
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Classifying BBC News Articles with
Random Forest and eXtreme Gradi-
ent Boosting.
Leon Voss Gustavsson

Matematiska institutionen

Kandidatuppsats 2022:5
Matematisk statistik
Juni 2022

www.math.su.se

Matematisk statistik
Matematiska institutionen
Stockholms universitet
106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2022:5

http://www.math.su.se

Classifying BBC News Articles with Random

Forest and eXtreme Gradient Boosting.

Leon Voss Gustavsson
∗

June 2022

Abstract

With the modern invention and improvement of machine learning
methods, the scope of their use is increasing, with new fields of ap-
plication. One of these fields is natural language processing (NPR).
Within NPR one task is text classification. In this thesis we will clas-
sify news articles from BBC as belonging to one of the categories sport,
politics, entertainment, business or tech. The dataset that we use con-
sists of 2225 observations/articles. Classifying the articles will be done
trough analyzing word frequencies from all articles. Furthermore, we
will compare different ways of selecting these exact words and study
how many words are needed to reach satisfactory results. We will
then use Random forest as well as the eXtreme Gradient Boosting
(XGBoost) method. In the end we mainly end up with three differ-
ent factors to evaluate the models by; the number of words used, the
computation time, and the prediction accuracy. Despite the reputa-
tion of XGBoost, random forest produces somewhat higher prediction
accuracy (a fraction of 0.963 correct classification with 10 fold cross
validation, compared to 0.957 for XGBoost), and it also takes con-
siderately less time to train. Furthermore, at around 500 words we
start to see convergence towards high prediction accuracy for random
forest as well as for XGBoost. After having reached such a high de-
gree of prediction accuracy we investigate which words where the most
important for classifying an article. Not surprisingly we found that
”coach” was meaningful for classifying an article as sport, ”shares”
for business, and ”film” for entertainment and so on. In the end we
thus obtained models that where both interpretable and reached high
prediction accuracy.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: leon.voss.g@gmail.com. Supervisor: Ola Hössjer, Nils Engler.

Contents

1 Introduction 1

2 Theory 1
2.1 The Bias-Variance Tradeoff 2

2.1.1 The Bias-Variance decomposition 2
2.1.2 K -fold cross validation 2

2.2 Decision Tree . 3
2.3 Bagging . 5
2.4 Random Forest . 6
2.5 Boosting Trees . 8
2.6 Numerical optimisation with gradient boosting 10

2.6.1 Steepest descent . 10
2.6.2 Gradient boosting . 11
2.6.3 Loss functions . 11
2.6.4 Parameter choices . 13

2.7 XGBoost . 13
2.7.1 Parameter choice . 17

2.8 Variable importance . 17

3 Data 18
3.1 Datasets . 18

3.1.1 Cleaned dataset . 18
3.1.2 Different datasets . 19
3.1.3 Data split . 20

4 Modeling 20
4.1 Parameter tuning for random forest 21
4.2 Parameter tuning for XGBoost 21

5 Results 22
5.1 Results for Random Forest 22
5.2 Results for XGBoost . 25

6 Discussion 27
6.1 Comparison between the datasets 27
6.2 Comparison between Random Forest and XGboost 29
6.3 Variable importance . 30

6.3.1 Variable importance for Random Forest 30
6.3.2 Variable importance for XGBoost 32

6.4 Performance discussion . 33
6.5 Potential improvements . 33

7 Conclusion 33

1 Introduction

During the 21st century, machine learning methods have been drastically
improving. This has a lot to do with increasing amounts of data being
collected. In the supervised learning field of machine learning, the models
are directly trained using labeled data and can then hopefully perform well
on new data that have not been seen before.

This can be useful for a wide range of purposes. For this thesis, we will
specifically try to classify news articles as belonging to one of five different
categories (business, tech, entertainment, sport, and politics). All this is
made possible through a dataset from BBC consisting of 2225 articles. The
aim is then to train a model that will reach the best possible accuracy
when classifying articles. In this process, we will investigate the relationship
between how many words from the articles are needed for a well-performing
model and the impact this has on computation time. Furthermore, we will
investigate which words are most important for classifying an article as
belonging to a given class.

There is a wide range of machine learning methods available for this task
but in this thesis, only random forest and XGBoost are used. Both are tree
based methods that are known to perform well, especially XGBoost. How-
ever, despite XGBoosts popularity, as we will see, random forest performs
better on our particular BBC dataset.

The thesis is organised as follows, we will present the theory section
(section 2) about why and how our chosen models work. There we will also
see the importance of some parameters that we will have to tune for optimal
performance, this will be discussed later in section 4. Then we shall take
a look at the original dataset in section 3 and see how we manipulate it to
create subsets of different sizes. In section 5 we will then present the results,
and this will be followed up by a discussion about these results in section 6.

2 Theory

In this section, we will cover the theory behind the machine learning models
used for analyzing our dataset. Mostly we will follow the theory from the
book The Elements of Statistical Learning(Hastie et al., 2017) [4]. One
notable exception is the theory of section 2.7 which is based on the paper
XGboost: A Scalable Tree Boosting System by Chen Guestrin (2016) [2].
Inspiration for notation regarding the XGboost section has been taken from
Classification of Music Genres with eXtreme Gradient Boosting by Jesper
Muren (2019) [6].

1

2.1 The Bias-Variance Tradeoff

2.1.1 The Bias-Variance decomposition

This section will be based on section 2.9 in Hastie et al (2017) [4].
A reoccurring theme during this thesis will be choosing the right pa-

rameters, parameters that will achieve optimal performance. And to a high
degree, choosing the right values amounts to reducing the expected predic-
tion error (EPE). In other words, we want a model that will have a low
expected error for data it has not yet seen.

We denote the response variable Y , the vector of inputs X and the
prediction model for the expected value E(Y |X) = f(X) of the response
by f̂(X). To measure how well f̂ performs we use different loss functions
L(Y, f̂(X)) .

If we were to consider the EPE with squared error loss as a loss function
we would for a data point x0 get

EPE(x0) = E[(Y − f̂(x0))
2].

Doing some algebraic manipulation leads to the following decomposition;

EPE = σ2 + [Bias2(f̂(x0)) + Var(f̂(x0))], (1)

where Bias = E[f̂(x0) − f(x0)]. So the bias squared stands for the error
originating in the difference between the ”true” f and systematic departures
from this function in the implemented model f̂ . The variance from (1) stands
for how much our model will vary across different data sets. In the data there
will also be some inherent randomness beyond our control, hence the term
σ2 = Var(Y |X).

Making the model f̂ more complex reduces the bias, however, too com-
plex would mean that it does not work on new data. In other words, it
would have high variance Var(f̂(x0)). This phenomenon will be reoccurring
and it is called overtraining.

In conclusion, the best model have to balance between bias and variance
for optimal performance. How is this done? One way is through K -fold
cross validation.

2.1.2 K -fold cross validation

This section will be based on section 7.1 in Hastie et al (2017) [4].
The idea here is to split the data into K equally sized folds. A model is

then trained on K − 1 of these folds and then tested on the kth fold (also
called the hold-out-set). The procedure is repeated so that all K folds of the
data have been used as both hold-out and training sets, i.e. k = 1, . . . ,K.
We then combine the K estimators.

2

We write this using an indexing function κ : [1, ..., N] → [1, ...,K] that
denotes the fold to which each observation i = 1, . . . , N ends up in. Fur-
thermore let f̂−k(x) be the fitted function trained on all folds but the kth.
The K-fold cross validation prediction error is

CV (f̂) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi)).

As earlier mentioned choosing the right parameters α for our models
will be crucial for this work. We now have a method to find the optimal
parameters α̂.

Let f(x, α) be a set of models that is indexed by α. Denote f̂−k(x, α) as
the αth model fit with the kth fold removed. We thus get

CV (f̂ , α) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi, α)).

This function provides a curve of accuracy depending on α. We can then
choose α̂ simply as the value of α that minimizes CV (f̂ , α). This would give
us the final model f(x, α̂).

However, sometimes other aspects than accuracy also have to be consid-
ered, such as computation cost. This will be further discussed later on in
this thesis.

2.2 Decision Tree

This section will be based on Section 9.2 in Hastie et al (2017) [4]. There
exist different algorithms for creating decision trees. In this thesis, we will
only be using and describing the CART method.

As we shall see trees are easy to interpret and understand. However, they
have one problem which is inaccuracy. And since this work aims to provide
the best prediction possible, decision trees are not a suitable method. Nev-
ertheless, decision trees are a stepping stone to understanding both random
forest and XGBoost as both are tree based methods. Hence we shall cover
the underlying theory below.

Consider a regression problem where we have N observations used as
training data (xi, yi) for i = 1, ..., N . Furthermore we have p predictors so
xi = (xi1, xi2, ...xip). Our aim is to make a prediction of the response yi
given xi.

We do this by dividing the space of possible values (the prediction space)
for x = x1, ..., xp into M separate regions R1, ..., RM . For an observation
that falls in a region Rm, we make the prediction as the mean of the response
values from the training data that lies in Rm, call this constant γm.

3

The regression model can thus be written as

f(x) =

M∑
m=1

γmI(x ∈ Rm). (2)

Here, I(A) denotes an indicator function for the event A.
In the case of classification we instead make the prediction based on the

majority vote in the region. The question then arises of how to grow a
regression tree.

If we are to minimize the sum of squares
∑

(yi − f(xi))
2 it is computa-

tionally infeasible to consider all possible separations of the feature space
into M boxes. Therefore recursive binary splitting is used. This is a top-
down, greedy method. It is top-down since it starts at the top of the tree,
and then, one step at a time, splits the predictor space. It is greedy as the
best partition of the feature space is made at each split. This means that
future splits are not considered in the choice of new regions.

Consider a splitting variable j and a split point s. In the first step, two
regions would be created

R1(j, s) = {x | xj ≤ s} and R2(j, s) = {x | xj > s}.

We want the regions that give the greatest reduction in sum of squares, this
results in the following minimization problem

min
j,s

[
min
γ1

∑
xi∈R1(j,s)

(yi − γ1)
2 +min

γ2

∑
xi∈R2(j,s)

(yi − γ2)
2
]
.

The inner minimization is solved by

γ̂1 = ave (yi | xi ∈ R1(j, s)) and γ̂2 = ave (yi | xi ∈ R2(j, s)).

This process is continued until we reach a stop criterion. One possibility
is to stop when a predetermined number of regions are created. Or that a
new split does not surpass a predefined threshold for a decrease in sum of
squares.

Both of these stop criteria are problematic. The first since it is hard to
know how many regions we want beforehand. The second since a worthless
split might lead to a second split that is desirable.

In general, caution is needed when growing a tree. The reason is that a
too large tree will overfit the model to the training data (high variance) and
will not generalize well to new data. A small tree on the other hand might
miss some important structure, and thus also make a poor prediction (high
bias).

Moving from regression to classification where we have K outcomes is
straightforward. The main difference is the criterion for which we did the

4

split. Now we need another criterion than the sum of squares to be mini-
mized. Commonly used criteria are the Gini index and the deviance.

Before presenting these criteria let Nm be the number of observations in
region Rm. Also the proportion of class k in node m (representing region
Rm) is written as

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k).

The Gini index is then given by

K∑
k=1

p̂mk(1− p̂mk)

and the deviance, also called Cross-entropy, is given by

−
K∑
k=1

p̂mk(log(p̂mk)).

There also exists a missclassification rate. It is the proportion of observations
of a node that do not belong to the majority class k(m). This is written as

1− p̂mk(m).

The first two criteria are differentiable and thus better suited for numerical
optimisation, something that will be of importance later.

One way to try to solve the problem that we discussed earlier, that of
tree depth (number of nodes), is through pruning. However, this generally
will not produce accuracy on the same level as that of the other models
we will use. Hence I will not discuss this concept. But there are some key
takeaways from this section that are important for the coming models. A
large tree has low bias and high variance, and a shallow tree has high bias
and low variance.

In figure 1 we see how a classification tree based on two predictors, how
many times the word investment and bank occur, might work. In the end,
the yes/no question would lead the tree to classify the data as belonging to
one of the three classes Sport, Politics, or Economy.

Note that this tree is not realistic for the prediction of the earlier men-
tioned data. The reason is that the tree is too shallow and contains too few
predictors. It does however provide a good example of how a tree gives rise
to a classifier.

2.3 Bagging

This section will be based on Section 8.7 in Hastie et al (2017) [4]. Before
introducing the model of random forest we need a discussion about bagging.

5

word frequency investment > 2?

Category=Sport bank word frequency > 3?

Category=Politics Category=Economy

no yes

no yes

Figure 1: Visualizing a decision tree with 3 nodes

Consider a regression problem where we fit a model to our training data

Z =
{
(x1, y2), (x2, y2), ..., (xN , yN)

}
.

This fitted model generates the prediction f̂(x) at an input x. Now we
take B bootstrap samples, meaning we resample the training data from our
original sample so that each bootstrap sample is of the same size as our
original set. Denote the b:th of these samples by Z∗b. For each b = 1, 2, ...B
we fit our model and get the prediction f̂∗b(x). The bagging estimate is
then defined by

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x).

2.4 Random Forest

This section will be based on Section 15 in Hastie et al (2017) [4].
As discussed earlier we saw that decision trees, if grown large enough,

have low bias. However, they are often quite noisy and won´t generalize
well to new data. The idea is then to combine the low bias with variance
reduction. This is where bagging comes in.

Each tree in bagging is identically distributed. Thus an expectation of
any one of them is the same as the average of B of them. Furthermore,
the variance of the sample mean of B identically distributed variables with
pairwise correlation ρ is equal to

ρσ2 +
1− ρ

B
σ2. (3)

When looking at this expression we can directly see that the second
expression goes towards zero as B gets larger, thus the variance is reduced.

6

So bagging increases the performance of the model through variance
reduction. But despite that, a greater reduction is still possible. And this
is where random forest comes in. The reduction is done by lowering the
correlation ρ between the trees.

Having a look at the first expression in (3) we see that reducing B does
not affect this term. Instead what we can do is to reduce ρ. Note that ρ in
our case is the correlation factor between the trees.

So if we, when growing the trees, only consider a subset with m of the
p predictors in each split, we will decorrelate the trees. However, having
too few predictors considered at each split might result in an oversimplified
model. This means that m is a tuning parameter that is best found through
K-fold cross validation.

Algorithm 1 Random Forest for Regression or Classification

1: for b = 1 to B do
2: (a) Draw a bootstrap sample Z∗b of size N from the training data.
3: (b) Grow a random forest tree Tb to the bootstrapped data, by

recursively repeating the following steps for each terminal node of the
tree, until the minimum node size nmin is reached.

4: (I) Select m variables at random from the p variables.
5: (II) Pick the best variable/split-point among the m.
6: (III) Split the node into two daughter nodes.
7: end for
8: Output the ensemble of trees {Tb}B1
9: To make a prediction at new point x:

10: Regression : f̂B
rf (x) =

1
B

∑B
b=1 Tb(x).

11: Classification : Let Ĉb(x) be the class prediction of the bth random-
forest tree. Then ĈB

rf (x) = majority vote {Ĉb(x)}B1 .

7

Train B trees

Input of new x

. . .

Tree 1 Tree 2 Tree B

majority vote

prediction

Figure 2: Visualizing a random forest with B trees for classification.

Random forest is robust to datasets consisting of many predictors, some-
thing that will be useful for us as we shall see later. The reason for this is
that random forest uses only a few percentages of all possible predictors in
each step of the tree building. For this reason, computation time is reduced.
Moreover, important variables still have a high chance of showing up in the
splitting process, thus a useful split will probably be executed somewhere in
the trees (as long as the tree is deep enough).

2.5 Boosting Trees

This section will be based on section 10.9 in Hastie et al (2017) [4].
Boosting is a method that will create many weak learners (small trees).

The combination of them will then become a competent predictor for new
data. This works through a sequential process where more and more trees
are added to the model. However, unlike random forest, where the trees do
not influence each other, we here grow a new tree to the model, a tree that
improves the performance of the earlier mix of trees.

For an intuition about how this works for regression, consider algorithm
2. What we see is a model that grows new trees to the previous errors
(residuals). For each new tree, a learning rate λ is used so that in each
iteration we (hopefully) make an incremental improvement.

Remember from (2) that a tree with J regions could be expressed as

T (x; Θ) =

J∑
j=1

γjI(x ∈ Rj). (4)

8

Algorithm 2 Boosting algorithm for regression trees

1: Set f̂(x) = 0 and ri = yi for all i in the training set.
2: for m = 1, 2, ...,M do
3: Fit a tree f̂m with d splits to the training data {(xi, ri)}Ni=1.
4: Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂m(x).

5: Update the residuals:

ri ← ri − λf̂m(x).

6: end for
7: Output the boosted model:

fM (x) =
M∑

m=1

λf̂m(x)

Here Θ = {Rj , γj}Jj=1 are the parameters of the model. The sum of these
trees defines a boosted tree model and can be written as

fM (x) =

M∑
m=1

T (x; Θ̂m).

Finding the optimal parameters is done trough the following minimization
problem

Θ̂ = argmin
Θ

J∑
j=1

∑
xi∈Rj

L(yi, γj).

Thus finding the best regions Rj = Rjm and constants γj = γjm within these
regions for j = 1 . . . , Jm at each step m of the model building, amounts to
solving

Θ̂m = argmin
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm)). (5)

Solving this gives us Θm = {Rjm, γjm}Jm1 for the next tree given fm−1(x).
Given that we found the optimal regions we also need to pick the most
favorable constant for each region. This is typically straightforward. In the
case of regression, γ̂jm is equal to the average of all yi in the region. In
classification, it is the most commonly occurring class.

Furthermore, for squared error loss, the solution is simply, as we saw
in algorithm 2, the regression tree that best predicts the current residuals
ri = yi − fm−1(xi).

9

2.6 Numerical optimisation with gradient boosting

This section is based on section 10.10-10.12 in Hastie et al (2017) [4].
The idea of gradient boosting is the following. We use a differentiable

loss function L(f), for instance the Gini index or deviance from section
2.1. We can then solve (5) through numerical optimization. The loss in
predicting y in the training data with f(x) is

L(f) =
N∑
i=1

L(yi, f(xi)).

Then the goal is to minimize L(f) with respect to f , we write this as

f̂ = argmin
f

L(f) (6)

with f = {f(x1), f(x2), ..., f(xN)}T being the prediction at each datapoint.
Using numerical optimization, (6) is solved as a sum of component vectors

fM =
M∑

m=0

hm

where f0 = h0 is an initial guess. Each subsequent fm is equal to fm−1+hm.
Again the idea is that hm improves the performance at each step.

2.6.1 Steepest descent

The question arises about how we choose hm. In steepest descent hm =
−ρmgm where ρm > 0 is a scalar and gm is the gradient of L(f) at f = fm−1.
This works since the negative gradient gives the direction at which a function
decreases most quickly. Furthermore, the components of the gradient gm
are

gim =

[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

(7)

and for i = 1, . . . , N . The optimal step length ρm is found trough

ρm = argmin
ρ

L(fm−1 − ρgm).

We then get
fm = fm−1 − ρmgm.

Note that this is a greedy strategy. We only minimize L(f) at each step
individually. Future steps are not taken into consideration.

10

2.6.2 Gradient boosting

Let us take a look at the prediction from boosting trees T (xi; Θm) with tree
components

tm = {T (x1; Θm), T (x2; Θm), ..., T (xN ; Θm)}T .

Building these trees while minimizing (5) is as we discussed in section 2.1
a greedy top down approach. So both steepest descent and boosting tree
algorithms are greedy approaches. An important consequence is that the
predictions T (xi; Θm) are analogous to the components of the negative gra-
dient (7).

Minimizing L(y, f(x)) with respect to f(x), when f(x) is updated ac-
cording to steepest descent (7) is easily done if we choose a differentiable
loss function. However, the gradient is defined only for the training data
x1, . . . , xN . Since we need a model that generalizes effectively to new data,
this approach is flawed. To solve this issue one can do the following. Create
a tree T (x; Θm) at the m:th iteration. The predictions of tm of this tree
should then be as close as possible to the negative gradient −gim. Using
squared error as a measurement of distance we want to solve the following

Θ̃m = argmin
Θ

N∑
i=1

(−gim − T (xi; Θ))2. (8)

Solving (8) does however not create exactly the same regions as when solving
(5). Even so, they are similar enough to serve our purpose.

2.6.3 Loss functions

We have not yet discussed the choice of loss function. There is a wide range
of choices for this. Different factors, such as the problem one wishes to solve
and the nature of the dataset one works with calls for consideration about
what loss function one ought to choose. Nonetheless, it is outside the scope
of this work to investigate this aspect in detail. Hence, since our task is to
classify objects, the most frequently used loss function for this purpose, the
deviance, will be used as loss function. The definition goes as follows:

L(y, p(x)) = −
K∑
k=1

yklog(pk(x)), (9)

where p(x) = (p1(x) . . . , pK(x)). Note that we have a response variable
that take values in G = {G1, ..., GK}, meaning that we have K classes to
classify. This is usually coded as a binary response vector y = {y1, ..., yK}
with yk taking the value 1 if it belongs to class Gk and 0 otherwise. Also
denote pk(x) = P (Yk = Gk|x). Now we want a function pk(x) that fulfills

11

0 ≤ pk(x) ≤ 1 and
∑K

l=1 pl(x) = 1 so that the class probabilities sum to one.
The softmax function, defined as

pk(x) =
exp(fk(x))∑K
l=1 exp(fl(x))

,

solves this. With the softmax function we can, using basic laws of loga-
rithms, simplify (9) as

L(y, p(x)) = −
K∑
k=1

ykfk(x) + log

(
K∑
l=1

exp(fl(x))

)
.

By differentiating this function with respect to fk(x), we note that the m:th
component of the gradient, with K least square trees, is equal to

gikm =

[
∂L(yi, f1(xi), ..., fK(xi))

∂fk(xi)

]
f(xi)=fm−1(xi)

= yik − pk(xi).

The actual algorithm then works as seen below. Also let each class k have
its own function fk.

Algorithm 3 Gradient Tree boosting algorithm for K-class classification

1: Initialize fk0(x) = 0 for k = 1, ...,K.
2: for m = 1 to M do
3: Set pk(x) =

exp(fk,m−1(x))∑K
l=1 exp(fl,m−1(x))

, k = 1, ...,K.

4: for k = 1 to K do
5: (I) Compute: gikm = yik − pk(xi), i = 1, ..., N.
6: (II) Fit a regression tree to −gikm, i = 1, ..., N., according

to (8)
7: (III) With regions from the trees in step (II) Rjkm,

j=1,...,Jkm, compute

γjkm = argmin
γ

∑
xi∈Rjkm

L(yi, fk,m−1(xi) + γ), j = 1, ..., Jkm.

8: (IV) Update

fkm(x) = fk,m−1(x) + λ

Jkm∑
j=1

γjkmI(x ∈ Rjkm).

9: end for
10: end for
11: Output f̂k(x) = fkM (x), k = 1, ...,K

12

2.6.4 Parameter choices

There are three hyperparameters that play an important role in the perfor-
mance of algorithm 3.

Firstly we have the tree size J . As we discussed in section 2.1 too large
trees are prone to overfitting and additionally have an extra computational
cost. In boosting, the idea is instead to grow small trees that improve on
the previous errors. There are no exact rules behind the choice of tree size,
but typical sizes for the trees are 4-8 terminal nodes.

We also have the choice of the shrinkage parameter λ, defined by scaling.
We then scale the contribution of each new tree by 0 ≤ λ ≤ 1. This corre-
sponds to step (IV) of the Gradient Tree boosting algorithm (algorithm 3).
This algorithm looks as follows:

fkm(x) = fk,m−1(x) + λ

Jm∑
j=1

γjkmI(x ∈ Rjkm).

This is called the learning rate and we saw an earlier example of this in
algorithm 2. The point of the learning rate is to take small steps in the right
direction. If we take too large steps we might overfit. The reason is that the
trees are grown in a greedy way to reduce the error for the training data.
However, they might do this too well so that the model is overspecified. If
we instead let each tree have a smaller contribution to the final fit, a single
overfitted tree will not matter as much in the mixture of all trees.

The last parameter in this discussion is M . This is the number of itera-
tions that we allow, or in other words, how many trees we grow. Like before
there exists a certain risk of overfitting. Growing too many trees may cause
the model to be too specific to the training data.

As discussed we see that all parameters have their own impact on the
bias variance tradeoff. For instance, if we choose smaller trees we will have
higher bias and lower variance. We can then decrease bias by growing more
trees.

In the end cross validation is a good way to determine the best com-
bination of learning rate and tree size. We can then see after how many
iterations M we reach our optimal model, and we can also detect when
overfitting starts to be a concern. Unfortunately, each iteration has a com-
putation cost.

Further discussion about the final choice of parameters, for our specific
dataset, will be provided later.

2.7 XGBoost

This section will be based on Guestrin (2016) [2]. Despite the long discussion
about gradient boosting, this method will not be implemented. Instead,
eXtreme gradient boosting (XGboost) is the method we will use. Hoewever,

13

XGBoost is, as one might suspect from the name, a natural continuation of
gradient boosting.

Like with gradient boosting we want to minimize a loss function L. How-
ever, with XGBoost, this is done differently. The aim is to minimize

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm)) (10)

at step m. This is done by approximating L with a second order Taylor
expansion. Remember that a linear approximation of f(x) around a is ac-
cording to Taylor´s theorem given by

f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2. (11)

The key here is then to differentiate each term L(·, ·) in (10) with respect
to its second argument and view f(x) as the loss function for fm−1xi +
T (xi,ΘM), f(a) as the loss function for fm−1xi, and (x − a) as the tree
T (xi; Θm) that we want to add in (10). If we let the second and first deriva-
tives from (11) be denoted as follows

gm(xi) =
∂L(yi, fm−1(xi))

∂fm−1(xi)
and hm(xi) =

∂2L(yi, fm−1(xi))

∂2fm−1(xi)

we can approximate (10) trough

N∑
i=1

[
L(yi, fm−1(xi)) + gm(xi)T (xi; Θm) +

hm(xi)T (xi; Θm)2

2

]
. (12)

Let T be a tree (2.7) and define Ω(T) = ΓJ + 1
2η
∑J

j=1 γ
2
j . In particular, if

T = T (·; Θm) we can write this term as Ω(Θm). If we add this term to (12)
we get the following expression we want to minimize in the m:th step of the
XGBoost algorithm.

N∑
i=1

[
gm(xi)T (xi; Θm) +

hm(xi)T (xi; Θm)2

2

]
+Ω(Θm). (13)

Note that L(yi, fm−1(xi)) is a constant and therefore it is not relevant. Now
you should wonder why the expression Ω(T) has appeared. The reason is
that it is a regularization term to prevent overfitting. Note, just as before
J is the number of terminal nodes in a tree and γj are the coefficients for
the regions. Both Γ and η are hyperparameters that are tuned to regulate
the bias variance tradeoff, and we will return to them later in the parameter
discussion. Now recall from () that we write a tree with J regions as

T (x; Θ) =

J∑
j=1

γjI(x ∈ Rj).

14

Also remember that all regions are disjoint and that I(xi ∈ Rj) is an indi-
cator function so that the terms with xi ̸∈ Rj are all zero. Using this and
the definition of Ω(T) we write (13) as

Jm∑
j=1

[(∑
xi∈Rjm

gm(xi)
)
γjm +

1

2

(∑
xi∈Rjm

hm(xi)
)
γ2jm

]
+ ΓJm +

1

2
η

Jm∑
j=1

γ2jm.

Furthermore, if we write

Gjm =
∑

xi∈Rjm

gm(xi) and Hjm =
∑

xi∈Rjm

hm(xi)

and combine all terms containing γjm we get the following expression to
minimize at each step m:

Jm∑
j=1

[
Gjmγjm +

1

2

(
Hjm + η

)
γ2jm

]
+ ΓJm. (14)

Now say we have a predefined tree structure, we then want optimal values
for γjm. These are easily found by differentiating (14) with respect to γjm
and setting the corresponding derivative equal to zero. Thus we get

γ̃jm = − Gjm

Hjm + η
.

Plugging in this expression into (14) yields

−1

2

Jm∑
j=1

G2
jm

Hjm + η
+ ΓJm. (15)

Expression (15) can then be used to measure how good predictions a given
tree produces, referred to as the score function.

The score function plays a vital role in constructing the trees in XGBoost.
When adding new regions we evaluate their contribution based on what score
they correspond to. Like in section 2.1, the number of splits to consider
based on this score function criterion is too large. Hence we use the earlier
described top-down greedy approach.

Let
G2

L
HL+η be the score from a potential left leaf, let

G2
R

HR+η be the same

for a right leaf. Furthermore, let G2

H+η = (GL+GR)2

HL+HR+η be the score representing
no split at all.

We can then get an expression to minimize when doing splits in order to
improve the model. We define

Lsplit =
1

2

[
G2

L

HL + η
+

G2
R

HR + η
− G2

H + η

]
− Γ. (16)

Create a new split when Lsplit ≥ 0. However, sometimes no additional split
is created at all, and this happens if Lsplit < 0.

15

Algorithm 4 XGboosting algorithm for K-class classification

1: Initialize fk0(x) = 0 for k = 1, ...,K.
2: for m = 1 to M do
3: for k = 1 to K do
4: (I) Compute: gkm(xi) =

∂L(yi,fk,m−1(xi))
∂fk,m−1(xi)

, i = 1, ..., N

5: (II) Compute: hkm(xi) =
∂2L(yi,fk,m−1(xi))

∂2fk,m−1(xi)
, i = 1, ..., N

6: (III) Fit a tree T (xi,Θjkm) for i = 1, ..., N that for each split
maximizes

Lsplit =
1

2

[
G2

L

HL + η
+

G2
R

HR + η
− G2

H + η

]
− Γ.

7: (IV) With splits from III compute:

γ̃jkm = −
Gjkm

Hjkm + η
.

8: (V) Update

fkm(x) = fk,m−1(x) + λ

Jkm∑
j=1

γ̃jkmI(x ∈ Rjkm).

9: end for
10: end for
11: Output f̂k(x) = fkM (x), k = 1, ...,K

16

2.7.1 Parameter choice

As in Gradient boosting we again have the parameters tree size J , learning
rate λ, and the number of iterations m. For a discussion about them and
their impact on the model see section 2.5.3.

Two new parameters for XGBoost are η and Γ. Both of them work as
regularization parameters. Increasing them will make the model less prone
to growing large trees. The reason is simply that η and Γ reduce Lsplit as
seen in (16) and having Lsplit < 0 means that no further splits are done.

There are more parameters of XGBoost (Guestrin, 2016)[2]. However,
the ones mentioned above are the ones I will use in this work. A longer
discussion on their impact follows later.

2.8 Variable importance

In both random forest and XGBoost accuracy is increased from a single
decision tree by using an ensemble of trees. However, a price is paid in form
of interpretability. And in the end, it is desirable to get some insight into
why the model works as it does.

Some understanding can however be achieved by using the variable im-
portance metric. What this does is to give each predictor a value. The
value is based on how much this predictor contributes to the accuracy of the
model.

For a single tree this contribution was proposed by Breiman et al. (1984)
[1] to be measured as

I2ℓ (T) =
J−1∑
t=1

î2t I(v(t) = ℓ)

for each predictor Xℓ, where v(t) ∈ {1, . . . , p} tells which predictor variable
that is involved in split t of the tree.

The î2t is the improvement in squared error risk that comes from the
best possible way to define split t. By summing the improvement over all
internal nodes of T for which Xl was chosen in the corresponding splits, we
obtain its squared relative importance.

This can then be generalized to additive tree expansions by averaging
over the trees

I2ℓ =
1

M

M∑
m=1

I2ℓ (Tm). (17)

For K -class classification, K different models

fk(x) =
M∑

m=1

Tmk(x)

17

are brought about. Note that we sum over the M trees. Thus (17) general-
izes to

I2ℓk =
1

M

M∑
m=1

I2ℓ (Tkm).

By averaging over the classes we then get the overall relevance of Xℓ

I2ℓ =
1

K

K∑
k=1

I2ℓk. (18)

3 Data

For this thesis news article data from BBC will be used. The goal will be
to predict what category a certain article belongs to given which words are
used, and how often these words occur. Furthermore, the data is divided
into two sets. One set is used to train the model. Another smaller set is
used to evaluate the model.

3.1 Datasets

3.1.1 Cleaned dataset

As the data from [2] first consisted of 2225 .txt files there was a need of
cleaning the data. To a high degree the code for doing this was borrowed
from [5]. After the data cleaning process all stopwords were removed. The
remaining words were then transformed to lower case and all .txt files were
merged to one dataset. Thus we had a dataset with 2225 observations (one
for each article). The response variable was then the category of the article.
Within the response variable there are 5 categories, namely business (510
observation), sport (511 observations), tech (401 observation), politics (417
observations) and entertainment (386 observations). Bellow in table 1 there
is a description of the different variables. Furthermore, each word occurring
in the text column became its own variable. This variable then took values
corresponding to the frequency of the word in each individual article. The
idea was then to identify what category the article belonged to based on
both which words occurred, and their frequency. An example of how this
works is provided in table 1.

18

Table 1: Example of observations from the new format.

poll housewives grand slam economic Category

1 0 0 0 1 business

0 0 1 1 0 sport

0 1 0 0 0 entertainment

This format of the dataset does however introduce one problem, namely
the number of predictors. There are as many as 34099 different words in
the training set. Thus the new dataset has 34099 new columns, even after
the removal of the stopwords. Dealing with so many predictors is compu-
tationally infeasible, and in addition, most columns are probably worthless
for prediction. For instance, the word ”abdomen” occurs only once in all
articles. But with XGBoost and random forest, columns that contain no
valuable information are still considered in the algorithm, hence they bring
additional computation cost without any benefit.

3.1.2 Different datasets

On account of this, we created datasets with different subsets of the 34099
columns. A total of 18 datasets were created. Of these sets, 12 were chosen
to be the most commonly occurring words from all articles. The smallest
set consisted of the 10 most frequent words, the largest of the 5000 most
frequent words.

The remaining 6 sets were instead created based on frequency from each
category separately. The smallest incorporated the 25 most common words
of each category and the largest the 350 most occurring words per category.
Note however that this approach leaves us with duplicates since many of the
most common words for one category also appear in other categories. For
example the set with the 350 most common words for each category in the
end only had 1068 predictors and not 1750. And the more words that were
selected from each category, the more they resembled the firstly mentioned
method of selecting words, and for this reason no larger sets were created
with this second approach.

Using dataset with different number of predictors introduced not only
the opportunity of comparing XGBoost with random forest but it also made
it possible to see how many words are needed to be analyzed by the models
to produce satisfactory accuracy. Furthermore, we will also compare com-
putation time and which parameters are suitable for the different datasets.

The datasets are then named based on how many predictors they include
and whether these predictors are selected as the most frequent words per
category or for all sets. For more details see table 4.

19

Table 2: Description and size of the 18 datasets created from the original
set of 2225 articles

Name Description Number of
predictors

C10 Subset 10 words 10

C25 Subset 25 words 25

C50 Subset 50 words 50

C75 Subset 75 words 75

C100 Subset 100 words 100

C150 Subset 150 words 150

C200 Subset 200 words 200

C250 Subset 250 words 250

C500 Subset 500 words 500

C1000 Subset 1000 words 1000

C2500 Subset 2500 words 2500

C5000 Subset 5000 words 5000

PC33 Subset most 10 common words per category 33

PC87 Subset most 25 common words per category 87

PC174 Subset most 50 common words per category 174

PC338 Subset most 100 common words per category 338

PC510 Subset most 155 common words per category 510

PC1068 Subset most 350 common words per category 1068

3.1.3 Data split

Before training the model on the data we partitioned the dataset with 2225
observations. Thus one training set consisting of 80% of all articles, whereas
20% of the articles were then saved for validation of our data. After the split,
the training and validation data consisted of 1780 and 445 observations
respectively.

The idea behind this procedure is to be sure that the original models
generalize well. Despite using cross validation, there is a small risk of over-
training, hence we try the fitted models on data they have not seen before.

4 Modeling

As mentioned earlier in the theory section, finding appropriate parameters
is of utmost importance for a well-performing model. In this thesis, we will
be using grid search. This means that we create a grid of different parameter
values to obtain the best-performing model. The grid of parameter values

20

will be based on creating optimal accuracy without creating too computa-
tionally expensive models. Exactly which parameters we will try will be
specified and motivated in the sections below.

4.1 Parameter tuning for random forest

Here we will briefly revisit the parameter discussion from section 2.4.
When choosing parameters for the random forest model the key is to

look at the expression

ρσ2 +
1− ρ

B
σ2

from section 2.4 regarding the variance of the sample mean of B terms.
The second term goes to zero as we increase B (the number of trees

grown). However, after a while, we are still stuck with the first term. Hence
growing enough trees is only one part of reducing the prediction error. Fur-
thermore, convergence is guaranteed by including enough trees. For this
reason, we will not fine-tune this parameter, instead, we will use the default
setting of random forest, which is B = 250, and in a plot assure ourselves
of convergence.

What we mainly will focus on is the correlation coefficient ρ which is
regularized by m where m is the number of variables considered in each
split. Having a too large m will increase ρ and thus increase the variance.
For classification, the typical value is m =

√
p where p is the number of

predictors used. However, often the optimal value is quite a bit lower or
higher. We will hence try a grid of values for m. Moreover, we will try
different parameters for different datasets.

For the smallest set (10 predictors) we try all values ranging from 1 to
10. For the sets with 25 - 250 predictors we test

m ∈ {1, 5, 10, 15, 20, 25}.

The remaining sets are tested with

m ∈ {5, 10, 20, 40, 80, 120}.

Note that there exists yet another parameter to tune, namely tree depth.
However, since deep trees have low bias, and variance reduction is achieved
through tuning B and m, we will not regularize the size of the trees.

4.2 Parameter tuning for XGBoost

This part is based on sections 2.6.3 and 2.7.1, to which we refer for more
mathematical details.

Earlier we mentioned that numerous iterations M come with the ben-
efit of incrementally increasing the performance on the training data. The

21

downside was the computation cost and the risk of overfitting. However, by
using cross validation, we should be able to see when overtraining is becom-
ing an issue. Furthermore, there exists a parameter ”early stopping rounds”
that we set equal to 10. This means that the model stops if no improvement
is reached during ten consecutive iterations.

We also have the learning rate λ. Higher values of λ means faster con-
vergence. This does, however, come with a risk of not finding the values
of λ that reduce error the best, i.e not finding the global minimum of the
loss function. The standard for XGBoost is 0.3 but we will use 0.1 and thus
trade some extra computation time for extra error reduction.

Then there is the max tree depth. Larger trees as we discussed earlier
may lead to overfitting. In addition to that, there is also the computational
aspect. The default for XGBoost is a max tree depth equal to 6, however,
we will also try 2 and 10.

Furthermore, we have the parameter Γ from algorithm 4. Larger values
of Γ lead to a more conservative model less prone to overfitting. For exact
details of what this parameter does we refer to section 2.7. We are going to
try Γ ∈ {0.5, 1, 1.5}.

There exists many more parameters to regulate for XGBoost but we will
stick to using default values for other parameters than the ones mentioned
above. Indeed since we already have many datasets (with some of them
being quite large) we must consider computational aspects and stick to a
few chosen parameters of the model to tune.

The interested reader can go to XGBoost documentation [5] for more
information.

5 Results

Here we will take a look at the performance of our different models. A
discussion about why we have these results and a comparison between them
will follow in the next section.

Furthermore, for a description of the different datasets see table 2 of
section 3.1.2.

5.1 Results for Random Forest

We can see in table 3 that the highest accuracy obtained through 10-fold
cross validation was with dataset PC1055 and it was equal to 0.964. The
highest validation set accuracy was 0.991 and was again obtained with the
dataset PC1055.

22

Table 3: Highest achieved CV and validation set accuracy of random forest
for each dataset. Shown is also the final value of m, the number of variables
considered in each split, and computation time.

Dataset CV accuracy VS accuracy m Computation time

C10 0.527 0.530 2 1.8 min

C25 0.679 0.685 5 1.9 min

C50 0.814 0.811 5 3.5 min

C75 0.872 0.879 5 5.2 min

C100 0.897 0.899 5 6.9 min

C150 0.920 0.921 10 10.3 min

C200 0.924 0.933 5 13.7 min

C250 0.939 0.960 5 16.5 min

C500 0.953 0.969 5 27.5 min

C1000 0.959 0.978 10 51.2 min

C2500 0.959 0.978 20 120.4 min

C5000 0.961 0.978 10 220.3 min

PC32 0.851 0.964 5 2.3 min

PC91 0.926 0.982 5 5.8 min

PC177 0.948 0.984 5 11.0 min

PC336 0.956 0.984 10 19.2 min

PC514 0.962 0.987 5 27.6 min

PC1055 0.963 0.991 5 53.2 min

23

22.40.10.300.2

0.316.30.10.10.3

0.7016.60.30.2

0.100.123.10

0.50.10.10.417.9

Business

Entertainment

Politics

Sport

Tech

Tech Sport Politics Entertainment Business
Actual class

P
re

di
ct

ed
 c

la
ss

0

5

10

15

20

Percent

Confusion matrix with 10 fold cross validation

Figure 3: Cross validation confusion matrix using random forest. Entries
are percentual average cell counts across resamples.

1100001

175000

208500

000980

000073

Business

Entertainment

Politics

Sport

Tech

Tech Sport Politics Entertainment Business
Actual class

P
re

di
ct

ed
 c

la
ss

0

25

50

75

100

Freq

Confusion matrix for validation set

Figure 4: Confusion matrix using random forest. Predictions are made on
the validation set on data that the models were not trained on. Entries are

actual cell counts.

24

5.2 Results for XGBoost

In table 4 we see that the best accuracy for 10-fold cross validation is equal
to 0.959, which is achieved with the PC510 dataset. As for the validation
dataset, again PC510 gave the highest accuracy 0.989.

Table 4: Highest achieved CV and validation set accuracy of XGBoost for
each dataset. Displayed for each dataset is also the optimal tree depth and
the parameter Γ

.

Dataset CV accuracy VS accuracy Depth Γ Computation time

C10 0.517 0.503 10 1 2.2 min

C25 0.683 0.647 6 0.5 3.9 min

C50 0.808 0.827 6 0.5 6.9 min

C75 0.867 0.872 6 0.5 9.7 min

C100 0.881 0.899 2 0.5 12.5 min

C150 0.911 0.912 2 0.5 18.3 min

C200 0.916 0.921 10 0.5 24.3 min

C250 0.927 0.944 2 1 29.6 min

C500 0.953 0.957 2 0.5 64.1 min

C1000 0.956 0.964 2 0.5 130.4 min

C2500 0.954 0.973 2 0.5 324.5 min

C5000 0.954 0.964 2 1 639.4 min

PC33 0.842 0.928 6 0.5 4.6 min

PC87 0.925 0.948 6 0.5 11.1 min

PC174 0.947 0.980 2 0.5 20.6 min

PC338 0.952 0.978 2 1 38.8 min

PC510 0.959 0.989 2 0.5 64.3 min

PC1068 0.958 0.987 2 1 137.6 min

25

220.20.40.10.2

0.216.30.20.20.2

0.30.2170.10.2

0.20.10.122.80.1

0.60.20.10.317.7

Business

Entertainment

Politics

Sport

Tech

Tech Sport Politics Entertainment Business
Actual class

P
re

di
ct

ed
 c

la
ss

5

10

15

20

Percent

Confusion matrix with 10 fold cross validation

Figure 5: Cross validation confusion matrix using XGBoost. Entries are
percentual average cell counts across resamples.

1070202

076000

108600

000980

000073

Business

Entertainment

Politics

Sport

Tech

Tech Sport Politics Entertainment Business
Actual class

P
re

di
ct

ed
 c

la
ss

0

25

50

75

100

Freq

Confusion matrix for validation set

Figure 6: Confusion matrix using XGBoost. Predictions are made on the
validation set on data that the models were not trained on. Entries are

actual cell counts.

26

6 Discussion

6.1 Comparison between the datasets

As we can see in figure 7 as few as 10 predictors can give us a prediction
accuracy of 0.53 for random forest. After that, the results converge to a
final result sligthly above 0.95. This occurs when about 500 predictors are
used.

Another interesting result from figure 7 is that the blue dots, representing
the datasets where we choose words from all categories separately, perform
somewhat better than the red dots. Remember that the red dots mean that
the predictors were chosen to be the most commonly occurring words from
all classes. When trying the model on the validation set as seen in figure 8,
this trend becomes even clearer. For the validation set, even the blue dots
with a low number of predictors outperforms the red dots with much higher
number of predictors.

Another noteworthy trend from figures 7-10 is that when there are fewer
than 500 predictors, the difference between the red and blue dots are clearer.
This can possibly be explained by the fact that the per-category subsetting
technique guarantees important words to be included in all news categories.
These important words may be missed when subsetting from the combined
set. However, as discussed earlier, when including more and more predictors,
the different subset techniques of creating datasets start to resemble each
other more and more. This may explain why we see that the accuracy from
the red and blue dots get more similar when the number of predictors grows.

These figures indicate that the subsetting per category method is prefer-
able, especially when building less complex models.

0.6

0.7

0.8

0.9

0 1000 2000 3000 4000 5000
Amount of predictors

A
cc

ur
ac

y

Subset_technique

Combined

Per category

Time_in_minutes

50

100

150

200

CV accuracy for different sized datasets using RF

Figure 7: Cross validation accuracy, for random forest, as a function of the
number of predictors with dot size representing computation time.

27

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000 5000
Amount of predictors

A
cc

ur
ac

y Subset_technique

Combined

Per category

Validation set accuracy for different sized datasets using RF

Figure 8: Validation set accuracy, for random forest, as a function of the
number of predictors.

0.5

0.6

0.7

0.8

0.9

0 1000 2000 3000 4000 5000
Amount of predictors

A
cc

ur
ac

y

Time_in_minutes

200

400

600

Subset_technique

Combined

Per category

CV accuracy for different sized datasets using XGboost

Figure 9: Cross validation accuracy, for XGBoost, as a function of the
number of predictors with dot size representing computation time.

0.5

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000 5000
Amount of predictors

A
cc

ur
ac

y Subset_technique

Combined

Per category

Validation set accuracy for different sized datasets using XGboost

Figure 10: Validation set accuracy, fir XGBoost, as a function of the
number of predictors.

28

6.2 Comparison between Random Forest and XGboost

Suprisingly, considering the reputation of XGBoost, is that random forest
surpasses XGBoost (by a small margin) in terms of accuracy. This holds
true regarding both cross validation and validation set accuracy. And as
seen in figures 11 and 12, this phenomenon is not restricted to any particular
dataset, it is true for all of them. This observation might have to do with
our dataset being more suited for the random forest model. But on the
other hand, there are simply too many parameters to consider to state with
certainty the superiority of one method over the other. And as discussed in
sections 4.1 and 4.2, there are many more possible tuning parameters that
I have not explored.

In addition to comparing accuracy, we can also contrast the computation
time of both models. As seen in figure 11 and figure 13, the computation
time of XGBoost blows up in a way the computation time of random forests
does not. This is however somewhat expected since random forest is robust
to datasets with many predictors, as discussed in section 2.4.

0.5

0.6

0.7

0.8

0.9

0 1000 2000 3000 4000 5000
Amount of predictors

A
cc

ur
ac

y

Time_in_minutes

200

400

600

method

RF

XGboost

CV accuracy for different sized datasets

Figure 11: Cross validation accuracy as a function of the number of
predictors for random forest and XGBoost with dot size representing

computation time.

29

0.5

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000 5000
Amount of predictors

A
cc

ur
ac

y method

RF

XGboost

Validation set accuracy for different sized datasets

Figure 12: Validation set accuracy as a function of the number of
predictors for random forest and XGBoost.

0

200

400

600

0 1000 2000 3000 4000 5000
Amount of predictors

A
cc

ur
ac

y method

RF

XGboost

Computation time development for different sized datasets

Figure 13: Computation time as a function of the number of predictors for
random forest and XGBoost.

6.3 Variable importance

Our best-performing models all had an accuracy exceeding 96%. In this
section, we will discuss which variables made this classification rate possible.
Also, note that the plots of figure 14 and 15 are based on results from the
models trained on dataset PC1068 for random forest and C510 for XGBoost
(for dataset descriptions see table 2).

6.3.1 Variable importance for Random Forest

In random forest, in contrast to XGBoost, there is a more broad range of
variables that are used to create splits in the trees. This follows from the

30

fact that a random subsample of all possible predictors is used in each split.
Furthermore, as discussed in section 2.8, feature importance for random
forest is based on how much the prediction accuracy is influenced by choosing
a given feature as a predictor.

From figure 14 we can observe which variables were the most important
for each and every category.

Importance

can
election

digital
singer

computer
champion

software
labour

minister
online
music
bank

company
shares

films
firm

secretary
government

win
game

people
show
actor
said

market
party

coach
technology

users
film

20 40 60 80 100

business entertainment

20 40 60 80 100

politics
can

election
digital
singer

computer
champion

software
labour

minister
online
music
bank

company
shares

films
firm

secretary
government

win
game

people
show
actor
said

market
party

coach
technology

users
film

sport

20 40 60 80 100

tech

Figure 14: Variable importance (measured by (18)) for the different
categories using RF.

31

Many of the results in figure 14 are quite intuitive. For instance, the fre-
quencies of the words ”party”, ”election”, and ”secretary” play an important
role in deciding if the article belongs to the politics category. Likewise ”film”,
”show”, and ”actor” are key predictors for the entertainment category.

6.3.2 Variable importance for XGBoost

Before interpreting the result it is worth noting that variable importance
for XGBoost is a bit different from that of random forest. Firstly there are
three different metrics. We will however only use the one named Gain, this
represents how well the chosen predictor reduces the loss function. Secondly,
the scale is different from that in figure 14 so direct comparisons can not
be made. The interested reader can learn more about the different variable
importance choices in XGBboost documentation [5].

As with random forest, the results are quite intuitive. For instance,
shares is a word that provides useful insight into whether or not an article
belongs to the business category.

match

music

championships

season

club

game

cup

champion

win

coach

0.0 0.1 0.2 0.3 0.4
Gain

F
ea

tu
re

Sport

people

video

digital

computer

gamers

games

software

online

users

technology

0.0 0.1 0.2 0.3 0.4
Gain

F
ea

tu
re

Tech

people

company

economy

growth

analysts

economic

oil

bank

market

shares

0.0 0.1 0.2 0.3 0.4
Gain

F
ea

tu
re

Business

comedy

song

band

games

award

music

show

album

singer

film

0.0 0.1 0.2 0.3 0.4
Gain

F
ea

tu
re

Entertainment

ministers

leader

mps

said

party

government

minister

election

secretary

labour

0.0 0.1 0.2 0.3 0.4
Gain

F
ea

tu
re

Politics

Figure 15: Variable importance (measured by (18)) for the different
categories using XGBoost.

32

6.4 Performance discussion

The highest performing models reached an accuracy above 96% for both
cross validation and the validation set. This is quite a high success rate,
especially considering that the distinction between articles is not always that
clear. Sometimes in real life an article can belong both to the business and
tech categories. Also worth noting is the fact that the validation dataset got
accuracy rates higher than with 10 fold cross validation. This might suggest
that our final model is close to perfection in evaluating new data. However,
it might also mean that our models are overtrained for the validation set.
The best way to control this would be to have yet another set of observations
(testing set) to try the model on, but that is outside the scope of this thesis.

Furthermore, the final models are interpretable in terms of variable im-
portance and have been built by finding meaningful structures in the dataset.

6.5 Potential improvements

In the end, as mentioned, the finally chosen random forest and XGBoost
models reach an impressive prediction accuracy. An obvious way to increase
the accuracy even more would be to restrict the usage of the models for
certain categories, categories that are more clearly separable, i.e. excluding
the business class.

Another obvious way, as often is the case with machine learning, would
be to collect more data. The models perform well by picking up patterns,
so one can easily imagine that these patterns become even clearer with
additional observations. This would also allow us to save a test set to rule
out overtraining to the validation set as mentioned in section 6.4.

Then there is also the case of parameter choice, as discussed earlier.
Firstly there exists a larger grid of values to test, especially for XGBoost,
and there is a chance that some of them would increase accuracy somewhat
more. Secondly, the method used to obtain our final parameter values has
been grid search. One could also try random search.

Yet another possible improvement would be to modify the method for
creating the different datasets in section 3.1.2. One could for example allow
for a certain number of unique words from each category, or one could filter
for words that exist in a certain percentage of all articles from the different
categories.

7 Conclusion

As stated in the introduction the main aim of this thesis was to create
a model that could classify news with high accuracy. This was achieved
and many of the models reached a prediction accuracy as high as 95 −
96%. Furthermore, we saw that despite XGBoost’s reputation, random

33

forest actually performed better both in terms of computation time and
accuracy. We also learned that of all possible words existing in the articles,
only a few are needed as predictors in order to attain high accuracy.

References

[1] Breiman, L., Friedman, J., Olshen, R and Stone, C. (1984). Classifica-
tion and regression trees, Wadsworth, New York.

[2] Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting
system. arxiv.org/abs/1603.02754. Available at :

https://arxiv.org/abs/1603.02754

[3] D. Greene and P. Cunningham. ”Practical Solutions to the Problem of
Diagonal Dominance in Kernel Document Clustering”, Proc. ICML 2006.
Available at :

http://mlg.ucd.ie/datasets/bbc.html

[4] Hastie, T and , Tibshirani R. and Friedman, J. (2017). The Elements
of Statistical Learning. Second edition, Springer Series in Statistics,
Springer New York Inc., New York.

[5] Miriam Chou (2018). BBC-News-Classifier. Available at :

https://github.com/mijchou/NLP–BBCNewsClassifier

[6] Muren, J (2019). Classification of Music Genres with eXtreme Gradient
Boosting. Department of Mathematics, Stockholm University. Available
at:

https://www.math.su.se/publikationer/uppsatsarkiv/tidigareexamensarbeten-
i-matematisk-statistik/kandidat/kandidatarbeten-imatematisk-
statistik-2019-1.422151.

[7] XGboost documentation (2016). Available at:

https://xgboost.readthedocs.io/en/latest/.

34

