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Abstract

In this thesis, we study two different approaches to setting pre-
miums for non-life insurance policies using a data set of motor third
liability insurance from France. In the first approach, we use a subclass
of generalized linear models, with the response distribution belonging
to a class of exponential dispersion models, to analyse the frequency
at which claims arrive and the average severity of a claim separately,
to later use these two models to get the relatives of the premium. In
the second approach, we use another subclass of GLMs called Tweedie
models, specifically Tweedie models defined by having a variance func-
tion exponent 1 < p < 2, as they are obtained from a theoretical model
of the pure premium.

Models are then selected based on forward selection and backward
elimination, and later also investigated through cross-validation, before
we calculate the relatives of the insurance tariff or the chosen model.

The purpose of this thesis is to see how the different approaches’
results differ and discuss the reasons for our findings.

We find that using a separate analysis of frequency and severity of
the claims gave us more insight into what impact the different param-
eters have on the outcome. We also discuss a few ways of improving
our analysis, among which are the fact that using the separate ap-
proach gives us more flexibility when it comes to the decision of which
distributions to use.

For these reasons, we concluded that a separate analysis of the
separate frequency-severity method is preferable to a Tweedie model
with variance function exponent 1 < p < 2 when deciding relatives for
the pure premium.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.

E-mail: emilerikson@outlook.com. Supervisor: Ola Hössjer and Mohamed El Khalifi.



Sammanfattning

I den här uppsatsen studerar vi tv̊a olika metoder för att ta fram premier för
sakförsäkringar. Vi använder oss av ett dataset inneh̊allande bilförsäkringar
fr̊an Frankrike.

I den första metoden använder vi oss av en underklass av generaliserade
linjära modeller (GLM), med en responsfördelning som erh̊alls fr̊an en klass
av exponentiella dispersionsmodeller (EDM), för att analysera skadefrekvensen
och den genomsnittliga kostnaden för en skada separat, för att sedan ta fram
relativiteten mellan premierna utifr̊an dessa tv̊a modeller. I den andra metoden
använder vi oss av en annan underklass av GLMer som kallas Tweedie-modeller,
specifikt Tweedie-modeller som definieras av en variansfunktion med exponent
1 < p < 2, eftersom dessa beskriver en teoretisk model för premien.

En modell väljs ut baserat p̊a fram̊atinkludering och bak̊atelimination och
dess prediktiva förm̊aga studeras även senare genom korsvalidering, innan vi
beräknar relativiteterna för premierna för v̊ar valda modell och för motsvarande
försäkringstabell.

Syftet med denna uppsats är att se hur resultaten av de olika metoderna
skiljer sig åt och diskutera orsakerna till detta.

Vi kommer fram till att den separata analysen av skadefrekvensen och det
genomsnittliga skadebelopp gav oss mer insikt av hur de olika parametrarna
p̊averkar resultatet. Vi diskuterar även vissa sätt man skulle kunnat förbättra
analysen. En av dessa sätt är att en separat analys ger mer flexibilitet i hur
vi kan bestämma vilka fördelningar som används. En Tweedie model med
1 < p < 2 använder sig strikt av Poisson- och Gamma fördelningar. Om
n̊agon av dessa inte stämmer för den data som används kommer Tweedie mod-
ellen inte kunna användas, och man m̊aste därmed använda sig av en annan
metod. Däremot om vi använder den separata analysmetoden kommer vi kunna
testa vilka fördelningar som passar v̊ar data bäst, för att sedan använda den
fördelning som ger oss det bästa resultatet. P̊a grund av dessa tv̊a anledningar
drar vi slutsatsen att en separat analys av skadefrekvensen och genomsnittlig
skadestorlek är en bättre metod för att beräkna relativiteterna för premier i en
försäkringstabell.
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1 Introduction

An insurance policy is a contract between the policyholder and the insurer,
where the policyholder pays the insurer in return for economic protection. The
insurer will give a payout if the policyholder suffers losses of different kinds,
specified for the insurance. To be able to cover these insurance claims, the
insurer charges a premium based on the probability that the policyholder suffers
a loss.

There have been many different methods created for premium calculations.
One of these uses generalized linear models for the claims frequency, the rate
at which the insurance claims are reported, and the claim severity, the average
claim cost. These two factors can then be used to calculate the premium cost.

Another method is to use a subclass of generalized linear models, called
Tweedie models, to model the distribution of the premium directly.

These two methods each have their upsides and downsides and in this thesis
we will perform a tariff analysis on auto-insurance data to compare the two
approaches. The purpose is to investigate how the methods perform against
one another and hopefully get some understanding of why we might use one
over another.
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2 Theory

2.1 Modeling assumptions

In order to begin discussing the theory behind pricing insurance policies, and
later create a model, we start by making a few basic assumptions.

Assumption 1 (Independent policies). For the responses Xi of n different
policies, i = 1, ..., n, it is assumed that X1, ..., Xn are independent.

Assumption 2 (Independent time intervals). For the responses Xi of n dif-
ferent disjunct time intervals, i = 1, ..., n, it is assumed that X1, ..., Xn are
independent.

Assumption 3 (Homogeneity). For any two responses of two policies within
the same tariff cell, the two responses have the same probability distribution.

2.2 Key ratios

The theory behind non-life insurance mathematics uses rating factors, which can
be seen as covariates, to divide data into tariffs. Examples of rating factors can
be the age of the policyholder, and for car insurance the mileage or model of the
car. Within these different tariffs we use our collected data, more specifically a
response X and an exposure w, to calculate key ratios Y = X/ω. An example
of these variables is the number of claims as a response, duration as exposure
and claim frequency as the key ratio. An example of a tariff can be seen in
Table 1.

Table 1: Example tariff

Tariff cell i Age Gender Response Exposure Key ratio
1 Young Male XY,M = X1 w1 Y1
2 Young Female XY,F = X2 w2 Y2
3 Adult Male XA,M = X3 w3 Y3
4 Adult Female XA,F = X4 w4 Y4

When pricing non-life insurance policies, the three main key ratios used are
claim frequency, claim severity and pure risk premium. They are illustrated in
Table 2.

The above-mentioned three ratios are of special interest due to claim fre-
quency and claim severity multiplying together to get the pure premium of a
policy. Notice however that the pure premium in a way is the only ratio that we
care about in the end, as this is what roughly informs us about the premium.
However, only looking at the pure premium neglects other factors that effect
our price, e.g. profit margin, cost of business and financial gains on investment.
Because of this, the way policies are usually priced are through the business
looking at different factors, as seen above, and then setting the price of a base
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Table 2: Three important key ratios for setting premiums.

Response X Exposure w Key ratio Y = X/w
Number of claims Duration (time period) Claim Frequency
Total claim amount Number of claims Claim severity
Total claim amount Duration Pure premium

value. The policies are then priced in relation to each other, through something
called relatives, as will explained below.

A final note about how to define the expectation and variance of the re-
sponses and key ratios. Because of the modeling assumptions, if X is a sum
of ω responses Zi, i = 1, ..., ω, then Assumptions 1-3 imply that the Zis are
independent and identically distributed (i.i.d.), so that we can define E[Zi] = µ
and V ar(Zi) = σ2. We can then derive expressions for the expectation and
variance of our response X and key ratio Y :

E[X] = ωµ, E[Y ] = µ,

V ar(X) = ωσ2, V ar(Y ) =
σ2

ω
.

(2.1)

2.3 Multiplicative model

The multiplicative model, which is the most commonly used model in insurance
mathematics, is defined by expected key factors

µi1,...,iM = γ0γ1i1 . . . γMiM . (2.2)

If we have M rating factors and mk, k = 1, ...,M , classes for the kth rating
factor, we can denote each tariff cell by i = (i1, ..., iM ). We can also denote the
response as Xi1,...,iM , the exposure as ωi1,...,iM and the key ratio as Yi1,...,iM .
See Table 1 for an example.

We also have E[Yi1,...,iM ] = µi1,...,iM where each µi1,...,iM is defined as above,
with γ0 a base value and γkik , ik = 1, ...,mk the relatives. That is, if a cell has
γ11 = 1 and another cell has γ12 = 2, then the second class of the first factor
changes the expected value to twice the amount of the first class. This makes
it easy to adjust the tariff prices just using γ0 as the base value and then
scaling that price in different cells using the relatives. However, if one uses (2.2)
without restrictions, the model will be over-parameterized. This can be seen if
we multiply a relative or rating factor of a cell by a value c ∈ R, c ̸= 0, and
divide another rating factor of this cell by the same value c, since then the cells’
expected key value will remain the same. Hence, we will need to choose a base
cell (i1, ..., iM ) where

γ1i1 = γ2i2 = . . . = γMiM = 1. (2.3)
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Now all other relatives can be described in relation to the base cell. The way
this is done in practice is to take the cell with the largest exposure to be the
base cell.

2.4 Generalized linear models

The way we will create our expected key factors is through the use of gen-
eralized linear models (GLM). These models consist of three components; one
random component, one systematic and a link function as shown in chapter 4.1.1
of [Agr13]. The random component is the distribution of a response variable
Y , which has independent observations (y1, . . . , yn) with a probability density
function, or a probability mass function, of the form

fYi
(yi; , θi) = A(θi)B(yi) exp [yiQ(θi)]. (2.4)

The distribution is assumed to be part of the natural exponential family of
distributions, with independent observations yi, belonging to different cells i =
1, ..., N . Q(θi) is known as the natural parameter. An example of a distribution
from the exponential family is the Poisson-distribution with the probability mass
function

fYi
(y;λ) =

λye−λ

y!
. (2.5)

This is an exponential family distribution with A(λ) = e−λ, B(y) = 1/y! and
natural parameter Q(λ) = log(λ).

For a GLM the systematic component relates a vector ηηη = (η1, ..., ηn) to the
explanatory variables xi,j , i = 1, ..., n, j = 1, ..., q through the linear transfor-
mation

ηηη = Xβββ, (2.6)

for some parameter vector βββ = (β1, ..., βq) with unknown parameters. For a
tariff with M factors we have that the number of regression parameters is

q = 1 +

M∑
k=1

(mk − 1). (2.7)

The first of these q parameters corresponds to the base cell, whereas mk − 1
of the remaining parameters correspond to the non-baseline classes of factor k,
for k = 1, . . . ,M . Each row of X identifies a tariff cell, with a first component 1
corresponding to the intercept or the baseline cell, whereas the remaining q− 1
components are binary indicator variables that identify the non-baseline classes
of the M factors.

Finally, the link function

g(µi) = ηi ⇔ µi = g−1(ηi) (2.8)
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links the expectation of the response variable, µi = E[Yi], to a linear combina-
tion ηi of the a linear combination η of the explanatory variables xi1, . . . , xiq
that correspond to cell i. Two important link functions are the identity link,
defined by g(µi) = µi and the canonical link defined by g(µi) = Q(θi).

2.5 Exponential dispersion models

For some applications of GLMs, one might need to use a distribution that re-
quires more than one parameter. To be able to do this, we introduce another
parameter known as the dispersion parameter ϕ, now referring to θ = Q as the
natural parameter. We can now write the random component as

fYi
(yi; θi, ϕ) = exp

[
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

]
. (2.9)

Note in particular that if the dispersion parameter is known then (2.9) reduces to
(2.4), with Q = θi/a(ϕ), A = exp(−b(θi)/a(ϕ) and B = exp(c(yi, ϕ)). Usually
when different observations have different weights, we define a(ϕ) = ai(ϕ) =
ϕ/ωi where ωi is the weight or exposure of observation i, giving us

fYi
(yi; θi, ϕ) = exp

[
yiθi − b(θi)

ϕ/ωi
+ c(yi, ϕ, ωi)

]
. (2.10)

The term b(θi) is known as the cumulant function and it is assumed to be twice
continuously differentiable, with invertible first derivative, see chapter 2.1 of
[OJ10].

Some restrictions are ϕ > 0, ωi ≥ 0 and that the parameter space for θi
must be open.

To make it easier to group policies into tariff cells, we introduce the following
theorem.

Theorem 1. Suppose we have two independent random variables Y1 and Y2,
with distributions that belong to the same exponential dispersion model (EDM)
family, with the same µ and ϕ. If these two variables have weights ω1 and ω2

respectively, then their ω-weighted average is

Y =
ω1Y1 + ω2Y2
ω1 + ω2

with weight ω = ω1+ω2. The new variable Y will then belong to the same EDM
family as Y1 and Y2, with the same µ and ϕ.

Proof. This proof can be found in chapter 3 of [Jør97].

2.6 Tweedie models

2.6.1 Moment- and cumulant-generating functions

Definition 1. The moment-generating function (MGF) of a random variable
Y is

ψY (t) = E[etY ],
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if there exists an ε > 0 such that the expectation exists and is finite for any t
satisfying |t| < ε. The cumulant-generating function (CGF) is given by

ΨY (t) = logψY (t) = logE[etY ].

For continuous EDMs, the MGF and CGF can be derived as follows:

E[etY ] =

∫
etyfY (y; θ, ϕ)dy =

∫
etye

yθ−b(θ)
ϕ/ω ecdy =

∫
e

y(θ+tϕ/ω−b(θ)
ϕ/ω ecdy

= e
b(θ+tϕ/ω)−b(θ)

ϕ/ω ·
∫
e

y(θ+tϕ/ω)−b(θ+tϕ/ω)
ϕ/ω ecdy

(∗)
= e

b(θ+tϕ/ω)−b(θ)
ϕ/ω

(2.11)
which implies

ΨY (t) =
b(θ + tϕ/ω)− b(θ)

ϕ/ω
. (2.12)

At (*), we used the fact that θ+ tϕ/ω belong to the parameter space for |t| < ε
for some ε > 0, making the integral in the previous step equal one by definition.
Thus, both the moment-generating function and the cumulant-generating func-
tion exist for any exponential dispersion model for small enough t. For discrete
EDMs, the MGF and CGF can be derived in a similar way.

2.6.2 Expectation and variance through generating function

It is well known that the expectation of a random variable is equal to the first
moment and the variance is equal to the second central moment. In addition,
we can get the nth moment though the nth derivative of the moment-generating
function at t = 0, as seen in chapter 3.10.3 of [AB08],

ψ
(n)
Y (0) = E[Y n]. (2.13)

This implies

Ψ′
Y (t) =

ψ′(t)

ψ(t)
⇒ Ψ′

Y (0) = ψ′(0) = E[Y ] (2.14)

and

Ψ′′
Y (t) =

ψ(t)ψ′′(t)− ψ′(t)2

ψ(t)2
⇒

Ψ′′
Y (0) = ψ′′(0)− ψ′(0)2 = E[Y 2]− E[Y ]2 = V ar(Y ).

(2.15)

Inserting (2.12) into (2.14) and (2.15) we find that for EDMs the following is
true;

E[Y ] = b′(θ) (2.16)

and

V ar(Y ) = b′′(θ)ϕ/ω. (2.17)
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Table 3: Examples of choices of the variance function exponent p, and the
corresponding distribution of key ratios, for Tweedie models.

p Type Name Key Ratio
p = 1 Discrete Poisson Claim frequency

1 < p < 2 Mixed, non negative Compound Poisson Pure premium
p = 2 Continuous, positive Gamma Claim severity

2.6.3 Variance function

If E[Y ] = µ, then we have that µ = b′(θ), and since the first derivative of b(·)
was assumed to be invertible, see subsection 2.5, we can also write θ = b′−1(µ).
This makes it possible for us to express the term b

′′
(θ) of (2.17) as a function

of the expectation, giving us the variance function

v(µ) = b′′
(
b′−1(µ)

)
. (2.18)

The variance of Y can then be written as V ar(Y ) = v(µ)ϕ/ω.

Theorem 2. Within the class of all exponential dispersion models, each EDM
is characterized by its variance function.

Proof. The proof can be found at theorem 1 in [Jør87].

2.6.4 Definition of Tweedie models

Tweedie models are exponential dispersion models defined by having the vari-
ance function

v(µ) = µp, p ∈ R. (2.19)

It can be shown that all EDMs that are scale invariant are Tweedie models.
That is if we have a random variable Y with a distribution following (2.10) and
a constant c > 0 such that Y and cY belong to the same EDM, then this EDM
is a Tweedie family with p = 2, see theorem 4.1 in [Jør97]. A couple of different
distributions for different values of p can be seen in Table 3, which is a part of
a more comprehensive table, see table 2.4 in [OJ10].

2.7 Probability distributions for different key ratios

When it comes to modeling and tariff analysis, there are two main methods.
We can either model the claim severity and claim frequency separately, to get
the premium through multiplication, or we can model for the premium directly.
The standard approach is the former alternative, see chapter 2.3.4 of [OJ10].
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2.7.1 Claim frequency probability distribution

The process of our claims arriving is a stochastic process called a claims process,
which can be written as {N(t), t ≥ 0}, whereN(t) is the number of claims during
the time [0, t] and N(0) = 0. Under certain conditions, not unlike our modeling
assumptions, the claims process is a Poisson process, see appendix A of [BPP84].
This makes it natural for us to assume that claims within a single policy follow
a Poisson distribution, and due to Assumption 1 this is true for all policies of a
given tariff cell.

Using (2.1) we get

Xi ∼ Po(ωiµi) (2.20)

for the number of claims of policy i, with ωi the time of exposure and µi the
intensity of the underlying Poisson process. But what we actually need to price
for our policies is the distribution of the claim frequency, Yi = Xi/ωi, with
probability distribution

fYi
(yi) = fXi

(ωiyi) = e−ωiµi
(ωiµi)

ωiyi

(ωiyi)!
. (2.21)

To write this as an EDM, we first rewrite

fYi(yi) = e−ωiµi
(ωiµi)

ωiyi

(ωiyi)!
= exp {ωi(yi logµi − µi) + c(yi, ωi)}, (2.22)

with

c(yi, ωi) = ωiyi logωi − log((ωiyi)!). (2.23)

Equation (2.22) can then be written as (2.10) with ϕ = 1, θi = log(µi), b(θi) =
eθi , and ai(ϕ) = ϕ/ωi.

2.7.2 Claim severity probability distribution

The choice of distribution for the claim severity is not as clear cut as for the
frequency. Historical data shows that a distribution that is right-skewed and
positive fits this type of data, some examples are Pareto, log-normal and gamma
distributions. Over the years, the gamma distribution has become the standard
choice when modeling claim severity so this is the distribution we will be using
as well.

Suppose we have w gamma distributed variables (claims), Zk ∼ G(α, β),
k = 1, ..., w, and let the response X be the sum of these variables (the total
policy cost). It can be seen by the use of moment generating functions that
X ∼ G(ωα, β), with density function

fX(x) =
βωα

Γ(ωα)
xωα−1e−βx, (2.24)
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where α, β, x > 0. The claims severity Y = X/ω then has the density function

fY (y) = ωfX(ωy) =
(ωβ)ωα

Γ(ωα)
yωα−1e−ωβy, (2.25)

giving us Y ∼ G(ωα, ωβ). With the parameterisation µ = α/β, ϕ = 1/α and
θ = −1/µ, it follows from chapter 2.1.2 in [OJ10] that the tariff cells’ claim
severities Yi can be written in EDM-form, with b(θi) = − log(−θi), as

fYi(yi; θi, ϕ) = exp {yiθi + log(−θi)
ϕ/ωi

+ c(yi, ϕ, ωi)}, (2.26)

with

c(y, ϕ, ω) = log(ωy/ϕ)ω/ϕ− log(y)− log(Γ(w/ϕ)). (2.27)

2.7.3 Pure premium probability distribution

As seen in Table 3, the Tweedie model for 1 < p < 2 follows a compound Poisson
distribution, which is shown in chapter 4.2.4 of [Jør97].This is the distribution
of a random variable

X =

N∑
k=1

Zk (2.28)

where N is Poisson distributed whereas the Zks are independent with the same
gamma distribution Γ(α, β). This is in line with subsubsection 2.7.2, where we
assume gamma distributed claims. Suppose N ∼ Po(λω), where λ is the claim
rate and ω the time of exposure. From this it follows that the total claim X in
(2.28) satisfies

E(X) = λωα/β, (2.29)

V ar(X) = λω(α/β + α/β2). (2.30)

The corresponding pure premium Y = X/ω satisfies

E(Y ) = λα/β = µ, (2.31)

V ar(Y ) = λ(α/β + α/β2)/ω = ϕµp−1/ω. (2.32)

Note in particular that (2.31) and (2.32) set restrictions on how to choose µ, ϕ
and p as functions of λ, α, and β.
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2.8 Relatives estimation

To estimate the relatives seen in (2.2), we estimate the µis using equations (2.6)
and (2.8). Since we are using multiplicative models for our variables, we will
only be using the link function g(µi) = log(µi), that is

log(µi) =

q∑
j=1

xijβj ⇔ µi = exp

 q∑
j=1

xijβj

 (2.33)

In order to estimate the relatives, we will be using maximum likelihood estima-
tion. The log-likelihood function for an EDM with n observations whose density
functions follow (2.10) is

ℓ(θ; {yi}ni=1, ϕ) =

n∑
i=1

((yiθi − b(θi))wi/ϕ+ c(yi, ϕ, ωi)) . (2.34)

Differentiating with respect to each βj , j = 1, . . . , q, and making use of equations
(2.16), (2.17), (2.8), and the fact that g(µi) = log(µi), we obtain

∂ℓ

∂βj
=

n∑
i=1

∂ℓ

∂θi

∂θi
∂µi

∂µi

∂ηi

∂ηi
∂βj

= (2.35)

=

n∑
i=1

(yi − b′(θi))wi/ϕ︸ ︷︷ ︸
∂ℓ/∂θi

· b′′−1(θi)︸ ︷︷ ︸
∂θi/∂µi

µi︸︷︷︸
∂µi/∂ηi

xij︸︷︷︸
∂ηi/∂βj

(2.36)

=
1

ϕ

n∑
i=1

(yi − µi)wixijµi

v(µi)
. (2.37)

We know that for the claim frequency we have θi = log(µi) and b(θi) = b′(θi) =
b′′(θi) = µi = eθi , giving us v(µi) = b′′(b′−1(µi)) = µi. We then get the ML-
equation

1

ϕ

n∑
i=1

(yi − µi)wixij = 0, j = 1, ..., q. (2.38)

For the claim severity we have b(θi) = − log(−θi), µi = b′(θi) = −1/θi which
implies θi = −1/µi and b′′(θi) = 1/θ2i , giving us v(µi) = µ2

i . We then obtain
the ML-equations

1

ϕ

n∑
i=1

(yi − µi)wixij
µi

=
1

ϕ

n∑
i=1

(
yi
µi

− 1

)
wixij = 0, j = 1, ..., q. (2.39)

Lastly, for the direct approach using a Tweedie model with 1 < p < 2, we have
v(µi) = µp

i , giving us
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1

ϕ

n∑
i=1

(yi − µi)wixij

µp−1
i

= 0, j = 1, ..., q. (2.40)

After calculating the estimates of the βjs we can compute the relatives, by using
(2.2) and (2.33), through γj = eβj .
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3 Data

The data we will use is the FreMTPL data from the CASdatasets package in R,
which is in turn taken from [Cha14]. This package can be installed to R through

i n s t a l l . packages (” CASdatasets ” ,
repos = ”http :// cas . uqam . ca/pub/” ,
type = ” source ”
)

The FreMTPL data set contains data from a type of insurance called ”motor
third party liability”, and was collected in France. The data are split into two
parts, one data frame for the frequency and one for the severity. After cleaning
up the variable names, the variables available can be seen in Table 4.

We are using the factors put forth in the beginning of chapter 14 of [Cha14].
A notable shortcoming of this data set is that the frequency and severity

parts have very different sizes. Such is the nature of these types of data sets,
as there will be a lot of policies without claims. The frequency table has about
413 000 rows, while the severity set has only about 16 000 rows. This mean
that the estimates of frequencies will be based on more data than the estimates
of severities.
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Table 4: Variables (risk factors), variable descriptions and values (risk classes) of
each variable. The descriptions are taken from the CASdatasets documentation.

Variable Description

policy id The policy ID (used to link with the claims data set)
claim nb Number of claims during the exposure period
exposure The period of exposure for a policy, in years

veh power
The power of the car (ordered categorical).
D-O, changed to 1-12.

car age

The vehicle age, in years.
1 : Below 1 year
2 : 1-3 years
3 : 4-14 years
4 : 15+ years

driver age

The driver age, in years (in France, people can drive a
car at 18).
1 : Up to 22 years
2 : 23-26 years
3 : 27-42 years
4 : 43-74 years
5 : 75+ years

brand

The car brand, divided into the following groups:
1 : Renaut, Nissan and Citroen
2 : Volkswagen, Audi, Skoda and Seat
3 : Opel, General Motors and Ford
4 : Fiat
5 : Mercedes, Chrysler and BMW
6 : Japanese (except Nissan) and Korean
7 : Other

gas
The fuel of the car.
1 : Diesel 2 : Regular

density

The density of inhabitants (number of inhabitants per
square-kilometer) of the city where the driver lives.
1 : 0-39
2 : 40-199
3 : 200-499
4 : 500-4499+
5 : 4500+

region

The policy region in France (based on the 1970-2015
classification).
E.g. Aquitaine, Bretagne & Ile de France.
There are in total 10 regions.

claim amount The cost of the claim, seen as at a recent date.
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4 Results

4.1 Model selection

When we are selecting which models fit our data the best, we are going to
alternate between using forward selection and backward elimination. In this
type of selection method, we start with the intercept model without any of the
classes of our risk factors as covariates. Next we perform a first forward selection
step and check much each added factor increases performance, keeping the one
that increases the fit the most. The criteria for selection we are going to use is
the Akaike information criterion (AIC). This criterion is defined by

AIC = −2 log(L) + 2p, (4.1)

where L is the maximized likelihood function, and p is the number of parameters
in the model. We have chosen to use AIC as it is well known and the standard
approach for many functions inside of R. There are many other criteria we could
use as well, such as the Bayesian information criterion (BIC) which has a bigger
penalty for models with more parameters than AIC, or checking the p-value for
different statistics for model fit or predictive ability.

After this first forward selection step, the next step is to alternate between
backward elimination and forward selection, removing or adding factors to the
currently chosen model. Note that this ”add or remove” is what makes this a bi-
directional method, as stated above. This alternating scheme continues until the
model we have is the one for which it is not possible to improve performance
by adding or removing any factor. A possibility is, however, that the more
factors you add to a model, the larger the goodness of fit might be. But a
model with as many factors as possible is typically not the best as there is most
likely overfitting, and moreover, each parameter estimate is not as informative
for how much the corresponding covariate affects the outcome. For this reason,
and to get a reasonable scope of the analysis, we will set our algorithm to only
do 3 iterations, giving us a maximum of 3 factors, along with the intercept, in
the end.

For the Tweedie model of the pure premium we will be using p = 1.552
in (2.19), which is the result of a maximum log-likelihood estimation algorithm
from the tweedie-package for R. The resulting log-likelihood profile can be seen
in Figure 1.

In Table 5 we can see the results of our step-wise selections. Note that some
of them are not actually the model with the lowest AIC, but since a maximum
number of 3 iterations was chosen these were the best among the tested models.

Now that we know which factors we are going to use, we can aggregate
our data according to Theorem 1. We chose not to do this before the step-wise
selection due to the number of combinations of risk factors available, if we choose
3 out of the 7 available risk factors that gives us C(7, 3) = 35 combinations (and
therefore also 35 different aggregations needed). After aggregation we get the
values seen in Table 6, where we have also added the number of parameters

18



Figure 1: Profile log-likelihood for the variance function exponent p of the
Tweedie distribution.

Table 5: Comparison between AIC values of the different selected models con-
taining 3 factors. The baseline level and relativities estimates, standard errors,
performance statistics and estimates of the variance function exponent p of all
models can be seen in the appendix.

Risk factors
in model

driver age
+ density
+ gas

driver age
+ brand
+ region

driver age
+ region
+ power

Frequency 135266 135691 135732
Severity 305678 305434 305510

Tweedie Premium 484425 478618 478033

according to (2.7) to get some sense to how the this number might be effecting
the AIC.

After the aggregation, we can see that the best model according to AIC for
each response variable has changed for both the claim severity and the pure
premium responses, while the frequency still has the same best model as before.
To get a more clear answer to how much better the model with the lowest AIC
is than the other two, we can look at two properties.

The first is the AIC differences, ∆i = AICi − AICmin, where i is the ith
model that does not have the lowest AIC. If we index our models in Table 6 as

1. driver age + density + gas

2. driver age + brand + region

3. driver age + region + power
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Table 6: Comparison between AIC values of the different selected models con-
taining 3 factors, after aggregation. The baseline level and relativities estimates,
standard errors, performance statistics and estimates of the variance function
exponent p of all models can be seen in the appendix.

Risk factors
in model

driver age
+ density
+ gas

driver age
+ brand
+ region

driver age
+ region
+ power

No. of parameters 10 20 25

Frequency 410 1785 2494

Severity 501798 482374 460176

Tweedie Premium 1373 7182 9915

we can see that for example frequency we get AICmin = AIC1 = 410,
AIC2 = 1785 and AIC3 = 2494. This gives us ∆2 = 1375 and ∆3 = 2084.
We can then follow the guidelines on p.70 of [BA02], see Table 7. If we look
at all of the AIC differences, , we can see that the model with the lowest The
second property we can look at is the relative likelihood, exp (−∆i/2). If we
for choose a significance level of 0.05, as is standard, we would omit a model
if its relative likelihood was below this threshold and instead choose the model
with the lowest AIC. We can see all AIC differences and relative likelihoods in
Table 8.

Table 7: Rules of thumb for how to determine support of models through the
use of AIC differences.

∆i Level of Empirical Support of Model i
0-2 Substantial
4-7 Considerably less
> 10 Essentially none

Table 8: AIC differences and relative likelihoods (RL) between models. If RL<
0.05, we denote this with *.

Risk factors
in model

driver age
+ density
+ gas

driver age
+ brand
+ region

driver age
+ region
+ power

∆i RL ∆i RL ∆i RL

Frequency 0 1 1375 * 2084 *
Severity 41622 * 22198 * 0 1

Tweedie Premium 0 1 5809 * 8542 *

It is clear that according to the rule of thumb for ∆i and the relative likeli-
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hood that the model we should choose for each of our responses is the one with
the smallest AIC.

4.2 Predictive capabilities

Another way we could have chosen models is through cross validation, which
involves splitting the data into multiple subsets and then training the models on
all subsets but one and then to verify how well the model can predict the actual
values of the left out subset. Though we chose our models through normal
selection-elimination methods, we can now also pass our models trough a cross
validation algorithm to calculate some predictive values, such as the root mean
squared error (RMSE), the coefficient of determination R2 or the mean absolute
error (MAE). We can see the values of these statistics for the selected models
in Table 9.

We can see that the two more favourable models are one and three, i.e. the
models that contain driver age, density and gas, and driver age, region and
power. The model containing driver age, car brand and region is only the best
when looking at the RMSE for the severity response variable. We now have an
idea of which of our three models will give us the most trustworthy results, and
will move on to calculate our relatives.

4.3 Relatives

To calculate the relatives, we perform the procedure discussed in subsection 2.8.
In Table 10, Table 11 and Table 12 we can find the calculated relatives. In
addition, the exposure and confidence intervals for the relatives can be found in
the appendix. To get a better view of how the relatives differ from each other,
we plot them using scatter plots.

In the scatter plots, Figure 2, Figure 3 and Figure 4, there appears to be
no clear pattern that tells us the Tweedie model under- or over estimates the
relatives, relative to the frequency-severity model, and therefore we cannot make
a conclusion about There are cases where the Tweedie model estimates a higher
and a lower relative, so we cannot make a conclusion about whether or not risk
factors on both sides where the Tweedie model e
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Table 9: AIC, root mean square error and mean absolute value of parameter
estimates, along with the coefficient of determination R2, for models selected
via the bi-directional selection method.

Model AIC RMSE R2 MAE
Frequency

driver age
+ density
+ gas

410 137.567 0.922 96.442

driver age
+ brand
+ region

1785 59.326 0.822 20.849

driver age
+ power
+ region

2494 15.308 0.939 6.948

Severity
driver age
+ density
+ gas

501798 288688.4 0.831 229591.6

driver age
+ brand
+ region

482374 198127.2 0.724 74943.47

driver age
+ power
+ region

460176 82743.56 0.810 38181.7

Pure premium
driver age
+ density
+ gas

1373 304647.1 0.828 249505.4

driver age
+ brand
+ region

7182 156552.1 0.685 58362.58

driver age
+ power
+ region

9915 68361.05 0.791 28942.71
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Figure 2: Scatter plot, for the two different ways of calculating premium relatives
in Table 10.

Figure 3: Scatter plot, for the two different ways of calculating premium relatives
in Table 11.
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Figure 4: Scatter plot, for the two different ways of calculating premium relatives
in Table 12.

Table 10: Estimated relatives for models including the risk factors driver age,
density and gas.

Risk Risk Relatives, Relatives, Relatives, Relatives,
factor class frequency severity premium premium

(Tweedie)
Driver
age

1 1.00 1.00 1.00 1.00
2 0.54 0.66 0.36 0.57
3 0.34 3.16 1.07 2.86
4 0.34 4.56 1.55 4.37
5 0.33 0.50 0.16 0.40

Density 1 1.00 1.00 1.00 1.00
2 1.20 1.97 2.35 2.07
3 1.37 1.09 1.49 1.25
4 1.69 2.37 4.00 2.43
5 1.89 0.54 1.02 0.50

Gas 1 1.00 1.00 1.00 1.00
2 0.81 0.90 0.74 1.07
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Table 11: Estimated relatives for models including the risk factors driver age,
brand and region.

Risk Risk Relatives, Relatives, Relatives, Relatives,
factor class frequency severity premium premium

(Tweedie)
Driver
age

1 1.00 1.00 1.00 1.00
2 0.55 0.63 0.35 0.78
3 0.35 2.83 0.98 4.16
4 0.35 4.13 1.43 6.11
5 0.32 0.46 0.15 0.45

Brand 1 0.92 15.10 13.87 15.34
2 1.04 2.91 3.04 3.27
3 1.06 2.67 2.83 2.60
4 1.00 1.00 1.00 1.00
5 1.10 1.47 1.61 1.40
6 0.80 8.22 6.55 4.72
7 0.99 0.89 0.88 0.69

Region 1 1.00 1.00 1.00 1.00
2 0.89 0.49 0.44 0.43
3 0.89 2.24 1.98 2.08
4 0.82 8.50 7.01 6.34
5 0.94 0.17 0.16 0.14
6 1.22 2.61 3.17 2.45
7 1.14 0.17 0.19 0.13
8 1.09 0.92 0.99 0.88
9 0.96 1.42 1.36 1.29
10 0.94 0.73 0.69 0.64
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Table 12: Estimated relatives for models including the risk factors driver age,
power and region.

Risk Risk Relatives, Relatives, Relatives, Relatives,
factor class frequency severity premium premium

(Tweedie)
Driver
age

1 1.00 1.00 1.00 1.00
2 0.55 0.70 0.38 0.73
3 0.34 2.94 0.98 4.35
4 0.33 4.46 1.48 6.11
5 0.31 0.50 0.16 0.52

Power 1 1.00 1.00 1.00 1.00
2 1.17 1.26 1.47 1.20
3 1.20 1.90 2.27 1.75
4 1.13 1.55 1.76 1.46
5 1.20 0.45 0.54 0.35
6 1.27 0.33 0.42 0.33
7 1.27 0.37 0.47 0.26
8 1.36 0.23 0.31 0.14
9 1.21 0.12 0.15 0.07
10 1.32 0.09 0.13 0.06
11 1.40 0.06 0.08 0.02
12 1.28 0.07 0.09 0.02

Region 1 1.00 1.00 1.00 1.00
2 0.90 0.50 0.45 0.45
3 0.91 2.01 1.84 1.74
4 0.84 7.18 6.06 6.88
5 0.93 0.20 0.19 0.16
6 1.17 2.61 3.04 2.63
7 1.13 0.20 0.23 0.15
8 1.09 0.94 1.02 0.83
9 0.97 1.33 1.29 1.26
10 0.96 0.73 0.70 0.76
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5 Discussion

From the analysis of this thesis, there is no clear pattern whether the frequency-
severity approach leads to higher or lower estimated relatives compared to the
Tweedie method. We can however conclude that using a separate analysis of
the frequency and severity gives us more insight into why we get our result.
For the exponential dispersion models of the frequencies and severities, we can
see more clearly where the estimated relatives come from, and conduct further
analysis on each of them separately. We can look closer at each of the models
and see how the frequency of the claims effects each risk factor and risk class,
and see how these match up with the effects that the severity model gives us.
If we were to use a Tweedie model, we just get one single value of each relative
and we have no real idea of where the estimated relatives comes from, except
what the theory of Tweedie models tells us. Since we can more clearly see the
effect the data has on the frequency and severity separately, we would also be
able to tweak our values more closely and with more information backing our
decisions.

Furthermore, the separate model is more flexible when it comes to the dis-
tributions used. If the data used does not fit the assumed distributions for the
claims frequency or the claim severity, the Tweedie model can simply not be
used. This is because a Tweedie model with a variance function exponent be-
tween one and two, 1 < p < 2, describes gamma distributed claim sizes and a
Poisson distributed number of claims. Hence, if the data differs from this, the
Tweedie approach will not work. But if the frequency-severity approach is used,
we could use other distributions that fit the data better if needed.

There are of course some shortcomings of the conclusions of this thesis. First
of all, our choice to use exactly 3 risk factors was purely based on discussions
on how extensive the analysis should be. A more comprehensive analysis that
instead uses models that are the outcomes of a more elaborate model selection
method might give more insight into how the two premium models preform
relative to each other. However, such a comparison could become very time
consuming and have an incredibly broad scope. This is why the decision was
made to limit ourselves to models with a maximum of three factors in this
paper. Another assumption of ours was trusting how the editor of the book that
supplied the data set, see [Cha14], split the risk factors into their risk classes.
We could have preformed our own analysis of the quantiles of the quantitative
risk factors, or looked at real groups used by real insurance companies. We
could also have studied more closely how to divide these factors into risk classes
which would have given us more insight into how the different classes differ from
each other.

It is worth noting that in the data set of claim costs, there are three policies
that make up a considerable part of the total amount. These policies all have
claim costs of above 1 million euro, one of them is even above 2 million euro. For
context, the policy with the fourth largest claim has a cost of around 300 000
euro. There are many ways of handling large claims in data sets. One common
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way is to choose a value or threshold c, so that an amount above this value is
reduced to the value. That is, for a chosen threshold c the total claim amount
Xi for policy i is changed to min(Xi, c). The money that is now neglected is
then instead spread out among all tariff cells in the budgeting stage of setting
the premium, after having calculated the relatives. This reduces the impact
that these outliers have on the premiums.

Also, when we looked at our data we followed normal practice for the numeric
and continuous risk factors and split them into groups, turning the risk factors
into categorical data instead. There are however other approaches, such as
polynomial regression or generalised additive models (GAM). This is, however,
a whole other method for pricing and was not considered in this analysis.

It is also worth mentioning that Tweedie models could have been used in the
analysis of the frequency and severity, with p = 1 for the frequency component
and p ≥ 2 for different models of severity, among them the gamma distribution.
Such an estimate of p could be used to find which distribution best suited the
given data. This could then be used in an GLM analysis with separate frequency
and severity components, but now with information behind the distribution of
the models, primarily the severity distribution.

6 Summary

In this thesis we have looked at two different models for calculating the relatives
for non-life insurance pricing. We could not conclude a clear pattern of over- and
under-estimation of relatives when comparing these two models, or see which
method gave a more accurate result as there were no correct relatives to compare
to.

We concluded, however, that the method of separate analyses of frequency
and severity gave more insight into how the relatives are estimated. This could
give better performance since tweaking of the model parameters could be done,
with more information behind their interpretation. We also note that the sepa-
rate analysis method gives more room to vary the chosen distributions if needed,
which would not be possible if a Tweedie model was used for the pure premium.

Therefore, our results indicate that the method with separate models for
frequency and severity is more appropriate to use for setting relatives for non-
life insurance.
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Appendix

Table 13: Covariates and their effect parameter estimates, for the frequency
distribution of model 1.

Coefficients Estimate Standard error Wald statistic p-value
Intercept -1.8618397 0.0405988 -45.859460 < 2e− 16 ***
driver age2 -0.6162680 0.0460771 -13.374705 < 2e− 16 ***
driver age3 -1.0796310 0.0364052 -29.655966 < 2e− 16 ***
driver age4 -1.0775837 0.0354940 -30.359634 < 2e− 16 ***
driver age5 -1.1070824 0.0518830 -21.338073 < 2e− 16 ***
density2 0.1781819 0.0269060 6.622385 3.53e− 11 ***
density3 0.3141370 0.0298160 10.535872 < 2e− 16 ***
density4 0.5242068 0.0261174 20.071204 < 2e− 16 ***
density5 0.6341391 0.0349586 18.139701 < 2e− 16 ***
gas2 -0.2057810 0.0160347 -12.833483 < 2e− 16 ***

Table 14: Covariates and their effect parameter estimates, for the severity dis-
tribution of model 1.

Coefficients Estimate Standard error t-statistic p-value
Intercept 12.4410731 0.2272311 54.750760 < 2e-16 ***
driver age2 -0.4099083 0.2540214 -1.613676 0.114
driver age3 1.1504857 0.2010273 5.723032 1.16e-6 ***
driver age4 1.5175656 0.1955672 7.759816 1.68e-9 ***
driver age5 -0.6956608 0.2864299 -2.428729 0.0197 *
density2 0.6763510 0.1548659 4.367333 8.66e-5 ***
density3 0.0874693 0.1714157 0.510276 0.613
density4 0.8626667 0.1500621 5.748730 1.07e-6 ***
density5 -0.6099982 0.1964770 -3.104680 0.00349 **
gas2 -0.1002027 0.0910298 -1.100769 0.278
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Table 15: Covariates and their effect parameter estimates, for the premium
distribution of model 1.

Coefficients Estimate Standard error t-statistic p-value
Intercept 12.4610500 0.2408989 51.7273006 < 2e-16 ***
driver age2 -0.5556649 0.2599295 -2.1377522 0.0387 *
driver age3 1.0495062 0.2193062 4.7855750 2.34e-5 ***
driver age4 1.4758211 0.2118484 6.9664022 2.09e-8 ***
driver age5 -0.9151947 0.2723902 -3.3598661 1.72e-3 **
density2 0.7270814 0.2206939 3.2945236 2.07e-3 **
density3 0.2210817 0.2321658 0.9522578 0.347
density4 0.8896791 0.2174201 4.0919815 2.01e-4 ***
density5 -0.6841354 0.2582860 -2.6487512 0.0115 *
gas2 0.0664692 0.1407176 0.4723589 0.639

Table 16: Covariates and their effect parameter estimates, for the frequency
distribution of model 2.

Coefficients Estimate Standard error Wald statistic p-value
Intercept -1.5198917 0.0580241 -26.1941531 < 2e-16 ***
driver age2 -0.5905139 0.0460879 -12.8127635 < 2e-16 ***
driver age3 -1.0630671 0.0364135 -29.1943086 < 2e-16 ***
driver age4 -1.0637872 0.0356061 -29.8765739 < 2e-16 ***
driver age5 -1.1357769 0.0519160 -21.8771973 < 2e-16 ***
region2 -0.1138904 0.0563284 -2.0219008 0.0432 *
region3 -0.1201286 0.0387788 -3.0977870 1.95e-3 **
region4 -0.1926307 0.0336564 -5.7234452 1.04e-8 ***
region5 -0.0655493 0.0741355 -0.8841828 0.377
region6 0.1954144 0.0368265 5.3063470 1.12e-7 ***
region7 0.1352030 0.0776370 1.7414763 0.0816 .
region8 0.0827503 0.0448702 1.8442143 0.0652 .
region9 -0.0455941 0.0399425 -1.1414941 0.254
region10 -0.0624802 0.0470189 -1.3288312 0.184
brand6 -0.2264919 0.0444071 -5.1003482 3.39e-7 ***
brand5 0.0925765 0.0510520 1.8133775 0.0698 .
brand3 0.0591271 0.0444938 1.3288833 0.184
brand7 -0.0099224 0.0618557 -0.1604123 0.873
brand1 -0.0847273 0.0389597 -2.1747441 0.0297 *
brand2 0.0436418 0.0456561 0.9558815 0.339
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Table 17: Covariates and their effect parameter estimates, for the severity dis-
tribution of model 2.

Coefficients Estimate Standard error t-statistic p-value
Intercept 8.9150807 0.2142772 41.6053576 < 2e-16 ***
driver age2 -0.4579453 0.1676845 -2.7309939 6.71e-3 **
driver age3 1.0413775 0.1325708 7.8552573 8.27e-14 ***
driver age4 1.4191450 0.1293326 10.9728311 < 2e-16 ***
driver age5 -0.7866850 0.1894286 -4.1529357 4.35e-05 ***
region2 -0.7111431 0.2097520 -3.3904003 7.97e-4 ***
region3 0.8048754 0.1437384 5.5995834 5.07e-08 ***
region4 2.1402351 0.1241161 17.2438100 < 2e-16 ***
region5 -1.7912625 0.2768210 -6.4708324 4.26e-10 ***
region6 0.9580299 0.1351122 7.0906226 1.06e-11 ***
region7 -1.7828601 0.2854629 -6.2455064 1.54e-09 ***
region8 -0.0885632 0.1641826 -0.5394190 0.590
region9 0.3541349 0.1478592 2.3950821 0.0173 *
region10 -0.3152369 0.1748497 -1.8029014 0.0725 .
brand6 2.1059770 0.1643662 12.8127131 < 2e-16 ***
brand5 0.3848023 0.1915831 2.0085399 0.0455 *
brand3 0.9823248 0.1667747 5.8901318 1.09e-08 ***
brand7 -0.1164705 0.2312651 -0.5036233 0.615
brand1 2.7145414 0.1458695 18.6093805 < 2e-16 ***
brand2 1.0691172 0.1708918 6.2561075 1.45e-09 ***
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Table 18: Covariates and their effect parameter estimates, for the premium
distribution of model 2.

Coefficients Estimate Standard error t-statistic p-value
Intercept 8.7693688 0.2779426 31.5510053 < 2e-16 ***
driver age2 -0.2490108 0.2021691 -1.2316952 0.219
driver age3 1.4258240 0.1718230 8.2982118 2.91e-15 ***
driver age4 1.8104441 0.1670806 10.8357553 < 2e-16 ***
driver age5 -0.8065126 0.2181325 -3.6973523 2.56e-4 ***
region2 -0.8512350 0.2732214 -3.1155501 2.00e-3 **
region3 0.7304090 0.2277149 3.2075585 1.47e-3 **
region4 1.8470992 0.2080958 8.8761981 < 2e-16 ***
region5 -1.9761585 0.3243299 -6.0930506 3.15e-09 ***
region6 0.8944356 0.2243116 3.9874700 8.26e-05 ***
region7 -2.0050456 0.3275340 -6.1216415 2.68e-09 ***
region8 -0.1288195 0.2491033 -0.5171329 0.605
region9 0.2510923 0.2388661 1.0511847 0.294
region10 -0.4490247 0.2587970 -1.7350458 0.0837 .
brand6 1.5510746 0.2241466 6.9199113 2.44e-11 ***
brand5 0.3393384 0.2499892 1.3574122 0.176
brand3 0.9546416 0.2352181 4.0585383 6.20e-05 ***
brand7 -0.3642630 0.2705309 -1.3464747 0.179
brand1 2.7307164 0.2083870 13.1040608 < 2e-16 ***
brand2 1.1853282 0.2308157 5.1353871 4.88e-07 ***
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Table 19: Covariates and their effect parameter estimates, for the frequency
distribution of model 3.

Coefficients Estimate Standard error Wald statistic p-value
Intercept -1.7067374 0.0483517 -35.2983578 < 2e-16 ***
driver age2 -0.6037967 0.0460795 -13.1033622 < 2e-16 ***
driver age3 -1.0924397 0.0364617 -29.9613300 < 2e-16 ***
driver age4 -1.1030658 0.0356064 -30.9794498 < 2e-16 ***
driver age5 -1.1662339 0.0518163 -22.5071051 < 2e-16 ***
region2 -0.1030345 0.0562396 -1.8320641 0.0669 .
region3 -0.0897298 0.0385337 -2.3286070 0.0199 *
region4 -0.1697625 0.0332530 -5.1051756 3.30e-7 ***
region5 -0.0694314 0.0741334 -0.9365740 0.349
region6 0.1529409 0.0365733 4.1817631 2.89e-5 ***
region7 0.1246016 0.0776399 1.6048658 0.109
region8 0.0831347 0.0448754 1.8525683 0.0639 .
region9 -0.0286201 0.0398050 -0.7190064 0.472
region10 -0.0424715 0.0468980 -0.9056150 0.365
power2 0.1595045 0.0271605 5.8726737 4.29e-9 ***
power3 0.1820748 0.0260455 6.9906517 2.74e-12 ***
power4 0.1234359 0.0267875 4.6079598 4.07e-6 ***
power5 0.1847364 0.0378558 4.8799969 1.06e-6 ***
power6 0.2357127 0.0425851 5.5350922 3.11e-8 ***
power7 0.2411154 0.0429562 5.6130552 1.99e-8 ***
power8 0.3082563 0.0554147 5.5627189 2.66e-8 ***
power9 0.1928840 0.0813631 2.3706584 0.0178 *
power10 0.2809620 0.1166040 2.4095404 0.0160 *
power11 0.3373327 0.1352482 2.4941740 0.0126 *
power12 0.2471917 0.1378319 1.7934293 0.0729 .
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Table 20: Covariates and their effect parameter estimates, for the severity dis-
tribution of model 3.

Coefficients Estimate Standard error t-statistic p-value
Intercept 10.2843459 0.1491399 68.9577260 < 2e-16 ***
driver age2 -0.3593096 0.1411985 -2.5447117 0.0113 *
driver age3 1.0770742 0.1116435 9.6474431 < 2e-16 ***
driver age4 1.4944343 0.1087076 13.7472870 < 2e-16 ***
driver age5 -0.6951407 0.1592453 -4.3652195 1.62e-05 ***
region2 -0.6942022 0.1763428 -3.9366632 9.75e-05 ***
region3 0.7000909 0.1204522 5.8121904 1.27e-08 ***
region4 1.9706806 0.1034524 19.0491448 < 2e-16 ***
region5 -1.5987851 0.2331326 -6.8578369 2.68e-11 ***
region6 0.9604038 0.1130823 8.4929627 4.06e-16 ***
region7 -1.6031916 0.2405253 -6.6653747 8.83e-11 ***
region8 -0.0658694 0.1382117 -0.4765832 0.634
region9 0.2837995 0.1241574 2.2858045 0.0228 *
region10 -0.3107082 0.1468928 -2.1152040 0.0350 *
power2 0.2277425 0.0849438 2.6810963 0.00764 **
power3 0.6395870 0.0815771 7.8402728 4.16e-14 ***
power4 0.4394689 0.0839492 5.2349386 2.68e-07 ***
power5 -0.8073806 0.1186516 -6.8046311 3.74e-11 ***
power6 -1.1066764 0.1342437 -8.2437852 2.45e-15 ***
power7 -0.9884314 0.1349176 -7.3261859 1.33e-12 ***
power8 -1.4639336 0.1747742 -8.3761416 9.47e-16 ***
power9 -2.1143864 0.2565344 -8.2421175 2.48e-15 ***
power10 -2.3601923 0.3710203 -6.3613569 5.50e-10 ***
power11 -2.8959582 0.4189298 -6.9127525 1.90e-11 ***
power12 -2.6319173 0.4324341 -6.0862855 2.72e-09 ***
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Table 21: Covariates and their effect parameter estimates, for the premium
distribution of model 3.

Coefficients Estimate Standard error t-statistic p-value
Intercept 10.1989675 0.2477619 41.1643883 < 2e-16 ***
driver age2 -0.3195782 0.1975569 -1.6176516 0.106
driver age3 1.4707584 0.1658303 8.8690588 < 2e-16 ***
driver age4 1.8106782 0.1619066 11.1834747 < 2e-16 ***
driver age5 -0.6589172 0.2083369 -3.1627485 1.6552e-3 **
region2 -0.8030850 0.2613576 -3.0727445 2.23e-3 **
region3 0.5528791 0.2228148 2.4813392 0.0134 *
region4 1.9293300 0.1993471 9.6782458 < 2e-16 ***
region5 -1.8277249 0.3083633 -5.9271798 5.65e-9
region6 0.9680921 0.2143627 4.5161406 7.82e-6
region7 -1.9289788 0.3165417 -6.0939165 2.16e-9
region8 -0.1837838 0.2427057 -0.7572289 0.449
region9 0.2300665 0.2311159 0.9954595 0.320
region10 -0.2762909 0.2452118 -1.1267440 0.260
power2 0.1781650 0.1953501 0.9120291 0.362
power3 0.5600327 0.1876335 2.9847155 2.97e-3 **
power4 0.3781551 0.1910867 1.9789708 0.0484 *
power5 -1.0391105 0.2265733 -4.5862006 5.68e-6
power6 -1.1072268 0.2293667 -4.8273212 1.83e-6
power7 -1.3423545 0.2376596 -5.6482233 2.69e-8
power8 -1.9339682 0.2618092 -7.3869370 6.11e-13
power9 -2.6597546 0.3009267 -8.8385465 < 2e-16 ***
power10 -2.8339877 0.3196926 -8.8647276 < 2e-16 ***
power11 -3.8121307 0.3747088 -10.1735813 < 2e-16 ***
power12 -3.7306699 0.3798883 -9.8204395 < 2e-16 ***
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Table 22: Duration and number of claims for risk factors and their risk classes.
These are the exposures of the frequency, severity and pure premium key ratios.

Risk factor Risk class Duration No. claims
Driver age 1 4702 1041

2 9509 1173
3 81519 5941
4 125558 8942
5 11097 740

Density 1 39158 2123
2 73293 4867
3 37329 2810
4 66849 6363
5 15755 1674

Gas 1 113397 9298
2 118987 8539

Power 1 37907 2657
2 44760 3553
3 56015 4373
4 51770 3780
5 13955 1104
6 9433 788
7 9304 782
8 4714 416
9 2206 178
10 977 82
11 664 64
12 677 60

Region 1 14372 1203
2 6677 498
3 27816 2033
4 102878 6911
5 3183 242
6 30331 3009
7 2405 225
8 11545 1102
9 21986 1736
10 11186 878

Brand 1 18351 9750
2 21885 1622
3 21884 1889
4 9547 786
5 10567 905
6 31352 2428
7 5781 457
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Table 23: Confidence intervals for Table 10.

Limits
Risk Risk Frequency Severity Premium Premium , Tweedie
factor class Lower Upper Lower Upper Lower Upper Lower Upper

Driver age 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.49 0.59 0.40 1.10 0.20 0.65 0.34 0.96
3 0.32 0.37 2.08 4.65 0.66 1.70 1.85 4.40
4 0.32 0.37 3.03 6.62 0.96 2.42 2.88 6.64
5 0.30 0.37 0.29 0.89 0.09 0.32 0.24 0.68

Density 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.13 1.26 1.44 2.65 1.63 3.34 1.34 3.19
3 1.29 1.45 0.77 1.53 1.00 2.22 0.79 1.97
4 1.61 1.78 1.74 3.18 2.80 5.65 1.59 3.73
5 1.76 2.02 0.37 0.81 0.64 1.64 0.30 0.84

Gas 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.79 0.84 0.75 1.09 0.59 0.92 0.81 1.41

Table 24: Confidence intervals for Table 11.

Limits
Risk Risk Frequency Severity Premium Premium , Tweedie
factor class Lower Upper Lower Upper Lower Upper Lower Upper

Driver age 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.51 0.61 0.45 0.88 0.23 0.54 0.52 1.16
3 0.32 0.37 2.16 3.66 0.69 1.36 2.96 5.85
4 0.32 0.37 3.17 5.31 1.02 1.97 4.38 8.53
5 0.29 0.36 0.31 0.67 0.09 0.24 0.29 0.69

Brand 1 0.85 0.99 11.18 19.92 9.53 19.77 10.17 23.07
2 0.96 1.14 2.06 4.06 1.97 4.64 2.07 5.15
3 0.97 1.16 1.91 3.68 1.86 4.27 1.64 4.12
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 0.99 1.21 1.01 2.14 1.00 2.60 0.86 2.29
6 0.73 0.87 5.83 11.40 4.26 9.92 3.03 7.33
7 0.88 1.12 0.57 1.42 0.50 1.59 0.41 1.18

Region 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.80 1.00 0.33 0.75 0.26 0.75 0.25 0.73
3 0.82 0.96 1.67 2.97 1.38 2.84 1.32 3.25
4 0.77 0.88 6.58 10.84 5.09 9.55 4.20 9.55
5 0.81 1.08 0.10 0.30 0.08 0.32 0.07 0.26
6 1.13 1.31 1.97 3.41 2.23 4.46 1.57 3.80
7 0.98 1.33 0.10 0.31 0.10 0.41 0.07 0.26
8 0.99 1.19 0.66 1.27 0.66 1.50 0.54 1.43
9 0.88 1.03 1.06 1.91 0.94 1.97 0.80 2.05
10 0.86 1.03 0.52 1.03 0.44 1.07 0.38 1.06
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Table 25: Confidence intervals for Table 12.

Limits
Risk Risk Frequency Severity Premium Premium , Tweedie
factor class Lower Upper Lower Upper Lower Upper Lower Upper

Driver age 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.50 0.60 0.53 0.93 0.26 0.55 0.49 1.07
3 0.31 0.36 2.34 3.65 0.73 1.32 3.12 6.06
4 0.31 0.36 3.57 5.50 1.10 1.96 4.43 8.44
5 0.28 0.34 0.37 0.69 0.10 0.24 0.34 0.78

Power 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.11 1.24 1.06 1.49 1.18 1.84 0.81 1.75
3 1.14 1.26 1.61 2.23 1.84 2.81 1.21 2.53
4 1.07 1.19 1.31 1.83 1.41 2.18 1.00 2.12
5 1.12 1.30 0.35 0.57 0.39 0.73 0.23 0.55
6 1.16 1.38 0.26 0.43 0.30 0.60 0.21 0.52
7 1.17 1.38 0.29 0.49 0.34 0.68 0.16 0.42
8 1.22 1.52 0.17 0.33 0.20 0.50 0.09 0.24
9 1.03 1.42 0.07 0.21 0.08 0.30 0.04 0.13
10 1.04 1.65 0.05 0.22 0.05 0.36 0.03 0.11
11 1.06 1.81 0.03 0.14 0.03 0.26 0.01 0.05
12 0.97 1.66 0.03 0.19 0.03 0.32 0.01 0.05

Region 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 0.81 1.01 0.35 0.72 0.29 0.72 0.27 0.76
3 0.85 0.99 1.58 2.55 1.34 2.51 1.12 2.69
4 0.79 0.90 5.82 8.76 4.61 7.89 4.64 10.19
5 0.80 1.08 0.13 0.33 0.10 0.35 0.09 0.30
6 1.09 1.25 2.08 3.26 2.26 4.08 1.73 4.01
7 0.97 1.32 0.13 0.33 0.12 0.44 0.08 0.27
8 1.00 1.19 0.71 1.23 0.71 1.46 0.52 1.34
9 0.90 1.05 1.04 1.69 0.93 1.78 0.80 1.98
10 0.87 1.05 0.55 0.98 0.48 1.03 0.47 1.23
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Figure 5: Scatter plot of all of the relatives in Table 10.

Figure 6: Scatter plot of all of the relatives in Table 11.
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Figure 7: Scatter plot of all of the relatives in Table 12.
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