , implying that under a period
of length t an infectious individual infects k other individuals with probabil-

ity (λH t)k

k! e−λH t. Using the law of total expectation, the probability for an
individual to infect k other individuals is given by

pk =

∫ ∞

0

(λHt)k

k!
e−λH t 1

µ
e−µtdt

=
1

µλH + 1

(
1− 1

µλH + 1

)k

,

yielding that the offspring random variable Y is given by a geometric
distribution with parameter 1

µλH+1 .
This results in the probability generating function of Y being given by

gY (s) =
∞∑
k=0

sk
1

µλH + 1

(
1− 1

µλH + 1

)k

.

In the model of an epidemic with two types, every individual is infectious
for a period distributed as in the single-type case. During this time an
individual of type i infect (k1 + k2) other individuals with probability

((λiπ1 + λiπ2)t)
k1+k2

(k1 + k2)!
e−(λiπ1+λiπ2)t

=
(λit)

k1+k2

(k1 + k2)!
e−λit

Where k1 of them are of type 1 and k2 of them are of type 2 and λiπj
is the rate that an individual of type i infects an individual of type j. This
results in the probability for this to happen to be

pi,k = pi,(k1,k2)

=
1

µλi + 1

(
1− 1

µλi + 1

)k1+k2

·
(
k1 + k2

k1

)
(1− π)k1πk2 .

This is the probability density function of Yi = (Yi1, Yi2). We then get
that the probability generation function of Yi is given by

gYi(s) =
∞∑

k1=0

∞∑
k1=0

sk11 · sk22 · 1

µλi + 1

(
1− 1

µλi + 1

)k1+k2

·

(
k1 + k2

k1

)
(1− π)k1πk2 .
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5.2 Calculation of the probability of a small epidemic

Let us now calculate the probability that the epidemics in our two cases
stays small, with the help of calculating the probability of extinction of the
approximated branching processes. We do this by solving

gY (s) = s s ∈ [0, 1] (1)

for the standard SIR model and{
gY1(s) = s1

gY2(s) = s2
s ∈ [0, 1] (2)

for the two-type SIR model. We get that the smallest positive solution
to (1) is q∗ = 1

λHµ = 1
R0

, thus the probability of the epidemic to stay small

for the simple SIR model is qH = 1
R0

m
.

For (2) the solution is a bit more complicated and is given by


q∗1 =

1− x(1 + µλM ) +
√
(x− 1)2 + 2(2π − 1)(x− 1)xµλM + (µλM )2

2(π − 1)(x− 1)µλM

q∗2 =
x(1− µλM )− 1 +

√
(x− 1)2 + 2(2π − 1)(x− 1)xµλM + (µλM )2

2(π − 1)(x− 1)xµλM

This results in the probability of a small epidemic for the two-type model
to be

qM = (q∗1)
m1 · (q∗2)m2 = ((q∗1)

1−π · (q∗2)π)m.

5.3 How does the probability of ultimate extinction depend
on the fraction of superspeaders?

In this section we explore the probability that the epidemic, in the case of
superspreaders stays small. We do this by looking into the probability of
ultimate extinction of the approximated branching process Em(λM , D, x) as
a function of the fraction, π of superspreaders in the population. Of course
for π = 0 and π = 1 the model represents an epidemic with a homogeneous
population and would thus be a standard SIR epidemic model and thus the
probability of ultimate extinction of the branching process is given by 1

R0
in

that case.
We investigate this for the Delta variant of the ongoing epidemic Covid-

19. We therefore set R0 to 5.08 which is the average basic reproductive
number for Delta Covid-19 according to (Liu and Rocklöv 2021). We let µ =
7 based on the recommended days by (Folkhälsomyndigheten.se 2021) for
infected individuals to stay home after the first symptoms. We then assume
that superspreaders are eight times more infectious than non-superspreaders,
yielding x = 8.
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Figure 1: The m:th root probability of ultimate extinction, m
√
q as a function

of π for the two-type SIR epidemic model with parameter values R0 =
5.08, µ = 7, x = 8 and λM = 5.08

7(1+7π) and m initially infected individuals.
The blue line represents q in a standard SIR epidemic model.
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In Figure 1 the probability of ultimate extinction starts of at 1
5.08 at π = 0

to then grow as the fraction of superspreaders increases. After passing a
certain fraction the probability of ultimate extinction then starts to decrease
again to eventually land at the value 1

5.08 yet again as π = 1. The explanation
for this behavior has to do with the fact that the basic reproductive number
is fixed. When π = 0 the infection rate for every individual is given by R0

µ .
But as π increases and we therefore have the situation of a population with
two types of individuals, where the infectious rate for the non-superspreaders
in the population is given by R0

µ(1+π(x−1)) < R0
µ and the infection rate for

the superspreaders is given by xR0
µ(1+π(x−1)) > R0

µ . When the fraction of
superspreaders in the population is low, the vast majority of the infected
individuals have an infection rate being smaller than in the individuals in
a homogeneous model. While the superspreaders in the population have a
higher infection rate than R0

µ , they make up for a very small fraction of the
transmission of the disease since there is not many infected individuals of this
type, if even any. Although if the fraction of superspreaders is big enough
the superspreaders would ”take over” the transmissions of the disease and
thus reduce the probability of the epidemic to stay small.

5.4 Observing an emerging epidemic

Say that we observe an emerging epidemic and want to make some conclu-
sions regarding the epidemics behavior in the future. But when one observes
a ongoing epidemic it is going to be biased because when observing we in-
evitably make assumptions regarding the survival of the epidemic. Below
we show the existence of such bias when calculating the expected number
of infected in a homogeneous population, with the help of the real time
branching process {X(t); t ∈ [0,∞)} defined in Section 3.1.

Let us assume that the epidemic we want to observe starts with one
initially infected person, X(0) = 1. We assume that the epidemic will grow
exponentially through time t, as it is common (Trapman, Ball, et al. 2016),
with an epidemic rate r = λH− 1

µ . Thus one would expect that the expected
number of individuals in the branching process, i.e the expected number of
infected at time t to be given by

E[X(t)] = ert.

But when analyzing an emerging epidemic we need to assume the fact
that the epidemic is still spreading at time t since otherwise, E[X(t)] would
of course be 0. Thus, what we actually observe is the expected number
of infected at time t conditioned on the fact that the epidemic is not yet
extinct. Let Qt be the event that the epidemic is extinct at time t and let
Qc

t be the event that it is still spreading. Then the probability of Qt is given

14



by

p0 = p10(t) =
ert − 1

R0ert − 1
.

The derivation of this is given by (Trapman, Meester, and Heesterbeek
2004).

We can now calculate the expectation of the size at time t through the
following

E[X(t)|Qc
t ] =

E[X(t),1Qc
t
]

1− p0

=
E[X(t)]

1− ert−1
R0ert−1

=
R0e

rt − 1

R0 − 1

=
R0e

rt

R0 − 1
− 1

R0 − 1
.

Since an epidemic with a reproductive number less than 1 will not lead
to a large outbreak and due to this is not of great interest for analysis, we
can assume that R0 > 1. This means that the term − 1

R0−1 is relatively
small, thus we approximate the expectation of the size at time t by

E[X(t)|Qc
t ] ≈

R0e
rt

R0 − 1
,

which is larger than E[X(t)]. So in conclusion, when observing an emerging
epidemic, what we calculate the expected size of the epidemic to be at time
t is larger than in reality.

5.4.1 Observation-bias for the two models

In this section we want to analyze the difference in observing an epidemic
where the population is homogeneous and where the population consists of
two types of people; non-superspreaders and superspreaders. What we now
want to do is to examine what the expected size of the epidemic is in the
two-type case, like we did for the single-type case above. But for the multi-
type case, this becomes rather complicated when working with branching
processes in real time, like the branching process introduced in Section 3.2.
Because of this, we choose to work with branching processes in discrete
time in both cases. With this approach we can work with generations in
the branching processes instead of time since the start of the epidemic.
This means that the initially individuals in the branching process, i.e the
initially susceptible constitutes for the first generation. All secondary cases
generated by the first generation belongs to the second generation and so
on. Our aim is then reformed to giving an expression for the expected size
of generation k. The basic reproductive number, R0 is the expected number
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of susceptible individuals that a typical infected individual will infect. Then
intuitively the expected number of infected in generation k, E[Zk] would be
R0 ·E[Zk−1] and let us then assume that there initially is one infected, then
ultimately the expected number of infected in generation k should be given
by

E[Zk] = Rk
0 , k > 1.

By the law of total expectation, the following applies

E[Zk] = E[Zk|Qk] · P (Qk) + E[Zk|Qc
k] · P (Qc

k) = E[Zk|Qk] · P (Qk).

Where Qk is the event that the epidemic is still spreading up to generation
k and Qc

k is the event that the epidemic is extinct by generation k.
This applies to both our models. But like stated above, when observing

an emerging epidemic, we inevitably make the assumption that the epidemic
is spreading up to generation k, so what we will observe is in fact E[Zk|Qk].
To make matters easier we assume that k is large since we interested in how
the epidemic potentially will play out in the far future. Because k is large
we can then approximate Qk with ultimate survival of the epidemic, so we
approximately observe E[Zk|survival].

In conclusion, we have the following relation

E[Zk] ≈ E[Zk|survival] · (1− q)

⇐⇒

E[Zk|survival] ≈
Rk

0

1− q
.

Where q, is the probability of ultimate extinction of the approximated
branching process for the model in question.

We know from Section 5.3 that the probability of ultimate extinction of
an approximated branching process for an epidemic with superspreaders is
bigger than the same epidemic without superspreaders, provided that the
fraction of superspreaders is not large which it most likely is not. Given this
fact we see that

E[Zk|survival]H < E[Zk|survival]M .

Where H stands for homogeneous and M for multi-type.
In other words, we observe that an epidemic in a homogeneous popula-

tion will grow with a smaller rate than the epidemic in a population with
superspreaders.
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6 Summary and discussion

In this thesis we have compered two types of SIR epidemic models; the
standard SIR epidemic model where the population is assumed to be homo-
geneous, and the two-type SIR epidemic model where there are two types
of individuals in the population; superspreaders and non-superspreaders.
In both models the population is assumed to be closed and homogeneous
mixing. The comparisons are made when assuming that the epidemic have
the same basic reproductive number, R0 in the two cases. Further assump-
tions made are that the infected individuals are infectious for a exponential
period of time and during this time infect others according to a Poisson
distribution.

The two SIR models are then approximated with a single-type branching
process and a two-type branching process respectively. In order to make this
approximation we made the assumptions that the branching processes had
the Markov property and that the initially susceptible in the population is
large.

What we saw was that the expression for the probability for an epidemic
described by the standard SIR epidemic model to stay small where given
by 1

R0
, but for an epidemic described by the two-type model the expression

was very complicated and it was hard to make any conclusions from that.
Because of that we needed to make some assumptions about the values of
some parameters in order to compare the two models. When doing that, we
could conclude that the fraction of superspreaders in an epidemic plays a
big roll in the probability for a small outbreak. We saw that the higher the
fraction of superspreaders, the higher the probability of a small outbreak
was up to a point. When the fraction of superspreaders where big enough
the probability started to go down. But the fraction of superspreaders is
not likely to be high and thus the inclusion of superspreaders in a model to
describe an epidemic shows a more positive future regarding the possibility
of the epidemic to die out.

We then analyzed the bias that emerge when calculating the size of an
emerging epidemic in the future. When approximating the epidemic in the
homogeneous case by a branching process in real time, we saw that we ob-
serve that the epidemic will grow more rapidly than in reality. When approx-
imating the standard and the two-type SIR epidemic model with branching
processes in discrete time, we saw that the in an emerging epidemic with
superspreaders we observe that the epidemic grows even more rapidly than
in the homogeneous case.

So although an epidemic with superspreaders are more likely to go ex-
tinct than in the homogeneous case, if the epidemic does not go extinct, we
can expect it to grow faster than if there where no superspreaders.
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7 Improvements

In further work it would be interesting to analyze the case where the popu-
lation in question is not closed, since that is not usually the case in reality.
It is also more likely that the population is not homogeneous mixing and
it would be interesting to investigate how the two-type model would look if
λii was not necessarily equal to λij . This would of course make calculations
more complicated and thus was not considered in this bachelor thesis.

In this thesis we also assumed that a fraction, π of superspreaders in
a population implicates that the fraction of superspreaders in the initially
infected is also π. This is not necessarily the case.

To get a better overall view of the epidemic in the homogeneous and the
two-type case respectively, it would also be interesting to see some simula-
tions of the epidemic through time.

18



References

Allen, Linda JS (2015). “Stochastic population and epidemic models”. In:
Mathematical biosciences lecture series, stochastics in biological systems.

Andersson, Hakan and Tom Britton (2000). Stochastic epidemic models and
their statistical analysis. Vol. 151. Springer Science & Business Media.

Barratt, H, M Kirwan, and S Shantikumar (2018). “Epidemic theory (effec-
tive & basic reproduction numbers, epidemic thresholds) & techniques
for analysis of infectious disease data (construction & use of epidemic
curves, generation numbers, exceptional reporting & identification of sig-
nificant clusters)”. In: Health Knowledge.
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