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Abstract

Concentrations of contaminants in animal populations are usually
assumed to be log–normally distributed. Contaminant concentrations
can either be measured in tissue taken from individuals or by measur-
ing the concentration in a mixture of tissue taken from several different
individuals. When individual concentrations are measured, they can
be transformed into log–concentrations and their sample mean is of-
ten used as a yearly input in linear trend models. When mixtures of
tissue taken from different individuals is introduced as the reported
concentration in an ongoing observational study where earlier concen-
trations were reported individually, a bias will propagate and give rise
to biased estimations for the coefficient parameters of log–linear trend
models (for as long as both types of input are used). This thesis derives
a second–order Taylor series approximation for the distribution of the
logarithm of such log–normal averages, and uses this to approximate
the size of the biased trend estimator as a function of two sources of
variance in log–concentration. When a trend estimator is biased, the
probability of Type I error will not correspond to the nominal signif-
icance levels chosen for analysis. In order to approximate the true
probability of Type I error, a parametric bootstrap simulation study
is conducted, and a logistic regression model is then fitted to the out-
comes of the simulations. A case study on mercury concentration in
Baltic herring is also conducted, as a means to illustrate the problem
in a practical setting and exemplify what the logistic regression model
would predict regarding increased probability of Type I error and how
the biased trend estimates differ from trend estimates of bias–corrected
data.
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1 Introduction

This thesis focuses on how biased trend estimates arise in log–linear regression
models when old data were collected as individual observations and new data are
collected as averages of individual concentrations. Log–linear regression models
are common across the sciences when effects are better modelled as multiplica-
tive rather than additive, which is revealed visually as curved data where the
empirical dispersion about the median response M(yi) is highly asymmetric
and positively skewed at each setting i of an explanatory variable (in the case of
simple linear regression). In the prototypical case we would then have that the
original response variable Y is log–normally distributed at each setting i, and a
log–transformation of Y would allow us to fit a linear regression model where
the effects on ln (Y ) are linear. Hopefully such a log–transformation would miti-
gate the problems of curvature, heteroskedasticity and auto–correlation, so that
the obtained linear model for ln (Y ) is a convincing fit to data. Thereafter, we

can use the estimated coefficient β̂ of the log-linear regression model to approxi-
mate a non–linear model for the original variable Y . Simple log–linear regression
models where time is the explanatory variable occur frequently in biomonitoring
programmes of contaminant concentrations in animal and human populations
alike. Monitoring of possible trends in contaminant concentrations is very im-
portant since the presence of contaminants could impact entire ecosystems as
well as the health of individual persons, and it is therefore of interest that such
trends are estimated with unbiased estimators.

An example of such a biomonitoring programme is The Swedish National Mon-
itoring Programme for Contaminants in Marine Biota (SNMPCMB), which
monitors 20 different contaminants (among them PFAS, PCB and Mercury)
at currently 29 different collection stations around the Swedish West and East
coasts. The programme fits both long–term trend models and short–term trend
models for the different combinations of contaminant and collection station, and
the trend estimates of these log–linear regression models are published in an re-
port every two years. Trends are regarded as significant if P–values calculated
for the t-statistic of β̂ under the null hypothesis that β = 0 are less than five
percent. The short–term models are estimated from intervals of ten years of
data, and the thesis focuses its investigation of what the trend bias will be in
such a setting where log–linear trend models are fitted to ten years of data, and
how trend bias relates to the likelihood of making a Type I error.

For biomonitoring programmes that study the distribution of some particular
contaminant concentration, one question of interest has been whether to mea-
sure concentrations in each individual specimen (an individual specimen could
for instance be an individual human) or to make homogenates which are mix-
tures from the tissue collected in different specimen of the same population (such
as humans aged 0-3 ) and then measure the concentration of the homogenate.
In this thesis we refer to this practice of measuring contaminant concentra-
tion in each individual member of a sample as Method I. The alternative
practice of measuring the concentration of a contaminant in a homogenate is
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correspondingly referred to as Method II. If a homogenate mixture is perfectly
homogenous with regards to the concentration of some contaminant, and this
mixture has been created by equally sized contributions from each included in-
dividual specimen, we can interpret it as a measure of average concentration.
Homogenate mixtures are sometimes referred to as pooled samples. Gradually
during the 2000’s the SNMPCMB has begun applying Method II for some combi-
nations of contaminant, specie and location. A very notable benefit of choosing
Method II has been that the programme could spend less financial resources
on chemical analysis and instead use these resources to fund an expansion of
locations monitored (roughly doubling the number of sites where species are
fished each year). For a detailed description of the SNMPCMB, see Sörensen
and Faxneld [10].

The main focus of this thesis is in how a change from measuring individual
concentrations (Method I) to homogenate concentrations interpreted as sample
averages (Method II) yields a bias for the estimator of the coefficient parameter
β in log-linear regression models based on log–normal time series data, if the
data of the trend model includes measurements of both types. This bias arises
as a consequence of another bias, namely the positive bias that occurs when
expected log–concentration E[X] = µ is estimated with ln (Ȳ ) instead of average
log–concentration X̄. Biased coefficient parameter estimates implies that in
hypothetical scenarios where there is no linear trend in the response variable
with respect to time a change from Method I to Method II should likely result
in more rejections of the null hypothesis H0 : β = 0 than the chosen significance
level of our test statistics would suggest.

The thesis is outlined in the following manner. It begins by providing some
brief background on the pecularities of the log–normal distribution, its role in
biomonitoring of contaminant concentrations and a review of the literature re-
garding benefits of Method I compared to Method II in a biomonitoring context.
In the Theoretical framework derivations of analytical expressions are provided
for the bias and variance of the coefficient parameter estimator, and goes on
to describe a method of how to correct the bias. After doing this, parametric
bootstrap simulations are used to explore the question of how the bias seems to
affect the likelihood of Type I error — and a logistic regression model is fitted
to the outcomes of the simulations so that the probability of Type I error can
be estimated. In the Case study the method for bias correction is applied on a
time series of mercury concentrations in six geographically distinct herring pop-
ulations dispersed around the Swedish coasts. Based on predictions given by a
logistic regression model that was fitted to the outcomes of the aforementioned
simulations, the case study suggests that the risk of Type I error — under the
assumption of a chosen significance level threshold of 0.05 — is increased to
reach a maximum ranging 0.054–0.115 for the six different stations when five
years has passed since changing from Method I to Method II.
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2 Literature review and background

2.1 Overview of the log-normal distribution

The log–normal distribution is defined by an anti-log transformation of a nor-
mally distributed variable. Whereas the normal distribution is symmetric about
its median and mean (they both equal µ), the log–normal distribution is asym-
metric and positively skewed.

Definition 1 A random variable Y is said to be log-normally distributed if

Y := eX

where
X ∼ N(µ, σ2),

and we may then write Y ∼ LN(µ, σ2).

For a log–normal variable Y , we have the following expressions for the expected
value, distributional median and the variance of such a variable:

E[Y ] = eµ+
σ2

2 (1)

M(Y ) = eµ (2)

Var(Y ) = (eσ
2

− 1) · e2µ+σ2

(3)

There are some peculiarities to the log-normal distribution, in particular we
have that sums of independent log-normals often have a rather slow rate of
convergence towards a normal distribution (see Mitchell [8]) as well as a the
fact that Moment Generating Functions are undefined in the neighborhood of
zero for log-normal distributions (implying that these functions are unable to
generate the sought-for moments) as described by Allan Gut in the textbook
An intermediate course in Probability.[4] The second property does not present
a problem if we are limited to estimating moments from a sample of i.i.d. log-
normal random variables, because such moments have been derived by other
methods, but if we instead wish to find the moments for a sum of non-identical
(but still independent) log-normals difficulties will arise. Even greater difficulties
arise when the log-normal terms are correlated. As a matter of fact, the problem
also extends itself to the characteristic function φ(t) for log-normals because
even though it exists it does not have a convergent Taylor series representation
when t is complex according to Holgate [6]. The remaining option of instead
relying on repeated application of the convolution formula is deemed practically
unworkable by authorities on the subject matter, according to Dufresne.[3]
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2.1.1 Why the log-normal distribution is (often) a suitable choice
for modeling the distribution of contaminant concentrations

The following paragraphs are intended for those readers who wish to gain an un-
derstanding of why the log-normal distribution is as commonplace as it is within
the context of biomonitoring programmes for contaminants in animal popula-
tions, and can be skipped without loss of ability to understand later sections of
the paper.

Concentrations of contaminants in biological populations are usually not suit-
ably described by normal distributions since they tend to exhibit positive skew
when studied empirically. The reason that this positive skew arises can in part
be attributed to the fact that a concentration of a substance is measured in
strictly non–negative values — for example it could be measured in parts of
millions — and does therefore not have a support across the entire range of
real numbers as the normal distribution does. Contributing to the problem
of bounded support is the circumstance that many monitored pollutants tend
to do lethal harm in very low concentrations, which effectively means that the
expected fraction of pollutant A in a tissue taken from species B will be tremen-
dously much closer to a value of 0 (no detected occurrence) than to 1 (entire
tissue mass consisting of pollutant). Therefore, observed concentrations are very
likely to reside either directly at the lower bound (due to chemical-analytical
measurements being unable to detect concentrations below some given thresh-
old) or at least very close to the lower bound.

Under the circumstances where data is realized as right-tailed with a low pos-
itive mean in comparison to both the sample variance as well as the support
of data (for example a range from 0 to a 106 when the unit is micrograms per
gram), Limpert et al [7] suggest that the log–normal distribution may serve as
the most suitable model for capturing (at least approximately) the underlying
data generating process. Log–normal models are very common across the sci-
ences — see Limpert et al [7] or Dufresne [3] for examples — owing in part to
their property that the logarithm of original data is normally distributed. When
log–transforming concentration measurements we have to decide how to handle
zero–valued observations (which originate from true non–zero concentrations
being below the detection limit), as the limit of ln(0) diverges to negative infin-
ity, but the details of these imputation considerations are beyond the scope of
this thesis. If zero–valued measurements do not occur in data, all observations
of log–concentrations will be real-valued numbers and their support will be the
half-closed interval of (−∞, ln(N)] instead of the fully-closed interval of [0, N ]
for the original concentrations. In this context N denotes the theoretical maxi-
mum concentration that could be detected (such as one million if concentration
is measured in micrograms per gram), but as mentioned we can expect the
highest observed concentration in a sample to be very much closer to zero than
N , and therefore the theoretical problem of right-truncation is of no practical
importance.
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2.2 Overview of biomonitoring of contaminant concentra-
tions

One reason for measuring the concentration in each individual specimen is that
it will provide us with information that readily allows us to estimate variance
among individuals of the same population. A second reason to measure indi-
vidual concentrations is that if the observations of the collected sample are as-
sumed to be log-normally distributed then a simple log-transform of the observa-
tions will yield a corresponding group of normally distributed log-concentrations,
which could be preferred in some contexts.

However, there are also reasons to instead consider making homogenates and
measure their concentration. One such reason is that if the cost of collecting
an individual specimen is much lower than the cost of sending it for chemical
analysis (and thereby measure its concentration), then a study design where
many different homogenates formed for the same target population and where
each homogenate is created from the tissue of even more individual specimen
could very well result in better point estimates of concentration and yet allow for
inference about the variance among individuals. Individual variance can be esti-
mated from the between-homogenates variance and the Law of Large Numbers
implies that the average homogenate concentration is an unbiased estimator of
the expected value for the concentration. Caudill et al [2] mention another rea-
son to choose the homogenate approach (referred to as pooled samples in their
paper), namely that homogenates tend to have a larger volume than individual
mixtures of tissue (or saliva in Caudill’s case), and larger volumes can some-
times increase the span that concentrations can be detected in by decreasing the
Limit of Detection (LOD). Bignert et al [1] estimate the cost-effectiveness of the
two approaches and makes suggestions about when either one is preferable. The
study does not, however, consider what consequences there will be in situations
where the purpose is to fit log-linear regression models to time series data where
concentrations are reported both from individual specimen (for some years) and
from homogenates (for other years). In fact, it seems that there has been no
published study that examines this particular problem.
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3 Theoretical framework

One can imagine a scenario when a sample of n individuals has been collected
and the distribution of a contaminant in their target population is log-normal,
and that one could choose to apply both Method I and Method II. If the ho-
mogenate has been perfectly mixed so that the the contaminant is homogenously
distributed within the mixture, and also that each individual sample member
has contributed with an equal amount of tissue, then the homogenate concen-
tration can be interpreted as a measure of the sample average concentration ȳ.
In theory the homogenate concentration would therefore equal the arithmetic
average of the n individual measurements, and we would consider the former a
unbiased point estimate of E[Y ] = eµ+

1
2σ

2

. In the context of biomonitoring of
contaminants it is more common that the primary parameter of interest is µ, the
expected value of the normally distributed log-concentration, and an unbiased
estimator for this quantity is the average log-concentration X̄ := 1

n

∑n
i=1 ln (Yi).

Caudill et al [2] observe that a first–order Taylor series approximation for
the logarithm of Ȳ (in the neighborhood of E[Ȳ ]) will let us approximate
E[ln Ȳ ] ≈ µ + 1

2σ
2, and therefore a bias of (approximately) 1

2σ
2 arises when

ln (Ȳ ) is used as an estimator of µ. Higher precision for the approximation of
this bias can be obtained by deriving a second–order Taylor series, and such
a Taylor series is derived but with additional layers of realism that requires a
more thorough treatment than the approximation used by Caudill et al. One
source of additional complexity is introduced when there is as a random group
effect bt ∼ N(0, s2) which is i.i.d. across all years t included in the time series,
that affects all members of a collected sample. Such an effect is included in
the assumed model (see model 4 in section 3.1.1). Another detail that is ac-
counted for is the fact that several replicate homogenates are used, and so it is
not an individual ln (Ȳ ) that is chosen as an estimator of µt (the expected log-
concentration for year t) but the average of the log-homogenate concentrations,
and this estimator is introduced as X̃ in Equation 9.

The first part of the Theoretical framework introduces the model for individ-
ual log-concentration and how Bias(β̂) relates to Bias(X̃). In the second part

a method is proposed for correcting Bias(β̂) where one first attempts to cor-
rect Bias(X̃) by calculating bias-correction terms from the derived formula for
this bias with relevant parameter estimates as input, and then proceeding with
fitting corresponding log-linear trend models to bias-corrected datasets. The
theoretical framework concludes with the third part, which presents a simu-
lation study that investigates how the risk for Type I error can modelled in
different scenarios.
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3.1 The bias incurred to β̂ when switching from Method
I to Method II

3.1.1 The assumed log-linear model

In order to answer the question of what consequences there will be for trend
monitoring based on log-normal data and in which circumstances there will be
any consequences of practical importance, when switching from Method I to
Method II we shall begin by first assuming that the log-concentration of year t
is generated by a simple linear regression model.

Model 1 We assume the following model for log-concentration of some partic-
ular contaminant in an individual specimen for a given year:

Xit = ln(Yit) = α̃+ β(t− t̄) + bt + ϵit, (4)

where

bt ∼ N(0, s2) (5)

represents yearly variation attributable to heterogeneity between individuals col-
lected from different samples. We also assume that

ϵit ∼ N(0, σ2), (6)

and this term is interpreted as a source of variance between individuals collected
simultaneously.

The β parameter of Equation 4 leads to an approximate yearly change of con-
centrations which is

”Yearly percentual change” ≈ (exp (β)− 1) · 100.

As an illustrating example for one source of variation between samples, consider
an individual fish that feeds on seaweed in some geographically limited habitat,
and assume that we can monitor the concentration of mercury in the fish’s liver
in real–time. Let us also assume that there is a specific source for mercury
contamination in the fish’s habitat, for example a broken thermometer, and
that the fish can therefore feed on its seaweed at different distances from this
source. It seems reasonable to expect that the likelihood of measuring a large
increase in the concentration of mercury in the fish is drastically heightened
when the fish is feeding on seaweed one meter away from a broken thermometer
compared to when it is residing a hundred meters away from aforementioned
mercury source. The example illustrates why we should not be too surprised to
find a random effect between different samples of a specie taken from the same
geographical area, such as a variance between different fish shoals (groups of fish
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swimming together), because animals that move together in groups are likely to
have been near the same contaminant sources. This phenomenon contributes to
the random group effect bt for each group of collected specimen, and is included
in Model 1.

The question of what the consequences of the method shift would be if the
data is better described as being generated from a non–linear distribution is
beyond the scope of this paper. However, as mentioned in section 6.2 of the
appendix, formal tests for non–linearity are limited to longer time series for the
SNMPCMB, so the assumption of linearity seems uncontroversial for the Case
study (section 4) given that the focus of this thesis is short–term models.

3.1.2 Estimating time trends when switching observational study
design

When individual specimen concentrations are measured (Method I), the mean
log-concentration at (a particular year t) will be a normally distributed variable
denoted X̄t. It is defined as

X̄t =

∑n
i=1 Xit

n
, (7)

and because it is the arithmetic average of n i.i.d. normally distributed random
variables it follows that

X̄t ∼ N(α̃+ β(t− t̄), s2 +
1

n
σ2). (8)

Hence, when Method I is used, variance is decreased by increasing n (the number
of individuals per sample) and by improving the sample design so that the
characteristics of the samples resembles each other more throughout the years
(thereby decreasing the variance of bt).

On the other hand, when homogenates are used (Method II), the relevant vari-
able is defined as

X̃t =
ln(Ȳ1t) + ...+ ln(Ȳmt)

m
, (9)

where each Ȳht =
1
k

∑k
i=1 Yiht represents concentration measured in homogenate

h in year t. We have that

E[Ȳht] = E[Yiht] = exp {α̃+ β(t− t̄) +
1

2
(s2 + σ2)},

but the task of finding a second–order Taylor approximation for the distribution
of X̃t (and thereby be able to approximate its expected value and variance)
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requires careful consideration and its derivation is presented in the appendix
(section 6.1). Here it is given as the following lemma.

Lemma 1 A second–order Taylor series expansion for X̃t asserts that

X̃t ≈ N

(
µt +

s2 + σ2

2
− es

2 − 1

2
− eσ

2 − 1

2k
,
V ar(ln(Z̄k))

m
+

V ar(ln(V ))

m

)
,

(10)

and hence

Bias(X̃t) = µt − E[X̃] =
s2 + σ2

2
− es

2 − 1

2
− eσ

2 − 1

2k
, (11)

where m is the number of homogenates and k the number of individuals used to
form each homogenate.

Now assume that we will estimate a short–term trend for a period of 10 years,
where R years of data are gathered by Method I (measuring concentrations in
individual specimen) and 10−R years of data are gathered by Method II. Let

(ω1, ..., ωr, ωr+1, ..., ω10) = (X̄1, ..., X̄r, X̃r+1, ..., X̃10)

be a vector of yearly estimators for yearly log-concentrations µt (µt = α̃+β(t−
t̄)). We shall now proceed to determining the analytical expressions for E[ ˆ̃α]

and E[β̂] when Bias(X̃) is left neglected. Applying the expressions for least-
squares estimators given to us by Sundberg [11], we have that the intercept is
estimated by

ˆ̃α = ω̄

and the trend-coefficient will in its turn be estimated by

β̂ =

∑10
t=1(t− t̄)ωt∑10
t=1(t− t̄)2

.

Linearity of expectation, and the assumption that each year’s estimator ωt of
µt is independent from the other years’, yields the following to expressions for
the expectations of the least-squares estimators:

E[ ˆ̃α] =

∑10
t=1 E[ωt]

10
=

∑10
t=1 µt

10
+

∑10
t=r+1 Bias(X̃t)

10
= α̃+

∑10
t=r+1 Bias(X̃t)

10
,
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E[β̂] = β +Bias(β̂) (12)

where

Bias(β̂) =

∑10
t=r+1(t− t̄)Bias(X̃t)∑10

t=1(t− t̄)2
(13)

We have that under the assumed model for log-concentration (Model 1), Bias(X̃t)
will be identical for all years [R+1, . . . , 10] when the number of individuals mak-
ing up a homogenate is constant throughout the years. This has the consequence
that for positive (negative) values of Bias(X̃t) the bias of β̂ will reach a maxi-
mum (minimum) when r = 5 and decrease (increase) symmetrically about the
maximum (minimum) until reaching zero when r ∈ {0, 10} (i.e. when all years

apply the same method). Along with the expression for Bias(β̂) one may also

be interested in finding an expression for V ar(β̂) that holds even when the usual
assumptions of linear regression are violated.

With an approximate distribution for X̃ one can also approximate V ar(β̂) when
switching from Method I to Method II after R consecutive years of using the
first measurement method. Since we have that yearly measurements ωi are inde-
pendent from other yearly measurements and given that they are approximately
normally distributed regardless of whether they are of the form of X̄ or X̃, the
fact that β̂ is a linear combination of 10 ωt:s lets us approximate its variance
by the following formula

V ar(β̂) ≈ 1

(
∑10

i=1(ti − t̄)2)2

10∑
i=1

(ti − t̄)2V ar(ωi). (14)

The necessary derivations for a second-order Taylor series approximation of the
distribution of X̃ are presented in the appendix (see section 6.1).

3.2 A proposed method for correcting Bias(β̂)

The outcome of a control that our assumptions about ϵit (Equation 6) and bt
(Equation 5) are supported by data is ideally what should guide our choice of
estimators for σ2 and s2. If data does not seem to support the notion that
ϵit and/or bt are i.i.d. across the years investigated, the question of how an
alternative model should be specified is a topic worth considering in its own
right. Since we have limited our investigation to Model 1 and because it is
under the assumption of such a data generating process that the simulation
study of section 3.3 is designed, it is assumed that ϵit and bt are not serially
correlated.
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In Equation 12 one can see that the expected value of β̂ can be viewed as
the sum of the underlying parameter β and a bias-term, where the latter is a
function of Bias(X̃t) for each yearly µt–estimator ωt. When Method I is used
for a particular year t, the corresponding ωt = X̄t is an unbiased estimator of
that particular µt, but when Method II is used ωt = X̃t and the estimator will
instead be biased. If one solves the problem of obtaining unbiased estimators
for the variances of ϵit (which is σ2) and bt (which is s2), then one can either
choose to

i) compute Bias(β̂) directly and subtract this bias from the uncorrected β̂ esti-
mate or

ii) compute Bias(X̃t) and subtract it from each log-concentration measurement
ωt (originating in a year when Method II was used), and thereafter fit a linear
model.

Whereas both approaches are equivalent with regard to obtaining an unbiased
estimate of β, the second alternative has the benefit of letting a statistical soft-
ware calculate a confidence interval and a p-value for β̂ when working with
data in an applied setting. Such p-values and confidence intervals could still
be inefficient, since the bias-corrected estimators (X̃t −Bias(X̃t)) might have a
different variance than the unbiased estimators (X̄t), implying heteroscedastic-
ity. A final word of caution is that since our expressions for various biases are
based on second-order Taylor series approximations, bias-corrected estimators
are therefore only approximately unbiased. We shall now turn our attention to
how σ2 and s2 can be estimated in a scenario where the number of replicate
homogenates is deemed to low for inference about variance between replicates
to be meaningful. In such a scenario, only data gathered by Method I is useful
when seeking to estimate σ2 and s2.

Given that we have assumed that ϵit is i.i.d. across both individuals i and years t,
an unbiased estimator for σ2 is the pooled sample variance σ̂2

p which is calculated

as the weighed average of yearly sample log-variances 1
n−1

∑n
i=1[Xit − X̄t]

2 for
all years when Method I was used. If the variance of the random group effect
is negligible, and Model 1 is indeed the correct specification for the distribution
of individual log-concentration, then a linear regression model for X̄t can be
expected to produce an estimated residual variance that is very close to 1

n σ̂
2
p.

On the other hand, if the variance of the random group effect is non-negligible
(but Model 1 is still the correct specification), then one can expect the residual
variance to be somewhat greater than σ̂2

p. In such a case, we can estimate the
size of the variance of bt as

ŝ2 = V ar(Residual)− σ̂2
p

n
.

On the other hand, if V̂ ar(Residual) ≤ σ̂2
p

n , we could instead decide to neglect
the random group effect bt since in that case there does not seem to be much
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evidence for its existence.

Once ŝ2 and σ̂2
p have been estimated, we may use our second order Taylor

expansion for the expected value of X̃ and from each observed x̃t subtract an
estimate of its associated bias. This estimate is calculated as

B̂ias(X̃) =
ŝ2 + σ̂2

p

2
− eŝ

2 − 1

2
− eσ̂

2
p − 1

2k
, (15)

which except for the neglecting of higher order terms would mean that we now
have unbiased estimates for µt.

A special circumstance that could motivate a modification of described approach
is when data seem to indicate a clear point in time when estimated sample vari-
ance is altered, for example if there is knowledge of a change of chemical analysis
methods that greatly increased the range of detectable values and sample vari-
ances are decidedly higher after such a chemical analysis method has been put
in production. In such cases, it might seem more reasonable to base the pooled
variance estimate on the available yearly sample variances from (and including)
the year when the new chemical analysis method was first used.

3.3 Estimation of Type I error probability by simulations

As elaborated on in section 3.1, a bias occurs for β̂ when the first series of con-
secutive years [1, R] report the unbiased µt–estimator of X̄ and the remaining
years [R+1, 10] report the biased µt–estimator of X̃ (assuming that R ∈ [1, 9]).

Because β̂ is a biased estimator for β under these circumstances, the assumed
distribution for the t–statistic associated with β̂ under H0 : β = 0 is incorrect
(as in assumed by statistical software packages when a linear regression model
is specified). In such a setting it is extremely unlikely that the chosen signifi-
cance level (which is 0.05 in this case) will coincide with the true probability of
rejecting the null hypothesis, even though data is generated from Model 1 with
β = 0. Knowing that the assumed distribution for the t–statistic of β̂ under the
null hypothesis is wrong does not imply that deriving a correct specification for
that statistic is a trivial task. Therefore, simulations are utilized as a means for
estimating how often H0 : β = 0 is rejected when we vary R across [1, 10] as
well as the size of the standard deviations associated with ϵit and bt.

The number of simulated observations for Ȳ at each year when Method II is
”applied” is set to m = 2 (the typical number of homogenates used per location
and year by the SNMPCMB), and the number of individuals per ”homogenate”
(the interpretation of each Ȳ ) is k = 12. The number of simulated individual log-
concentrations per site and year when Method I is ”applied” is also set to n = 12.
For each setting of R, 300 trials are simulated for each chosen combination of
random inter–sample variance s2 (where homogenates created for the same year
and location are viewed as originating in the sample) and intra–sample variance
σ2. In the conclusion of each trial a simple linear regression model is fitted to
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the simulated outcomes for log–concentration estimates, and depending on if
the reported p–value for β̂ is below 0.05 the trial is categorized as a rejection
(and otherwise as a non–rejection). Each trial can therefore result in either a
success (if the trial is classified as a non–rejection) or a failure (if classified as a
rejection).

Based on estimates of σ and s in the Case study of section 4, it seems motivated
that simulations are to be carried out at 42 equally spaced points in the (s,
σ)–rectangle of [0, 0.6] × [0.1, 0.6] (our estimates from the Case study suggest
that σ ∈ [0.25, 0.51] and s ∈ [0.20, 0.49]). The outcomes from all simulations
within the rectangle are then used to fit logistic regression model, Msmooth, by
applying the glm() procedure of the R programming language [9]. Msmooth is a
hierarchical model which has as its highest-order term a mixed-effect between
all predictors. The predictors of the model are Bias(β̂), V ar(β̂), R and R2

(the squared number of consecutive years), and all were treated as continuous.
Msmooth should be regarded as an attempt at fitting smoothed lines that predict
outcomes within a small area of the (s, σ)-space, and so these lines can be
interpreted as qualified guesses about what the Type I-error frequency would
be if we were to simulate a very large number of ten-year time series at each
point in the (s, σ, R)-space.

Since there is no bias if one chooses to rely either exclusively on Method I
(setting R = 10) or exclusively on Method II (setting R = 0), consequently
the observed percentage of rejections (our point estimate of Type I error risk)
will converge in probability to the nominal significance level when the number
of trials N tends to infinity. When both methods are used (meaning that R
is in the interval of [1, 9]) there will be a bias that is expected to increase the
probability Type I error above and beyond the chosen significance level, but
this effect could possibly be offset by increased heteroscedasticity when there
is a relatively large difference between V ar(X̄) and V ar(X̃). The predicted
percentage of rejections given by the logistic regression model Msmooth can
therefore be regarded as rough approximations of what the Type I error risk is
in settings closely related to the ones illustrated in the Case study, and how by
how much increases in heteroscedasticity does offset a biased estimator for β.

16



Figure 1: Outcomes of simulations in the [0, 0.6]× [0.1, 0.6]–rectangle

Figure 2: Calculated values of β̂ in the [0, 0.6]× [0.1, 0.6]–rectangle
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Figure 3: Calculated values of V ar(β̂) in the [0, 0.6]× [0.1, 0.6]–rectangle

In figure 1 it is shown how percentage of rejections (denoted p in the left–hand
side of the figure) varies across different combinations of s (denoted group std.
and indicated by the seven different colors), σ and R. The uppermost left facet
shows the settings where σ = 0.1 whereas the lower facet on the right side shows
the settings where σ = 0.6. When making a comparison with the figures of 2
and 3, it seems rather clear that for a given combination of s and σ, V ar(β̂) is

almost constant across the settings of R while Bias(β̂) can vary somewhat, and
that fitted values for estimated percentage of rejections (seen in the smoothed
curves suggested by model Msmooth ) allows us to conclude that the lower the

variance of β̂ for a given Bias(β̂) the higher the probability of Type I error.
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4 Case study: mercury concentrations in her-
ring

As an application of the bias correction method presented in section 3.2, log-
linear models are fitted to data from the Swedish biomonitoring programme
SNMPCMB. The studied specie is Clupea harengus (Baltic herring) and the con-
taminant of interest is mercury. Under the assumption that Model 1 is a correct
specification for individual yearly log-concentration, estimates are calculated for
the variance of the inter-sample random group effect bt and intra-sample indi-
vidual variance of ϵit. Since the number of homogenates per location and year
is rather small (typically 2-3), inference about V ar(X̃) from differences between
homogenates was deemed to not be meaningful and therefore only the collection
stations where Method I has been used (at least historically) are investigated.
The case study concludes with predictions about the probability for Type I error
in hypothetical scenarios where R varies from R = 1 to (and including) R = 10
and the distributions of ϵit and bt correspond to the calculated estimates for
the six different collection stations. These predictions are based on the logistic
regression model that was used for plotting smoothed curves for the simulated
outcomes of the preceding simulation study.

4.1 Data

Mercury concentrations are reported in ng/g in dry liver tissue. The earliest
observations are from 1990 while the latest ones are from 2020. Prior to 2007
all observations are individual measurements, but sample sizes range from 25 to
10 with 12 being the most common sample size (with 119 out of 164 individual-
measurement samples having this size). Out of 20 fish collection stations, just
6 have data on individual concentrations with the remaining 14 stations only
reporting pooled sample concentrations (typically with two such pooled samples
per year). The stations reporting measurements of individual concentrations are
Harufjärden, Landsort, Utlängan, Väderöarna, Ängskärsklubb and Fladen.

No missing concentration values are present in the dataset for the six stations
of interest for all years when concentrations are reported, but some years lack
observations for particular stations. We will not impute values for those combi-
nations of year and station when an observation is present, and given that we
will base our variance parameter estimates on series of data that span 1990–2020
(for all stations except Väderöarna which has a span of 1995–2020), the issue of
individual missing years does not seem to be detrimental. Since the biomoni-
toring programme does not remove suspected outliers the same practice will be
adhered to in this illustrative study (see section 6.2 in the appendix for details
about current practices of the programme). Out of the six stations, Utlängan
never reports pooled sample concentrations whereas the other five stations re-
port pooled concentrations to varying degree. The list below summarises the
distribution of individual and pooled sample measurements respectively, for the
six stations.
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• Harufjärden has individual measurements from 1990 until 2017, no data
for 2018, and pooled sample measurements for 2019 and 2020.

• Landsort has individual measurements from 1990 until 2020 with the ex-
ception of 2015 when there are no data, and additionally this station also
has a pooled sample measurement for 2020.

• Utlängan does only report individual measurements, and with the excep-
tion of 1999, 2006 and 2010 does so for the entire period 1990-2019.

• Väderöarna reports individual measurments from 1995 until 2017 (except
for 2006 when there are no data) and thereafter two pooled sample mea-
surements (of 12 individuals each) for the period 2018-2020.

• Ängskärsklubb reports individual measurements only in the periods of
1990-2007, 2009-2010, 2012-2014 and 2017-2018. However it also reports
two pooled sample concentrations 2008 and three pooled sample concen-
trations in 2015, and one pooled sample 2011 along with individual con-
centrations for that same year.

• Fladen has exclusively individual concentration data for 1990-2018 as well
as 2020, but also both pooled sample concentration data (one measure-
ment) together with 12 individual concentrations for 2019.

Since Väderöarna and Harufjärden are the only two stations where median log-
concentration estimation by Method II is the only option after a particular year
R (prior to which Method I was the only option) we shall later on concentrate
our comparison of specific outcomes for these two stations, by constructing
time series from 10 measurements for each of these two stations. The other
four stations of interest will still be subjected to estimations of the variance
parameters s2 and σ2, since this will yield insight into the magnitude of Type
I-error inflation in the trend monitoring of mercury concentrations in Baltic
herring. With inflation we here refer to the situation when in expected Type
I-error frequency is higher than our chosen significance level.

4.2 Estimation of ŝ2 and σ̂2
p

After filtering out pooled sample observations (that is, homogenate concentra-
tions) from our dataset, the individual variance σ2 was first estimated for each
of the six aforementioned stations and calculated as the weighed average of each
year’s sample variance.

An interpretation of the σ2 estimates in Table 1 is that given a variance of
for example 0.186 (the estimate for Harufjärden), 95 percent of observations
of mercury concentration are expected to have relative sizes around the me-
dian concentration ranging from a factor of exp (−1.96 ·

√
0.186) ≈ 0.43 to

exp (1.96 ·
√
0.186) ≈ 2.33.

Figure 4 shows how yearly sample variances are distributed around their re-
spective weighed pooled variance estimates. The volatility of these estimates
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Table 1: Pooled variance estimates weighed for sample size

Station name σ̂2
p

Ängskarsklubb 0.24
Fladen 0.09
Harufjärden 0.19
Landsort 0.26
Utlängan 0.22
Väderöarna 0.06

Figure 4: Distribution of yearly sample variances around σ̂2
p

(measured as distance to σ̂2
p) seems to increase in the second half of the pe-

riod (from 2005 and onwards) for Landsort and Harufjärden, but this could
possibly be caused by a reduction of sample size from (typically) 20 individuals
prior to 1997 to 12 individuals from 1997 and beyond. For Harufjärden there
is also another indication that the pooled variance approach might be problem-

atic, because all sample variances prior to 2000 are below σ̂2
p whereas most of

the sample variances thereafter are above this pooled estimate. Otherwise, the
assumption that σ2 is the same across the years seems to hold reasonably well.
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Figure 5: Log-linear regression fit for Landsort

Figure 6: Third-order polynomial regression fit for Landsort
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Figure 7: Fitted log-linear regression models for the six collection stations

A visual inspection of the distribution of average log-concentrations for the
six stations (see Figure 7) seems to lend support to the notion of linearity
with respect to time and therefore linear regression seems like a decent model
specification with the notable exception of the model for Landsort (see Figure
5) where a non-linear pattern is present. In order to test if the assumptions
of homoscedasticity and no autocorrelation hold for the fitted models Breusch-
Pagan tests and Durbin-Watson tests were applied, with the result that the
null hypothesis of no autocorrelation was rejected for Landsort under a 5 %
significance level (p-value = 0.002). Non-linearity in a long-term time series is
not of too much concern as long as these two assumptions seem to be met for
the short-term time series of interest. The reason for this is that we are only
seeking to estimate the residual variance around a regression curve of historical
data so that we can then use it to estimate the between-group variance s2 (as

outlined in section 4.3 A proposed method for correcting Bias(β̂)), and
if it seems likely that the historical data has been generated from a non-linear
process then residual variance is better estimated from a non-linear model. A
third-order polynomial regression model was therefore fitted for Landsort (see
figure 6), and the residual variance estimate of this model was then used for
further analysis.

4.3 Results

Based on the estimates for residual variances in the six aforementioned regres-
sion models, the method described in section 3.2 was applied to estimate ŝ2
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under the assumption that pooled samples will be limited in size to 12 (as they

are for mercury in our dataset). Results are reported as squared roots of ŝ2

and σ̂2 and can be found in Table 2. The logistic regression model fitted to the
simulated outcomes was then used to make predictions about the probability of
falsely rejecting a null hypothesis of β0 = 0 under circumstances where s and
σ are set to the values presented in Table 2 and are presented in figures 8 and
9. These results may therefore be interpreted as a qualified guess of what the
Type I error percentage would be if the data generating process for individual
log-concentration is specified as in Model 1 with β = 0 and one could repeat
the experiment an unlimited number of times, for each one of the six stations.

Figure 8: Predicted probability of making a Type I error in hypothetical sce-
narios corresponding to Ängskärsklubb, Fladen, Landsort and Utlängan
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Figure 9: Predicted probability of making a Type I error in hypothetical sce-
narios corresponding to Harufjärden and Väderöarna
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Table 2: Estimates of s and σ for the six stations

Station name
√
ŝ2

√
σ̂2

Angskarsklubb 0.49 0.49
Fladen 0.24 0.30
Harufjarden 0.25 0.43
Landsort 0.20 0.51
Utlangan 0.37 0.47
Vaderoarna 0.21 0.25

As can be seen in both figures, the logistic regression model predicts that the
probability of Type I error will increase with R until reaching a maximum when
R = 5 (as we predicted in the Theoretical framework), and thereafter decrease
and eventually come very close to the nominal significance level of five percent
when R = 10. For the two stations that have made a shift from single-specimen
measurements to pooled-sample measurements, Harufjärden and Väderöarna,
the model guides us into believing that the (hypothetical) risk of Type I-error
would roughly be the same as the chosen significance level in the ten-year
time-series ending in 2020 (when R = 8) but that it will increase and reach
a maximum of about a factor twice the significance level in year 2023 (when
R = 5) with Harufjärden having its estimated maximum just below nine per-
cent whereas Väderöarna would only have the Type I error risk increased to
just above six percent. The predictions do also suggest that hypothetically, if
Landsort was to make a shift from Method I to Method II, the maximum Type
I error risk would be as high as about 11.5 percent.

26



Figure 10: Estimated Bias(β̂) corresponding to Ängskärsklubb, Fladen, Land-
sort and Utlängan

Figure 11: Estimated Bias(β̂) corresponding to Harufjärden and Väderöarna
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In figures 10 and 11 estimates for Bias(β̂) based on ŝ and σ̂ are presented.
The highest bias is seen when R = 5 for Landsort at ≈ 0.018 which corre-
sponds to overestimating the yearly percentual change in mercury concentra-
tion by approximately 1.82% per year five years after a counterfactual change
of measurement method had been initiated. The effect may seem small, but if
one would accidentally reject the null hypothesis in such a scenario, one would
falsely conclude that there has been an approximate 19.7 % increase in mercury
concentrations during the last ten years when in fact there has been no such true
underlying increase. Also, even if there has been a positive trend, we should
expect to estimate it by the same percentage since we have seen in equation
12 that E[β̂] can be expressed as the sum of the true parameter β and its bias

term Bias(β̂). For the two stations where a change of measurement method
has occurred, Harufjärden and Väderöarna, the corresponding overestimations
of yearly percentual increases in concentration at R = 5 would be about 1.26
percent a year for Harufjärden and 0.4 percent a year for Väderöarna.

Table 3: Comparison of models based on bias corrected estimates of µt vs
models without bias correction

Station and type R2 β̂ % yearly change in concentration
Harufjärden uncorrected 0.0252 0.0090 0.9021
Harufjärden corrected 0.0186 0.0076 0.7663
Väderöarna uncorrected 0.0167 0.0087 0.8756
Väderöarna corrected 0.0088 0.0063 0.6312

In Table 3 features a comparison on model output from log-linear regression
models based on ten years’ data. For both collection stations, the last two avail-
able years’ mercury concentrations have been measured by Method II, which
implies that the model for Harufjärden spans 2010–2020 (due to a missing value
in 2018) whereas Väderöarna spans 2011–2020. Since both models are instances
of simple linear regression models, the R2 statistic can be interpreted as the
squared correlation coefficient between log-concentration and year, and even
though this measure exhibits even lower values when biased–corrected estimates
of µt are used (for Väderöarna the R2 value is reduced by half) our conclusion
would in all four situations be that there is no detectable trend present. Analo-
gously the p-values are in all four cases much above the chosen significance level
of 0.05. In the last column of the table, we can see how the point estimates
of annual percentage change in mercury concentrations differ between models
based on corrected and uncorrected data respectively — for Harufjärden and
Väderöarna the estimated difference would in this case amount to merely 0.13
and 0.25 percentage points respectively per year.
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5 Discussion

In this paper we have seen how the choice to switch from individual measure-
ments of log–normal data to pooled–sample measurements yields biased trend
estimates in log–linear regression models. We have derived analytical expres-
sions for this bias in Equation 12 and shown how it can be expressed as a linear
combination of biased estimators for µt, and similarly derived an expression for
the variance of this biased β estimator in Equation 14. These two expressions
were then used (together with R the number of consecutive years when indi-
vidual measurements were used) to fit a logistic regression model to the binary
outcomes of rejection or non–rejection of the null hypothesis H0 : β = 0 in 42
equally spaced settings of an area chosen to be somewhat near the obtained
estimates of inter–sample variance s2 and intra–sample variance σ2 from the
Case study.

As an illustration of the problem, a proposed solution for estimating inter–
sample variance s2 and intra-sample variance σ2 (both defined as variance in
log-concentration) based on historical data was applied to a dataset of mer-
cury concentrations in Baltic herring collected at six different locations on the
Swedish coasts. The fitted logistic regression model was used on the estimated
parameters, and showed that if H0 : β = 0 is true and we switch to estimating
trends on time series that have both pooled sample measurements and individual
measurements, we shall expect there to be a somewhat increased risk of falsely
rejecting the null hypothesis after 5 years has passed (assuming a significance
level of 0.05) compared to when adhering to one method of measurements, and
the risk of Type I error at this setting seems to vary between 5.4 percent to 11.5
percent.

If one is only interested in a method for calculating unbiased β estimates in
linear regression models for log–transformed data — where original data is log–
normally distributed and a shift of measurement methods from individual to
pooled-sample measurements has occurred — one could also decide to instead
calculate sample mean concentrations for earlier years’ data, log–transform these
values and then fit a linear regression model to this dataset. In that case,
we see that since the expected value of X̃t can be approximated as a sum of
µt and a constant, then the difference between the models should mainly be
found in the intercept parameter α whereas the slope coefficient β should be
approximately the same for both models. The benefit of such an approach would
be that it should in theory give us unbiased X̃t estimates without requiring us
estimate between–group log–variance s2 or between–individual log–variance σ2

from historical data.

A potential topic for further investigation is how to estimate inter–sample vari-
ance s2 and intra–sample variance σ2 if one assumes a model for the data gener-
ating process of Xit where these parameters are allowed to be serially correlated.
For example, one could possibly be interested in simulating N number of time
series from a distribution for Xit where again β = 0 but both ϵit and bt are
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dependent on time t, and then make a comparison of how effective two different
methods for correcting the bias of β̂ are (measured as the percentage of rejected
null hypotheses). Especially an inquiry into how a bias–correction method for
Bias(X̃t) which utilizes the distribution of differences between logarithms of
log–normal averages (constructed from samples of the same year t) could be
used to infer intra–sample variance σ2

t , and under what circumstances such an
approach would be more beneficial than merely forecasting σ2

t from earlier years’
observed intra–sample variance.
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6 Appendix

6.1 Derivation of an approximate distribution for X̃

In order to derive a second-order Taylor series approximation for the distribution
of X̃ which is necessary for approximating the Bias(X̃) term, and with the

approximated Bias(X̃) carry on and compute approximations of Bias(β̂) and

V ar(β̂), we shall begin by factorizing our log-normal variable Yit into its two
constitutive factors. In section 3.1.1 we have formulated a model that allows for
both a group effect in variance at the log-scale (bt ∼ N(0, s2)) and an individual
effect for the variance between individuals drawn from the same sample (α +
β(t − t̄) + ϵit ∼ N(α + β(t − t̄), σ2)). We shall first derive expressions for the
variances of the two log-normal variables of interest, and thereafter combine
these expressions to find V ar(Ȳt).

The reason we are interested in Ȳt is because we can interpret it as the distri-
bution for the concentration of a perfectly mixed homogenate of k individual
specimen (assuming that the homogenate is made from equal amounts of tissue
from each individual). Under the assumption that all homogenates have been
created in this way, Ȳt describes the distribution of the concentration measured
in one such homogenate created from a sample of k specimen. In those years
and at those places where Method II is used, there are m samples of k specimen
and therefore m reported homogenate concentrations, and the average of the
m log-homogenate concentrations is regarded as an observation of X̃. It is the
observed values of X̃ that occur in the log-linear regression models for years
when Method II was used, and the following tedious calculations will eventually
let us derive a second-order Taylor series approximation for the distribution of
X̃.

6.1.1 Derivation of the V ar(Ȳt)

Let Vt = ebt denote the log-normal factor that accounts for randomness in
sample composition for year t and let Zit = eα̃+β(t−t̄)+ϵit denote the factor that
accounts for the individual variation in the same year. With these two factors
we may now write Yit = Vt · Zit, and further we can write Ȳt = Vt · Z̄t. If one
conditions on Vt, one can see that

E[Yit|Vt = eC ] = eC · E[Zit] = eC · eα̃+β(t−t̄)+ 1
2σ

2

,

and since we have that E[Ȳi] = E[Yit] we now get

E[Ȳi|Vt = eC ] = eC · E[Z̄t] = eC · eα̃+β(t−t̄)+ 1
2σ

2

.

For the variances the following holds:

V ar(Yit|Vt = eC) = e2C · V ar(Zit) = e2C · (eσ
2

− 1) · e2(α̃+β(t−t̄))+σ2

31



V ar(Ȳt|Vt = eC) = e2C · 1
k
V ar(Zit) =

e2C

k
· (eσ

2

− 1) · e2(α̃+β(t−t̄))+σ2

We can now provide an expression for the variance of Ȳt. Because of the property
that Ȳt is a product of two independent variables, it follows that

V ar(Ȳt) = V ar(Vt · Z̄t) = E[(Vt · Z̄t)
2]− E[(Vt · Z̄t)]

2,

is equivalent to stating that

V ar(Ȳt) = E[V 2
t · Z̄2

t ]− (E[Vt] · E[Z̄t])
2

= (V ar(Vt) + E[Vt]
2)(

1

k
V ar(Zit) + E[Zit]

2)− (E[Vt] · E[Z̄t])
2.

The reason that the two propositions about V ar(Ȳt) are equivalent is that
E[Ȳt] = E[Vt] · E[Z̄t]. From equation 6.1.1 we may conclude that whenever
k > 1 and s2 = σ2 the variance of Ȳt will to a larger extent be determined by
the yearly variation factor Vt. Even though we do not yet have an expression
for V ar(X̃t), we can now make the prediction that at equally large increases of
s2 and σ2 (for example an increase of δσ2 = δs2 = 0.01), the resulting increase
of the yearly variation factor Vt will make a larger contribution to the increase
of V ar(Ȳt) than what Ȳt contributes, and therefore increases in s2 should also
yield greater increases in V ar(X̃t) than what equal increases in σ2 yields. Thus
we will expect there to be lower frequencies of Type I errors when s2 = C and
σ2 = 0 compared to when the situation is reversed (i.e. σ2 = C and s2 = 0), if

the size of Bias(β̂) is approximately equal in the two scenarios. The last conclu-
sion follows from the fact that the more our computer-generated measurements
are scattered, the greater the estimated residual variance will become and hence
make it less likely that the null hypothesis of β0 = 0 is rejected.

6.1.2 Derivation of a second-order Taylor approximation for X̃

For both V̄t and Z̄t it is clear that the Delta method is applicable, and since
both variables are independent from one another while it also holds that both
are log-normals, it will suffice to provide general expressions for second-order
approximation of the logarithm of a log-normal. For the sake of simplicity we
will use the same notation as the one used by Held and Bové [5] (see page

357). Let T̄n :=
∑n

i=1 Ti

n denote the sample mean of n i.i.d. log-normal random
variables T1, T2, ..., Tn with finite mean E[T ] and finite variance V ar(T ). By the
Central Limit Theorem we have that

√
n(T̄ − E[T ]) converges in distribution

towards a N(0, V ar(T ))-distribution, for T̄n converges in probability to E[T ]
and is thus a consistent estimator for the log-normal mean. Further, since ln(·)
is a continuously differentiable function for positive real numbers and the log-
normal mean is guaranteed to be strictly positive, it follows that the Delta
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method is applicable. In order to gain more accurate approximations a second
order Taylor expansion is used instead of merely first order expansion. Hence
we have that

ln(T̄n) ≈ ln(E[T ]) +
(T̄n − E[T ])

E[T ]
− (T̄n − E[T ])2

2E[T ]2

and taking the expectation on both sides yields (after some algebra)

E[ln(T̄n)] ≈ µ+
σ2

2
− V ar(T̄n)

2E[T ]2

= µ+
σ2

2
− (eσ

2 − 1)

2 · n

Regarding the variance, derivation of an approximation is made easier by first
introducing the following notation:

τ :=

√
n(T̄n − E[T ])

V ar(T )

a :=
V ar(T )2

2 · n · E[T ]2

b :=

√
V ar(T )√
n · E[T ]

By the Central Limit Theorem, we have that τ
a−→ N(0, 1), and so it follows

that τ2
a−→ χ2

1 and b · τ a−→ N(0, V ar(T )
n·E[T ]2 ). Hence, the following approximation of

V ar(ln(T̄n)) arises:

V ar[ln(T̄n)] ≈ V ar(
T̄n − E[T ]

E[T ]
− (T̄n − E[T ])2

2E[T ]2
)

= V ar(b · τ − a · τ2)
= V ar(b · τ) + V ar(a · τ2)− 2 · Cov(b · τ, a · τ2)
= b2 · V ar(·τ) + a2 · V ar(τ2)− 2 · (E[ab · τ3]− E[bτ ] · E[aτ2])

=
V ar(T )

n · E[T ]2
+

V ar(T )4

2 · n2 · E[T ]4

(16)

The covariance term in equation is 16 is zero-valued, which follows from the
fact that i) E[τ3] = 0 due to τ being a zero-centred normal RV, and ii) that
E[bτ ] · E[aτ2] = 0 since we have that E[bτ ] = 0.
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Let us now consider forming a second-order Taylor approximation for X̃t at a
given setting ofm, k, α, β, s2 and σ2. Since we have that Ȳ.st := Vst·Z̄.st with the
two variables assumed independent, and X̃t :=

1
m

∑m
s=1 ln(Ȳ.st) one can approx-

imate the distribution of X̃t (which can be re-written as
∑m

s=1(ln(Vst)+ln(Ȳ.st))

m ) as
a normally distributed sample mean of the sum of the two second-order Taylor
approximations for ln(Vst) and ln(Z̄.st) respectively. The resulting approxima-
tion when this method is applied is the following:

X̃t ≈ N

(
µt +

s2 + σ2

2
− es

2 − 1

2
− eσ

2 − 1

2k
,
V ar(ln(Z̄k))

m
+

V ar(ln(V ))

m

)
(17)

This relies on the assumption that the two Taylor approximations (which both
are assumed to be normally distributed by construction) are decently good at
describing the behavior of the two empirical sample log-transformed distribu-
tions, as is usually the case when applying the Delta method. Whether or not
this assumption is deemed to be too strong for the problem at hand will be de-
termined by the rate of convergence for the underlying log-normal distributions
given the constraints on sample size, but this question is beyond the scope of
the thesis.

6.2 Current methods employed in trend monitoring by
the SNMPCMB

In the appendix of the article by Soerensen and Faxneld [10] current diagnostic
checks of the monitoring program are presented and compared to alternatives. As
a means for assessing the strengths and weaknesses of the conclusions reached
by this thesis regarding the risk for Type I error, a summarising account for
these diagnostic checks and their usefulness has been included in this appendix.

The program fits linear regression models for each combination of specie, loca-
tion and contaminant and does so for both the full time span (from the current
year until the first year when that combination was recorded) as well as for the
short-term period (the latest ten years recorded). The default choice of a linear
model is motivated by the simplicity of interpretation and as a means to avoid
overfitting - but the assumption of linearity is yet tested against a larger model
that includes non-linear components.

The larger model is a so called Locally Estimated Scatterplot Smoothing (LOESS)
model, which is estimated by forming a local polynomial for each data point
based on a subset of other points that are deemed to reside ”close” to the
current point of focus, and then combining these locally weighed polynomial
models to a non-linear model for the entire period. Thereafter, an ANOVA-test
compares the linear model with the non-linear LOESS model to check if the
reduction of variance resulting from choosing the latter model over the former
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is statistically significant. However, the program only reports non-linear models
when the null hypothesis has been rejected, and does not fit non-linear models
for the short-term trends.

A second model diagnostic that is mentioned (but not reported in the results) in
the appendix for the monitoring program’s documentation is a non-parametric
test in the form of the Mann-Kendall trend test. The motivation behind why
one should consider applying the test is that linear regression parameter esti-
mates are sensitive to leverage points, and this could lead us into overestimating
the magnitude of a trend when observations near the edges of the time series
randomly deviate sufficiently (but not necessarily in an extreme manner) in the
direction indicated by the underlying trend β from their expectation µt. The
Mann-Kendall (MK) statistic is formed by first deciding the sign (which can be
1, 0 or -1) of each possible difference between pairs of observations (x̄j − x̄k),
where the observations are ordered chronologically in time (such that j > k),
and then one counts the difference between the total number of positive signs
and the total number of negative signs. A quick overview of the MK statistic
can be found at https://vsp.pnnl.gov/help/vsample/design_trend_mann_
kendall.htm, and since it effectively only looks at the proportion of positive
signs to negative signs (and ignores the magnitude of the differences) this trend
test will be much more conservative than corresponding trend tests of the log-
linear model. However as mentioned before, the program does not present any
outcomes from MK tests, so therefore it seems like the authors have concluded
that the inherent limitations of the study design makes the Mann-kendall test
too conservative to be practically useful in evaluating goodness–of–fit — where
these limitations are attributable to the circumstance that the datasets are
rather small in relation to the true underlying coefficients of variation (assum-
ing that the data generating process is log-linear).

Even though the MK-statistic is not reported by the program, another non–
parametric test is reported instead, namely the absolute value of Kendall´s
Tau. Kendall’s Tau is defined as

τ =
”Number of concordant pairs”− ”Number of discordant pairs”

”Total number of pairs”

where a pair of observations (xi, yi) and (xj , yj) are concordant if either both
inequalities xi > xj and yi > yj are jointly true or equivalently when both xi <
xj and yi < yj are jointly true (and discordant otherwise). Hence, the absolute
value of Kendall’s Tau ranges from 0 (no relationship) to 1 (perfect correlation).
As explained by Soerensen and Faxneld in the aforementioned appendix of their
report, this statistic can be viewed as analogous to the traditional correlation
coefficient (Pearson’s ρ), but its numerical values indicating (in the words of the
authors) somewhat strong linear correlations are lower than that of Pearson’s ρ.
They mention a rule of thumb that suggests that a τ of 0.7 should be interpreted
as a ρ of 0.9.
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In order to evaluate the effect of policy changes (e.g. bans on a particular
chemical) on log-linear trends, the program sometimes apply a method called
change point detection. The method consists of forming two models, A and B,
where A allows for different slopes at two adjacent subsets of the time series
and B is the usual linear model with a single slope for the entire set. At each
step, the method proceeds to picking a new change point that defines the two
subsets of Model A (requiring that each set includes atleast four points) and
thereafter performs a likelihood ratio test for the null hypothesis that Model B
holds while Model A does not hold.

Currently, the program constructs confidence intervals for its trend estimates by
estimating covariance matrices that are robust against heteroskedasticity and
auto-correlation, so called HAC consistent covariance matrices. The authors
refer to an article by Zeileis (2004)[12] where this topic is introduced for the
applied statistician and one is shown how an R-package called sandwich can be
used to aquire such HAC robust estimates. Unfortunately, it is unclear from
the program’s appendix exactly which HAC consistent estimator is chosen (more
specifically the details of how the weights are computed are not explained).
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