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Abstract

Statistical learning is an important tool for statistical analysis in many

areas of finance. In the current economy, transactions are made all across

the world making different stock markets increasingly integrated. This

thesis will compare the prediction accuracy of two different machine learn-

ing techniques; gradient boosting and random forest. Using only a few

predictor variables consisting of stock indices, currencies and commodities

the different models will try to predict whether the overnight return of the

OMXS30 index is negative or not. In this binary classification problem,

the gradient boosting model achieved a slightly better prediction accu-

racy than the random forest model and both of them outperformed the

Zero rule classifier. The variable importance when predicting the response

showed for both models that the Hang Seng Index, Nikkei 225 Index and

Nasdaq Composite Index had the most relative influence out of the pre-

dictor variables. Even if gradient boosting outperformed random forest

in prediction accuracy, the difference in computational cost between the

models must be taken into account when evaluating overall model perfor-

mance.The GBM-model, even with a restricted parameter space, was very

time consuming to train compared to the random forest model. Which

model to use in a classification task depends on how sensitive the data

is. If it is of high importance to get correct classifications it could justify

training a model that requires more computational cost.
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1 Introduction

Predicting the movement of the stock market in order to maximize invest-
ment returns has historically been and currently is a challenging area for
both academics as well as traders. Multiple factors such as politics, global
economic conditions and financial performance have an impact on the stock
price. However, the variety of parameters combined with a rich historical
data base have enabled financial analysts as well as data scientists to use
and explore di↵erent type of financial models in order to predict movements
in prices [13].

The OMXS30 is a stock index that consists of the 30 most traded stocks
listed on Nasdaq Stockholm. In the current economy, transactions are made
all across the world and since many di↵erent stock markets are integrated
with each other it also means that movements in some stock markets might
have an impact on movements in other stock markets. The economy in the
United states, for example, has a lot of influence on the world economy
which in turn e↵ects the Swedish economy [14].

This paper will compare the prediction accuracy of two di↵erent machine
learning methods; gradient boosting and random forest. Both of these meth-
ods are ensemble methods and similar in the sense that they combine a
number of smaller classifiers into a single classifier. Random forests is a
modification of bagging in the sense that it averages the large collection
of trees after building them. Every classifier is trained independently from
the rest. Gradient boosting uses boosting as a method, that unlike bagging
allows each of the weak learners to improve over time where all the mem-
bers in the committee of weak learners cast a weighted vote. Each iteration
in the algorithm a new classifier is added to a already trained ensemble [8].
Section 2 in this paper provides more detailed descriptions of these methods.
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Both of the models will be trained in classifying the response using 12 pre-
dictor variables for each observation. These variables include log returns
of 6 di↵erent stock indices around the world and the log returns of some
currencies and commodities. The models will use these predictor variables
in order to predict the overnight log return of the OMXS30 index. The vari-
ables were selected in part for evaluating how well the models can predict
the opening movement of the OMXS30 index based on only a few influences
from the world economy during the time that the Swedish stock market is
closed. The values of the response and predictor variables are taken over a
10 year period between 2010 and 2020. The response variable will be set to
0 if the overnight log return is negative and otherwise set to 1. Deviating
opening hours, removal of null values and creating a lag for some variables
resulted in a final data set of 2083 observations. The order of the observa-
tions in the data was randomized before dividing the data into a training
set used to fit the models and a test set used to measure the performance
of the fitted models.

CFD (Contracts for di↵erence) trading allows the trader to speculate on
financial markets without the requirement to buy the underlying asset [9].
Since there exists trading platforms that enable CFD trading around-the-
clock, traders have the possibility to react to news during the weekend and
when the market is closed and as of such do not have to wait until the market
opens [10]. As a result these financial instruments often with great accuracy
can indicate the opening movement of the OMXS30-index before the mar-
ket opens. The machine learning methods used in this paper with only 12
numerical predictor variables will not be outperforming that accuracy and
as of such the result of the analysis will be interpreted and evaluated based
on the prediction accuracy of the models compared to each other as well as
compared to the Zero Rule classifier.

The relative influence of the predictor variables in predicting the overnight
log return is also discussed as well as visualized in section 4.1.1 and 4.2.2.
We find that for both of the models the overnight log return of the Hang
Seng Index (Hong Kong) has the most relative influence in predicting the
movement of OMXS30. This is an interesting result, since the intraday re-
turn of the Nikkei 225 Index (Tokyo) is calculated only an hour before the
Swedish stock market opens and more than four hours after the Hang Seng
Index is calculated. The SSE Composite Index (Shanghai) is calculated at
the same time as the Hang Seng Index and has a low relative influence in
the predictions. A hypothesis is that the Hang Seng Index contains stocks
of companies that are more embedded in the world economy and as of such
has more impact on the stocks in the OMXS30, but no such economical
analysis is present in this paper.
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The prediction accuracies of both models are compared in section 5.3. Out
of a test data set of 417 observations, only two true classifications sepa-
rated gradient boosting from random forest. For gradient boosting the mea-
sured prediction accuracy is 0.6954 and for random forest it is 0.6906. They
both outperformed the Zero Rule classifier that had a prediction accuracy
of 0.5683. Even if the GBM model performed slightly better than random
forest, the computational cost when tuning the model must be taken in to
account. Random forest is a model with fewer parameters to tune and is
more computationally feasible than gradient boosting. Even when the train-
ing dataset is relatively small (2083 observations) and the hyperparameter
space is restricted it was time consuming to tune the GBM model. Which
model to use when classifying observations depends on the data and per-
sonal preferences. For some response variables it could be very important
that observations are classified correctly (sensitivity) and in those cases it
could be justified to train a model that requires more computational cost.

Section 2 in this paper is designed to provide the reader with a theoreti-
cal background on the concept of statistical learning, the methods used and
how the performance of the models are measured. This section will also
provide a description of the programming packages that are used to imple-
ment the methods in practice. A more granular description of the data is
given in Section 3 before tuning the respective model on the training data in
Section 4. Section 5 presents the results which are interpreted and discussed
in Section 6.

2 Theory

2.1 Statistical learning

The material of section 2.1 is taken from [8].

Statistical learning is an important tool for statistical analysis and learn-
ing from data in many areas of science, finance and industry. In supervised
learning, as opposed to unsupervised learning, there exists a response vari-
able which enables the use of performance measurement when building the
model. If we for example assume that the errors are additive, then su-
pervised learning attempts to learn the model Y = f(X) + ✏, where Y is
the response variable, X is a vector containing p predictor variables and
✏ is an error term, by using the observed values xi from the training set
⌧ = {(xi, yi); i = 1, . . . , N} to ”teach” the model by finding a predictor of
the output f̂(xi) of the true response values yi. There are di↵erent types
of scenarios with quantitative response parameter values as well as categor-
ical ones. Regardless of which type of scale for the response the process in
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building a supervised machine learning model X ! f̂(X) is similar. We use
data to train and build a prediction model which then can be used to find
predictions f̂(X) of new unseen response variables Y from their predictor
variables X. A good learner is said to be a built model that with great
accuracy predicts new data points.

The analysis in this paper treats the response variable as binary, where
the two di↵erent classes depend on whether the overnight log return of the
OMXS30 stock index is positive (� 0) or negative. This is a supervised
learning problem that requires the di↵erent models to determine a predic-
tion G(X) 2 {0, 1} of the response Y 2 {0, 1}, that is a function of the
predictor vector X. For the gradient boosting algorithm the predictions Ŷ

of a binary target Y will lie in [0, 1], and the class label G(X) is determined
depending on whether Ŷ > 0.5 or not. This way the gradient boosting
algorithm is used to classify the observations.

2.1.1 Decision Trees

One popular approach for representing classifiers are decision trees. They
are expressed as a recursive partition of the instance space and has the
properties of a directed tree. All the nodes in a directed tree except for the
root node have exactly one incoming edge. Nodes with outgoing edges are
called internal nodes and the nodes with no outgoing edges are the terminal
nodes of the tree. Each internal node of the decision tree splits the instance
space into two or more sub-spaces depending on a discrete function of the
parameter values belonging to that observation. The terminal nodes, also
called leaves, are assigned to a class representing the most appropriate target
value or hold a probability vector indicating the probability of the target
attribute having a certain value [16].

2.1.2 Classification trees

In trees where the response variable is of categorical nature and takes values
1, 2, ...,K, the proportion of class k observations in node j is

p̂jk =
1

Nj

X

xi2Rj

I(yi = k) (1)

where Rj refers to the region of the predictor space that node j corresponds
to, whereas Nj is the number of observations in the training dataset whose
predictor variables xi fall into this region. The majority class in node j

determines the classification of all observations in this node [8].
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2.1.3 Model Selection

The material of section 2.1.3 is taken from [8].

The performance of a learning method is related to its predictive accuracy
on the independent test data. Since this guides the choice of model the
selection of which assessment-method to use when selecting the ultimate
model is important. The generalization error is the prediction error over an
independent test sample

Err⌧ = E[L(Y, f̂(X))|⌧ ] (2)

where L is the loss function, (X,Y ) is drawn randomly from the distribution
of the test dataset, whereas the training set ⌧ is fixed. It is tricky to get the
expected prediction error Err = E[L(Y, f̂(X))] = E[Err⌧ ] of our estimated
model f̂ , since training error is not a good estimate of the test error. The
more complex the model gets, the more training data it uses to adapt the
model. This decreases the bias but it also increases the variance due to
overfitting. A model with zero training error is maximally overfit to the
training data and will typically generalize poorly.

2.1.4 Cross validation

The material of section 2.1.4 is taken from [8].

One of the most used and simple performance assessment methods of a
learning model is cross-validation. The method estimates the average gen-
eralization error Err = E[L(Y, f̂(X))] when the method f̂(X) is applied to
an independent test sample from the distribution of X and Y . When deal-
ing with large datasets, an ideal approach would be to divide the data set
into training and test data and use a validation set to validate the model.
When dealing with more sparse datasets, K-fold cross-validation is an e↵ec-
tive method to assess the performance of the prediction model. The K-fold
cross validation sets aside a di↵erent part of the data to fit and test the
model to estimate the average error.

In order to describe K-fold cross-validation let  : {1, ...N} ! {1, ...,K}
be an indexing function that indicates the partition to which observation
i is allocated by a randomized assignment of training data into K folds of
approximately equal size. The cross-validation estimate makes use of the
prediction error of the fitted function f̂

�k(x) with the k:th fold of training
data removed. It is defined as

CV (f̂) =
1

N

NX

i=1

L(yi, f̂
�(i)(xi)). (3)
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The number of folds used, K, usually depends on the data.

2.2 Gradient boosted trees

The theory in this section follows that of chapter 10 in [8].

2.2.1 Boosting

Boosting is one of the most powerful learning ideas introduced in the last
twenty years and it comes from the idea of combining many ”weak” classi-
fiers to produce a powerful ”committee” [8]. A weak classifier is a classifier
with an error rate on the training sample only slightly better than what
would have occurred with random guessing. Given a classifier G(X) that
produces a prediction of the binary output variable Y . Suppose we code the
two possible outcomes of this outcome variable as Y 2 {�1, 1}. Then, given
a vector of predictor variables X, the error rate on the training sample is

err =
1

N

NX

i=1

I(yi 6= G(xi)) (4)

and the error rate on future predictions is Err = EXY I(Y 6= G(X)).

Boosting is the process of sequentially applying the weak classification al-
gorithm to iteratively modified versions of the data, hence producing a se-
quence (read. ”committee”) of weak classifiers Gm(x),m = 1, 2, ..,M. The
numbers a1, ..., am of the boosting algorithm weight the classifiers Gm(x)
and the weighted majority vote of this sequence of weak classifiers results in
the final prediction

G(x) = sign(
MX

m=1

amGm(x)). (5)

The more accurate certain classifiers in the sequence of classifiers are the
more influence, i.e. the higher weight, they get in the final prediction.

2.2.2 Stagewise Additive modeling

The expression (5) of the previous section visualizes boosting as a way of
fitting an additive expansion in a set of basis function which in (5) is rep-
resented by the individual classifiers Gm(x) 2 {�1, 1}. The basis function
expansions are more generally represented by

f(x) =
MX

m=1

�mb(x; �m) (6)
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where �m,m = 1, 2, ...M are the expansion coe�cients and b(x; �) 2 IR are
usually simple functions of the multivariate argument x, characterized by a
set of parameters �.

The basis functions are normally fit by minimizing a loss function aver-
aged over training data,

min
{�m,�m}M1

NX

i=1

L(yi,
MX

m=1

�mb(xi; �m)) (7)

and forward stagewise modeling approximates this minimization by sequen-
tially adding new basis functions to the expansion without changing the
already added coe�cients and parameters.

Algorithm 1 Forward Stagewise Additive Modeling Algorithm

1. Initialize f0(x) = 0.
for m = 1 to M do
(a) Compute (�m, �m) = argmin�,�

PN
i=1 L(yi, fm�1(xi) + �b(xi; �))

(b) Set fm(x) = fm�1(x) + �mb(x; �m).
end for

In the algorithm above the optimal basis function b(x; �m) and corresponding
coe�cient �m are added to the current expansion fm�1(x) at each iteration
m. This produces fm(x) and the process re-iterates.

2.2.3 Boosting trees

A classification tree, as mentioned in sections 2.1.1 and 2.1.2, partition the
input space of all the parameter values into disjoint regions Rj , j = 1, 2, ..., J
which are represented by the terminal nodes of the tree. The predictive
rule of a boosting tree is that a constant � is assigned to each region
x 2 Rj ! f(x) = �j . This enables the tree to be expressed as

T (x; ✓) =
JX

j=1

�jI(x 2 Rj) (8)

with parameters ✓ = {Rj , �j}J1 that are obtained by solving a combinatorial
optimization problem

✓̂ = argmin✓

JX

j=1

X

xi2Rj

L(yi, �j). (9)

The sum of trees of the type expressed in (8), induced using the algorithm
for forward stagewise modeling, generates the boosted tree model
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fM (x) =
MX

m=1

T (x; ✓m). (10)

At each step in the forward stagewise modeling algorithm given the current
model fm�1(x), for the region set and constants ✓m = {Rjm, �jm}Jm1 of the
next tree, the algorithm must solve for

✓̂m = argmin✓m

NX

i=1

L(yi, fm�1(xi) + T (xi; ✓m)). (11)

2.2.4 Numerical Optimization and Gradient descent

In order to solve (11) with any di↵erentiable loss criterion numerical opti-
mization can be used. Suppose we want to use the function f(x) to predict
the response y on the training data. Defining the loss

L(f) =
NX

i=1

L(yi, f(xi)) (12)

and then minimizing L(f) with respect to f can be viewed as a numerical
optimization f̂ = argminfL(f) where f = {f(x1), ..., f(xN )} 2 IRN .

The procedure of numerical optimization involves using the initial guess
f0 = h0 and solving for f̂ = fM by using the sum of component vectors

fM =
MX

m=0

hm, hm 2 IRN (13)

letting fm =
Pm

l=0 hl be determined by the current parameter which is de-
termined by the sum of the previous updates. Computing the vector hm can
be done using a method called steepest descent. The method uses a scalar
pm and the gradient gm of L(f) evaluated at f = fm�1 to compute each
increment vector hm = �pmgm. The gradient gm 2 IRN has components

gim = [
�L(yi, f(xi))

�f(xi)
]f(xi)=fm�1(xi) (14)

and the step length pm > 0 is the solution to pm = argmin L(fm�1 � pgm).

Before the iteration of the numerical optimization procedure is done the
current solution gets updated by fm = fm�1 � pmgm and the full procedure
is then repeated at the next iteration.
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2.2.5 Gradient Boosting

If minimizing the loss of the training data L(f) =
PN

i=1 L(yi, f(xi)) was the
only objective then the steepest descent method would be advantageous.
Tree predictions T (xi; ✓m) are similar to the components of the gradient
descent formula (13) mentioned in section 2.2.4 but are preferable when
generalizing the function fM (x) to unseen data since the tree components
tm = {T (x1; ✓m), ..., T (xN ; ✓m)}T are not independent but constrained to
the prediction of a Jm-terminal node tree. By inducing a tree T (x; ✓m) at
the mth iteration of the stagewise approach with predictions tm that aim
toward similarity of the negative gradient, i.e. by fitting a tree T to the
negative gradient values �gim, where gim = [ �L(yi,f(xi))

�f(xi)
]f(xi)=fm�1(xi) and

using squared error to measure closeness, we solve for

✓̂m = argmin✓

NX

i=1

(�gim � T (xi; ✓))
2
. (15)

There are di↵erent types of loss functions depending on the type of re-
sponse variable. The loss function used for a categorical response is the
K-class multinomial deviance. Given pk(x) = e

fk(x)/
PK

l=1 e
fl(x) which en-

sures 0  pk(x)  1, the loss function for theK-class multinomial deviance is

L(y, p(x)) = �
KX

k=1

I(y = k)fk(x) + log(
KX

l=1

e
fl(x)), (16)

where p(x) = (p1(x), . . . , pK(x)) and y = k refers to the k:th possible out-
come of the response variable.

2.2.6 GBM-algorithm

The gradient boosting algorithm is based on the theory of sections 2.2.1-
2.2.5. It is used for classification and is summarized in Algorithm 2.
The gradient boosting procedure as described in sections 2.2.1-2.2.5 is im-
plemented in the R-package gbm which is described more in section 2.6.2.

2.2.7 Hyperparameters

The optimal size for a tree in a tree building algorithm was historically esti-
mated separately when it was built, where very large trees were first induced
and later bottom-up pruned. This made the boosting procedure very costly
in terms of time, especially since the method assumes that each tree is the
last one in the expansion. In order to avoid the problem of computational
cost, i.e. bottom-up pruning each tree for the optimal number of terminal
nodes, a simple strategy is to restrict all trees to be the same size Jm = J

for all m. At each step in the iteration a J-terminal node tree is induced
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Algorithm 2 GBM-algorithm for classification

Initialize f0k(x) = argmin�
PN

i=1 L(yi, �), for k = 1, . . . ,K
for m = 1 to M do
for k = 1 to K do
Set:
pk(x) = e

fk,m�1(x)/
PK

l=1 e
fl,m�1(x).

1. �gikm = I(yi = Gk)� pk(xi), i = 1, 2, ..., N
2. Fit a regression tree to�gikm, i = 1, 2, ..., N which gives the regions
Rjkm, j = 1, 2, ..., Jkm.
3. We compute �jkm = argmin�

P
xi2Rjkm

L(yi, fk,(m�1)(xi)+ �), j =
1, 2, ...Jkm.
4. Update fkm(x) = fk,m�1(x) +

PJkm
j=1 �jkmI(x 2 Rjkm).

end for
end for
Output: f̂(x) = fM (x) = (f1M (x), . . . , fKM (x))
return f̂k(x) = fkM (x), k = 1, 2, ...,K

and hence the tree size becomes a parameter manageable to be tuned for
the user in order to maximize prediction performance on validation (or test)
data.

Another parameter that can be tuned in the gradient boosting algorithm
to enhance performance is the number of boosting iterations M . A large
enough M will reduce the training risk L(fM ) but might lead to a overfit
tree. A way to select the optimal estimate of M , M⇤, is to monitor the fu-
ture application dependent prediction risk as a function of M on a validation
sample. In the analysis this is achieved by using the R-function gbm.perf
where a 10-fold cross-validation sample is used to select the optimal estimate
of M⇤.

The shrinkage parameter v controls the learning rate of the boosting proce-
dure by adding a penalty to each contribution. From the gradient boosting
algorithm in section 2.2.6, step 4 of this algorithm (within the for loop over
k) is thus replaced by

fkm(x) = fk,m�1(x) + v ⇥
JkmX

j=1

�jkmI(x 2 Rjkm). (17)

It has been found by (Friedman, 2001) that smaller values of the shrinkage
parameter v enhances test error, and requires more boosting iterations M

(since smaller steps are taken towards the optimal solution). This is how-
ever a matter of computational cost, since small improvements in prediction
accuracy on the test data might not be justified because of a very large
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computational time.

2.3 Random Forests

The theory in this section follows that of chapter 15 in [8].

2.3.1 Bagging

Bagging, introduced in section 8.7 in Hastie et al (2017), is a way of estimat-
ing the prediction f̂(x) of f(x) = E(Y |X = x) at input x. The model is fit to
training data and bagging averages the prediction over a collection of boot-
strap samples and thereby reduces its variance. For every bootstrap sample
Z

⇤b
, b = 1, 2, ..., B on the training data Z = {(x1, y1), (x2, y2), ..., (xN , yN )}

a prediction f̂
⇤b(x) is obtained and this generates the bagging estimate

f̂bag(x) =
1

B

BX

b=1

f̂
⇤b(x). (18)

In the case of trees in K-class classification that produces a classifier Ĝ(x) =
argmaxkf̂k(x) the bagged estimate f̂bag(x) (18) is a K-vector with com-
ponents [p1(x), p2(x), ..., pK(x)], with pk(x) representing the proportion of
trees that are predicting class k at x. So, the bagged classifier counts the
number of ”votes” from the B trees and selects the class that received the
most votes, Ĝbag(x) = argmaxkpk(x). In other words, a ”committee” of
trees each cast a vote for the predicted class.

2.3.2 Random Forest

Random forests (Breiman, 2001) builds a large collection of de-correlated
trees and averages them, which can be seen as a substantial modification of
the bagging technique described in the previous section. Since each tree is
identically distributed (i.d.), the expectation of an average of B such trees is
the same as the expectation of any one of them. So, the bias of the average
of B trees is the same as that of the individual trees which indicates that in
order to improve the performance of the model variance reduction should be
the aim. If we consider B identically distributed and independent random
variables, each with variance �2, then the variance of the average of these B
random variables is �2

/B. With pairwise correlation p between the random
variables, the variance of the average is

p�
2 +

1� p

B
�
2
. (19)

We can see from the formula above that when the number of variables B

get large enough the second term disappears and the size of the correlation
parameter p limits the benefits of averaging. The random forest algorithm
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aims to improve the variance reduction by reducing the correlation parame-
ter p without causing too big of an increase in the variance. When growing
a tree on the bootstrapped dataset the random selection of the input vari-
ables achieves the variance reduction. More specifically, in the tree growing
process on a bootstrapped dataset a subset of m  p input variables are
selected at random for splitting, where p in this case represents the number
of variables in the data. In classification problems, the default value for m isp
p. Intuitively, by reducing the number m of variables selected at random

for splitting at each tree T (x; ✓b) (where ✓b are the parameters of the bth
random forest tree grown) one reduces the correlation between any pair of
trees in the ensemble and thus by formula (19) one reduces the variance of
the average.

The algorithm for random forest for classification is presented below in Al-
gorithm 3.

Algorithm 3 Random Forest for Classification
1.
for b = 1 to B do
(a) Draw a bootstrap sample Z

⇤b of size N from the training data.
(b) Grow a random forest tree Tb to the bootstrapped data, by recur-
sively repeating the following steps for each terminal node of the tree,
until the minimum node size nmin is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

end for
2. Output the ensemble of trees {Tb}B1 .
To make a classification prediction among K classes at a new point x:
Let Ĉb(x) 2 {1, . . . ,K} be the class prediction of the bth random-forest
tree.
Then Ĉ

B
rf (x) = majorityvote{Ĉb(x)}B1 .

2.3.3 Out-of-bag (OOB) error estimate

An important feature in fitting a random forest model on a training data
set Z = {(x1, y1), (x2, y2), ..., (xN , yN )} is the use of out-of-bag (OOB) sam-
ples. The OOB error estimate is very similar to the K-fold Cross-validation
prediction error CV (f̂), in the sense that for each observation zi = (xi, yi)
its random forest is constructed by averaging only those trees corresponding
to bootstrap samples in which zi did not appear. Once the OOB error sta-
bilizes the training of the model can be stopped since the su�cient number
of trees have been resampled.
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2.4 Variable importance

2.4.1 GBM

For tree based boosting methods the approximate relative influence, devel-
oped by Friedman (2001), of a variable xl is defined as follows: Consider
first a regression tree T , and define the relative importance of xl for the fit
of this tree as

I
2
l (T ) =

X

t2splits on xj

I
2
t (20)

where I2t is the empirical improvement of split number t of T when splitting
on xl at that point [15].

For K-class classification each of the K separate models fk(x), k = 1, 2, ...K
are consisting of a sum of trees

fk(x) =
MX

m=1

Tkm(x)[8]. (21)

The relative importance measure for a predictor variable xl in an additive
tree expansion is averaged over the trees

I
2
l =

1

M

MX

m=1

I
2
l (Tm) (22)

which in the case of K-class classification generalizes to

I
2
lk =

1

M

MX

m=1

I
2
l (Tkm) (23)

where I2lk is the relevance of the predictor variable xl in separating the class k
observations from all the other classes. Averaging over all the classes results
in the overall relevance

I
2
l =

1

K

KX

k=1

I
2
lk

of xl for separating any class [8].

2.4.2 Random Forest

The relative importance of the variables can be constructed in the same
way as for GBM. With the random selection among the m variables at each
split of a tree in the random forest, the importance of this variable increases

16



for that particular tree, while no such selection occurs with boosting. The
importance measure of a predictor variable is accumulated over all trees in
the forest and is determined by the improvement in the split-criterion. In the
analysis such a plot is presented in section 4.2.2 and it bases the predictor
variable importance on the Gini splitting index, the same as for gradient
boosting. The Gini index is given by

X

k 6=k0

p̂jkp̂jk0 =
KX

k=1

p̂jk(1� p̂jk). (24)

where in a node j, representing a region Rj with Nj observations we let

p̂jk =
1

Nj

X

xi2Rj

I(yi = k) (25)

be the proportion of class k observations in node j. In the case of two classes
the Gini index measurement is given by 2p(1� p) where p is the probability
of an object being classified to a particular class [8].

2.5 Model Accuracy

2.5.1 Misclassification Error rate

The performance of the random forest model and the gradient boosting
model will be evaluated using the misclassification error rate, which following
(25) is given by

1

Nj

X

i2Rj

I(yi 6= k(j)) = 1� p̂jk(j). (26)

In the case of two classes, as is the case in this paper, the misclassification
measurement is min(p, 1� p) if p is the proportion in the second class.

2.5.2 ROC

Generally in classification problems, misclassifying a true observation as false
might have a bigger consequence than misclassifying a false observation as
true. The terms specificity and sensitivity can be used to characterize pre-
dictions. To exemplify, in a medical situation the probability of predicting
disease given true state of disease would be the sensitivity and specificity

would be the probability of predicting non-disease given a true state of non-
disease. The receiver operating characteristic curve (ROC) summarizes the
tradeo↵ between specificity and sensitivity [8]. It plots the true positive
rate (sensitivity) against the false positive rate (one minus the specificity)
for all possible thresholds [7]. The area under the ROC curve is used as a
single measure of the accuracy of the GBM-model when tuning the param-
eters. The Area Under the Curve (AUC) measures the ability of a classifier
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to distinguish between classes, where values close to one indicates that the
model is classifying with very high prediction. If the value of AUC is 0.5,
the classifier performs equally well as random guessing, whereas if AUC
were 0, it would mean that the model classifies all positives as negatives and
regardless of the false positive rate [4].

2.5.3 Zero rule

We will also evaluate the performance of the two models using the Zero Rule
as a benchmark value. The Zero Rule can be used as a benchmark value and
it simply represents the most frequently occurring classification in a test set
of data by classifying all of the data points to that class [6].

2.6 Package in R

2.6.1 Random Forest

In the analysis the R-package randomForest will be used which implements
Breiman’s random forest algorithm (based on Breiman and Cutler’s original
Fortran code) for classification [1]. The function contains a parameter mtry

which represents the number of variables randomly sampled as candidates at
each split. The default values for classification is mtry =

p
p where p is the

number of predictor variables in the data. The parameter ntree determines
the number of trees to grow and in order to ensure that every input row
gets predicted at least a few times we initially set the parameter value of
ntree = 5000. The function returns a random forest model with parameters
such as err.rate, which is a vector with the error rates of the prediction on
the input training data. Its i-th element is the OOB-error rate for all trees
up to the i-th tree [2] [1].

2.6.2 Gradient Boosting Machine (GBM)

The gradient boosting procedure is implemented in the analysis using the
R-package gbm. The Gradient Boosting Machine, GBM, is an extension of
the work of Friedman, Hastie, and Tibshirani (2000). Based on additional
input from the companion papers Friedman (2001) and Friedman (2002)
the method has been generated using the connection between boosting and
optimization [15]. Boosting as implemented in the R-package gbm requires
the tuning of some important parameters.

First, a loss function must be selected which by default for binary classi-
fication problems is the Bernoulli loss function given by

�2
1

PN
i=1wi

NX

i=1

wi(yif(xi)� log(1 + exp(f(xi))))[15]. (27)
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This is a weighted generalization of the K-class multinomial deviance loss
function described in section 2.2.5, where w1, . . . , wN are weights assigned
to all observations of the training dataset and K equals 2 since the response
variable in our data is of binary nature. In section 2.2.7. we mentioned that
other parameters can be tuned to enhance the gbm model performance.
Di↵erent values of the shrinkage parameter, number of boosting iterations
and the minimum number of observations per node will be evaluated. An-
other parameter that can be tuned is the interaction.depth parameter that
determines the depth of the tree and it can be used to control the order
of approximation. Di↵erent values of these parameters create the hyper-
parameter space for tuning the gbm model. The function Grid Search from
the R-package caret was used to tune the function gbm using di↵erent com-
binations of the hyperparameters in Table 1 [12].

Table 1: Hyperparameter values of the Gradient Boosting Machine (GBM),
used in grid search.

Parameter Values

interaction.depth { 1,2,3,4 }
n.trees { 200,500,800,1000,1500,1800,2000,5000 }

shrinkage { 0.001, 0.003, 0.005, 0.01, 0.01 }
n.minobsinnode { 5, 10, 20 }

The values of the shrinkage parameter and the number of trees were cho-
sen in part with regards to computational cost. The smaller the shrinkage
parameter the more iterations are needed. It is suggested in Hastie et al.
(2017) that a number 4  J  8 of terminal nodes of each tree works
fine in the context of boosting, whereas di↵erent values within that range
have a smaller impact on the performance of the model [8].This is tuned by
the interaction.depth parameter, where an interaction depth of D generates
J = (2⇥D) + 1 terminal nodes [15] [8].

As mentioned in section 2.2.7 we will find the optimal number of boost-
ing iterations M using cross validation via the R-function gbm.perf from
the R-package gbm. During boosting, simple base-learners are iteratively
combined to produce the final estimate. The graph 4 of CV (f̂M ) shows the
performance metric’s evolution as the gradient boosting algorithm combines
a progressively larger number M of base learners. If the cross validation er-
ror does not improve with more boosting iterations the model might overfit
the training data [15] [8].
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Figure 1: OMXS30 Adj.Close, the adjusted closing price of OMXS30, during
ten years (2010-01-01 to 2020-01-01).

3 Data

3.1 OMXS30

OMXS30 is a stock market index listed on the Stockholm stock market and
it consists of the 30 most traded stocks on Nasdaq Stockholm. It is a market
weighted index meaning that the stocks included in the index have a weight
in proportion to the respective stocks total market value. The 30 stocks
are revised every sixth months and redefined depending on their historical
trading volumes. There are however some rules to prevent the variation of
stocks in the index from changing too much between periods. The OMXS30
index is the most traded index out of all that are listed by Nasdaq Nordiq
[14].

The overnight log return of the OMXS30 index will act as our response
variable in this analysis. In total daily OHLCV (Open, High, Low, Close
and Volume [18]) values for the period 2010-01-01 to 2020-01-01 have been
retrieved. The daily return of a stock can be divided into two parts, the
overnight return and the intraday return. The intraday return is the return,
i.e. closing price in relation to opening price, during the trading day when
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the stock market is open. The overnight return is the return when the stock
market is closed, i.e. the opening price in relation to the closing price the day
before [11]. The closing prices for both the response as well as the predictor
variables have been adjusted for corporate actions (Adjusted Closing Price).
The Swedish stock market is open from 09:00 - 17:30 CET. At 08:00 CET
orders can be placed and at 08:45 CET the stock market starts to collect
and summarize all the buy and sell orders resulting in an equilibrium price
for each stock which can be thought of as a potential opening price of the
stock. At 09:00 the stock market opens and the price is set [17]. The
Adjusted Closing Price is calculated at 17:30 the same day. In order to get
the overnight log return of the OMXS30 stock index day t the formula is

Overnight(OMXS30, t) = log(Open, t)� log(Adjusted closing price, t� 1).
(28)

In order to turn this in to a binary classification task the overnight log
return of the response variable OMXS30 will be divided into two groups.
If the overnight log return is negative the value of that observation will be
0 and otherwise it is set to 1. The dataset does not take into account the
magnitude of the stock price movement but only if it is negative or not.

3.2 Predictor variables

The daily OHLCV values for the same time period 2010-01-01 to 2020-01-01
as the response variable were gathered for twelve di↵erent parameters. Six
of them are the log intraday or overnight returns of di↵erent stock market in-
dices around the world, where the overnight/intraday log return depends on
their respective opening hours. The stock market indices in North America
(New York City and Toronto) are open from 15:30 - 22:00 CET and hence
”yesterdays” intraday log return will be used as a predictive value for ”to-
days” OMXS30 opening value. The stock market indices in Shanghai and
Hong Kong both open at 03:30 CET and close at the same time or after
the Swedish stock market opens. Since we want all of the predictor vari-
ables to have values set before our response variable value is determined,
the overnight log return will be used for both the index in Shanghai and
the index in Hong Kong. The Tokyo stock market opens at 02:00 CET
and closes at 08:00 CET (an hour before the Swedish stock market opens)
and as of such the intraday log return value will be used for the Nikkei
225 Index (Tokyo) [5]. The six stock indices with their corresponding In-
traday/Overnight returns used as predictor values of Overnight(OMSX30,t)
are summarized in Table 2.
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Table 2: Six stock indices, used as predictor values of Overnight(OMSX30,t)
City Variable Intraday/Overnight Day

Hong Kong Hang Seng Index Overnight t
Shanghai SSE Composite Index Overnight t
Toronto SP/TSX Composite Index Intraday (t-1)

New York City S&P 500 Intraday (t-1)
New York City Nasdaq Composite Index Intraday (t-1)

Tokyo Nikkei 225 Index Intraday t

Figure 2: Opening hours of certain stock markets (Dag = Day).

The intraday/overnight variables, defined in Table 2, are calculated by:

Intraday, day(t) = log(Adj.Close, t)� log(Open, t)
Intraday, day(t� 1) = log(Adj.Close, t� 1)� log(Open, t� 1)

Overnight, day(t) = log(Open, t)� log(Adj.Close, t� 1)

Also included as explanatory variables were some commodities and curren-
cies, represented in Table 3. Since the opening and closing prices for these
variables are not as well defined, the important thing was to make sure that
no value would be used that is the result of trading activity after the Swedish
stock market has opened (by that time the value of our response OMXS30
has already been set).
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Table 3: Variables, whose log returns are used as predictor variables of
Overnight(OMXS30,t)

Variable log return day

Gold Adj.Close(t-1) - Adj.close(t-2)
Silver Adj.Close(t-1) - Adj.Close(t-2)

EURSEK Adj.Close(t-1) - Open(t-1)
USDSEK Adj.Close(t-1) - Open(t-1)
Crude oil Adj.Close(t) - Open(t)

Natural gas Adj.Close(t) - Open(t)

3.3 Total dataset

Since the di↵erent stock markets have di↵erent deviating opening hours,
some NA values were present in the data. After removing all NA values
and creating a lag (t+1) for some parameter values, we obtained a total
data set of 2083 observations between the period of 2010-01-01 to 2020-
01-01. The rows were randomized, before splitting the observations into
training data and test data, in order to eliminate any time trends. After
re-sampling the rows to randomize the order the data was listed, we used
a 80/20 percent split, where the training data and test data represent 80%
and 20% respectively of the total data set. The distribution of each dataset’s
response variable values are represented in Table 4.

Table 4: Each dataset’s distribution of the response variable values
OMXS30 0 (stock price down) 1 (stock price up)

Total data 877 1206
Train data 697 969
Test data 180 237

3.4 Correlation variables in training data

The correlation matrix is represented in the appendix and shows that some
of the explanatory variables are correlated. The S&P 500 Index and Nas-
daq Composite Index are very correlated (correlation coe�cient 0.95612904)
which is adequate since they are both indices of the US stock market, have
the same opening hours and mainly because the indices actually contain
many of the same stocks. The gold and silver variables show signs of cor-
relation and both of the currencies USDSEK and EURSEK are somewhat
correlated (correlation coe�cient 0.59). We also notice that the Nasdaq
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Composite Index is more correlated with Nikkei 225 Index (correlation co-
e�cient 0.47) than with SSE Composite Index (correlation coe�cient 0.22).

4 Modeling

4.1 GBM

We tuned the GBM-model using the values in the hyperparameter space
presented in section 2.5.2. The ROC was used to select the optimal model
using the largest value of the area under the curve (AUC). The largest value
of AUC = 0.7430 was with the corresponding parameter values:

Table 5: Optimal values of the hyperparameters of GBM.
interaction.depth 2

n.trees 1800
shrinkage 0.003

n.minobsinnode 20

4.1.1 Relative importance variables

We run the GBM-model using 10-fold cross validation on the training data
with the parameters presented in Table 5. Figure 3 visualizes the rela-
tive importance, described in section 2.4.1, of the parameters in the model
built on the training data. An interesting observation in the relative influ-
ence plot of Figure 3 is that the overnight return of the Hang Seng Index
has more relative influence than the intraday return of the Nikkei 225 In-
dex. The overnight log return of the Hang Seng Index is calculated when
the Hong Kong stock market opens at 03:30 CET, while the intraday log
return of the Nikkei 225 Index is calculated at 08:00 CET, only one hour be-
fore the Swedish stock market opens and the value of the response variable
OMXS30 is set. We see that the Shanghai SSE Composite Index and the
Toronto SP/TSX Composite Index have the least relative influence among
the predictor variables when classifying an observation.

4.1.2 Optimal number of boosting trees

When we built the model we used 10-fold cross validation which in practice
means that we fit 10 di↵erent GBM models before computing the cross vali-
dation error estimate CV (f̂) and then fitting the 11th and final model with
n.trees iterations using all of the data [15]. The gbm.perf graph of Figure
4 shows the cross validation error together with the number of iterations.
We see from the graph that the the cross validation error stops improving
after n.trees = 1727. When using our fitted GBM model to predict the
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Figure 3: Relative influence of explanatory variables for GBM

new unseen test data we will choose this value 1727 of the hyperparameter
n.trees.

4.2 Random Forest

4.2.1 Parameter Tuning

We set the number of trees to 5000 and evaluate how the out-of-bag estimate
of the error rate changes with every added tree, see Figure 5 . The red line
shows the error rate when classifying negative log returns and the green line
shows the error rate for positive log returns. The blue line is the out of bag
error rate. We see that the error rates have stabilized and thus we do not
need to try a model with more trees than 5000 to obtain lower OOB-error
rates. In fact, it seems that even 1500 trees would be su�cient.

We continue by evaluating the optimal number of variables tried at each split
to ensure that the best possible value is chosen within our parameter range.
We evaluate the parameter value space mtry = 1, ...11 and see in Figure 6
that the lowest OOB-rate is obtained when then number of variables each
split equals 2. Thus we choose the value 2 of the hyperparameter mtry in
our final model.
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Figure 4: Cross-validation error (green) and prediction error (black) on
training data as a function of the number of boosting iterations M . The
optimal choice of M is illustrated with the vertical dashed line.

Figure 5: Error rates of random forest as a function of the number of re-
sampled trees B, for negative returns (red), positive returns (green) and the
whole out-of-bag (OOB) sample (blue).
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Figure 6: The out-of-bag (OOB) error of random forest, as a function of the
number of predictor variables used in each split of the resampled trees.

4.2.2 Variable Importance

In the same way as for GBM, the relative influence of the variables in pre-
dicting the class of an observation is visualized in Figure 7.

5 Result

5.1 GBM Prediction

When using using our built GBM model on the new unseen test data the
model generated a prediction accuracy of 0.6954 in successful classifications
of the observations in the test data. The confusion matrix of Figure 8 shows
the number of true positives (TP, lower right), false positives (FP, upper
right), false negatives (FN, lower left), and true negatives (TN, upper left).

5.2 Random Forest Prediction

The Random Forest model generated a prediction accuracy of 0.6906 in
successful classifications of observations in the test data. See the confusion
matrix of Figure 9.
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Figure 7: Variable importance of the predictor variables of random forest.

Figure 8: The confusion matrix of Gradient Boosting Machine (GBM).
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Figure 9: The confusion matrix of random forest.

Figure 10: Prediction accuracies on test data of random forest, Gradient
Boosting Machine (GBM) and the Zero Rule.

5.3 Accuracy

The histogram of Figure 10 shows the prediction accuracies of GBM, random
forest and the Zero Rule, that was introduced in section 2.5.3.

We see that the di↵erence in performance between the two machine learning
methods is minimal, where the GBM model succeeded in predicting one
more TP and one more TN than the random forest model, i.e. two more
successful classifications out of a sample of 417 observations. Both of these
methods outperformed the Zero Rule.
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6 Discussion

We can see from the result in section 5.3 that the GBM-model outperformed,
even if only by a little, the random forest model in number of successful clas-
sifications. There are however other factors that must be mentioned when
evaluating the overall model performance. The computational cost is one
of them, i.e. how much time it takes to train the model. Training the
GBM-model was far more time consuming and even when we restricted the
parameter space for GBM the di↵erence in computational cost between tun-
ing the GBM model compared to the random forest model was clear. The
choice of which model to use should be data- and task specific. Data of more
sensitive nature should strive for the highest prediction accuracy and could
hence justify training a model with more computational cost.

It should be mentioned that there exists a newer method for GBM in R that
is called XGBoost. XGboost is short for eXtreme Gradient Boosting, and
is an scalable and e�cient implementation of the GBM-model described in
section 2.6.2. This package includes e�cient linear model solver, tree learn-
ing algorithm, it supports classification (amongst others) and is generally
over 10 times faster than GBM [3]. It would be interesting, in addition to
the two models compared in this paper, to include XGBoost in the analysis
and compare it to the other models in both speed and accuracy. Another ad-
dition to the analysis would be working on a similar dataset but containing
more observations. Extending the time-period of the di↵erent variable re-
turns could possibly lead to better predictions and more di↵erence between
the prediction accuracies of the models. It would however also lead to more
computational time especially for GBM.

When converting the predictions generated by the gradient boosting model
to binary values, we used a threshold of 0.5 where values over 0.5 were
turned to 1 and 0 otherwise. In a test data set of 417 observations 107 of
them were in the range 0.4-0.6, 27 of them were between 0.45 and 0.5 and 22
were between 0.5 and 0.55. This shows the sensitivity in setting the value of
the threshold and small changes could cause a dramatically di↵erent result.

The result shows that both of the models were more successful in predicting
true positives than true negatives. A possible explanation could be that
the models were not su�ciently trained in classifying negative response val-
ues, since the training data consisted of approximately 58% positives and
the rest negatives. The response variable, before being turned to a binary
value, had both negative and positive log returns. It would be interesting
to do a similar analysis but without converting the response variable into
a binary type and thus leaving it as numerical. Since the relationship be-
tween log returns of di↵erent stocks, indices and currencies naturally is of

30



linear nature we lose information about the data when transforming the log
returns of the response to binary variables. A possible analysis would be
to fit a ordinary linear regression for the log return data before converting
the fitted estimators to 0 or 1 depending on whether the log return pre-
diction is negative or non-negative. It would be interesting to compare the
prediction accuracy using that approach with the method performed in this
paper. Furthermore, since the stock movement can be both large and small,
it would be interesting to compare the models and how well they perform on
a multiclass classification problem, i.e. assign a stock movement to a class
depending on the size of the positive/negative movement.

7 Appendix

This appendix consists of a plot referenced in section 3.1.3 as well as a link
to the code used in the analysis.

Correlation plot of explanatory variables 11.

Code used in Section 3, 4 and 5: https://github.com/Filip-Bergkvist/
Code/blob/main/BachelorThesis.Rmd
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