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Abstract

In this thesis we aim to answer weather two popular pseudo random
number generators can be considered random enough for their uses.
We compare sequences from the pRNGs methods LCG and MT-19937
to one supposedly true random sequence and test different aspects of
randomness such as goodness of fit measured using the Chisquare and
Kolmogorov-Smirnov and independence which is tested using the Dis-
crete Fourier transform test. The results show that the LCG failed the
Discrete Fourier transform test and both the MT-19937 and the true
random sequence did not fail a single test. We therefore consider the
MT-19937 sufficiently random considering the fore-mentioned tests.
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1 Introduction

Random number generators are used in many different applications, such as
slot machines, statistical tests and simulations. The purpose of this study will
be to determine if the variable randomness of these generators is sufficiently
accurate to be used for such purposes. We start in section 2 by introducing
such a definition of randomness for a sequence. A computer generating a truly
random sequence purely based of programming is seen as an impossible task.
A quote from a Professor of Computer Science and Engineering at MIT’s Com-
puter Science and Artificial Intelligence Laboratory, Steve Ward says that ”On
a completely deterministic machine you can’t generate anything you could re-
ally call a random sequence of numbers, because the machine is following the
same algorithm to generate them. Typically, that means it starts with a common
‘seed’ number and then follows a pattern.”[2] Still we will present a more lenient
definition of randomness which have criteria that may be fulfilled by an algo-
rithm. After presenting a definition of randomness we proceed, in the following
subsections, to introduce the Linear congruential (LCG) and Mersenne twister
(MT-19937) random number generators, as well as values collected from the
random.org website, which gather supposedly true random data from weather
noise. Then later on in section 2 we describe conversion methods used to trans-
form binomial random sequences to uniform random sequences, and vice versa.
Following this in the same section we introduce the statistical tests used to test
for randomness. We start by defining the chisquare test and the Kolmogorov-
Smirnov test which are both used to test the null hypothesis that the marginal
distribution of both samples follow a given distribution, mainly, the uniform
distribution. The discrete Fourier transform test is then introduced and it tests
the null hypothesis that the sequences contain values which are independent.
Section 3 contains the results of the tests performed which can be viewed in
four tables. In section 4 we conclude the report and consider the results which
indicate that the MT-19937 RNG random number generator is sufficiently ran-
dom while the LCG random number generator seems not to have independent
values which is indicated by the failure of the Discrete Fourier transform test.
Lastly, we present some conclusions in section 4.

2 Background

In this section we introduce the fundamental concepts in regards to random
numbers and random number generators (RNGs), how they work, and what
flaws they might have. And we introduce statistical methods for testing whether
they are accurate or not.

2.1 The concept of randomness

In this thesis we will focus on the criteria of randomness and attempt to discuss
whether different sequences satisfy these criteria.
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From the two sequences 0101010101 and 0101100111 the first seems obviously
non-random while the second appears random. In actuality the sequence on the
left are just a sequence of alternating values while the sequence on the right
are collected from supposedly true random values collected from random.org.
This raises the question of what makes a sequence appear as random and non-
random.

As we highlighted, true randomness is a concept which is difficult to define
when applied to real data. But in in this section we will propose a definition
that is the basis for testing randomness on real data later on.

A sequence of random variables X1, X2, X3, . . . is said to be random if these
random variables i) are independent and ii) all have the same marginal distri-
bution function F (x) = P (Xi ≤ x) for i = 1, 2, 3, . . .. This is usually referred to
as the random variables being independent and identically distributed (i.i.d.).

In this thesis we will focus on two choices of the marginal distribution F .
The first one is the uniform distribution F ∼ U(0, 1), whereby

F (x) =

 0; x < 0,
x; 0 ≤ x ≤ 1,
1, x > 1.

(1)

This is a continuous distribution with the probability density function

f(x) =

{
1; for x ∈ [0, 1],
0; otherwise.

(2)

When random numbers with a uniform distribution are used we often write
U1, U2, U3, . . . instead of X1, X2, X3, . . ..

The second option is binary random numbers, that correspond to a Bernoulli
marginal distribution F ∼ Be(0.5). The corresponding distribution function is

F (x) =

 0; x < 0,
0.5; 0 ≤ x < 1,
1, x ≥ 1.

(3)

This is a discrete distribution with P (Xi = 0) = P (Xi = 1) = 0.5.

2.2 Random number generators

In computer-science, simulations, entertainment and other applications random
number generators (RNGs) are used to generate random values. Often times
pseudo random number generators (pRNGs) are used since they are both fast
and often accurate enough for their purpose. We will investigate two pRNGs in
this thesis. They are referred to as the Linear congruential generator (LCT) and
the Mersenne-Twister (MT-19937) methods respectively. To note in this thesis
we will not be testing for other distributions such as random variables following
a normal distribution (although this can be done by for example performing
the inverse transformation method and transform the sequence of normally dis-
tributed random variables to uniform random variables). A known issue with
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LCT and MT-19937 methods, and for any other pRNG, are their periodicity,
meaning that the sequence of generated numbers will after a fixed length p re-
peat all previously generated numbers [7]. Let’s now put our focus on the LCT
and MT-19937 methods.

2.2.1 The Linear congruential generator

The Linear Congruential generator or LCG is a generator which was first pre-
sented by Derrick Henry Lehmer in 1951 as the Lehmer congruential generator
[3], then revised by Kenneth Lane Thompson in 1958 [4]. In order to describe
the method, let h mod m ∈ {0, 1, . . . ,m−1} be the remainder when the integer
h is divided by the positive integer m. The LCG creates an output using a
starting seed x0 ∈ {0, . . . ,m − 1} and a positive number a that is relatively
prime to m. Then the algorithm

xi = axi−1 mod m,

for i = 1, 2, 3, . . . is utilized to create a series of integers x1, x2, . . . ∈ {0, 1, . . . ,m−
1}, and a corresponding sequence Ui = xi/m of pseudo random numbers with
an approximate U(0, 1) probability distribution [7]. This generator has been
used extensively and is one of the more powerful generators with only a few
disadvantages. One of those disadvantages will be discussed more thoroughly
later in this thesis and it involves a dependency pattern which appears within
the algorithm and that is detectable via a discrete Fourier transform test. The
maximum period length, or how long the sequence can be before it repeats itself,
is m.

2.2.2 The Mersenne Twister method

The Mersenne Twister algorithm was first proposed in 1998 and was based of the
twisted generalised feedback shift register generator which will not be discussed
in this thesis but is available to read in it’s original thesis [6]. In this context the
word ”Mersenne” is a reference to the period length which is chosen to be the
Mersenne prime 219937−1. The algorithm is designed to generate uniform values
with up to 32 bits accuracy and a period length 219937 − 1 [5]. Some notable
properties that separate this algorithm from the LCG is the MT-19937’s longer
period length and slower generation speed.

2.3 True random numbers

The ”true” random data was downloaded from random.org [9] in the form of
binary-numbers Xi ∈ {0, 1} with equal probabilities for each outcome, corre-
sponding to the Bernoulli-distribution Be(0.5) in (3). Numbers were collected
from all days in the month of January. The data was generated using three
radios to pick up atmospheric noise that then was converted to random bits
[10]. Combined for the entire month of January there were n = 260 046 228
observations. We will refer to this method as True random values or True rvs.
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2.4 Conversion methods

In this section we will first describe a method for converting binary random
variables to (approximately) uniform random variables. Then we will define a
method that conversely transforms uniform random numbers to binary random
numbers.

2.4.1 Binary to uniform conversion

We can convert binary values into continuous U(0, 1) using the following method.
Suppose we have a batch of k binary random variables X1, . . . , Xk. If we

regard them as the first k digits of a binary decimal expansion of a number
between 0 and 1, this gives rise to a number

U =

k∑
i=1

Xi2
−i,

with a discrete uniform distribution on the 2k points in {h/2k; h = 0, 1, . . . , 2k−
1}. When k is large it is clear that the distribution of U is close to U(0, 1).

Repeating this procedure n times, for disjoint collections of binary random
numbers, we obtain a method for transforming nk binary random numbers to
n approximate uniform random numbers.

We use this method with k = 64 in order to convert our true binary values
into uniform ones which then has the sample size of n = 260046228/64 ≈
4063222 with 2−64 accuracy for the uniform distribution approximation.

2.4.2 Uniform to binary conversion

Suppose we have one single, uniformly distributed, random variable U . From
this random variable it is possible to define m independent binary random vari-
ables X1, . . . , Xm as the first k digits of a binary decimal expansion of U . More
formally we write this as

Xi = [2iU ] mod 2,

for i = 1, . . . , k, where [x] is the integer part of x, whereas h mod 2 ∈ {0, 1}
refers to the remainder modulo 2 when dividing an integer h by 2.

Repeating this procedure for n independent and uniformly distributed ran-
dom variables, we obtain from them nk binary random variables.

2.5 Statistical tests

For a given sequence {Xi}ni=1 of random variables of length n one might test
randomness in various ways. In this section we will perform different statistical
hypothesis tests, where some aspects of the randomness (i.i.d.) assumption
are treated as a null hypothesis (H0), whereas any departure from this null
hypothesis is the alternative hypothesis Ha. Tests used in this thesis to detect
randomness in sequences include the chisquare test, the Kolmogorov-Smirnov
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test, and the spectral test. We acknowledge that other tests can be used to
detect randomness, however they were not considered in this thesis.

2.5.1 The chisquare test for the marginal distribution

The Pearson chi-square test is a statistical test which can be used to test good-
ness of fit for categorical data. The chisquare test may either be used for testing
the marginal distribution or independence of a sequence of random variables.
Here we will concentrate on testing the marginal distribution. Suppose we
have n independent observations of a categorical variable with C categories
c = 0, . . . , C−1. Let Oc and Ec = nπc refer to the observed and expected num-
ber of observations that fall into category (or cell) c respectively. Here πc is the
probability that each observation equals c under the null hypothesis of a partic-
ular marginal distribution of the random sequence. The general expression for
the chisquare test statistic is

T =

C−1∑
c=0

(Oc − Ec)
2

Ec
, (4)

and under the null hypothesisH0, this test statistic approximately has a chisquare
distribution with C − 1 degrees of freedom (T ∼ χC−1) for large enough n. For
an observed value t of the test statistic, the corresponding p-value is

p = P (χ2
C−1 ≥ t)

.
Now suppose we have a sequence U1, . . . , Un of n random variables and want

to test whether the marginal distribution is uniform (F ∼ U(0, 1)), with F as
in (1). For this purpose, divide the unit interval into C bins Bc = (c, c+ 1)/C
of equal length 1/C, and let Oc refer to the number of Ui that fall into Bc for
c = 0, . . . , C − 1. Under the null hypothesis of a uniform marginal distribution
the probability of each bin is πc = 1/C, so that Ec = n/C. Inserting these
numbers into (4) we obtain the chisquare test statistic for testing a uniform
marginal distribution of a random sequence.

On the other hand, for a sequence X1, . . . , Xn of binary random numbers,
we want to test whether the marginal distribution is Bernoulli with success
probability 0.5 (F ∼ Be(0.5)), corresponding to equation (3). In this case we
let each Xi be a categorical variable of the chisquare test, with C = 2 bins.
This implies that Oc is the number of Xi with Xi = c. Moreover, under the
null hypothesis we have that π0 = π1 = 0.5, and consequently E0 = E1 = 0.5n.
If these numbers are inserted into (4) we obtain the chisquare test for binary
random numbers.

2.5.2 The Kolmogorov-Smirnov test for the marginal distribution

The test checks if the empirical cumulative distribution function (ecdf) differs
significantly from the expected theoretical cumulative distribution function (cdf)
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and this test may only be performed on continuous distributions. [8]. Emphasis
in this test is on the shape of the assumed marginal distribution function of
data. The Kolmogorov-Smirnov test does not require as large of a sample size
as the chisquare test and can be performed directly on non-categorical data.
The test is also a non parametric test in the sense that its test statistic has
the same distribution under the null hypothesis regardless of which continuous
marginal distribution that is being tested. We will only apply the KS test to test
a uniform distribution, given a random sequence U1, . . . , Un ∈ [0, 1] on the unit
interval. In order to test the null hypothesis H0 that the marginal distribution
of {Ui} is the uniform distribution (1), we define the empirical distribution
function

Fn(x) =
1

n

n∑
i=1

1(Ui≤x) (5)

for all real-valued x. Note that Fn(x) is the fraction of observations less or equal
to x. Under the null hypothesis, Fn should be close to the uniform distribution
function F in Eq.(1) for large n. The KS test statistic for testing H0 is based
on the re-scaled maximal distance between Fn and F , according to

T = max
−∞<x<∞

√
n|Fn(x)− F (x)| = max

0≤x≤1

√
n|Fn(x)− x|. (6)

For large n we have approximately, under the null hypothesis, that

P (T ≥ t|H0) = 2

∞∑
h=1

(−1)h−1e−2h2t. (7)

2.5.3 The spectral test for correlation structure

Unlike the chisquare and Kolmogorov-Smirnov (KS) tests we will see that The
Discrete Fourier transform (spectral) test is a test for correlation which im-
plies that the test provides information about correlation in a sequence of ran-
dom numbers. The spectral test relies on the Fourier transform of the esti-
mated covariance function, or equivalently the periodogram. The test is de-
signed to detect periodic features that would otherwise remain undetected in
other correlation tests, therefore it can be used to disprove randomness in lin-
ear congruental random number generators [13]. It is important to note that
this is not the spectral test mentioned in Knuth [1] which plots a sequence
{(Xt, . . . , Xt+d−1)}n−d+1

t=1 in d = 2 or higher (d > 2) dimensions. Data from
such plots form lines or hyperplanes, and compare the distance between these
hyperplanes. Larger distances indicate worse generators.

The spectral test is based on the Discrete Fourier Transform. In order to
define that test, supposeX1, . . . , Xn is a sequence of independent and identically
distributed random variables with a marginal distribution F , whose variance is

σ2 =

∫
x2dF (x)−

(∫
x dF (x)

)2

.
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For instance, if a uniform marginal distribution U(0, 1) is assumed, then σ2 =
1/12, whereas if a Bernoulli Be(0.5) marginal distribution is assumed, then
σ2 = 1/4.

Define the periodogram as

Ij =
1

n
|

n∑
t=1

Xte
−2πitj/n|2 = |Dj |2/n,

for j = 1, · · · , n, where i is the imaginary unit (a complex number), whereas
Dj is the j:th component of the Discrete Fourier Transform (DFT) of {Xt}nt=1

at Fourier frequency 2πj/n [12]. Then, for large n, we have approximately
that I1, . . . , Iq are independent and exponentially distributed with mean σ2 =
Var(Xt). This implies that approximately

P (Ij ≤ x) = 1− exp(−x/σ2) = G(x)

for j = 1, . . . , q, with σ2 = 1/12 for the U(0, 1) distribution and σ2 = 1/4 for
the Be(0.5)-distribution. In order to test the null hypothesis H0 of {Xt}nt=1

being an independent and identically distributed sequence of random variables,
we can therefore check how much the empirical distribution function

Gq(x) =
1

q

q∑
j=1

1(Ij ≤ x)

of the periodogram departs from G(x). This can be done in several ways. For
the DFT test [13], the authors look at the distance between Gq and G at one
point. More precisely, they introduce

T =

√
q(Gq(x)−G(x))√
0.95(1− 0.95)

,

where x = G−1(0.95) = −σ2 log(0.05) is the 95% quantile of G. Under H0

we have approximately for large n that T ∼ N(0, 1) has a standard normal
distribution. This gives rise to a p-value

p = P (|T | ≥ t|H0) = 2(1− Φ(t)) (8)

for an observed value t of |T |, where Φ is the cumulative distribution function
of a standard normal random variable N(0, 1). Formula (8) forms the basis of
the DFT-test.

A more refined test of a DFT-based test is to calculate the maximal difference
between Gq and G over all possible values of x, using the Kolmogorov-Smirnov
test statistic

T = max
−∞<x<∞

√
q|Gq(x)−G(x)|

Under H0 we have that

P (T ≥ t|H0) = 2

∞∑
h=1

(−1)h−1e−2h2t, (9)
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which is also the p-value for an observed value t of T . See Brockwell and David
(1991) [12] for more details and properties of the periodogram that underpins
the DFT-test section and its generalization (9).

In this section we will perform the chisquare and Kolmogorov-Smirnov tests
for goodness of fit for the uniform distribution and then the chisquare test for
converted binomial values to check that they follow the hypothesized marginal
distribution. Then we will also perform the spectral test in order to detect global
frequency patterns. We will use the fast Fourier transformation which performs
a discrete Fourier transformation of the sequence to the frequency domain as
explained in [14].

2.6 Applications of random number generators

Since even before the invention of computers, the ability to generate randomly
selected values has been invaluable. In modern times however the use for ran-
dom values are many. But depending on their use, these random value need to
meet different criteria for their generation, such as complexity(speed) and cryp-
tographical security. In order to achieve this one may use different methods to
generate pseudo random numbers or alternatively one may use hardware gener-
ated values. These may however have long generation time or be subject to other
disadvantages. Services therefore exist where one may purchase or download
supposedly accurate and true random values. An example of this is quantum
random values which can be generated from fluctuations in the vacuum. Cryp-
tographically secure values may be important for certain applications while not
in others. One application that require highly cryptographically secure values
are cryptocurrency transactions as well as token generations used to modify an
access code. However, when applied commercially, the generator that was used
is typically not revealed. It also of interest to mention that companies when
marketing ”true” random values often advertise these as a ”cryptographically
secure” option.

On the other hand when having low complexity is more important, one may
instead choose to generate values using a method which can generate random
values more rapidly. Examples where low complexity is important is in gambling
machines, video-games and simulations. In simulations it is also of interest to
be able to recreate a result by being able to use the same seed and method of
generation, so that it is possible later on to get the same deterministic sequence
of values as those that were generated originally.

3 Results

In this section we will perform the chisquare and Kolmogorov-Smirnov tests
for goodness of fit for the uniform distribution and then the chisquare test for
converted binomial values to check that they follow the hypothesized marginal
distribution. Then we will also perform the spectral test in order to detect global
frequency patterns. We will use the fast Fourier transformation which performs
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a discrete Fourier transformation of the sequence to the frequency domain and
the method performed is available [14].

3.1 Chisquare tests

In this subsection we perform chi square tests for goodness of fit for our three
data sources and their binary conversions.

3.1.1 Goodness of fit test on uniform data

For our three random samples LCG, MT-19937 and the true random data, we
perform the chisquare test for the hypothesized marginal distribution.

In order to perform our goodness of fit test for uniform sequences we catego-
rize our data into C = 2

√
n bins where n is the sample size. This number of bins

is chosen somewhat arbitrarily based of the optimal number of bins when testing
goodness of fit for the normal distribution according to [15]. As mentioned in
Section 2.1, we consider the following hypotheses

H0 : Data follow a uniform distribution,
Ha : Data do not follow a uniform distribution

(10)

Since the conversion to uniform from our true random binary data resulted
in a sample of size of n = 4063222, in order to facilitate comparison we will use
the same n for the two datasets constructed from pseudo random generators.
This means that C = 2

√
n = 4031.48, or 4031 after rounding, which will then

be our selected number of bins or categories.

Table 1: Chisquare goodness of fit test for uniform distribution with sample
size + n = 4063222

Source Statistic p-value
LCG 65.63 1.0

MT-19937 4029.85 0.4977
True rvs 3986.08 0.6856

3.1.2 Chisquare test on binary data

Table 2: Chisquare goodness of fit test for the Bernoulli distribution Be(0.5),
with sample size n = 107

Source Statistic p-value
LCG 0 0.9874

MT-19937 1.39 0.2382
True rvs 0.13 0.7147
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3.2 Kolmogorov-Smirnov test

We now perform the KS test for goodness of fit for one sample with the null
and alternative hypotheses as in (10). When performing KS test on a sample
of the size n = 4063222 with continuous data in the interval (0, 1), we get the
results summarized in table 3.

Table 3: Kolmogorov-Smirnov goodness of fit test for the uniform probability
distribution U(0, 1) of sample size n = 4063222

Source Statistic p-value
LCG 4.2232 · 10−5 1.0000

MT-19937 2.6494 · 10−4 0.9379
True rvs 3.4147 · 10−4 0.7305

We observe that the LCG sample performs very well when tested with a p-
value of 1, the MT-generated values performs well enough and the True random
number generator performed similarly.

3.3 Spectral test

As we mentioned in section 2.5.3, the spectral test can be performed on binary
data in order to test for global dependencies in our samples, and for this purpose
we perform a discrete Fourier transform (spectral test) test. Recall from section
2.5.3 that our hypotheses are

H0 : Data is independent and indentically distributed,
Ha : Data is not independent and identically distributed.

We perform the spectral test for all three samples and report the results in
table 4.

Table 4: The spectral test for binary sequences of sample size n = 107

Source p-value
LCG 0

MT-19937 0.2410
True rvs 0.3699

From table 4 we observe that the LCG fails this test, while H0 is not re-
jected for any of MT-19937 and True random values. More specifically, using
a significance level of 5% we reject the null hypothesis that the LCG sample
contain no global dependencies (since p < 0.05) while we do not reject H0 both
for MT-19937 and True random values.

4 Conclusion

The chisquare test and the KS test both resulted in our three samples of data
on the unit interval appearing to have a marginal uniform distribution. Also
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our equivalent binary data samples also appeared uniform when tested on the
chisquare test. We noted that for both of the two tests (chisquare and KS), the
LCG sequence had a low test statistic value which is due to the fact that the
deviation of the empirical marginal distribution from a uniform distribution for
the LCG, is much smaller and thus outperforms the corresponding deviation for
”true” random numbers. It is notable that in this aspect of deviation from the
shape of the uniform distribution the LCG ”outperforms” the supposedly ”true”
random values. However, one might also argue that the marginal distribution
of the LCG sequence is too close to a uniform distribution, since the p-values of
the chisquare and KS-tests for the LCG sequence are very close to 1.

On the other hand, when performing the spectral test, we discovered that
the LCG failed, whereas the MT-19937 and the true random data passed the
test without rejecting the null hypothesis of independence. This indicates that
as expected, dependencies in the LCG generated sequence were detected. Ac-
cording to our definition of randomness, mentioned in section 2.1, we note that
the LCG sequence having dependencies means that its future values are more
easily predictable. By our definition of randomness as ”independent and identi-
cally distributed”, this means that the LCG sequence is not random. Based on
the tests performed, the MT-19937 algorithm appears to produce random data
for a sequence of smaller length than its period. Since the sequence is determin-
istic, one could however predict values if the seed is known. This means that
in that aspect the sample is non-random. Our ”true” random values pass all
the criteria for randomness even though this sequence was ”outperformed” by
the LCG method in terms of marginal distribution using either the KS or the
chisquare test. Noting that the binary conversions did not affect the outcome of
the tests for neither the chisquare test nor the spectral tests we conclude that
the conversion did not introduce any deterministic patterns.

It is important to note that when testing for goodness of fit and independence
one would ideally like to compute many p−values for each combination of test
and method, based on many generated sequences. Then one could observe
whether these p-values are uniformly distributed (by performing a chisquare
test on these p-values) before drawing more definite conclusions. But due to
time limitations this has not been performed in this thesis.
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