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Abstract

This study analyzes and compares which variables have the most

significant impact on football games. Four models have been cre-

ated using linear regression and different stepwise regression proce-

dures. The methods used for comparison are backward elimination,

forward selection, AIC backward elimination, and AIC forward selec-

tion. Additionally, various transformations have been applied, such as

a Yeo-Johnson transformation and others, to see if the model could be

improved to be more accurate. The model was then used to predict

the outcome and analyze which stepwise regression models gave the

best prediction. It was discovered that most of the response variables

already described the explanatory variable so well that no transforma-

tion was needed. Through various prediction tests and measurements,

it was concluded that AIC backward elimination and AIC forward se-

lection provided the best models for predicting the outcome of football

matches.
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1 Introduction

Today, there are about 240 million active football players in 200 different
countries. So it is safe to say that football has, at some point, been a part
of everyone’s life. Either you have a relative that has played, or you have
played or watched a football game yourself.

This thesis is about predicting the outcome of football games. This is
done using regression analysis. The most common parameters are investi-
gated to understand how they impact the final result. Stepwise regression
was chosen as the statistical technique used to predict the outcome of the re-
sponse variable. The thesis starts by verifying if there is any multicollinearity
or correlation between the explanatory variables by applying the variance
inflation factor (VIF) method. Then, the status of the correlation between
the explanatory variables is analyzed using a correlation plot. A correlation
plot lets you view and understand the pairwise relationship between the
variables in the dataset. The purpose is to find the best model for predict-
ing the outcome of football games. Different types of transformations and
stepwise regression techniques will be used. The stepwise regression tech-
niques implemented are backward elimination, forward selection, Akaike’s
information criterion (AIC) with backward elimination, and AIC with for-
ward selection. When the best model is found for the different stepwise
regression models, this will be used to predict all games during an entire
premier league season. When all games have been investigated, points are
handed out for the teams based on the output, and a results table containing
all the teams’ total points is created. A comparison between the predicted
outcome table to the actual outcome table for that particular season was
made. Based on this information, a conclusion is made as to which stepwise
regression technique and model gives the best prediction.

There are a lot of different parameters that may impact the final result,
such as shots on target, ball possession, corners, and much more. Hence, it
would be precious for players, coaches, and teams to have this information.
Many teams may think they have a game plan, but applying regression anal-
ysis can determine which aspects are the most important. This information
will not just be highly relevant to active footballers but also for people bet-
ting and commentating on football since this gives a better understanding
of the game.

The thesis is divided into five main sections. The Introduction summa-
rizes this thesis’ methods and main results. The Theory section consists of
the mathematical models and tools utilized. The Data section deals with
the dataset and eventual transformations that are used. The Analysis and
Results section contains calculations and implementations of the theories.
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The Discussion section discusses the results and explains what has been
accomplished in the thesis.

2 Theory

2.1 Linear regression

When applying the simplest form of linear regression, certain assumptions
must be met to keep processing the data. These assumptions include:

- The observations must be independent

- The residuals in the model must follow a normal distribution

- The variance in the residuals must be constant.

2.1.1 Simple linear regression

Simple linear regression is defined as follows (Alm & Britton, 2008, Ch. 9.2,
page 424):

Let x1, ..., xn be given (non-random) quantities. Assume further that
Y1, ...Yn are independent random variables with common variance σ2 and
that µi = E(Yi) is given by µi = α + βxi. Then a simple linear regres-
sion model has been obtained. The quantity x is called the regressor or
explanatory variable and the random variable Y (or its observed value y)
is the response variable. The ”expected value line” y = α + βx is called
the theoretical regression line, α is called the intercept and β is the slope
coefficient.

An alternative way of defining the model above are as follows:

Yi = α+ βxi + ϵi, i = 1, ..., n (1)

where ϵi, i = 1, ..., n, is independent with E(ϵi) = 0 and V (ϵi) = σ2.

2.1.2 Multiple linear regression

If it were to be a case that several explanatory variables could affect the
response variable, then a multiple linear regression model can be applied.
This model is defined as follows (Alm & Britton, 2008, Ch. 9.3, page 442):

Let x = (x1, ..., xk) be given (non-random) vectors of dimension k (xi =
(x1i, ..., xki)). Assume further that Y1, ..., Yn are independent random vari-
ables with common variance σ2 and that µi = E(Yi) is given by µi =
α + β1x1i + ... + βkxki. Then a multiple linear regression model was ob-
tained.
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An alternative way of defining the model above is as follows:

Yi = α+ β1x1i + ...+ βkxki + ϵi, i = 1, ..., n, (2)

where ϵi, i = 1, ..., n, are independent with E(ϵi) = 0 and V (ϵi) = σ2.

2.1.3 Estimates

The unknown parameters α and β can be estimated by applying the least-
squares method to data. This means minimizing the sum of the squares of
the residuals (Andersson et al., 2019, Ch 2):

n∑
i=1

(Yi − α− β1x1i − β2x2i − ...− βkxki)
2 (3)

Put Ȳ =
∑

i Yi/n and x̄j· =
∑

i xji/n for sample averages of the obser-
vations and the j:th predictor variable respectively. Let α̃ = α+ x̄j·β be the
centered intercept, X = (xT1 , . . . , x

T
n )

T the design matrix, S = XTX, and
Y = (Y1, . . . , Yn)

T the observational vector. According to Sundberg (2021,
Ch 3.2, page 80), the following estimates for the multiple regression model
have been acquired:

β̂ = S−1XTY, β̂ ∼ N(β, σ2S−1) (4)

ˆ̃α = Ȳ , ˆ̃α ∼ N(α̃, σ2/N) (5)

α̂ = ˆ̃α−
∑
j

β̂j x̄j., (6)

σ̂2 =
1

n− k − 1

n∑
i=1

(Yi − Ȳ −
k∑

j=1

β̂j(xij − x̄j.))
2, (7)

(n− k − 1)σ̂2/σ2 ∼ χ2(n− k − 1), (8)

where N(µ, σ2) refers to a normal distribution with mean µ and variance
σ2, whereas χ2(f) is a chisquare distribution with f degrees of freedom.

2.2 Hypothesis testing

It is important to know how much the explanatory variables x1i, ..., xki affect
the response variable Yi. This means that a hypothesis test must be formu-
lated, or a so-called t-test for βj where j = 1, ..., k and k is the number of
regression parameters. For instance, suppose the following null hypothesis
is to be tested (Alm & Britton, 2008, Ch 7.4):

H0 : θ = θ0 (9)
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against the alternative hypothesis

H1 : θ ̸= θ0 (10)

If the test confirms a systematic departure from H0, then H0 is rejected in
favor of H1. It is then usually said that θ is significantly different from θ0.

In Ninorta Malki’s bachelor thesis (Malki, 2022) a t-test is described as
follows: Suppose Z ∼ N(0, σ2Ik), where Ik is an identity matrix of order
k. Then β̂ = β + (XTX)−1XTZ. The conclusion is then drawn that β̂ ∼
N(β, σ2(XTX)−1). This further leads to the test statistic

T =
β̂i − βi√
V̂ (β̂i)

=
β̂i − βi
σ̂
√
cii

, (11)

where cii is the j:th diagonal element of (XTX)−1. Finally we have have
the test statistic

T =
β̂i − βi

σ̂
√

((XTX)−1)ii
∼ t(n− k), (12)

where t(f) is a t-distribution with f degrees of freedom. Since σ2 is rarely
known, the estimated value σ̂2 of equation (7) is used. Due to the null
hypothesis, this is a two-sided test. There will be a rejection of the null
hypothesis when |T | ≥ tα/2(n−k) at the significance level α, with tα(f) the
1 − α quantile of a t distribution with f degrees of freedom. This means
that the p-value P (|T | ≥ |t||H0) is the probability that the observed value t
of T is at least as extreme of an outcome as the sample obtained when the
null hypothesis is true.

2.3 Adjusted measures

2.3.1 Coefficient of determination

The most common model adaptation measures in connection with linear
models in general and multiple regression models, in particular, is the so-
called degree of explanation R2. The degree of explanation can be defined as
the proportion of the total variation that the model ”explains.” If the total
variation, as usual, is indicated by the total sum of squares (TSS), the (total
squared variation around the total mean), then the proportion of explained
variations is the sum of squares ratio

R2 =
ESS

TSS
= 1− RSS

TSS
, (13)

where RSS is the residual sum of squares of equation (7). When adding an
x-variable to a model, R2 always increases. To see if it pays off to add a
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variable, one may look at whether σ̂2 decreases. If this is the case, it can
then be interpreted as if there is less unexplained variation left in the model.
One such measure is what is called the adjusted R2, from now on referred to
as R2

adj . R
2
adj measures precisely how much variance reduction is achieved

in the current model. An explicit formula is

R2
adj = 1− σ̂2

σ̂20
, (14)

where σ̂20 = TSS/(n − 1) is the σ2-estimate when one does not have any
x-variable in the model (Sundberg, 2021, Ch. 3.2, page 89).

2.4 Multicollinearity

2.4.1 Variance inflation factor

The variance inflation factor, also called VIF, is the variance inflation which
means that collinear variables can be strongly significant together in one
model but individually non-significant in the same model. This measure is
first described by looking at V ar(β̂j) for a single regression coefficient βj . If

S is invertible with inverse S−1, then V ar(β̂j) is expressed as follows:

V ar(β̂j) = σ2(S−1)jj =
σ2

sjj
VIF, (15)

where sjj is the j:th diagonal element of S. Here the first of the two factors

is the variance of β̂j one would have in a simple linear regression of y on
xj , or if xj had been orthogonal to all the other x−variables and the second
terms is the VIF factor. The VIF factor can be calculated as

VIF =
1

1−R2
j

, (16)

where R2
j stands for the degree of explanation that indicates how much the

other x−variables explain the variation in xj . The VIF factor thus expresses
according to (16)-(17) how much larger the variance of the least-squares
estimate β̂j is in the presence of the other regression terms than it would
have been if the variable xj had been the only predictor variable or at least
would be orthogonal to the others (Sundberg, 2021, Ch 3.2, page 94).

2.4.2 Correlation

Assume that two explanatory variables of a system have the measured values
xi and yi, i = 1, 2, ..., n. The correlation coefficient is defined as

rxy =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
, (17)
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where x̄ and ȳ are the means of xi and yi, respectively.

According to Cauchy-Schwarz’ inequality one has −1 ≤ rxy ≤ 1 and
there is a linear relationship between the variables if and only if rxy = ±1
(Tambour, 2022).

2.5 Variable selection methods

Regression analysis often has a large set of potential explanatory variables.
On the other hand, problems often arise, such as how many and which of
them you should include in your regression model. To solve this problem,
several stepwise procedures are in use. This means that one successively
either increase or decrease the number of variables, one at a time, until a
stop criterion is met (Sundberg, 2021, Ch. 3.2, page 91).

The different types of stepwise variable selection models that will be used
in this thesis will now be explained.

2.5.1 Backward elimination

The backward elimination procedure is based on the model that includes
all k variables. One variable at a time is excluded until the procedure
stops. In each step, the hypothesis βj = 0 is tested by means of a t-test
(11) for all the remaining x-variables xj . For this thesis, the most classical
stopping criterion will be used. All remaining parameters βj are individually
different from zero when tested at a pre-selected significance level. If one
or more variables are not significant, the variable with the highest p-value
is eliminated. The same applies for the variable whose exclusion gives the
highest coefficient of determination R2 (Sundberg, 2021, Ch 3.2, page 92).

2.5.2 Forward selection

This class of procedures starts with the model completely without x-variables,
ie µi = α for i = 1, ..., n. The model is extended by adding one variable at a
time. In each step, the current model consists of those explanatory variables
that have been included so far. The method then includes, by means of a
t-test, the ”most significant” variables outside the model as long as any such
variable is significant on a pre-specified significance level (Sundberg, 2021,
Ch 3.2, page 93).

2.5.3 Akaike information criterion

Akaike’s Information Criterion (AIC) measures how well a model fits the
data set without adding too many explanatory variables. The model with
the lowest AIC score is the most suitable model to use. For example, let

10



ψ denote the entire parameter vector. Then AIC is defined by (Sundberg,
2021, Ch 6.8, page 275):

AIC = −2 logL(ψ̂) + 2 dim(ψ), (18)

where L is the likelihood function. In this thesis, AIC is combined with
backward elimination and forward selection, where variables will be added
or removed precisely as described above in sections 2.5.1-2.5.2.

2.6 Transformations

In section 2.1 on linear regression, some assumptions have been described
that must be met to keep processing the data. However, problems can
arise if these assumptions are not met. One example is that the functional
relation between explanatory and response variable is not linear. In some
cases, these issues can be solved by transforming either the response variable
or the explanatory variables. Still, in some cases, a transformation of both
the response variable and the explanatory variables may be needed.

The transformations used in the thesis, as well as their application will
now be described.

2.6.1 Log transformation

One of the most common methods is log transformation. Assume the mul-
tiplicative model

Y = αeβxϵ, (19)

where the error term ϵ enters in a multiplicative fashion. Through a log
transformation, the model in (19) is converted to an additive model

log Y = logα+ βx+ log ϵ, log ϵ ∼ N(0, σ2). (20)

Due to the logarithms, the multiplicative model is transformed into a simple
linear regression model (Sundberg, 2021, Ch 3.3, page 108).

2.6.2 Box Cox transformation

The one-parameter family of Box-Cox transformations is defined as

y
(λ)
i =


yλi − 1

λ
if λ ̸= 0,

log yi if λ = 0,

and the two-parameter family of Box-Cox transformations as

y
((λ1,λ2))
i =


(yi + λ2)

λ1 − 1

λ1
if λ1 ̸= 0,

log(yi + λ2) if λ1 = 0.
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Moreover, the first family of transformations are defined for yi > 0,
and the second one for yi > −λ2. The parameter λ is estimated using the
profile likelihood function and goodness-of-fit tests (Box and Cox, 1964, ”An
analysis of transformations”).

2.6.3 Yeo-Johnson power transformation

The Yeo-Johnson power transformation is an extended version of the Box-
Cox transformation that handles zero and negative values of y. λ can be
any real number, where λ = 1 gives rise to the identity transformation. The
transformation law reads as follows (Yeo and Johnson, 2000):

y
(λ)
i =


((yi + 1)λ − 1)/λ if λ ̸= 0, y ≥ 0,

log(yi + 1) if λ = 0, y ≥ 0,

−((−yi + 1)(2−λ) − 1)/(2− λ) if λ ̸= 2, y < 0,

− log(−yi + 1) if λ = 2, y < 0.

(21)

2.7 Predictions

2.7.1 Mean squared error of prediction

For the chosen model, the prediction error should be as low as possible. One
way of expressing this is to use the Mean Squared Prediction Error (MSEP),
the average value of the squared difference between the response variables
and their predictions. The observation i is temporarily removed from the
data. The regression is then done without observation i, with the predicted
value ŷ−i where the notation −i is used to indicate that observation i has
been omitted. This is done to predict the value yi. The prediction error is
calculated as yi − ŷ−i. The prediction measure is then given by (Sundberg,
2021, Ch 3.2, page 90):

MSEP =
1

n

n∑
1

(yi − ŷ−i)
2. (22)

It should also be mentioned that the lower the value of MSEP is, the more
adapted the dataset is to the regression model.

3 Data

The data used for this thesis is obtained from the website FootyStats.
FootyStats is the premier football stats and analysis site, with data cov-
erage of 1000+ football leagues worldwide, including the UK, Europe, and
South America (FootyStats, 2022). The data obtained consists of all the
teams’ matches for the premier league season 2018-2019. As there are 20
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playing teams in the premier league, and all teams play 38 games over a
season, this generates 380 rows of the xlsx file, one for each game. The
data contains a lot of variables from football matches. In addition, it also
includes several different betting sites’ odds before the games, the number
of spectators, the name of the referee that judged, and a lot more that adds
up to a total of 64 columns. However, these will not be used since the focus
is on which variables determine the outcome of the match on the field and
not other external effects.

3.1 Description of used variables

The variables that will be used for the project are the following:

13



Table 1: The variables of each game used in this thesis and their description.

Variable name Variable description Variable type

home team name Name of the home team Character

away team name Name of the away team Character

home ppg Points Per Game for Home Team -
Current

Float

away ppg Points Per Game for Away Team -
Current

Float

home team goal count Number of goals scored by the home
team

Integer

away team goal count Number of goals scored by the away
team

Integer

home team goal count half time Number of goals scored by the home
team by half-time

Integer

away team goal count half time Number of goals scored by the away
team by half-time

Integer

home team corner count Home Team corner count Integer

away team corner count Away Team corner count Integer

home team yellow cards Number of yellow cards for home
team

Integer

away team yellow cards Number of yellow cards for away
team

Integer

home team red cards Number of red cards for home team Integer

away team red cards Number of red cards for away team Integer

home team shots Total number of shots for home
team

Integer

away team shots Total number of shots for away team Integer

home team shots on target Total number of shots on target for
home team

Integer

away team shots on target Total number of shots on target for
away team

Integer

home team fouls Total number of fouls for home team Integer

away team fouls Total number of fouls for away team Integer

home team possession Total number of shots for home
team

Integer

away team possession Total number of shots for away team Integer

14



3.2 Variable transformation & Final dataset

To analyze each match and draw conclusions, a transformation of data is
needed. This is done by calculating the difference between each pair of
parameters of Table 1 (except for the names of the teams) for each match.
Thus, differences of all variables are formed, subtracting the away team from
the home team, reducing the number of columns from 22 to 10. After all
these differences have been formed, the final dataset contains the following
variable names, with the following meaning:

15



Table 2: Final set of variables of each game, used in this thesis.

Variable
name

Variable transformation Variable description

scorediff home team goal count −
away team goal count

Response variable that indicates the
goal difference

sd home team shots− away team shots Discrete variable indicating shot dif-
ference

td home team shots on target −
away team shots on target

Discrete variable indicating the
shots on target difference

fd home team fouls− away team fouls Discrete variable indicating foul dif-
ference

cd home team corner count −
away team corner count

Discrete variable indicating corner
difference

yd home team yellow cards −
away team yellow cards

Discrete variable indicating yellow
card difference

rd home team red cards −
away team red cards

Discrete variable indicating the dif-
ference in the number of red cards

hd home team goal count half time −
away team goal count half time

Discrete variable indicating the half
time result difference

ppgd home ppg − away ppg Continuous variable indicating the
average point per game difference

pd home team possession −
away team possession

Variable indicating the possession
difference in percentage. It is dis-
crete, as it can only attain values
between 0 and 100

4 Analysis and Results

The models created through different stepwise regression methods will be
presented and used to predict upcoming football games. In this way, a
conclusion can be drawn about which model and method gives the best
result in comparison with the actual result.

4.1 Simple linear regression

Simple linear regression is applied to explore whether a linear relationship
between the individual explanatory variables is present. These values are
presented below in the form of a table where the most important aspects
are included.
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Table 3: Coefficient of determination (R2) for all explanatory variables of
Table 2, against the response variable, when simple linear regression is used.

Explanatory variable R2 p-value

sd 0.1887 < 2e-16

td 0.3876 < 2e-16

fd 0.002089 0.3743

cd 0.02467 0.002135

yd 0.01061 0.0448

rd 0.01404 0.002089

hd 0.5151 < 2.2e-16

ppgd 0.3724 < 2.2e-16

pd 0.08916 2.892e-09

From Table 3, the only variable that is not significant is fd (foul dif-
ference) when applying simple linear regression. On the other hand, by
looking at the R2 values, it can be seen that variables such as td (shots on
target difference), hd (halftime score difference) and ppgd (points per game
difference) have an enormous influence on the response variable scorediff.

4.2 Multicollinearity

A strong relationship between the explanatory variables and the response
variable, but not between the explanatory variables among themselves, is
preferable. Therefore, in order to check correlations between all pairs of
variables, correlation coefficients are provided in Table 4.
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Table 4: Correlation coefficients between all pairs of variables.

scorediff sd td fd cd yd rd hd ppgd pd

scorediff 1.00 0.43 0.62 -0.05 0.16 -0.10 -0.12 0.72 0.61 0.30

sd 0.43 1.00 0.81 -0.15 0.65 -0.19 -0.15 0.26 0.54 0.60

td 0.62 0.81 1.00 -0.08 0.51 -0.16 -0.09 0.41 0.57 0.60

fd -0.05 -0.15 -0.08 1.00 -0.08 0.30 0.05 -0.08 -0.16 -0.25

cd 0.16 0.65 0.51 -0.08 1.00 -0.18 -0.08 0.01 0.43 0.58

yd -0.10 -0.19 -0.16 0.30 -0.18 1.00 0.04 -0.12 -0.11 -0.16

rd -0.12 -0.15 -0.09 0.05 -0.08 0.04 1.00 -0.04 -0.01 -0.10

hd 0.72 0.26 0.41 -0.08 0.01 -0.12 -0.04 1.00 0.47 0.13

ppgd 0.61 0.54 0.57 -0.16 0.43 -0.11 -0.01 0.47 1.00 0.67

pd 0.30 0.60 0.50 -0.25 0.58 -0.16 -0.10 0.13 0.67 1.00

From Table 4, it can be seen that there is a very high correlation between
sd and td and a reasonably high correlation between, for instance, ppgd and
pd and cd and sd.

The degree of multicollinearity that arises depends entirely on which
question is asked. For example, how many observations there are, the size
of the estimated effects, and how much variable these estimates are. A sign
of a small degree of multicollinearity is a low standard error for the estimated
effect parameters. One can also measure the degree of multicollinearity in
other ways by, for example, calculating VIF values. VIF provides a value for
multicollinearity between the independent variables in multiple regression.
A VIF value of 1 means no correlation between an explanatory variable and
the other explanatory variables in the model. A VIF value in the range 1−5
indicates an amount of correlation between explanatory variables but it is
often insufficient to implement a change in the model (i.e. removal of some
explanatory variables). A VIF value higher than 5 means a high correlation
between the explanatory variables (Sundberg, 2021, page 95). First of all
a calculation of VIF for the independent variable sd is done by fitting a
multiple regression model

sd ∼ td+ fd+ cd+ yd+ rd+ hd+ ppgd+ pd, (23)

and then applying (16). Then the same is done for the other independent
variables. This gives the following values:
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Table 5: Values of the Variance Inflation Factor (VIF) for all explanatory
variables.

sd td fd cd yd rd hd ppgd pd

4.03 3.42 1.18 2.07 1.15 1.04 1.62 2.66 2.61

One can see from Table 5 that each explanatory variable exhibits a rela-
tively low value of VIF, with no numbers above 5. In line with the previous
correlation table (Table 2), the variables sd and td have the highest VIF.

4.3 Modeling

Since all explanatory variables’ VIF values were lower than 5, all explanatory
variables are kept. Thus, the whole model, including outliers, will be as
follows:
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Figure 1: Residual and QQ-plots for the fit of model 1 of equation (24).

Model 1 is given by:

scorediffi = α+ β1sd+ β2td+ β3fd+ β4cd+ β5yd
+ β6rd+ β7hd+ β8ppgd+ β9pd+ ϵi, i = 1, . . . , 380.

(24)

From Figure 1 it seems that the residuals are normally distributed with
a constant variance. A log-transformation of the response variable was also
tried, with no further success. Even though it can be seen below that there
is constant variance and normally distributed data, the adjusted coefficient
of determination R2

adj is 0.5244 for the log-transformation, which indicates
that there are many less significant explanatory variables not included in
the model.
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Figure 2: Residual and QQ-plots for the fit of a model where the response
variablescorediffi of equation (24) is log-transformed

On the other hand, from Figure 3 it can be seen that a Yeo-Johnson
transformation of the response variable gave much better results than the
log transformation did.
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Figure 3: Residual and QQ-plots for the fit of a model where a Yeo-Johnson
transformation (21) is applied to the response variable scorediffi of equation
(24).

However, R2
adj is marginally higher for the original, untransformed data.

This is not so unreasonable as the explanatory variables seem to explain the
response variable in a linear way. For this reason, in the sequel we will only
consider untransformed response variables.

Variable selection aims to find the best model for predicting football
results, which is now known to be based on the initial model (24) without any
transformations of variables. The goal is to find the explanatory variables
that correspond to the highest value of the adjusted R2. Therefore, finding
the best models for each stepwise regression method can begin.
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The AIC has a lower threshold for including additional explanatory vari-
ables compared to the backward elimination and forward selection with a
p-value threshold of 0.1. Therefore different results can be obtained to see
which types of thresholds work the best.

Assume the initial and maximal model (24) is used. Then, after a fit of
this multiple regression model to data, the following table is obtained.

Table 6: p-values for the estimated effect parameters of all explanatory
variables of the linear multiple regression model (24).

Explanatory variable p-value

sd 0.16950

td 9.67e− 14

fd 0.17050

cd 0.01491

yd 0.90791

rd 0.00276

hd < 2e− 16

ppgd 4.05e-10

pd 0.21407

4.3.1 Forward selection model

When forward selection is performed, the procedure begins by selecting the
most significant variable (hd). This process is ongoing until the most sig-
nificant explanatory variable no longer has a p-value under 0.1 (or that the
adjusted R2 decreases). This is illustrated below:

Model 1:
scorediffi = α+ β7hd+ ϵi, i = 1, ...380 (25)

Model 2:

scorediffi = α+ β2td+ β7hd+ ϵi, i = 1, ...380 (26)

Model 3:

scorediffi = α+ β2td+ β7hd+ β8ppgd+ ϵi, i = 1, ...380 (27)

Model 4:

scorediffi = α+ β2td+ β4cd+ β7hd+ β8ppgd+ ϵi, i = 1, ...380 (28)
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Model 5:

scorediffi = α+ β2td+ β4cd+ β6rd
+ β7hd+ β8ppgd+ ϵi, i = 1, . . . , 380.

(29)

Model 6:

scorediffi = α+ β2td+ β4cd+ β6rd
+ β7hd+ β8ppgd+ β9pd+ ϵi, i = 1, . . . , 380.

(30)

Where the following plot can show the progress:

Figure 4: Forward selection: Adjusted R2 as a function of the number of
included explanatory variables, showing an improvement for each step.

4.3.2 Backward elimination model

Backward elimination is based on the initial model (24) and then the ex-
planatory variables are reduced one by one until all remaining explanatory
variables are significant. To get a stopping criterion and see for how long
the model fit can be improved, a limit is set so that all included variables
in the final model must have a p-value below 0.1, when testing whether or
not they should be removed. The steps are illustrated below:

Model 1 is given by equation (24).

Model 2:

scorediffi = α+ β1sd+ β2td+ β3fd+ β4cd+ β6rd
+ β7hd+ β8ppgd+ β9pd+ ϵi, i = 1, . . . , 380.

(31)
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Model 3:

scorediffi = α+ β1sd+ β2td+ β3fd+ β4cd+ β6rd
+ β7hd+ β8ppgd+ ϵi, i = 1, . . . , 380.

(32)

Model 4:

scorediffi = α+ β2td+ β3fd+ β4cd+ β6rd
+ β7hd+ β8ppgd+ ϵi, i = 1, . . . , 380.

(33)

The following plot shows the progress of the backward elimination method:

Figure 5: Backward elimination: Adjusted R2 as a function of the number
of removed explanatory variables, showing a slight decrease for each step.
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Even though the adjusted R2 is decreasing in each step, the decrease
is so marginal that no action is taken, i.e. the model with six remaining
explanatory variables is regarded as the best one.

4.3.3 AIC forward selection model

Unlike traditional forward selection, AIC forward selection is based on adding
the explanatory variable that lowers the AIC the most. This process contin-
ues until no explanatory variable is left that can lower the AIC-value. The
following sequence of models is obtained:

Model 1:
scorediffi = α+ β7hd+ ϵi, i = 1, ...380 (34)

Model 2:

scorediffi = α+ β2td+ β7hd+ ϵi, i = 1, ...380 (35)

Model 3:

scorediffi = α+ β2td+ β7hd+ β8ppgd+ ϵi, i = 1, ...380 (36)

Model 4:

scorediffi = α+ β2td+ β4cd+ β7hd+ β8ppgd+ ϵi, i = 1, ...380 (37)

Model 5:

scorediffi = α+ β2td+ β4cd+ β6rd
+ β7hd+ β8ppgd+ ϵi, i = 1, . . . , 380.

(38)

Model 6:

scorediffi = α+ β2td+ β4cd+ β6rd
+ β7hd+ β8ppgd+ β9pd+ ϵi, i = 1, . . . , 380.

(39)

Model 7:

scorediffi = α+ β2td+ β3fd+ β4cd
+ β6rd+ β7hd+ β8ppgd+ β9pd+ ϵi, i = 1, . . . , 380.

(40)

These models’ successively reduced AIC-values are shown below:
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Figure 6: AIC-values based on forward selection, as a function of the number
of included explanatory variables.

4.3.4 AIC backward elimination model

Like the previous model, AIC backward elimination aims to obtain the low-
est possible AIC value. On the other hand, it starts with the full model
(24), just as in the case of backward elimination, and then removes explana-
tory variables that lower the AIC the most, one by one, until no further
improvement is attained. Referring to (24) as Model 1, the following results
are obtained:

Model 1 is given by equation (24).

Model 2:

scorediffi = α+ β1sd+ β2td+ β3fd+ β4cd
+ β6rd+ β7hd+ β8ppgd+ β9pd+ ϵi, i = 1, . . . , 380.

(41)

Model 3:

scorediffi = α+ β1sd+ β2td+ β3fd+ β4cd
+ β6rd+ β7hd+ β8ppgd+ ϵi, i = 1, . . . , 380.

(42)

The following plot illustrates the progress of AIC backward elimination:
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Figure 7: AIC-values based on backward elimination, as a function of the
number of removed explanatory variables.

4.4 Prediction

Training data for the premier league season 2018-2019 has been used to
fit the best multiple linear regression model (2) for predicting upcoming
games. Therefore, data for the next season, 2019-2020, has been chosen
for validation. The predicted score difference Ê(Yi) = µ̂i = α̂ + β̂xi as a
function of the explanatory variables xi of each game i of the validation set,
was computed for each model. This will generate a predicted score difference
µ̂i for each game i. If this score difference has a value over 0.5, then 3 points
are given to the home team. If the score difference is below −0.5, 3 points
are provided for the away team. Anything in between will generate 1 point
for both teams. When this is done for all teams over the whole season, each
team will have a cumulative predicted sum, which is compared to the actual
sum for every team for that particular season 2019-2020. Thus, a conclusion
can be made about which method gives the best prediction.

When subtracting each team’s actual number of points from the pre-
dicted number of points during the whole season, the following results are
obtained:
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Table 7: Sum of the differences between actual and predicted number of
points during the whole season 2019-2020. The table displays the sum of
the differences for all 20 teams.

Method Total sum diff

Backward elimination 8

Forward selection 4

AIC Backward elimination 8

AIC Forward selection 1

The table above does not show how accurate each model’s prediction
is since one team might have too few points predicted in some games, and
too many points predicted in others, and still these prediction errors cancel
out during a whole season. However, these total score differences of Table
7 give a glimpse of which model might be the best. Furthermore, since the
total amount of points can vary from season to season depending on how
many games result in a draw and two points are handed out, and how may
games result in a win and 3 points are given, this shows that a total score
difference of 1 for the AIC forward selection is very good and indeed, Table
7 indicates that all four methods make very good predictions.

An additional prediction measure was made to see how well all the dif-
ferent methods predicted each game. For this, the actual result for each
game was compared with the predicted outcome. This could be seen in how
many of all 380 games were predicted correctly. The result can be seen in
Table 8.

Table 8: The number and fraction of all 380 games during 2019-2020 that
were predicted correctly.

Method Correct predictions Percentage

Backward elimination 267 70.26%

Forward selection 268 70.53%

AIC Backward elimination 268 70.53%

AIC Forward selection 270 71.05%

Thus, the AIC forward selection model has a slight advantage over the
models obtained from the other methods, but the difference is so minimal
that it is almost impossible to draw any firm conclusions.
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4.4.1 Forward selection prediction

The estimated effect parameters β̂j for all the explanatory variables xj are
as follows:

Table 9: The estimated effect parameters for all explanatory variables of the
forward selection model

Explanatory variable Estimate

td 0.179

cd −0.047

rd −0.461

hd 0.714

ppgd 0.716

pd −0.006

Based on Table 9 and the estimated intercept, the difference between
the actual total score and predicted total score of each team will look like
the following:

Figure 8: Actual and predicted total scores for forward selection.
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4.4.2 Backward elimination prediction

When applying the backward elimination the estimated effect parameters
are the following:

Table 10: The estimated effect parameters for all explanatory variables of
the backward elimination model

Explanatory variable Estimate

td 0.174

cd −0.056

fd 0.023

rd −0.442

hd 0.741

ppgd 0.620

Based on Table 10 and the estimated intercept, the difference between
the actual and predicted total scores of all teams will look like the following:

Figure 9: Actual and predicted total scores of all teams for backward elim-
ination.
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4.4.3 AIC forward selection prediction

When applying the AIC forward selection method we get the following result:

Table 11: The estimated effect parameters for all explanatory variables of
the chosen AIC forward selection model

Explanatory variable Estimate

td 0.177

cd −0.048

fd 0.019

rd −0.468

hd 0.719

ppgd 0.713

pd −0.005

Using the estimated intercept and the estimated effect parameters of
table 11, a comparison between the actual and predicted total scores of each
team can be seen below

Figure 10: Difference between the actual and predicted total score of each
team, based on AIC forward selection.

32



4.4.4 AIC backward elimination prediction

The estimated effect parameters for the explanatory variables when using
AIC backward elimination are the following:

Table 12: The estimated effect parameters for all explanatory variables of
the AIC backward elimination model

Explanatory variable Estimate

sd 0.028

td 0.203

cd −0.045

fd 0.021

rd −0.478

hd 0.734

ppgd 0.634

The estimated intercept and the estimated effect parameters of table 12
have then been used to generate the following figure:

Figure 11: actual and predicted total scores of all teams when using AIC
backward elimination.

33



4.5 Msep & Rmsep

For a good model, one prefers as low a prediction error as possible. To
measure this error, the mean squared prediction error (22) of the different
models can be computed, which is the average value of the square difference
between the response variables and their predictions. The RMSEP is de-
scribed as the square root of the MSEP. The values for these will be shown
below for the full model (24), the four different stepwise regression models
and the simple linear regression models with only one explanatory variable.

Table 13: MSEP and RMSEP values for a number of simple and multiple
linear regression models.

Model Msep Rmsep

Scorediff ∼ sd 2.998918 1.731738

Scorediff ∼ td 2.263850 1.50461

Scorediff ∼ cd 3.602648 1.898064

Scorediff ∼ fd 3.689317 1.92076

Scorediff ∼ yd 3.655647 1.911975

Scorediff ∼ rd 3.644002 1.908927

Scorediff ∼ hd 1.792453 1.338825

Scorediff ∼ ppgd 2.318299 1.522596

Scorediff ∼ pd 3.367239 1.835004

Backward elimination 1.173330 1.083204

Forward selection 1.172982 1.083043

AIC forward selection 1.172489 1.082816

AIC backward elimination 1.170806 1.082038

The full model (24) 1.180037 1.086295
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5 Discussion

When evaluating all the different plots and comparing the actual results
to the predicted, it could be seen that the AIC backward elimination and
AIC forward selection methods gave the models with best predictive perfor-
mance. This can be expected since the lowest MSEP and RMSEP values
were obtained with the AIC backward elimination and AIC forward selection
methods.

When evaluating the results one can see that all methods have similar
performance. One of the reasons why the AIC generated better results
could be that the AIC selects a larger model than hypothesis tests since
the penalty term of AIC corresponds to a smaller threshold for including
new explanatory variables than the hypothesis tests’ cutoff at a p-value of
0.1. Therefore more variables can be included in the AIC-based models,
which could be the reason for the lower MSEP values. However, it is hard
to conclude whether backward or forward selection works best. One of
the reasons why the backward elimination and forward selection methods
have similar performance is the fact that when the explanatory variables are
independent, the two methods will provide the same result.

Something that can be said about the four different model selection
methods is that they all give a better prediction than the original full model
(24), containing all explanatory variables. However, it can be concluded
that the full model (24) still seems to provide decent predictions. As dis-
cussed earlier, hd, td, and ppgd seem to be the best explanatory variables in
predicting and evaluating the most critical aspects of a game. This makes
very much sense since halftime results tend to have a massive impact on the
final result. The same is for the shots on target difference. The more shots
a team has on target, the greater are the chances for that team to win. Fur-
thermore, the average number of points per game difference indicates how
big a favorite a team is before the game. And that also turned out to be an
important factor for predicting how the game will end, in agreement with
the fact that favorites very often tend to win.

5.1 Possible future enhancements

It is generally and inherently hard to predict the outcomes of football games
since there is a tiny margin between a win and a draw, and that may be one
of the most prominent reasons why some teams had worse predictions than
others. In football, you can win a game by only taking one shot, and this
may affect the accuracy of the predicted outcomes. The same applies for
more passive teams. Some teams are satisfied with a one-goal win, and others
strive to win by a lot. This can as well lead to misleading predictions. Thus,
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it is hard to predict the actual results with good accuracy since so little can
make the difference between a win and a loss. This can be seen in Figures
8-11. The predictions for the worse teams that probably had the lowest
amount of shots, ball possession, etc., had much lower predicted total scores
than their actual total scores. But the two AIC models resulted in better
predictions than the other two models, and this may reflect that the larger
AIC-models (obtained with lower thresholds to include more explanatory
variables) might capture these tiny margins.

Another thing that can be said is that it was challenging to find good
data. Many websites have some good statistics, but either one has to pay
for it, or it is not possible to download. But most websites barely contain
anything of value at all. Hence it would have been interesting to have more
than 10 observations to see if this could positively affect the prediction. This
thesis has only treated the aspects that the players can affect themselves but
no external features. Hence one might want to look at how well the teams
perform on rainy days versus sunny days and are some teams better when
the games are played on normal grass or artificial grass.

We also tried to have data sets with a larger number of games and more
explanatory variables, in order to see if this increases prediction accuracy.
If scorediff has a value over 0.5, then 3 points are given to the home team.
If it is below -0.5, 3 points are given to the away team and everything in
between results in 1 point each. However, one exciting aspect would be
to change this value of 0.5 to see if better predictions were obtained for the
outcomes of games. But it turned out that this was barely not the case. One
thought that changing the value in favor of the away team might provide an
even better result since these teams have a disadvantage of being the away
team and tend to be less dominant in the aspects that have been taken into
account. But the best predictions were obtained when we assigned a draw
for score differences between 0.5 and -0.5.
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6 Appendix

Figure 12: Pairs plot for the full model (24).

The pairs plot above shows the pairwise dependence, in terms of scatter
plots, between the response and explanatory variables of the full model (24).
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Figure 13: QQ-plots for the residuals of the full model (24), excluding out-
liers.

It can be seen on Figure 14 that when removing outliers, the fit of a
normal distribution to the residuals gets worse.

Table 14: Sum of the differences between actual and predicted total scores,
for all teams during the 2018-2019 season.

Method Total sum diff

Backward elimination 14

Forward selection 15

AIC Backward elimination 18

AIC Forward selection 14

Showing the difference for each method when subtracting the predicted
points with the actual points for each team over a whole season:
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Figure 14: Difference between the actual and predicted total scores for each
team over the 2019-2020 season using backward elimination

Figure 15: Difference between the actual and predicted total scores for each
team over the 2019-2020 season using forward selection
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Figure 16: Difference between the actual and predicted total scores for each
team over the 2019-2020 season using AIC forward selection

Figure 17: Difference between the actual and predicted total scores for each
team over the 2019-2020 season using AIC backward elimination

The difference between the actual and predicted total scores of all teams
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during the 2018-2019 season is now illustrated:

Figure 18: Difference between the actual and predicted total scores of all
teams during the 2018-2019 season, based on forward selection.

Figure 19: Difference between the actual and predicted total scores of all
teams during the 2018-2019 season, based on backward elimination.
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Figure 20: Difference between the actual and predicted total scores of all
teams during the 2018-2019 season, based on AIC forward selection.

Figure 21: Difference between the actual and predicted total scores of all
teams during the 2018-2019 season, based on AIC backward elimination.
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- Held, L. Sabanés Bové, D. (2020). Likelihood and Bayesian Inference.
Stockholm’s University.

- Data. (2022). https://footystats.org/download-stats-csv.
- Yeo. Johnson. (2000). A New Family of Power Transformations to

Improve Normality or Symmetry. Biometrika 87(4), 954-959.
- Box. Cox. (1964). An analysis of transformations. Journal of the

Royal Statistical Society Series B, 26(2), 211-252.
- Tambour, T. (2022). Department of Mathematics, Stockholm Univer-

sity. Matematik, vetenskap och samhälle. Lecture notes day 11.
- Malki, N (2022). Regressionsanalys av nyproducerade bostadsrätts

priser i Solna-Sundbybergs kommun. Department of Mathematics, Stock-
holm University (Bachelor thesis in mathematical statistics). Section 2.1.4.

43

https://footystats.org/download-stats-csv

