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changes in the timing and intensity of phenological events around the
world. One such event is the release of pollen by plants, which is a
major cause of allergies in humans. This study aims to investigate the
impact of climate change on the timing and intensity of pollen release
in Sweden. We also look at whether or not the latitude of plants has
a significant influence on seasonal pollen release. Using data provided
by the Swedish Museum of Natural History, we compare nonparamet-
ric quantile regression and linear regression on empirical quantiles to
model the changes in pollen season. We find that empirical quantiles
produce better results. Our findings show that the start and peak
dates of various species of pollen advance at a similar rate over time
in a warming climate while the ending dates move at a slower rate.
The amount of days a year the pollen season is deemed to be active
thus increases over time. Furthermore, the effects mentioned appear
to be intensified at higher latitudes, apart from the extension of sea-
sonal length for grass pollen, which was found to be reduced at more
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ABSTRACT

It is well established that climate change has led to significant changes in the timing and intensity of
phenological events around the world. One such event is the release of pollen by plants, which is a major
cause of allergies in humans. This study aims to investigate the impact of climate change on the timing
and intensity of pollen release in Sweden. We also look at whether or not the latitude of plants has a
significant influence on seasonal pollen release.

Using data provided by the Swedish Museum of Natural History, we compare nonparametric quantile
regression and linear regression on empirical quantiles to model the changes in pollen season. We find
that empirical quantiles produce better results. Our findings show that the start and peak dates of various
species of pollen advance at a similar rate over time in a warming climate while the ending dates move
at a slower rate. The amount of days a year the pollen season is deemed to be active thus increases
over time. Furthermore, the effects mentioned appear to be intensified at higher latitudes, apart from the
extension of seasonal length for grass pollen, which was found to be reduced at more northerly latitudes.

To conclude, our findings suggest that climate change is having a significant impact on the timing and
intensity of pollen release in Sweden, which is of concern for reasons of public health and potentially
for wildlife and agriculture, thus it is important to monitor these changes in pollen release patterns and
develop strategies to mitigate their impact.

Keywords:  Pollen, phenology, climate change, quantile regression, linear regression, empirical
quantiles.
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1. INTRODUCTION

Over the past couple of decades it has been made clear that our climate is changing rapidly in various ways.
Most notably the global average temperature has risen by ca 0.2°C per decade since the mid seventies,
this constitutes an almost 1°C increase over the past half century (Hansen et al.l 2006)). Limiting our view
to only Sweden, we also see significant shifts in this regions’ otherwise stable climate. Several studies
in recent decades draw the conclusion that plant phenology is impacted by this increase in temperature.
Van Vliet et al.| (2002) discusses in a study of the seasonal pollen shift in the Netherlands that an advance
in the start of the pollen season by 3-22 days took place in the latter third of the 20th century. Likewise this
paper strives to understand what seasonal changes have occurred to the pollen season in Sweden. Results

may differ for various species of pollen. [Lind et al.|(2016)) found a stark difference in duration among
arboreal plant species compared to herbaceous ones, with the former trending towards an earlier end date,
while the latter was pushed to a further date and thus have a longer seasonal duration. Grass pollen, being
herbaceous, is the leading cause of pollen allergy in many developed countries, meaning a lot of people
suffer from these seasonal changes for an extended time (Garcia-Mozo, |2017)). In Sweden and other parts
of northern Europe however, due to differences in temperature and overall climate, the arboreal types like
birch (betula) are the most common cause of pollinosis (D’ Amato et al.,[2017). Continous monitoring of

pollen conducted by the Swedish Museum of Natural History (NRM) began in 1973 at the Palynological
laboratory in Stockholm. Since then multiple other stations have been included in the scope of NRM’s
continous pollen monitoring program. As of 2022 there are 20 active stations involved (of Natural History,
2023), monitoring the release of several unique species of pollen. In this paper we consider 7 of the
most allergenic species, these are the arboreal pollen of alder (alnus), birch (betula), hazel (corylus), oak
(quercus), willow (salix), elm (ulmus) and the herbaceous species of grass pollen (poaceae). In this paper

we will attempt to determine the shift in dates of the start and end of the pollen season in Sweden as an
effect of global warming of Earth’s climate. We will consider global warming as a linear trend over the
researched time period as to simplify the process of analyzing pollen patterns. We can do this as research
has shown acceptable fitting of linear models over anthropogenic climate change, in regard to temperature
(Hansen et al.;|2006). An analysis will be conducted based on two separate frequentist quantile regression
models, namely linear regression on empirical quantiles (EQ) and nonparametric quantile regression
(QR). In a study of seasonal shifts of migratory birds, Karlsson and Hossjer| (2022) performs both these
methods. This paper covers the majority of the theory in regards to the construction of the statistical
models. We also make good use of |Takeuchi et al.|(2006), a paper on nonparametric quantile estimations,
for a more in depth description of the QR method. By its conclusion this research paper aims to have

built a statistical model that can explain the historic shift in pollen seasons for each of the 7 species and
also possesses the ability to predict expected further changes in the Swedish pollen season. We begin

our research with the section 2. Litterature review, where we present the findings of what we consider
to be the most relevant studies of similar character to what we envisage our own research to look like.
The following section is 3. Data, in which all aspects of the data used in the research is presented. We

cover these aspects in four smaller sections. Firstly 3.1 Data collection where a light description of both
the physical and digital methods used to collect the data. An extensive description of how we use the
data is later presented in the section 3.2 Understanding the data. Here the reader is granted a look at the
structure of the data in the form of easily-to-read tables and which variables are to be considered in the
research. In 3.3 Data transformation we follow with a description of how the data has been restructured.
3.4 Data selection is where we conduct an explanation of how we deal with missing values and how the
data sets are reduced. We conclude the Data section with 3.5 Annual distribution of pollen in which
we use density ridge plots to glance at what sort of results to expect. 4. Methods encompasses all the

theoretical definitions of the methods included in this paper. In order to strengthen the significance

of our results, we have used two independent methods. Linear regression on empirical quantiles and
Nonparametric quantile regression. Linear regression on empirical quantiles, which we refer to as
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EQ, is a simple method commonly used to perform statistical analyses on different quantile levels of
data, while nonparametric quantile regression (QR) is a more complex method which substitutes the
conditional mean of the loss function for the conditional median and requires numerical approaches
to the resulting optimization problem. The sections (4.1 Nonparametric quantile regression) and
(4.2 Linear regression on empirical quantiles) explain the theoretical aspects of respective method,
while simultaneously providing descriptions of how we have applied them in our models. The most

important findings of our models are presented in 5. Results. This part of the paper is divided in
to 3 sections for increased readability. The first, 5.1 Statistical model performance across quantiles
contains an analysis of how well each of our methods perform across quantiles of the data. it is in this
section we determine which method to primarily base our conclusions from in the following sections.
There are a lot of interesting results to share from this statistical analysis, the most important of which are
presented as a table in 5.2 Estimations and predictions per species. Here we analyze which species of
pollen see the most significant seasonal shift and make estimations of which dates to expect the pollen
season to be active at certain years. One of our assumptions prior to performing our analysis is that
high latitudes correspond to larger shifts in the climate and would thus affect the pollen season to a
greater extent than at lower latitudes. In the section 5.3 Geographic influence we attempt to find out
whether this assumption is correct or not in regards to predicting seasonal trends in pollen release in
Sweden. Results that are not of central importance to our discussion and conclusions are nonetheless
accessible in Appendix C. Section 7. Discussion, is divided in to (7.1 Comparison with prior studies)

and (7.2 Further improvements). The former section covers a comparative analysis of our results with
other, similar studies. For each of our questions at issue, we may be able obtain a definitive conclusion, in
which case we present this in (6. Conclusions). If we are not able to obtain a definitive conclusion, a
description of what we is missing for us to draw a conclusion follows. Since there are limits to what we
can expect to answer in this thesis, we have set aside a section (7.2 Further improvements) on which
parts of our work is inconclusive and how they can be improved upon. This paper concludes with the an

Appendix section. Additional or complementary information which the reader may find interesting, but
not vital for the results of which we form our conclusions. Each appendix is refered to by, and refers back
to a result or explanation.

2. LITERATURE REVIEW

In a paper from the journal Proceedings of the National Academy of Sciences” (Hansen et al.| 2006),
James Hansen and his team were able to deduce that global surface temperature has increased ~ 0.2°C
per decade between the mid 1970’s and mid 2000’s. Assuming this trend also holds for the past 2
decades, we estimate the global average temperature to be almost 1°C warmer than half a century ago.
Using these trends in global average temperature over time, we are able to form conclusions about how
plant phenology, and more specifically pollen release, is affected by a warming climate. A Dutch study

analyzing a 31 year long collection of pollen in the Netherlands saw an advance in the pollen season
by 3-22 days, depending on species. With species such as elm, oak and alder advancing between 15
and 18 days, while they recorded lesser advances in willow, birch and grass pollen at 12, 10 and 6 days
respectively (Van Vliet et al.,|2002). In a more local study conducted by the Palynological laboratory

in Stockholm, there was found to have been an advance in the seasonal starting dates for many arboreal
species of pollen such as birch, oak, pine etc. Peak dates of pollen release were found to have largely
followed the same trajectories as the starting dates, while the end dates for herbaceous pollen species like
grass, were seen to have in fact moved to later dates. The length of pollen seasons had increased for some
species, grass, mugwort and birch being among them, while most arboreal pollen types saw a decrease
in overall seasonal length (Lind et al.l2016). A study of plant phenology in high latitude environments
found that their advancement in annual phenology tends to be greater than equivalent plants at lower
latitudes (Alecrim et al.,[2023). This is consistent with findings that show a greater increase in average
yearly temperature near the poles than closer to the equator (Hisano et al., [2021). Research has found that
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the ongoing increase in temperature extremes may be contributing to an extended seasonal duration of
airborne allergenic pollen across the northern hemisphere (Ziska et al.,2019). For those whom suffer from

pollen allergies, the length and intensity of pollen release would preferably be as low as possible. Not all
types of pollen are as allergenic as each other however. People may react differently to various species
of pollen. |Garcia-Mozo|(2017) concludes that grass pollen are the most allergenic worldwide, whereas
in an Italian study, it was revealed that birch pollen was the leading cause of allergic pollen reactions
in northern europe (D’ Amato et al., 2017), due to the fact that this type of pollen is more prevalent in
this region. What we can conclude from these findings is that seasonal changes in grass and birch pollen
affect the population to a greater extent than other types and thus may be of greater interest to follow. Our

primary source of material covering the theoretical background of our methods can be found in a study of
migratory birds (Karlsson and Hossjer, |2022). They came to the conclusion that quantile regression (QR)
is more effective than linear regression on quantiles (EQ) at predicting seasonal shifts in migratory birds
as a response to climate change. We compare our results in the Discussion section. Another piece of work
we have used to build our models is Takeuchi et al.| (2006) in which we find more detailed definitions and
properties of quantile regression. Many of the most central aspects of quantile regression, like the pinball
loss function among other things, are thoroughly explained in [Koenker] (2005)).

3. DATA

3.1 Data collection

As mentioned earlier in this paper, the monitoring of pollen in the Stockholm region is conducted by the
Palynological laboratory at NRM. The laboratory in question uses a Burkard Seven Day Volumetric Spore
Trap (HIRST] |1952)) to capture pollen and spores from the air through a small entrance meant to resemble
the human airways. Thus approximately 10 liters of air passes through the machine each minute, which
is what humans tend to consume. In order to capture the pollen particles carried by the passing air, a
sticky tape is mounted to a drum rotating at 2 mm per hour. As only a small portion of the tape is exposed
to the air at each point in time, this method grants us a good indication of the volume of pollen in the
passing air at any given moment. Each captured pollen is individually counted with regular intervals using
microscopes. It must be noted that not all stations possess the same equipment. In particular, differing
microscope sizes are used across the country. Consequently, the measured values of the pollen counts are
biased towards the larger microscopes, thus showing a somewhat inaccurate representation of the true
pollen counts (of Natural Historyl 2022) (of Natural History}, |2017). However considering the structure
of the data set and the consequent data analysis being relativistic, for which a descriptive presentation
follows in the Data section, this phenomenon has been ignored.

3.2 Understanding the data

The data set that we have at our disposal contains 5 unique variables: date, station, name, count
and factor. Of which all but the factor variable are used in this research paper. We have also added
a latitude variable since it is known that higher latitudes contribute to more extreme climate changes
(Alecrim et al., [2023)). This variable is however entirely dependent on station. A short description of
the meaning of each variable is shown in table 1. Equipment for data collection is active only during the
period of the predicted pollen season, estimated through using predictive models for pollen activity based
on historic results.

Variable | Type Description
Station | Categorical | Geographic location of the pollen monitoring station.
Species | Categorical | Genus of the recorded pollen counts.

Date Continuous | Gregorian calendar date on which the airborne pollen were registered.
Count Continuous | Number of individual pollen counted.
Factor Continuous | Reference variable for the size of the microscope used.

Latitude | Continuous | Northern latitudinal coordinates of said station.

Table 1. Description of the variables present in the data sets used in this research paper.



Viewing the years of availability in table 2 we conclude that not all data points are present in the data
set. The stations had differing opening dates and not all species tend to be available to begin with. If
no consideration for the location of said data points are made, we may observed skewed results, as the
geographic distribution of monitored pollen changes over time due to availability. Thus analyzing the data
in geographic categories of where they were collected is a necessary consideration. For the English and
Swedish names of each pollen genus, see Appendix A.

Station Latitude | Pollen genus (since the year)

Umed 62.83 Alnus, Betula, Poaceae, Ulmus (1979), Salix (1981), Corylus (1987), Quercus (1995)
Eskilstuna 59.37 Alnus, Betula, Corylus, Poaceae, Quercus, Salix, Ulmus (1976)

Stockholm 59.33 Alnus, Betula, Corylus, Poaceae, Quercus, Ulmus (1973), Salix (1977)

Norrkdping 58.59 Alnus, Betula, Corylus, Poaceae, Quercus, Salix, Ulmus (1987)

Jonkoping 57.78 Alnus, Betula, Poaceae, Quercus, Salix, Ulmus (1988), Corylus (1989)

Vistervik 57.76 Alnus, Betula, Corylus, Poaceae, Quercus, Salix, Ulmus (1987)

Goteborg 57.71 Alnus, Betula, Corylus, Poaceae, Quercus, Salix, Ulmus (1979)

Malmo 55.60 Alnus, Betula, Corylus, Poaceae, Quercus, Salix, Ulmus (1979)

Table 2. Years for which data for different pollen species are available at the pollen monitoring stations
used in our research, as well as their latidudal coordinates.

3.3 Data transformation

In order to be able to perform methods like quantile regression and linear regression on quantiles, a
transformation of the given data structure is necessary. To be more precise, we must turn each individual
pollen, quantified by the ‘count® variable, in to its own data point. Using the function uncount () in R
we are able to perform the described transformation of data. The daily counts of certain pollen types at
any given station can be in the thousands. Each pollen season usually lasting around a month, and the
data covering multiple species of pollen at a multitude of geographic locations over a number of years,
means in return, that the size of the data set increases dramatically and as a consequence slows down
computation time.

3.4 Data selection

After altering the structure of the data in to an individualistic format, we first remove any observations
with missing values in any of the columns date, station or species, since these are fundamental
parameters to perform the following data analysis. For the purposes of EQ regression, the time it takes
to compute the models on the entire data set in R is negligible. For nonparametric quantile regression
however, the computational time appears to grow very quickly with the amount of observations. This
has led us to the decision to reduce the amount of content in each data set (one data set containing all
observations of any combination of station and species) to below a fixed limit. Without reducing

any data, the largest data sets contain ~ 500000 observations, while some combinations of data contain
considerably fewer. By testing and optimizing the models for various sizes of the data sets we decided to
set the limit to 5000 observations per combination of data. This reduces the running time considerably,
making the process of analyzing our results much easier. In order to minimize the effect this has on our
results the rows must be removed uniformly over the time of year. If the number of observations in a data
set is smaller than n - 5000, we want to select every n th element and discard the rest. We can do this in R
by using the s1lice () and bind_rows () functions from the dplyr package. By performing these
modifications to our data, we are sure to keep the shape of the distributions mostly the same and thus the
results of the quantile regression. Information about by how much each data set was reduced by can be
found in Appendix B.

3.5 Annual distribution of pollen

Before constructing the models, we can take a glance at what sort of results to expect from the subsequent
regression analysis. In figure 1 we present a ridge plot containing information about the distribution
of observed pollen by date of year. The geom_density._ridges () function from the R library
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ggridges uses kernel density estimation (KDE) to fit a continuous density function to what is, in
essence, a histogram of the frequency of pollen on each date. KDE is a non-parametric method used
to estimate the probability density function of a random variable. This is achieved by placing a kernel
at each data point. In our case the kernels are Gaussian distributed. We then summarise each of the
kernels’ distributions in order to obtain a smooth continuous approximation of the density. The width
of the kernel, known as the bandwidth, determines by how much each data point contributes to the
density estimate. Larger bandwidths result in smoother but less detailed density estimates, while smaller
bandwidths result in more detailed but noisier density estimates (Duong, [2001). A common way to find
the optimal bandwidth is to use the Asymptotic Mean Integrated Squared Error (AMISE). The function
geom_density.-ridges () uses an alternative method based on the [@10.2307/2345597] plug-in
bandwidth selection method. By looking at the average distribution from the first and last 5 years in the

data set respectively, we construct a somewhat consistent average in terms of the state of the pollen season
at a given location, reducing the risk of falsely identifying outlier data as patterned occurrences. We can
conclude that, in the Stockholm area, the pollen season seemed to begin earlier for all the arboreal pollen
species while grass pollen (Poaceae) did not appear to show those tendencies. In general the shape of the
pollen distribution was not seen to have been altered over time. A visual analysis of the distribution of
annual pollen release may suggest that the average pollen season now begins earlier by up to a month
compared to 45 years ago.

Average annual distribution of pollen
in Stockholm (1973-1977) and (2018-2022)

Ulmus -

Intensity

Salix

Quercus & -
Year group
ﬁ [] 1973-1977
Poaceae ] 2018-2022

Corylus ’/\M(\

Betula

Alnus - —
Feb Mar Apr May Jun Jul Aug Sep

Date

Figure 1. Ridge-line figures approximating the density functions of the distribution of annual pollen.
Comparing the observed dates of pollen capture for the average of the years 1973-1978 (green) with the
average for 2018-2022 (red).)



4. METHODS

In this section we explain the underlying theory behind the statistical approaches used for our data analysis.
We will compare “linear regression on empirical quantiles” (EQ), as used in |Karlsson and Hossjer| (2022])
with the supposedly more powerful method “nonparametric quantile regression” which we refer to as
QR. In the QR approach, we estimate the response variable as the conditional median of the predictor

variables, of which the median can be substituted to any other quantile of data. In the EQ method however,
we use the method of ordinary least squares (OLS) to estimate the conditional mean of a subset of the
predictor variables corresponding to the desired quantile level. Ordinary linear regression is the preferred
method for many research purposes due to its inherent simplicity. In this research paper however, we are
more interested in patterns for certain quantiles of data than the mean. To do this effectively we have
conducted our research using quantile regression methods instead. An aspect in which quantile regression

performs better than linear regression is when data is not homoscedastic or normally distributed. Linear
regression models perform poorly for data that is heteroscadastic and/or non-normally distributed. By
estimating the conditional median however, as opposed to the mean, we get a model that yields better
predictions for data with these properties. Another advantage of using quantile based methods is that
they are less sensitive to outliers, since nonlinear tendencies may lead to abnormal behaviors for more
extreme observations, which can be more accurately accounted for when looking at quantiles rather than
the mean. All models in this paper will use ‘date‘ as the response variable, or a yearly quantile of ‘date‘.

The release date of pollen grain i € {1,...,n}, where n is the total amount of pollen grains released, is
predicted by the models as the response y;. We form a covariate vector x; = (1, #;) which includes an
intercept and the predictor variable t; € = {1,...,T} which refers to the gregorian year of observation
with T being the amount of years monitored. In order to make an educated analysis of the behaviour of

pollen release we need a strict definition for what constitutes a pollen season. There have been many
attempts by various authors to find an optimal definition for the dates of which each pollen season covers.
In this paper we classify the dates within which the pollen season is deemed active by referring to the
EAN definition (Bastl et al.,[2018). The EAN database contains a lot of data on pollen release in which
they define the pollen season as the date at which at least 1% of the annual pollen have been counted. By
the same definition, the pollen season is said to end when 95% of all pollen has been released. A reason
as to why the starting quantile level and the one at the end of the season are not symmetric (i.e. why
Ostart # 1 — Qeng) may be similar to how infection transmission models tend to behave, namely that the
beginning of the season tends to be very intense while the distribution decreases more slowly towards the
end of the season.

When performing calculations of the arithmetic mean of a vector, we use the following formula:
- 2
f=argmin}” (i~ ), (M
HER =]
where y corresponds to the vector of observed values and u is a scalar value that minimizes the sum

of squares.

If we instead want to calculate the arithmetic median, we use the absolute values between the vector
of observations and the average instead of the square of these values. The median is thus provided by

n
x= argminz lvi — %] (2)
HER =]

Furthermore, if one wants to compute any given quantile T given a vector of observations, one may
use the minimization algorithm

n
Xr = argmianT(y,- — Urg), 3)
Ur€R =1



where .,2”1(5) represents the pinball loss function (Koenker, [2005)). This is a convex, piecewise linear
function which computes the deviation between the predicted quantile and the actual value of the target
variable. It is defined by

g7 if (§)

>0 A
E-(1—1) if(€)<o. ¥

gr(é) = {

The name of the pinball loss function derives from the fact that it’s shape somewhat resembles that of
a pinball game as shown in figure 2. Rather trivially, the loss is minimized at & = 0, since that means the
predicted quantile exactly attains the value of the observed value of the target variable. Overprediction
is more heavily penalized than underprediciton for quantiles T < 0, while the opposite is true when
T > 0. This is because the loss function places more weight on the residuals above the predicted value for
overprediction and below the predicted value for underprediction (Takeuchi et al., [2006).

L:(£)

0 - ¢

Figure 2. Tllustration of the pinball loss function. Here & represents the offset of predicted values from
the true values. As the quantile level 7 increases, the slope for underestimation errors becomes steeper
(more negative), while the slope for overestimation errors becomes shallower (less negative)

4.1 Nonparametric quantile regression

By nonparametric regression models we refer to models that do not make any parametric assumptions
about the form of the conditional distribution function, the relationship between the response variable
and predictor variable(s) are linear however. By applying the theory of nonparametric models to a linear
predictor of the conditional median, we arrive at the basis of a nonparametric quantile regression model.

For a nonparametric QR model, consider the observed response date y; of grain i and the predictor
variable year #; with an intercept in the (n x 2)-matrix X.

X:<1 1. 1)
f B ... I

Let Y; be a stochastic variable corresponding to the observed value of y; with the conditional distribution
function

FY,-\xi(y):P(YiSY|xi), —ooJy <o %)

In order to find the T-quantile of the conditional distribution of ¥; | x; we need to find the smallest value
of y such that the conditional cumulative distribution function is greater or equal to 7.
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So, for each quantile 0 < 7 < 1 the inverse
O(t|xi) = inf{y; Fy,,(y) > 7} (©)

of the conditional distribution function in (5) represents the conditional quantile function.

Moving forward, our model takes the form
O(t]X) =XB(7) +&(7) (7

whereby the column vector B(7) = (Bo(7), B;())" contains the intercept By(t) and year as the slope
B:(7) of quantile . We define £(7) as a non-parameterised vector of the error terms (Karlsson and
Hossjer, 2022).

An optimization problem is then constructed as to minimize the objective function in (5). In ordinary
linear regression one typically uses the method of least squared errors (LSE) to find the model that leads
to the lowest amount of loss of information. In our case however, we want to learn the parameters of a
quantile regression model that can accurately predict the conditional quantiles of the target variable. To
do this, we minimize the pinball loss function fr(é), which we previously introduced in 4. Methods,
over a set of data X,y (Koenker, 2005} [Takeuchi et al.| 2006).

The resulting regression parameter estimates of the T-quantile is thus given by the solution to the
minimization problem

B(7) Zargminznlfr(Yi—xib)- (3)

bERF =1

Comparing equation 8 with equation 3, note that we replace the scalar p; with x;b in the loss function
and minimize over b leading to an estimation of the -coefficient which coupled with a vector of data x
grants a predictive linear model (Karlsson and Hossjer}, |2022)). Since the function (8) is non-differentiable

at 0, no direct solution exists. Rather we use numerical estimation methods provided in the R library
quant reg, such as the Frisch-Newton interior point method to find the optimal point along the &-axis
(Koenker, 2023)).

4.2 Linear regression on emprical quantiles

Another approach we used is to perform linear regression on empirical quantiles, a statistical method
that combines linear regression with year-wise empirical quantiles to model the relationship between a
response variable and one or more predictor variables. The basic gist of EQ regression is to fit a linear
regression model to the empirical quantiles of the response variable, rather than to the mean. Most source
material and notations in this section are collected from (Karlsson and Hossjer, 2022). This method is
called ”empirical” quantile regression because it estimates quantiles of the response variable based on the
empirical distribution of the data, rather than assuming a specific distribution for the response variable.

Rather than using the raw gregorian date y; as response variable, we predict an empirical quantile
of the dates of a subset of observations. For each year t € .7 we extract a set of observations %;. Let
7 € (0,1) be a quantile. For each set %(, we let F(,) be the empirical distribution function formed by the
elements of its set. The corresponding empirical quantile is defined as

As in the previous method we construct the (n x 2) matrix X by stacking the intercept and vector of
years (1,7) on top of each other. For all 1 € .7, we stack the quantiles into the vector of observations Y (7).
Next we formulate the linear model

Y(1)=XB(7)+e(7). (10)

As before B = (P, B;) defines the regression parameters for the intercept By and year ;. Recall that
in the nonparametric method, no assumptions were made about the error terms. In this approach however,
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we assume a normal distribution of the error terms &(t) ~ N(0,62(7)Ir), where Ir is the identity matrix
of rank 7.

The log-likelihood of the model is given by
[(B(1),0%(7) | Y(2),X) = ) log £ (O:(7) | (XB(1)):, 0°(1)) - (1D

te7
So far in this approach the model grants each year ¢ the same weight, not each individual pollen. Since
the amount of pollen observed each year does not remain constant. A reweighting of the log-likelihood
may be conducted as to grant each pollen the same weight. To get even weighting of each pollen, we add
a weight factor w, = |%| to each empirical quantile O, (7). The reweighed log-likelihood, takes the form

L(B(7),0%(7) | Y(7),X) = ) wilog f (Oi(7) | (XB(1)):,0%(1)), (12)

teg

This can easily be implemented with the weights argument of the 1m function where we set the
weight to be N% where N; represents the number of observations at year 7.

To proceed fitting the model, we attempt to find the maximum likelihood estimate (MLE) of 8(t) and
o2 (1) by optimizing

MLE(B(1),0%(1)) = argmin {1, (B(7),6>(7) | Y (7),X) } (13)

B,02eR”

for a given quantile 7. Since the function is continuous and twice differentiable, the solution can easily
be found using conventional methods (Karlsson and Hossjer, [2022).

5. RESULTS

5.1 Statistical model performance across quantiles

Putting both these methods to the test, we take a look at how each method behaves for any quantile of data.
In figure 3 we limit the scope of our analysis to birch pollen monitored in Stockholm, similar patterns
are however observable for data of various species found at other stations. We observe that the intercept
begins around 25 days earlier for the QR model but increases more rapidly over the low quantiles than
the EQ model, eventually converging as the quantile level increases, leading to a significantly earlier
estimation of when the pollen season begins (low quantiles) using the QR approach. Another phenomenon
visible in figure 3 is that the direction of the slopes are different in parts of the second graph. What we
observe is that the QR estimates of the Year variable move from positive, to negative values across
the quantiles. This would imply that we should expect a later start of the pollen season each year, but
an advance in dates across most if the season. Note that the ridge plots in figure 1 show an advance in
dates for birch (betula) pollen in Stockholm. The EQ method appears to do a better job at modelling this
seasonal shift that QR.

An aspect in which QR appears to be a stronger alternative is the fact that the 95%-confidence intervals
are consistently lower using this method. Based on this and prior mentioned information, one may ask
oneself which of these approaches we deem to be the most fit to represent the behaviour of the pollen
season. The differing sizes of the confidence intervals make tempting to chose QR as the most viable
method, however the differing direction of slopes in the QR model is concerning as our previous glances
at the data tell us otherwise, this pattern is neither intuitive nor is it consistent among stations and species,
meaning we find this pattern in some combinations of data, but not others. Based on these finding, we
choose to continue with what we consider to be the safer option which is linear regression on empirical
quantiles (sacrificing precision for accuracy). Admittedly, the kernel density ridges in figure 1 may not be
able to highlight opposing directions of seasonal shift particularly well, as a smoothed density is fitted
onto the distribution, leading to a loss of information and therefore accuracy.

In order to understand the stark differences in coefficients for low quantiles between the two methods,
let us take a look at how the models look overlayed on the set of observations.
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Figure 3. Line graph over the coefficient and intecept estimates for each quantile of betula pollen in
Stockholm. The thicker, opaque bounaries define the 95%-confidence intervals for each method. The red
line shows the linear regression coefficient without quantile parameterization. As we conduct a
comparison between the methods EQ and QR, we find that the EQ method is more in line with the red
ordinary linear regression line than QR in both figures, implying there is a more uniform shift in dates
across all quantiles. QR produces lower confidence intervals. Note that the year parameter using QR
estimates positive coefficients (pollen season moving to later dates) for low quantiles.

Figure 4 tells us the difference in fitting of both our models. The quantile regression method fits a
linear model to encompass a given quantile, in this case the first 1% of annual pollen release, below the
regression line. We can observe that year 17 appears to be a heavy outlier in which the entire pollen season
came significantly earlier than other years. Since the QR method tries to fit a linear trend with a specific
amount of observations below it, and a large amount of these first 1% of observations are from the 17th
year, the model is heavily skewed by the observations from this year and thus does not generate a good fit.
EQ does not succumb to this issue since we in this approach aggregate the observations from each year
to a specific date value (green points) and then perform ordinary linear regression on these aggregated
observations. In this case the one outlier year corresponds to only 2% of the total observations while for
QR this effect appears to be well over 50%. These results explain why the slopes for low quantiles of QR
are so different to the equivalent measure of EQ. Thus we conclude that linear regression on empirical
quantiles is a more fitting approach to use in the case of estimating the annual seasonal shift of pollen.



200~

Day

100-

Year

' '
30 40

Method
EQ
== QR

Figure 4. Jitter plot over the annual distribution of betula pollen in Stockholm comparing QR and EQ at
the 1% quantile level. Blue line is the fitted nonparametric quantile regression (QR) line which keeps 1%
of observations (black dots) below it self, while the green line represents the linear regression (EQ) slope
fitted on to the averaged points highlighted in green.

5.2 Estimations and predictions per species

Species | Avg slope (1%) | Avg slope (50%) | Avg slope (95%) | Slope (season length)
Corylus -0.755 -0.539 -0.408 0.42
Alnus -0.490 -0.418 -0.384 0.30
Salix -0.432 -0.396 -0.178 0.30
Ulmus -0.336 -0.184 -0.303 0.16
Quercus -0.326 -0.217 -0.163 0.18
Betula -0.188 -0.135 -0.144 0.00
Poaceae -0.092 -0.201 -0.132 0.28

Table 3. Modelled pollen season shift by species averaged over all monitored stations.



Species Estimated Predicted start  Predicted start Duration Duration Duration
start 1973 2023 2050 (1973) (2023) (2050)
Corylus | April 7 February 23 January 31 19 days 40 days 52 days
Alnus April 4 March 1 February 11 21 days 36 days 44 days
Salix April 20 April 1 March 22 35 days 50 days 58 days
Ulmus April 25 April 1 March 19 17 days 25 days 30 days
Quercus | May 29 May 7 April 25 11 days 20 days 26 days
Betula April 30 April 20 April 14 25 days 25 days 26 days
Poaceae | June 1 May 28 May 26 58 days 72 days 80 days

Table 4. Estimated starting dates and seasonal duration averaged over all monitored stations.

Species | Avgslope (1%) | Avg slope (50%) | Avg slope (95%) | Slope (season length)
Alnus -0.777 -0.501 -0.351 0.70
Corylus -0.648 -0.347 -0.332 0.36
Salix -0.473 -0.432 -0.231 0.24
Ulmus -0.420 -0.373 -0.335 0.18
Betula -0.349 -0.298 -0.204 0.14
Quercus -0.322 -0.266 -0.257 0.12
Poaceae -0.042 -0.128 0.205 0.30

Table 5. Modelled pollen season shift by species averaged in the Stockholm region.

Species Estimated Predicted start ~ Predicted start Duration Duration Duration
start 1973 2023 2050 (1973) (2023) (2050)
Alnus March 31 February 26 February 8 16 days 51 days 70 days
Corylus | March 27 February 17 January 28 25 days 43 days 53 days
Salix April 24 April 1 March 19 36 days 48 days 54 days
Ulmus April 23 April 2 March 22 14 days 23 days 28 days
Betula May 3 April 16 April 7 23 days 30 days 33 days
Quercus | May 26 May 10 May 2 11 days 17 days 20 days
Poaceae | June 2 May 27 May 27 66 days 81 days 88 days

Table 6. Estimated starting dates and seasonal duration averaged in the Stockholm region.



Table 3 grants us information about how our EQ models predict the pollen seasons, for all monitored
species, to respond to increasing temperatures in the atmosphere. The entries in the columns named
Slope are the average of the -coefficient values generated at different combinations of species and
station, for each species of pollen. Although some pollen monitoring stations generated results with
positive coefficients for certain species, such a phenomenon appears not to be present when we take the
mean of our regression coefficients for each species from all stations. The exception to this however
would be the 95%-quantile estimate for grass pollen (poaceae), meaning the grass pollen season is moving
to later dates over time, while its start and peak shifts to earlier dates. This brings us to the conclusion
that the pollen season unanimously is headed towards an earlier start, as well as peak, as the climate
warms. The date at which 95% of all annual pollen gets monitored also seems to arrive earlier each year.
The exception to this pattern is, as we point out, grass pollen. The slope estimates for the end of season
arrival dates are however lower than the starting dates across all species. By using the linear regression
coefficients shown in the table, we can predict the dates at which quantiles of the annual pollen release are
expected to appear at. Using the 1% quantile estimate, we observe in table 4 that the predicted dates for

hazel and alder pollen moved from early April back in 1973 to late February as of 2023 and are expected
to reach late January and early February respectively by 2050. The willow and elm seasons appear to shift
at a slightly slower pace moving from late to early April over the same 50-year time span. Meanwhile
birch pollen only accumulated a movement of 10 days over the past half century. Oak pollen now starts to
appear in early May rather than towards the end of the month, which appears to have been the case in the
1970’s. Just as we saw in the ridge plots in section 3.5 Annual distribution of pollen, the starting dates
of the grass pollen season are not seen to be as greatly affected by climate change as for arboreal pollen,
although we find the peak to advance by 0.20 days annually, which is faster than at least one arboreal plant
(birch). Something we can observe across the board in regards to the monitored pollen species however, is

that the season lengths (difference in dates between the 95%-quantile and 1%-quantile) become longer
over time. This phenomenon is present in all species we have covered in this paper. The largest increase in
pollen season length among the arboreal species is seen in hazel pollen (21 days in 50 years and 33 days
in 77 years) while grass pollen, which saw negligible changes to its starting dates, still saw a significant
increase in season length (14 days in 50 years and 22 days in 77 years), largely owing to the fact that
the seasonal end moves to later dates by approximately 0.13 days a year. Birch pollen saw the smallest
increase as the season length is extends by barely a day after 77 years of increasing temperatures. Looking

at the equivalent results from the Stockholm region in tables 5 and 6, we see similar slopes and predicted
starting dates, although season lengths appear somewhat longer than average. In this region we find alder
to be the species most heavily affected by climate change and a smaller advance in the start and peak of
annual grass pollen distributions. While the slopes tell us a great deal about alterations in the dates of
pollen release, it is important to consider that the average P-values for models of some species are above
5%, meaning they are not statistically significant. Looking at the average values for the adjusted R? of
these models, we see that none are negative, meaning our models are a better fit that a horizontal line.
There could be many explanations for why the annual distribution of pollen behaves the way we have

observed. In this paper we are not aiming to try and answer this question. Some quick thoughts however
are that with an ever warmer climate, the temperatures at which plants are able to pollinate are present
more days of the year, meaning the window of opportunity for trees and grass to release their pollen gets
longer over time. The early pollen is what, for most species, gets shifted most heavily to earlier dates. An
idea to why this may be the case is that since the spring arrives earlier over time, plants are able to begin
the process of pollination earlier and consequently release most of their pollen (which always occurs in
the spring months for arboreal species) at earlier dates, leaving the later parts of the year with less relative
amounts of pollen. Results for each individual station can be accessed in Appendix C.
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Figure 5. Visualization of how higher latitudes impact the regression coefficient estimations per species
(season start, 1% quantile). For reference Sweden spans approximately the latitudes 55°N to 69°N.
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Figure 6. Visualization of how higher latitudes impact the regression coefficient estimations per species
(season peak, 50% quantile). For reference Sweden spans approximately the latitudes 55°N to 69°N.
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Figure 7. Visualization of how higher latitudes impact the regression coefficient estimations per species
(season end, 95% quantile). For reference Sweden spans approximately the latitudes 55°N to 69°N.

In figures 5 through 7 we can view the regression coefficients for each species and how they differ
based on the latitude of the station the pollen were collected at. Thus we can determine whether pollen in
colder climates are affected by climate change by a greater extent than in warmer areas, or vice versa.
Figure 5 tells us how the beginning of the pollen season shifts at the observed locations throughout
Sweden. Alder, hazel and oak all appear to have more dramatic seasonal shifts at northerly latitudes,
while grass, birch, willow and elm show the opposite effect. The median quantile, which we also refer
to as the peak of the pollen season was not observed to have had a significant impact of the latitude of
where it took place, as seen in figure 6. The steep regression slope of the peak of the elm pollen seasonal
shift comes down to the fact that the coefficient at the highest latitude is vastly different to the others. By
that metric, a conclusion can not be made about whether this is proof of climate change impacting elm
pollen at higher latitudes simply an outlier. It is worth noting that the p-value of the aforementioned elm
coefficient in Umea is 0.981. By all accounts, this points to the data point being an outlier. By figure
7 we see how the coefficients for the 95%-quantiles are estimated. We now observe, in contrast to the
1%-quantiles, that grass pollen attributes to a quicker movement toward earlier dates, the further north one
goes. To summarise, the length of the grass pollen season appears to be reduced at higher latitudes. The
remaining pollen species’ seasonal ends do not appear to be strongly affected by latitude. What we can
conclude from this is that the seasonal window for grass pollen does not expand as much at high latitudes
than what can be observed at lower latitudes. Alder pollen appears to, somewhat consistently, attain more
strongly negative coefficients, for any quantile, at the higher latitudes. Other species were not observed to
be affected by the latitude of their release by any greater extent.

6. Conclusions

The results in this study point towards EQ being a more fitting model than QR when predicting changes
in seasonal pollen distributions. Largely, this has to do with the fact that the spread, or variance of dates is
fairly low since the linear regression lines are based on yearly averages. Nonparametric quantile regression
models struggle to predict extreme quantiles due to clustering of extreme observations in the case
of abnormally hot or cold years, as discussed in 5.1 Statistical model performance across quantiles.
Based on the slopes of our predictive linear models, we conclude that an advance in the seasonal start

of pollen release among arboreal species occurs by between 0.19 and 0.76 calendar days per year. The
seasonal peak in arboreal pollen appears to also be heavily affected by climate change, as an advance
of 0.14 to 0.54 days per year is observed. The 95th percentile of annual observed pollen was found to
not advance as dramatically, resulting in longer periods of seasonal activity. Since 1973, season lengths
of arboreal pollen have increased by 8-21 days on average with the exception of birch, for which no
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noticeable change in season length was observed. Grass pollen saw an increase of 14 days over the same
50-year time frame. Grass pollen is the only species to attain a positive slope (pollination occurring
later over time) as we see ending dates regress by 0.13 days annually. A comparison of seasonal pollen

distributions between various locations, as seen in 5.3 Geographic influence reveals that the slopes can
differ quite dramatically between latitudes. In particular we see that alder, hazel and oak pollen see more
dramatic advances at higher latitudes, while herbaceous species appear less affected by climate change
further north.

7. DISCUSSION

7.1 Comparison with prior studies

The conclusion made in (Karlsson and Hossjer, 2022) was that nonparametric quantile regression (QR)
is the most well suited for single as well as multiple species analyses of migratory birds. What we can
conclude from this study however is that linear regression on empirical quantiles (EQ) appears to be the
preferred method between the two when it comes to modelling the advance in seasonal distribution of
pollen. We observed how outlier years influence the slope of QR models more than EQ models. Perhaps
this is where we can find an explanation as to why our findings differ in our respective studies. One reason
could be that the variance in observed dates among pollen is lower than for migratory birds, leading to a
more heavily skewed slope if a cluster of observations falls a lot earlier or later than normal, which tends
to be the case for years with abnormal average temperatures. As we recall the results observed in the

Estimations and predictions per species section, our findings reveal that hazel pollen is subject to the
largest advance in starting dates as well as overall dates of seasonal pollinosis. Grass pollen, which is not
arboreal, we find to not advance its end of season date, rather the opposite effect is observed as there is
a push back of 0.13 days per year on average. We find birch to be the species with the smallest change
in season length and the shortest advance in starting dates among the arboreal pollen. As mentioned in

2. Literature review, a similar Stockholm based study on seasonal pollen shift in response to climate
change (Lind et al., [2016)) found that end-of-season dates for herbaceous species of pollen, like grass,
had moved to later parts of the year but showed no significant change in starting or peak dates. This is
consistent with our findings as we see a push back of 0.21 days per year on average in Stockholm. Just
like in (Lind et al., 2016)) we see a significant advance in starting, as well as peak dates for all arboreal
species. Our averaged results agree on the fact that hazel was the species with the greatest advance in
dates whereas if we look exclusively at the phenology in Stockholm, alder appears to have advanced more
rapidly. We found oak to be the species with the smallest change in season length and the shortest advance
in starting dates among the arboreal pollen in Stockholm, whereas the model provided in (Lind et al.|
2016) found lower estimates for both elm and willow trees.

7.2 Further improvements

The QR approach struggles with clusters of outliers such as a year with a significantly earlier pollen
season. One way to look at it is that there exists a random effect of year that we do not consider in this
approach, thus deeming the assumption of independent observations incorrect in the case of our QR model.
In order to improve upon these models, one may consider adding a random variable to deal with this yearly
effect, resulting in a linear quantile mixed model, which may grant more significant slope estimations
than these QR and EQ models. This study only tells us about the distribution of pollen, we do not make

any considerations about the volume of pollen, which may be a telling factor in determining why and how
plants’ pollination cycle reacts to a warming climate. Thus, further studies of this character may consider
integrating pollen volume in their models. A substantial amount of our models are not significant at 95%

confidence level. The majority of these are for combinations of species and station that do not
have extensive sets of data, leading to less accurate models. In particular, grass pollen and observations
from the Umea laboratory are overrepresented in poorly fitted models. To increase the accuracy of such
models, larger data sets are necessary.
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APPENDIX

Appendix A: Translation of the latin names of pollen species

Appendix B: Information about reduced data sets

Latin name | English name | Swedish name
Alnus Alder Al
Betula Birch Bjork

Corylus Hazel Hassel
Poaceae Grass Gris
Quercus Oak Ek
Salix Willow Viden
Ulmus Elm Alm

Table 7. Pollen species translation in to English and Swedish.

In order to make the process of analyzing results a lot quicker, we have reduced the size of each data
set to less than 5000 observations. Each data set is made up of observations of individual pollen for
all combinations of species and monitoring station. Some data sets are already below this size limit,
like all the hazel (corylus) data sets and a a few more at the Umea station, while others need massive
reductions in size. Table 8 denotes sizes of the data sets for combinations of species and station. The
denominators of which we reduce the data sets with are represented in brackets. As mentioned in the
section Data selection, a reduction in the size of each data set does not affect the shape of their distribution
since we use the s1ice () function to remove observations uniformly across all dates.

Stations Alnus Betula Corylus Poaceae Quercus Salix Ulmus
Eskilstuna | 45362 (10) | 494464 (99) | 3594 (1) | 50537 (18) | 26 899 (6) 15398 (4) | 167 (1)
Goteborg 31722 (7) 451397 (91) | 3374 (1) | 31676(7) 42482 (9) 14715 (3) | 33284 (7)
Jonkoping 16 454 (4) 231147 (47) | 3812(1) | 74372 (15) | 26482 (6) 17940 (4) | 6509 (2)
Malmo 55346 (12) | 212232(43) | 4254 (1) | 48265 (10) | 54957 (11) | 13929 (3) | 35560 (8)
Norrkoping | 24 089 (5) 372 668 (75) | 113 (1) 37613 (8) 57914 (12) | 19285(4) | 4884 (1)
Stockholm | 31596 (7) 286 630 (58) | 5848 (1) | 22639 (5) 40942 (2) 31227(7) | 11645(3)
Umea 42217 (9) 203475 (41) | 3812(1) | 52569 (11) | 182 (1) 8127 (2) 9779 (2)
Vistervik 33653 (7) 239006 (48) | 4484 (1) | 48265 (11) | 81161 (17) | 8875(2) 9821 (2)

Table 8. Data set sizes for combinations of species and location. Brackets denote the factor of which

each data set is reduced by.

Appendix C: Results per species and location
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Species | Location Slope | P-value | Adj. R"2 Estimated Predicted start  Predcited start
start 1973 2023 2050
Corylus | Umea -1.08 0.00 0.35 May 22 March 15 February 6
Corylus | Eskilstuna -0.87 0.00 0.42 April 12 February 21 January 25
Corylus | Vistervik -0.85 0.00 0.24 April 7 February 18 January 23
Corylus | Norrkoping | -0.83 0.00 0.24 April 18 February 18 January 17
Corylus | Malmo -0.82 0.00 0.28 March 27 February 14 January 24
Alnus Stockholm -0.78 0.00 0.38 March 31 February 26 February 9
Quercus | Umed -0.76 0.02 0.41 July 13 May 12 April 8
Alnus Eskilstuna -0.75 0.00 0.51 April 12 March 2 February 7
Salix Eskilstuna -0.75 0.00 0.38 April 24 April 2 March 21
Corylus | Stockholm -0.65 0.00 0.18 March 27 February 18 January 29
Ulmus Malmo -0.64 0.05 0.08 April 12 March 19 March 6
Corylus | Jonkoping -0.58 0.03 0.11 March 18 February 21 February 8
Alnus Malmo -0.56 0.00 0.17 March 26 February 18 January 29
Alnus Umed -0.54 0.01 0.13 May 2 March 13 February 14
Salix Goteborg -0.51 0.00 0.30 April 19 March 25 March 12
Salix Norrkoping | -0.51 0.00 0.31 April 19 March 30 March 19
Ulmus Norrkoping | -0.48 0.00 0.19 April 24 March 27 March 12
Salix Stockholm -0.47 0.00 0.24 April 24 April 1 March 20
Ulmus Eskilstuna -0.47 0.00 0.17 April 25 April 1 March 19
Alnus Norrkoping | -0.43 0.04 0.09 April 5 March 1 February 10
Salix Malmo -0.42 0.01 0.13 April 8 March 23 March 14
Ulmus Stockholm -0.42 0.02 0.09 April 23 April 3 March 23
Betula Malmo -0.39 0.00 0.30 April 28 April 10 March 31
Corylus | Goteborg -0.36 0.22 0.01 March 20 March 6 February 26
Quercus | Norrkoping | -0.35 0.01 0.17 May 26 May 6 April 25
Betula Stockholm -0.35 0.00 0.21 May 3 April 16 April 7
Salix Vistervik -0.35 0.04 0.09 April 9 March 31 March 25
Alnus Goteborg -0.34 0.10 0.04 March 27 March 12 March 4
Salix Jonkoping -0.32 0.09 0.06 April 15 March 31 March 23
Quercus | Stockholm -0.32 0.00 0.35 May 26 May 11 May 2
Betula Eskilstuna -0.32 0.00 0.25 May 5 April 19 April 10
Quercus | Malmo -0.32 0.00 0.21 May 18 April 28 April 17
Betula Goteborg -0.32 0.00 0.26 April 30 April 17 April 10
Alnus Jonkoping -0.31 0.17 0.03 March 27 February 21 February 2
Ulmus Goteborg -0.31 0.10 0.04 April 18 March 25 March 12
Poaceae | Jonkoping -0.29 0.02 0.12 June 7 May 22 May 14
Quercus | Eskilstuna -0.29 0.00 0.17 May 25 May 8 April 29
Quercus | Goteborg -0.28 0.01 0.13 May 26 May 5 April 25
Alnus Vistervik -0.22 0.38 -0.01 March 28 March 1 February 14
Ulmus Vistervik -0.22 0.29 0.00 April 9 March 31 March 26
Poaceae | Malmo -0.21 0.06 0.07 May 29 May 16 May 10
Quercus | Jonkoping -0.19 0.15 0.04 May 20 May 9 May 3
Poaceae | Norrkoping | -0.19 0.12 0.04 June 2 May 29 May 26
Betula Norrkoping | -0.18 0.10 0.05 April 29 April 18 April 13
Ulmus Jonkoping -0.16 0.56 -0.02 April 15 March 29 March 20
Salix Umea -0.12 0.44 -0.01 May 7 April 21 April 13
Poaceae | Goteborg -0.12 0.20 0.02 June 1 May 23 May 18
Quercus | Vistervik -0.09 0.50 -0.02 May 17 May 9 May 5
Poaceae | Stockholm -0.04 0.50 -0.01 June 2 May 29 May 27
Betula Vistervik -0.01 0.94 -0.03 April 22 April 20 April 19
Poaceae | Umed -0.01 0.95 -0.02 June 15 June 14 June 13
Betula Umea -0.00 0.99 -0.02 May 12 May 3 April 28
Poaceae | Eskilstuna -0.00 0.99 -0.02 May 29 May 29 May 29
Ulmus Umea 0.01 0.98 -0.05 June 8 April 26 April 3
Betula Jonkoping 0.07 0.58 -0.02 April 21 April 24 April 25
Poaceae | Vistervik 0.13 0.32 0.00 May 21 May 30 June 4

Table 9. Start of pollen season for different species and locations
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Species | Location Slope | P-value | Adj. R"2 Estimated Predcited Predicted end
peak 1973 peak 2023 2050
Corylus | Umea -1.13 0.00 0.41 May 27 March 19 February 9
Alnus Umea -0.77 0.00 0.28 May 10 March 23 February 25
Salix Eskilstuna -0.75 0.00 0.47 May 19 April 20 April 5
Corylus | Vistervik -0.69 0.01 0.15 April 9 March 11 February 23
Quercus | Umed -0.61 0.03 0.38 July 11 May 20 April 22
Corylus | Norrkdping | -0.53 0.05 0.08 April 23 March 11 February 16
Alnus Eskilstuna -0.52 0.00 0.43 April 18 March 19 March 2
Corylus | Jonkoping -0.50 0.12 0.05 March 26 March 15 March 10
Alnus Stockholm -0.50 0.00 0.32 April 9 March 21 March 10
Corylus | Eskilstuna -0.47 0.00 0.19 April 14 March 15 February 28
Corylus | Malmo -0.44 0.06 0.07 April 2 March 9 February 25
Salix Stockholm -0.43 0.00 0.27 May 10 April 16 April 4
Salix Malmo -0.43 0.00 0.26 May 14 April 26 April 16
Salix Norrkdping | -0.42 0.00 0.31 May 3 April 15 April 5
Ulmus Vistervik -0.42 0.03 0.10 April 24 April 5 March 26
Ulmus Eskilstuna -0.41 0.00 0.26 May 3 April 13 April 2
Alnus Malmo -0.39 0.05 0.08 April 1 March 12 March 2
Alnus Goteborg -0.38 0.02 0.11 April 9 March 29 March 23
Salix Goteborg -0.37 0.00 0.25 May 3 April 15 April 6
Ulmus Stockholm -0.37 0.00 0.15 April 30 April 13 April 4
Corylus | Stockholm -0.35 0.05 0.06 April 7 March 15 March 3
Alnus Norrkoping | -0.34 0.04 0.10 April 11 March 21 March 10
Ulmus Goteborg -0.34 0.02 0.11 April 28 April 6 March 25
Ulmus Malmo -0.34 0.23 0.01 April 20 April 8 April 2
Salix Umea -0.32 0.10 0.04 May 27 May 21 May 18
Poaceae | Malmo -0.30 0.00 0.22 July 2 June 17 June 9
Betula Stockholm -0.30 0.00 0.28 May 15 April 30 April 22
Poaceae | Jonkoping -0.28 0.01 0.17 July 10 June 25 June 17
Salix Jonkoping -0.28 0.07 0.07 April 30 April 19 April 14
Betula Eskilstuna -0.27 0.00 0.19 May 13 April 29 April 21
Poaceae | Goteborg -0.27 0.01 0.13 July 7 June 23 June 15
Quercus | Stockholm -0.27 0.00 0.27 May 31 May 19 May 12
Poaceae | Eskilstuna -0.26 0.00 0.23 July 8 June 25 June 18
Betula Malmé -0.25 0.00 0.18 May 9 April 23 April 15
Betula Goteborg -0.24 0.00 0.17 May 9 April 28 April 22
Alnus Jonkoping -0.23 0.29 0.00 April 4 March 15 March 5
Ulmus Jonkoping -0.23 0.27 0.01 April 29 April 11 April 2
Poaceae | Norrkoping | -0.21 0.06 0.07 June 30 June 24 June 21
Alnus Vistervik -0.20 0.32 0.00 April 2 March 20 March 13
Corylus | Goteborg -0.20 0.41 -0.01 April 4 March 29 March 27
Quercus | Malmo -0.19 0.08 0.06 May 26 May 14 May 7
Quercus | Goteborg -0.18 0.07 0.05 May 29 May 18 May 12
Quercus | Norrkoping | -0.18 0.11 0.04 May 27 May 19 May 15
Quercus | Vistervik -0.18 0.12 0.04 May 31 May 20 May 14
Salix Vistervik -0.16 0.39 -0.01 April 25 April 22 April 21
Ulmus Norrkoping | -0.15 0.57 -0.02 April 21 April 25 April 27
Poaceae | Stockholm -0.13 0.06 0.05 July 5 June 28 June 24
Quercus | Eskilstuna -0.13 0.14 0.03 May 28 May 19 May 14
Poaceae | Umed -0.11 0.15 0.03 July 14 July 10 July 8
Betula Umed -0.05 0.66 -0.02 May 27 May 18 May 12
Poaceae | Vistervik -0.04 0.74 -0.03 June 23 June 30 July 4
Betula Vistervik -0.02 0.85 -0.03 May 8 May 1 April 27
Quercus | Jonkoping -0.01 0.95 -0.03 May 27 May 23 May 20
Betula Norrkoping | -0.00 0.97 -0.03 May 7 April 30 April 26
Betula Jonkoping 0.05 0.66 -0.02 May 8 May 2 April 29
Ulmus Umea 0.80 0.11 0.08 May 25 May 17 May 13

Table 10. Peak of pollen season for different species and locations
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Species | Location Slope | P-value | Adj. R"2 | Estimatedend Predictedend  Predicted end
1973 2023 2050
Corylus | Norrkdping | -0.75 0.00 0.35 May 6 March 27 March 5
Alnus Norrkoping | -0.58 0.00 0.29 April 28 April 5 March 23
Alnus Umea -0.57 0.00 0.30 May 21 April 8 March 16
Corylus | Umea -0.56 0.28 0.01 June 7 March 29 February 19
Alnus Eskilstuna -0.52 0.00 0.55 May 6 March 30 March 11
Corylus | Jonkoping -0.48 0.10 0.05 April 9 April 8 April 8
Ulmus Vistervik -0.45 0.01 0.17 May 9 April 18 April 7
Corylus | Eskilstuna -0.44 0.00 0.22 April 26 March 31 March 16
Salix Malmd -0.44 0.00 0.26 June 7 May 12 April 28
Corylus | Vistervik -0.44 0.03 0.11 April 23 March 30 March 17
Ulmus Eskilstuna -0.43 0.00 0.33 May 13 April 21 April 9
Ulmus Umea -0.38 0.48 -0.02 June 10 May 19 May 7
Alnus Stockholm -0.35 0.00 0.16 April 16 April 18 April 20
Alnus Malmo -0.34 0.03 0.09 April 16 April 1 March 23
Alnus Goteborg -0.34 0.02 0.11 April 22 April 10 April 4
Ulmus Jonkoping -0.34 0.28 0.00 May 28 April 24 April 5
Ulmus Stockholm -0.34 0.01 0.11 May 7 April 26 April 20
Corylus | Stockholm -0.33 0.01 0.11 April 21 April 2 March 23
Poaceae | Eskilstuna -0.33 0.00 0.16 August 17 July 31 July 21
Corylus | Malmo -0.32 0.10 0.05 April 14 April 4 March 29
Betula Malmé -0.29 0.01 0.16 May 21 May 9 May 2
Ulmus Malmo -0.29 0.19 0.02 April 28 April 21 April 17
Ulmus Goteborg -0.29 0.01 0.14 May 3 April 17 April 8
Salix Jonkoping -0.28 0.10 0.05 May 26 May 18 May 15
Alnus Jonkoping -0.26 0.09 0.06 April 17 April 3 March 27
Quercus | Stockholm -0.26 0.00 0.34 June 7 May 27 May 22
Betula Goteborg -0.25 0.01 0.14 May 20 May 11 May 6
Betula Eskilstuna -0.24 0.00 0.17 May 26 May 14 May 7
Salix Stockholm -0.23 0.00 0.17 May 30 May 19 May 13
Salix Umed -0.22 0.04 0.08 June 9 June 10 June 11
Quercus | Umed -0.21 0.44 -0.04 July 1 May 31 May 15
Quercus | Malmo -0.20 0.10 0.05 June 7 May 22 May 14
Betula Stockholm -0.20 0.00 0.17 May 27 May 16 May 10
Salix Eskilstuna -0.20 0.00 0.17 May 27 May 20 May 16
Poaceae | Umed -0.20 0.02 0.11 August 3 July 27 July 22
Quercus | Goteborg -0.19 0.05 0.07 June 6 May 25 May 19
Quercus | Vistervik -0.18 0.10 0.05 June 8 May 27 May 21
Quercus | Eskilstuna -0.18 0.07 0.05 June 7 May 27 May 20
Salix Norrkoping | -0.17 0.28 0.01 May 13 May 15 May 17
Salix Goteborg -0.15 0.15 0.03 May 20 May 15 May 11
Alnus Vistervik -0.11 0.56 -0.02 April 14 April 6 April 2
Betula Umea -0.09 0.41 -0.01 June 9 June 1 May 28
Quercus | Norrkoping | -0.08 0.45 -0.01 May 31 May 29 May 28
Betula Norrkoping | -0.08 0.45 -0.01 May 21 May 13 May 9
Poaceae | Jonkoping -0.03 0.84 -0.03 August 8 August 1 July 29
Betula Vistervik -0.01 0.97 -0.03 May 22 May 16 May 13
Betula Jonkoping 0.00 0.98 -0.03 May 22 May 13 May 9
Quercus | Jonkoping 0.01 0.92 -0.03 June 2 May 31 May 30
Corylus | Goteborg 0.07 0.77 -0.02 April 13 April 29 May 7
Ulmus Norrkoping | 0.09 0.76 -0.03 April 29 May 6 May 10
Poaceae | Stockholm 0.20 0.00 0.14 August 8 August 18 August 24
Poaceae | Malmo 0.22 0.16 0.03 July 27 August 9 August 17
Poaceae | Norrkoping | 0.26 0.15 0.03 July 17 August 9 August 22
Salix Vistervik 0.27 0.12 0.04 May 8 May 26 June 5
Poaceae | Goteborg 0.29 0.06 0.06 July 29 August 14 August 23
Poaceae | Vistervik 0.64 0.00 0.18 June 29 August 19 September 16

Table 11. End of pollen season for different species and locations
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