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Abstract

In this work we have used data provided by The Swedish Museum of
Natural History from necropsies of over 800 harbour porpoises (Phocoena
phocoena) found dead or that have been caught as by-catch in fishing
gear between 1975 and 2022. The data have been collected as part of
the project ”Health and Disease Monitoring of Marine Mammals” by The
Swedish Museum of Natural History in collaboration with the (Swedish)
National Veterinary Institute. We have used this provided data for three
different purposes: 1) To get an insight in morphological differences be-
tween populations, the weight-length relationship for the Swedish popula-
tion have been calculated and compared to the weight-length relationships
calculated for other populations of porpoises. 2) As an aid in determine
the health status of dead individuals residual body condition indices have
been constructed using the animals weight, length and the day of the
year the animal had been found. 3) By the means of log linear regres-
sion and partial correlation, we have used measurements for circumfer-
ence and blubber thickness to investigate how these relate to the animals
weight and nutritional status. Results and conclusions: 1) Although no
hypothesis testing was made to statistically confirm differences between
populations, the weight-length relationships for other populations seemed
to follow a steeper curve than those calculated for the Swedish popula-
tions. These differences were believed to mainly relate to the difference in
growth between juveniles and adults and, to the fact that weight-length
relationships were calculated for different classes of animals. 2) In testing,
the residual body condition indices were shown to be useful in estimating
an individuals nutritional status. However, there were indications that the
residuals overall were to low and further testing may be necessary. 3) In
the log linear regression the circumferences measured anterior of anus were
found to correlate strongly with the animals weight. Blubber thickness
were found to correlated poorly with weight in the log linear regression.
The partial correlation was found to not be a very useful method to ex-
plain the animals weight with measurements of circumference and blubber
thickness.
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1 Introduction

The harbour porpoise (Phocoena phocoena) is one of the smallest odontocetes,
with adults reaching a length of between 150 and 190 cm and weighing between
50 and 70 kg. In Swedish waters, three separate populations exist with limited
genetic exchange: the population of the Baltic Sea, one in the Danish straits, and
one in the North Sea (artdatabanken: Phocoena Phocoena). While the Atlantic
populations were listed as ’Least Concern’ by IUCN in 2020, the population in
the Baltic Sea was listed as ’Critically Endangered’ in 2008 (IUCN 2020; IUCN
2008).

The health status of the harbour porpoise population in Swedish waters is
being monitored by the Swedish Museum of Natural History (SMNH) and the
(Swedish) National Veterinary Institute (NVI) as part of the project ”Health
and Disease Monitoring of Marine Mammals,” funded by the Swedish Agency
for Marine and Water Management. To survey the health status, porpoises that
are found deceased or those accidentally caught in fishing gear are sent to NVI
for further examination. A necropsy is performed in collaboration with SMNH
personnel, during which various measurements are taken, including age, weight,
length, girth, and thickness of blubber at different sites on the animal.

1.1 How to determine the health status of an individual

Blubber thickness is commonly used in marine mammals to assess nutritional
status (Kauhala et al., 2019; Marón et al., 2021). However, blubber thickness
alone is not sufficient to determine nutritional status as starvation involves the
loss of both fat and muscle mass (IJsseldijk et al., 2019). Therefore, it should be
complemented with other species-specific parameters of health status (Siebert et
al., 2022). Another measurement, girth, is useful in assessing nutritional status,
and in toothed whales, starvation is often first observed as depressions in areas
lateral to the dorsal fin (Kastelein & Van Battum, 1990).

Blubber thickness and girth are examples of measurements that can be used,
to varying degrees, to directly infer nutritional status. However, variables such
as age, length, day of the year, and gender, known as confounders, co-vary
with weight but do not provide direct information about nutritional status.
Nevertheless, these confounders, including variables like girth that have a causal
relationship with nutritional status, can be used to create a body condition
index. By comparing this index to an individual’s weight, an estimation of its
nutritional status can be obtained.

Indices for body condition based on mass and morphometric variables gener-
ally fall into two categories: Ratio indices and residual indices (Labocha, Schutz
& Hayes, 2014). Of the ratio indices, body mass index (BMI) (for humans) is
probably the one best known to the public. It is calculated by dividing mass
(in kg) by the square of length (in meters). For humans, a BMI under 18.5
kg/m² indicates underweight, 18.5-24.9 kg/m² is considered normal weight, 25-
29.9 kg/m² is overweight, and a BMI over 30.0 kg/m² is classified as obesity
(National Heart, Lung and Blood Institute).
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A residual body condition index, on the other hand, involves a linear re-
gression model with weight as the response variable and length, girth, or other
covariates as explanatory variables;

Ŷ = f(X) = α+ β1f1(X1) + β2f2(X2) + ... + βnfn(Xn), (1)

where Ŷ denotes the animals weight or a transformation thereof, X1, X2, ..., Xn

are the explanatory variables such as length or girth and, fi() is a known trans-
formation of covariate i. The coefficients α, β1, β2, ...βn can be estimated using
statistical methods (e.g. maximum likelihood or least square approximation).

When a new animal is found we can calculate the residual for that individual
as

e = y − ŷ, (2)

where y is the animals weight or a transformation thereof and ŷ = α+β1f1(x1)+
β2f2(x2) + ... + βnfn(xn) is the animals predicted weight (or transformation
thereof) using measurements x1, x2, ..., xn corresponding to this individual. A
positive residual would indicate that the individual is well nourished whereas a
negative one would indicate that it is malnourished or even emaciated.

1.2 Weight - length relationship for harbour porpoises

In line with residual indices, the weight-length relationship for harbour por-
poises have been studied in several articles including Bryden (1986), Van Utrecht
(1978), Kastelein and van Battum (1990) and Bilgin, Kose and Yesilcicek (2019)
(Bilgin, Kose & Yesilcicek, 2019). These weight - length relationships are im-
portant tools for marine biologists and fisheries managers and have many appli-
cations in stock assessments and ecological studies (Bilgin, Kose & Yesilcicek,
2019). The standard formula when studying weight - length relationships in
harbour porpoises is

W = α · Lβ , (3)

where W is the animals weight and L its length. Taking the logarithm of equa-
tion (3) we obtain

log(W ) = log(α) + β · log(L) = αlog + β · log(L), (4)

and with linear regression can the coefficients αlog and β be estimated. In at
least two of the aforementioned articles (Kastelein & van Battum 1990; Bilgin,
Kose & Yesilcicek, 2019) the weight-length relationships have been used (among
other uses) as a way of predicting an animals weight in situations where it’s
unfeasible to measure the animals weight, these models, however, could also be
used to create a residual body condition index.

1.3 Purpose of this project

This work serves two main purposes. Firstly, we aim to develop and test a resid-
ual body condition index using regression models with weight as the response
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variable and the animal’s length and/or time of the year as explanatory vari-
ables. Secondly, we intend to investigate the relationship between the animal’s
girth and weight, as well as the relationship between blubber thickness and
weight. As confounders such as length, season, age class, and gender may con-
tribute to a significant portion of the correlation in these relationships, partial
correlation will be utilized to account for their influence.

In addition to the aforementioned purposes, the weight - length relationships
for the Swedish populations will also be investigated.

2 Method and Data

2.1 Data

Variable Type Description

Accession, id discrete A unique identification number given to each porpoise
Date discrete The date the porpoise was found
Source categorical How the porpoise was encountered, e.g. ’found dead’ or ’fishing’
Nourishment categorical For example: ’Well nourished’ or ’Less than well nourished’
Decay categorical Indication in which state of decay the porpoise was found
Gender categorical The animals gender
Age discrete The estimated age of the animal
Totallength continuous The animals overall length in centimeters
Weight continuous The animals weight in kg
Fat, neck ventral continuous Blubber thickness at underside of the neck (cm)
Fat, breast ventral continuous Blubber thickness at underside of the breast (cm)
Fat, abdomen ventral continuous Blubber thickness at underside of the abdomen (cm)
Fat, hip ventral continuous Blubber thickness at underside of the hip (cm)
Fat, neck right continuous Blubber thickness on the right side of the neck (cm)
Fat, breast right continuous Blubber thickness on the right side of the breast (cm)
Fat, abdomen right continuous Blubber thickness on the right side of the abdomen (cm)
Fat, hip right continuous Blubber thickness on the right side of the hip (cm)
Fat, neck back continuous Blubber thickness on the dorsal side of the neck (cm)
Fat, breast back continuous Blubber thickness on the dorsal side of the breast (cm)
Fat, abdomen back continuous Blubber thickness on the dorsal side of the abdomen (cm)
Fat, hip back continuous Blubber thickness on the dorsal side of the hip (cm)
Circumference, neck continuous The girth in cm measured around the neck
Circumference, breast continuous The girth in cm measured around the breast
Circumference, abdomen continuous The girth in cm measured around the abdomen
Circumference, hip continuous The girth in cm measured around the hip

Table 1: Names of the different variables found in the data set and a short explication of
each one.
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The data consisted of measurements from 857 porpoises collected from 1975 to
2022 of these, 40 observations were deemed unreliable due to written comments
in the original set and excluded from testing. The data set consisted of 25
variables; in figure 1 we see that we have 3 discrete variables; accession id,
date and age, 4 categorical variables; source, nourishment, decay, gender and,
18 continuous ones; total length, weight, the blubber thickness measured at 12
different places and the circumference measured at 4 sites on the animal. Table
1 will give you a short description of each variable.

Figure 1: The figure show the sites where circumference and blubber thickness
have been measured. The dashed lines denoted by the roman numerals I-IV
corresponds to the positions neck, breast, abdomen and hip. Ventral refers to
the chest or bottom part of the animal, back to the upper part and right to the
(righthand) side.

The variable weight was used as response variable in our regression models
and total length, the animals circumference and blubber thickness as well as date
(by converting it to day of the year) were used as explanatory variables. The
variables gender, age and total length were used to divide the data set in age
classes, nourishment was used to test the residual body condition index and,
lastly, accession id was useful to match the residuals in the partial correlation.
The variables source and decay were not used in this work.

The data set had a lot of missing values - out of 857 rows only 16 were com-
plete. The main reason for this was that measurements for blubber thickness
and circumference were first collected from 2006 (although some measurements
date back to 1996). This presents a challenge since regression models with dif-
ferent data set are hard to compare, to counter this we have not chosen to use
imputation methods, but instead taking care to use the same subsets of the data
when comparing different methods.

In figure 2 below is shown how the missing values are distributed in the data
set. Almost 90% of all values in fat, hip ventral and nearly 80% of all values in
nourishment are missing. Furthermore, between 75% and 90% of all values for
measurements for girth and blubber thickness are absent.
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Figure 2: Percentage of missing values by variable

2.1.1 Partitioning of the data

It was assumed that porpoises in different stages of maturity would have dif-
ferent intercepts and slopes in our regression models due to biological factors
(e.g. pregnancy and breastfeeding for adult females and, growth in juveniles).
Ideally we would have liked to classify the porpoises into groups depending on
sexual maturity (calf, inmature and mature) and gender, based on anatomical
or biological observations (e.g. Koopman (Koopman, 1998) classified porpoises
as a ’calf’ if it had unerupted teeth or presence of milk in the stomach). Also
dividing the mature females into pregnant, lactating and non-pregnant less lac-
tating would have been desirable since pregnancy and lactation are two factors
that affect energy consumption and weight.

Unfortunately there were no information in the data about sexual maturity
or if a female were pregnant or lactating. The variables that we had at hand
to classify porpoises as mature or inmature were primarily age and the animals
size (i.e. total length). Lockyer (Lockyer, 1995) had in her article partitioned the
observations into seven groups based on gender and length (Neonates: < 91cm,
Inmature less neonates: 91 − 130cm, Matures less lactating (Male + Female):
> 130cm, Females > 140cm less lactating) and, she further divided females in
pregnant, lactating and, pregnant and lactating. In a similar way we decided
to divide the data set in “juveniles”, “adult females” and “adult males” based
on length (juveniles: 100-130 cm, adults > 130cm) or on age (juveniles 1-5
years old, adults > 5 years of age). Factor variables named length sex class and
age sex class, respectively, were constructed for this purpose. Animals shorter
than 100cm or younger than 1 year were classed as “neonatals” (or “yearlings”)
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and excluded from testing. In the rest of the the work we will use these classi-
fications in our testing.

2.2 Theory

2.2.1 Generalized Additive models (GAM)

Examples and theory in this section is derived from a webinar by Gavin Simpson
(https://www.youtube.com/watch?v=sgw4cu8hrZM/) and from chapter 3.1, 3.2
and 4.1 of the book Generalized Additive Models - An Introduction with R (2006)
by Simon N. Wood.

Overview
In linear models we try to model the response variable yi as a weighted sum of
some covariates xi, . . . xn:

yi = β0 +

n∑
j=1

βjxj,i + εi, (5)

where β0, . . . , βn are coefficients and εi ∼ N (0, σ2) are error terms. Instead in
GAM we assume that Y ∼ some exponential family distribution and, the linear
predictor is, instead of a sum of covariates, made up of a sum of smoothing
functions (“smooths”, often used when smoothing y using splines)

yi = f(xi) + εi = β0 +

n∑
j=1

fj(xj,i) + εi. (6)

Basis functions
Splines and polynomials are examples of functions made up of simpler basis
functions, bj,k, and a set of basis functions are called a basis. When using splines
in GAM each basis function has a coefficient βj,k and, the spline is calculated
as the weighted sum of these basis functions

fj(xj) =

K∑
k=1

βj,kbj,k(xj), (7)

where xj is the j:th covariate of the model, j = 1, . . . , n and k = 1, . . . ,K,
where n denotes the number of covariates and K the number of basis functions
for fj. If fj was to be, for example, a second degree polynomial then a basis
for fj could be {x0 = 1, x, x2}.

Penalized log-likelihood and penalized least square
In using GAM we want to avoid over fitting and Runges phenomenon in our fit-
ted line. One way to avoid oscillations is to introduce a penalty to our estimated
function f(x) when fitting our model.
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We measure the smoothing function f tendency to oscillate (it’s “wigglines”)
as:

W =

∫
R
(f ′′(x))2dx = βTSβ, (8)

where f(x) is the estimation of y (i.e. the sum of the basis functions with
estimated coefficients), β = (β1,1, . . . , βn,k)

T is the parameter vector and S is
the penalty matrix.

In linear models when using a least square approach we minimize ||y−Xβ||2
to estimate the coefficients βj , in GAM when estimating the coefficients βj,k

we want to penalize f(x) for wiggliness. One way to do that is to instead of
minimising

||y −Bβ||2,

where B are a matrix with the basis functions bj,k evaluated at xj,i and β =
(β1,1, . . . , βj,k)

T , we minimize

||y −Bβ||2 + λW,

where λ ∈ R is a smoothing parameter we can adjust to control the smoothness
of our smoothing function f(x). A higher λ will produce a f(x) with less
tendency to oscillate. With a too high λ we run the risk of underfitting data
and very high λ will result in f(x) being a straight line. A low λ, on the other
hand, will give f(x) more room to oscillate with the risk of overfitting data.

In a similar way, when estimating β using a likelihood approach, it’s possible
to define the penalized log-likelihood by penalize the log-likelihood with the term
λW.

Cubic splines
There are several types of smoothing functions that can be used in GAM e.g.
thin plates or cubic splines. In this work we will be using cubic cyclic splines
and, because of this, we will here make a short presentation of cubic splines.

Natural cubic splines
Let {(xi, yi)}, i = 1, . . . , n, be a set of points where xi < xi+1. The natural
cubic spline, g(x), interpolating these points is a function made up of piecewise
cubic polynomials, pi(x) = αi + βi,1x + βi,2x

2 + βi,3x
3, one for each interval

[xi, xi+1], i = 1, . . . , n− 1 and, pi(x) = 0 outside of [xi, xi+1]. Furthermore,
g(x) =

∑n
i=1 pi(x) are constructed so that the first and second derivative of

g(x) are continuous on [x1, xn] and, so that at the end points we have g′′(x1) =
g′′(xn) = 0.

As mentioned earlier, wiggliness of a function f(x) on an interval [x1, xn]
can be measured as

W(f) =

∫ xn

x1

(f ′′(x))2dx. (9)

Now suppose that f(x) is continuous on [x1, xn], have an absolute continuous
first derivative and, interpolate the points (xi, yi), i = 1, . . . , n. Of all possible
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functions f(x) it can be shown that g(x) is, in fact, the function that minimize
equation (9), meaning that of all possible functions f(x), the natural cubic spline
g(x) is the smoothest.

Cubic regression splines
Usually yi is measured with noise and it’s usually better to smooth the points
(xi, yi) than to interpolate them. There are several equivalent ways to define
a basis for cubic regression splines, we will here show one example of how to
define one such basis as well as the resulting penalized equations that can be
solved with least square estimations.

As mentioned before, cubic splines are made up of piecewise cubic polyno-
mials, the points where these polynomials start and end are called knots. In
natural cubic splines these knots were the interpolation points (xi, yi), in cubic
regression splines, however, we don’t seek to interpolate the data points and,
instead we have to choose other knots on the interval [x1, xn]. Two common
ways to choose these knots is to either to to place them at an even distance on
the x-axis (within [x1, xn]), not necessarily where there is a datum or, place
them at quantiles of the distribution of unique x values.

A simple example of a cubic spline basis
As mentioned earlier, there are several equivalent ways of defining the basis
functions for the same basis. Here is an example of how to define a cubic spline
basis on the interval x = [0, 1]. Consider points (xi, yi) on the interval x = [0, 1]
that we want to smooth using GAM. We denote the knots as x∗

i , i = 1, . . . , q−2,
and we define the basis functions as

b1(x) = 1

b2(x) = x

bi+2(x) = Ri(x, x
∗
i ), i = 1, . . . , q − 2,

(10)

where

Ri(x, x
∗
i ) =

((
x∗
i − 1

2

)2 − 1
12

)((
x− 1

2

)2 − 1
12

)
4

−(
|x− x∗

i | − 1
2

)4 − 1
2

(
|x− x∗

i | − 1
2

)2
+ 7

240

24
.

Observe that for q− 2 knots we will have q basis functions. With this model we
model yj as

yj =

q∑
i=1

βibi(xj) + εj . (11)
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Which results in the equation system
ŷ1 = β1 + β2xi + · · ·+ βqRq−2(xn, x

∗
q−2)

...

ŷn = β1 + β2xi + · · ·+ βqRq−2(xn, x
∗
q−2)

⇔ y = Xβ. (12)

Since (11) is linear we can use least squares to estimate the coefficients βi,
however, we also want to introduce a term to penalize wiggliness, so instead of
minimizing

||y −Xβ||2,

we could minimize

||y −Xβ||2 − λ

∫ xn

x1

|f ′′(x)|2dx = ||y −Xβ||2 − βTSβ.

With this way of writing down the basis the elements in the penalty matrix S
can be written as S = R(x∗

i , x
∗
j ), for i, j = 1, . . . , q − 2 and with only zeros

in the first two rows and columns.

Figure 3: The basis functions described in example above using four knots (own
work).
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Figure 4: The result when using the basis functions shown above and linear
regression to smooth the points shown in the figure (own work).

Figure 3 show basis functions as in the example when using four knots at x∗
1 =

1/6, x∗
2 = 7/18, x∗

3 = 11/18, and x∗
4 = 5/6. In figure 4 I have used these basis

functions to fit (without using the penalty term λW) cubic splines to a set of
points.

The example shown above is not a very practical one and is only useful on
the interval [0, 1], it can however, give the reader an idea on how it’s possible
to use linear regression and sums of basis function to fit models in GAM.

Cubic cyclic splines
In this work we have used the day of the year as a covariate in our GAM:s and it
would desirable to not have a discontinuity at the end of the year. Cubic cyclic
splines are, just as cubic splines, made up of piecewise third degree polynomials
and have continuous first and second derivatives on [x1, xn]. Unlike cubic splines,
cyclic cubic splines also have the condition that g(x1) = g(xn), g

′(x1) = g′(xn)
and, g′′(x1) = g′′(xn).

2.2.2 Partial Correlation

The theory in this section is derived from the chapter 4.3 of the book Multivari-
ate statistics - High-Dimensional and Large-Sample Approximations (2010) by
Fujikoshi, Ulynaov & Shimizu.

Let X, Y be two random variables of interest and let Z1, . . . , Zn be confounding
random variables that covariate with X and Y . The correlation between X and
Y , ρXY , can be viewed as in part due to the direct correlation between X and
Y and, in part due to the indirect correlation with other confounding variables.
The partial correlation between X and Y is the direct correlation between these
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two variables after removing the effects of the variables Z1, . . . , Zn.
Let X = (X, Y, Z1, . . . , Zn)

T = (X, , Y, ZT )T be a random vector and let

µ =

µX

µY

µZ

 and Σ =

σXX σXY σT
ZX

σY X σY Y σT
ZY

σZX σZY ΣZZ


be the mean vector and covariance matrix of X, respectively.

The best linear predictor of X and Y by linear function of Z is given by{
lX(Z) = µX + σT

XZΣ
−1
ZZ(Z− µZ)

lY (Z) = µY + σT
Y ZΣ

−1
ZZ(Z− µZ).

The residuals e = (eX , eY ) can be regarded as the portion of X and Y left after
removing the effects of Z.

e =

(
eX
eY

)
=

(
X − lX(Z)
Y − lY (Z)

)
=(

X − µX

Y − µY

)
−
(
σT

ZX

σT
ZY

)
Σ−1

ZZ(Z− µZ) =(
1 0 σT

ZXΣ−1
ZZ

0 1 σT
ZY Σ

−1
ZZ

)X − µX

Y − µY

Z− µZ

 .

Then the covariance matrix of e is given by

Var(e) =

(
σXX σXY

σY X σY Y

)
−
(
σZX

σZY

)
Σ−1

ZZ(σZX σZX)

≡ Σ(XY )(XY )·Z =

(
σXX·Z σXY ·Z
σY X·Z σY Y ·Z

)
Definition
With the notation used above, the partial correlation (coefficient) between X
and Y given Z is

ρXY ·Z =
σXY ·Z√

σXX·Z · σY Y ·Z

□

Calculating the partial correlation of a sample
Calculating the partial correlation of a random sample can be made in two steps.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two random samples from two
random variables X and Y of interest and, let

z1 = (z1,1, . . . , zn,1)
T

...

zp = (z1,p, . . . , zn,p)
T
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be random samples of confounding random variables Z1, . . . , Zp.

Step 1
Use linear regression to fit the two models

X̂ = αX + βX,1Z1 + βX,2Z2 + · · ·+ βX,pZp (13)

Ŷ = αY + βY,1Z1 + βY,2Z2 + · · ·+ βY,pZp (14)

Step 2
Calculate the sample partial correlation betweenX and Y given Z by calculating
the correlation between the residuals from model 13 and 14.

2.3 Method

2.3.1 Weight - length relationships

To be able to compare the weight - length relationships for the Swedish pop-
ulations of harbor porpoises to those of Bryden (1986), Van Utrecht (1978),
Kastelein and van Battum (1990) and Bilgin, Kose and Yesilcicek (2019) (Bil-
gin, Kose & Yesilcicek 2019), linear regressions of weight against total length
with logarithmized values were made for the different age classes described in
section 2.1.1.

2.3.2 A residual measure of body condition

To construct a residual body condition index using total length as explanatory
variable and weight as response, linear regression with logarithmized variables
(using the 10 logarithm) were used. To be able to compare the results with
the models including seasonal variation three models with and without a factor
variable for age class for three subsets of the data were made; one corresponding
to all complete observations (rows in the data set) available for the variables
weight, total length and day, one with all complete observations available for
weight, total length, day and gender and, one with all complete observations
available for weight, total length, day, gender and age.

To test the influence of seasonal variation in weight GAM with cubic cyclic
splines were used. Computing of the GAM models were made with and without
the animals length as a linear element, in addition, the models were computed
with or without a factor variable for age class dividing the data set in juveniles,
adult males and adult females as described in section 2.1.1. The difference be-
tween each models adjusted R2 and the adjusted R2 for the log linear regression
with total length were calculated.

For cross validation, three new GAM models with total length included as a
linear element, with and without the factor variables for age classes were made,
but this time only using observations for which nourishment had missing values
(remember that 79.93% of it’s values were missing). When the models had
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been fitted, the predicted weight, ŷ, were calculated for each observation were
nourishment weren’t missing. The residuals, e = y−ŷ, were calculated by taking
the difference between the animals actual weight, y, and the predicted weight, ŷ.
The distribution of the residuals for each level of the variable nourishment (the
four levels being: “Emaciated”, “Less than average nourishment”, “Average
nourished” and, “Well nourished” ) were then shown in box plots.

2.3.3 Circumference and blubber thickness

Due to many missing values of the variable age only the age class variable
based on length and gender (length sex class) was used in this section. Here
the relationship between weight and blubber thickness and circumference was
tested on four different groups of animals; “juveniles and adults” (> 100cm),
“juveniles” (100-130cm), “adult males” (>130 cm) and, “adult females” (> 130
cm).

It was perceived during the initial analysis that the thickness of blubber
may show a greater correlation with weight within different groups of animals
based on gender, age, length, weight or season. Other authors had also shown
that blubber thickness varied between different groups of animals, for example,
Koopman (Koopman, 1998) notes that in the thoracic-abdominal region, calves
had the thickest blubber, lactating females had the thinnest blubber and por-
poises in other groups had thicknesses of blubber intermediate between those
of calves and lactating females. Lockyer (Lockyer, 1995) also showed that the
blubber thickness differed between different sexes and ages, whereas Siebert et
al. (Siebert et al., 2022) showed that the thickness of blubber varied depend-
ing on the season. To account for the influence of these confounding variables
partial correlation was used, with the logarithmized values of total length as a
linear element, the class variable length sex class as a factor variable and day of
the year as smoothing element.

First a model was fitted where the animals weight was explained by its
length, the class variable and day of the year:

Model 1:

log10(weight) = log10(totallength) + length sex class +

+ s(day of the year, by = length sex class),

where s(day of the year, by = length sex class) is the cyclic cubic spline element
of the GAM model that is allowed to vary with length sex class. In this model
all available observations were used (N = 482), the residuals from this model
were added as a new column in the tibble used to fit the model.

As a second step, models were fitted for each of the circumference- or fat
variables against the same explanatory variables:

Model 2:
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log10(circumference or fat variable) = log10(totallength ) + length sex class +

+ s(day of the year, by = length sex class).

Since the variables for circumference and blubber thickness had a lot of missing
data (between 76.5% and 89.35%, see figure 2) these models had a lot fewer
observations at hand (N between 70 and 145) than for model 1.

Residuals from these models were matched to the corresponding residuals in
model 1 via an inner join by the variable accession id. Residuals from model 1
and 2 were partitioned in juveniles, adult males and adult females and, fitted
against each other to calculate the partial correlation between weight and the
circumference and fat variables.

To have a basis of comparison, log linear regression models with weight against
each one of the variables for circumference and fat were also made.

3 Results

3.1 Weight - length relationship

Class R2 Pr(>F) No of observations

Juveniles and adults (> 100cm and older than 0 years) 0.706 0.00000 493
Juvenile (1-5 years of age) 0.673 0.00000 232
Juvenile (100-130cm) 0.549 0.00000 262
Adult Female (> 130cm) 0.424 0.00000 129
Adult Male (> 130cm) 0.145 0.00008 102
Adult Male (older than 5 years) 0.088 0.08301 35
Adult Female (older than 5 years) 0.062 0.12764 39

Note:

Rˆ2 rounded to 3 decimal places and p values rounded to 5

Table 2: Results for linear regression for the model log(weight) = α +
β log(total length) for different groups of animals. Ordered with descending
R2.

Table 2 is a table over the results of the weight - length relationships for seven
different groups of animals. Of the seven models five were significant, only
the two models with less than 100 observations were not. The model with the
most observations, “Juveniles and adults”, yielded the highest R2 of 0.706, the
two groups with juvenile harbor porpoises with more than 200 observations
gave an R2 between 0.549 and 0.673 and, two groups with between 102 and
129 observations (“Adult Female (> 130 cm)” and “Adult Male (> 130 cm)”)
yielded R2 of 0.424 and 0.145, respectively.
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3.2 A residual measure of body condition

No Model R2 Adj. R2 Pr(>F) Observations

1 log10(weight) = log10(totallength) 0.701 0.700 0 482
2 log10(weight) = log10(totallength) + length sex class 0.701 0.699 0 482
3 log10(weight) = log10(totallength) + age sex class 0.671 0.667 0 304

Note:

R2 rounded to 3 decimal places and p values rounded to 5

Table 3: The result of the regression model log10(weight) =α + β ·
log10(total length) for subsets of the data corresponding to the different GAM
models below

Formula R2 Adj. R2
P-value for
the smooth
element

Pr(> |t|) for to-
tallength

N ∆R2∗

log10(weight) = log10(totallength) +
s(day)

0.737 0.734 0.00000 0 482 0.033

log10(weight) = s(day) 0.089 0.001 0.30934 NA 482 -0.700

Note:

R2 rounded to 3 decimal places and p values rounded to 5. N denotes no of observations.
* Adj. R2 compared to the R2 of model 1 (log(weight)=log(total length)), i.e. Adj. R2 - R2

Table 4: All porpoises >100 cm and older than 0 years without further division
in age classes
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P-values for the smooth elements

Formula R2 Adj.
R2 Adult female Adult male Juvenile

Pr(> |t|)
for total-
length

N ∆R2∗

log10(weight) = log10(totallength) +
length sex class + s(day, by = length sex class)

0.740 0.733 0.00000 0.01550 0.00003 0 482 0.034

log10(weight) = length sex class + s(day, by =
length sex class)

0.502 0.495 0.08855 0.14406 0.00046 NA 482 -0.204

Note:

R2 rounded to 3 decimal places and p values rounded to 5. N denotes no of observations.
* Adj. R2 compared to the R2 of model 2 (log10(weight)=log10(total length) + length sex class), i.e. Adj. R2 - adj. R2

Table 5: Porpoises divided in groups based on length and gender (juveniles:
100-130cm, adults: >130 cm)

P-values for the smooth elements

Formula R2 Adj.
R2 Adult female Adult male Juvenile

Pr(> |t|)
for total-
length

N ∆R2∗

log10(weight) = log10(totallength) +
age sex class + s(day, by = age sex class)

0.740 0.729 0.00003 0.00001 0.00007 0 304 0.062

log10(weight) = age sex class + s(day, by
= age sex class)

0.339 0.264 0.21584 0.01748 0.64074 NA 304 -0.403

Note:

R2 rounded to 3 deimal places, P values rounded to 5 decimal places. N = no of observations.
* Adj. R2 compared to the adj. R2 of model 3 (log(weight)=log(total length) + age sex class), i.e. adj. R2 - adj. R2

Table 6: Porpoises divided in groups based on age and gender (juveniles: 1-5
years old, adults: older than 5 years)

In table 3 we see the result of three regression models used as a base line for
comparison with the GAM models in tables 4 through 6. The three models
yielded a (multiple) R2 between 0.671 and 0.701 and, an adjusted R2 between
0.667 and 0.700. Furthermore, the p-value for the F-statistica showed that all
models were highly significant, although the p-values for the t-statistica in model
2 and 3 were not significant for “Adult male” and “Juvenile” (not shown in the
table).

Tables 4 through 6 shows the results of the GAM models used to construct
our residual body condition indices. Using only year day and, in appropriate
models, a factor variable for age class, we got an adjusted R2 between 0.001
and 0.495 and, compared to the models in table 3, we got a ∆(adjusted) R

2
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between -0.700 and -0.203. Looking at the approximate significance of each
smooth element (“P value for the smooth element” in the table), we see that
only two out of seven smooth elements were significant at the 2.5% level.

In the GAM models where we also used total length as a linear element, we
got an adjusted R2 between 0.729 and 0.734 and, we also see an increase in
(adjusted) R2 of between 0.034 and 0.062 compared to the models in table 3.
In these GAM models the smooth elements were all approximate significant at
the 2.5% level and, all but one, “Adult male” in table 5, were significant at the
1% level.

3.2.1 Testing the residual index

Figure 5: The distributions of residuals when testing the residual index based
on the model log10(weight) = log10(total length) + s(day)

21



Figure 6: The distributions of residuals when testing the residual index based
on the model log10(weight) = log10(total length) + length sex class + s(day, by
= length sex class)

Figure 7: The distributions of residuals when testing the residual index based
on the model log10(weight) = log10(total length) + age sex class + s(day, by =
age sex class)
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In figure 5 through 7 we see box plots of the of the distribution of residuals
after testing three different residual body condition indices. For all indices
we see that the median, the 25% and the 75% quantile increase as the level
of nutritional status increases, the only exception being the group “Less than
average nourishment” in figure 7, where the 75% quantile was higher than that
for the group “Average nourished”.

Quantile for residual = 0 (in %)

Nourisment level All porpoises > 100cm
With age class variable
length sex class

With age class variable
age sex class

N

Well nourished 53.6 57.1 60.0 5
Average nourished 75.8 77.4 81.5 27
Less than average nourishment 80.0 80.0 75.0 12
Emaciated 100.0 100.0 100.0 3

Table 7: The table list the percentage of negative residuals for each of the
residual indices tested.

Table 7 above shows the percentage of negative residuals for our tested indices.
For all nourishment levels and for all indices the majority of the residuals was
negative, for the levels “Emaciated” and “Less than average nourished” it was
between 75% and 100% that were negative and, for the levels “Average nour-
ished” and “Well nourished” between 53.6% and 81.5% of the residuals were
negative.

3.2.2 Using the residual indices

In figure 8 through 14 below we see curves of the predicted weight using the three
different models for our residual indices; log10(weight) = log10(total length)
+ s(day), log10(weight)= log10(total length) + age sex class + s(day, by =
age sex class) and, log10(weight)= log10(total length)+ length sex class + s(day,
by = length sex class). In the figures the predicted weight are shown on the y-
axis and on the x-axis is the day of the year, the predicted weights are calculated
for different animals lengths in 10 cm increments.

These graphs can be useful in determine an animals nutritional status. By
knowing the date and the animal’s weight and length and, for models with an
age class variable the animals gender (for the model with the factor variable
age sex class it is also necessary to determine the animal’s age) it’s easy to
visually compare the animal’s weight to the adequate line in the graphs; an
actual weight over the predicted curve indicates that it is a healthy animal and,
in contrast, an actual weight below the predicted curve indicates that the animal
is malnourished.
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Figure 8: The figure shows the predicted weight for porpoises of different lengths
using the model log10 (weight) = log10 (total length) + s(day)

Figure 9: The figure shows the predicted weight for juvenile porpoises of different
lengths using the model log10 (weight) = log10 (total length) + age sex class +
s(day, by = age sex class)
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Figure 10: The figure shows the predicted weight for adult female porpoises
of different lengths using the model log10 (weight) = log10 (total length) +
age sex class + s(day, by = age sex class)

Figure 11: The figure shows the predicted weight for adult male porpoises
of different lengths using the model log10 (weight) = log10 (total length) +
age sex class + s(day, by = age sex class)
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Figure 12: The figure shows the predicted weight for juvenile porpoises
of different lengths using the model log10 (weight) = log10 (total length) +
length sex class + s(day, by = length sex class)

Figure 13: The figure shows the predicted weight for adult female porpoises
of different lengths using the model log10 (weight) = log10 (total length) +
length sex class + s(day, by = length sex class)
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Figure 14: The figure shows the predicted weight for adult male porpoises
of different lengths using the model log10 (weight) = log10 (total length) +
length sex class + s(day, by = length sex class)
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3.3 Circumference and blubber thickness

3.3.1 Juveniles and adults (>100 cm and older than 0 years)

Explanatory variable R2 Pr(>F) N

circumference breast 0.777 0.00000 134
circumference neck 0.751 0.00000 128
circumference abdomen 0.591 0.00000 138
circumference hip 0.337 0.00000 139
fat abdomen right 0.015 0.14632 143

fat hip right 0.011 0.24252 127
fat breast right 0.009 0.28318 136
fat abdomen ventral 0.005 0.40005 142
fat hip ventral 0.004 0.59462 70
fat neck right 0.003 0.55158 139

fat abdomen back 0.003 0.48867 141
fat breast back 0.001 0.73832 139
fat hip back 0.001 0.73075 128
fat neck ventral 0.000 0.87927 138
fat breast ventral 0.000 0.79167 145

fat neck back 0.000 0.83587 138

(a) Log linear regression, ordered by R2

Explanatory variable R2 Pr(>F) N ∆R2

fat, hip right 0.278 0.00000 127 0.267
fat, abdomen right 0.266 0.00000 143 0.251
fat, breast back 0.240 0.00000 139 0.239
fat, neck ventral 0.222 0.00000 138 0.222
fat, abdomen ventral 0.203 0.00000 142 0.198

fat, hip back 0.192 0.00000 128 0.191
fat, neck right 0.186 0.00000 139 0.183
fat, breast ventral 0.154 0.00000 145 0.154
fat, breast right 0.162 0.00000 136 0.153
fat, neck back 0.143 0.00001 138 0.143

fat, abdomen back 0.134 0.00001 141 0.131
fat, hip ventral 0.124 0.00276 70 0.120
circumference, breast 0.649 0.00000 134 -0.128
circumference, neck 0.622 0.00000 128 -0.129
circumference, hip 0.154 0.00000 139 -0.183

circumference, abdomen 0.327 0.00000 138 -0.264

(b) Partial correlation, ordered by ∆R2

Table 8: The results of the log linear regression for all porpoises >100cm. The
difference in R2 is measured as ∆R2 = R2

log lin regression − R2
partial corr.28



3.3.2 Juveniles (100-130cm)

Explanatory variable R2 Pr(>F) N

circumference, breast 0.777 0.00000 85
circumference, neck 0.774 0.00000 78
circumference, abdomen 0.362 0.00000 86
fat, neck ventral 0.305 0.00000 89
fat, hip right 0.260 0.00000 79

fat, neck right 0.251 0.00000 88
fat, breast back 0.242 0.00000 91
fat, breast right 0.227 0.00000 89
fat, hip back 0.214 0.00001 81
circumference, hip 0.197 0.00002 86

fat, abdomen right 0.194 0.00001 93
fat, abdomen back 0.193 0.00001 90
fat, neck back 0.183 0.00003 89
fat, breast ventral 0.182 0.00002 95
fat, hip ventral 0.153 0.00499 50

fat, abdomen ventral 0.136 0.00028 93

(a) Log linear regression, ordered by R2

Explanatory variable R2 Pr(>F) N ∆R2

fat, abdomen back 0.397 0.00000 90 0.204
fat, hip right 0.429 0.00000 79 0.169
fat, breast ventral 0.349 0.00000 95 0.167
fat, abdomen ventral 0.299 0.00000 93 0.163
fat, abdomen right 0.354 0.00000 93 0.160

fat, breast back 0.387 0.00000 91 0.145
fat, hip ventral 0.295 0.00005 50 0.142
fat, neck right 0.385 0.00000 88 0.134
fat, neck ventral 0.425 0.00000 89 0.120
fat, hip back 0.328 0.00000 81 0.114

fat, breast right 0.332 0.00000 89 0.105
fat, neck back 0.285 0.00000 89 0.102
circumference, abdomen 0.304 0.00000 86 -0.058
circumference, neck 0.694 0.00000 78 -0.080
circumference, hip 0.116 0.00136 86 -0.081

circumference, breast 0.676 0.00000 85 -0.101

(b) Partial correlation, ordered by ∆R2

Table 9: The results of the log linear regression and partial correlation
for juveniles (100 - 130cm). The difference in R2 is measured as ∆R2 =
R2

log lin regression − R2
partial corr.
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3.3.3 Adult males (>130cm)

Explanatory variable R2 Pr(>F) N

circumference, abdomen 0.442 0.00021 26
circumference, breast 0.407 0.00060 25
circumference, neck 0.392 0.00062 26
circumference, hip 0.258 0.00685 27
fat, breast ventral 0.225 0.01435 26

fat, breast right 0.069 0.20398 25
fat, neck ventral 0.059 0.24255 25
fat, breast back 0.054 0.26143 25
fat, abdomen back 0.049 0.27705 26
fat, hip right 0.041 0.34305 24

fat, neck right 0.035 0.36146 26
fat, abdomen right 0.028 0.42136 25
fat, abdomen ventral 0.008 0.66529 25
fat, hip ventral 0.008 0.79117 11
fat, neck back 0.001 0.85880 24

fat, hip back 0.000 0.97034 24

(a) Log liner regression, ordered by R2

Explanatory variable R2 Pr(>F) N ∆R2

circumference, neck 0.557 0.00001 26 0.165
circumference, breast 0.531 0.00004 25 0.124
fat, hip ventral 0.080 0.39831 11 0.072
circumference, abdomen 0.490 0.00007 26 0.048
fat, neck back 0.004 0.75617 24 0.003

fat, hip back 0.003 0.80278 24 0.003
fat, abdomen right 0.027 0.43647 25 -0.001
fat, abdomen ventral 0.006 0.71951 25 -0.002
fat, hip right 0.038 0.36378 24 -0.003
circumference, hip 0.233 0.01075 27 -0.025

fat, neck right 0.002 0.83816 26 -0.033
fat, abdomen back 0.004 0.76245 26 -0.045
fat, breast back 0.003 0.80514 25 -0.051
fat, neck ventral 0.000 0.96767 25 -0.059
fat, breast right 0.004 0.76063 25 -0.065

fat, breast ventral 0.068 0.19696 26 -0.157

(b) Partial correlation, , ordered by ∆R2

Table 10: The results of the log linear regression and the partial correlation
for males longer than 130cm. The difference in R2 is measured as ∆R2 =
R2

log lin regression − R2
partial corr.
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3.3.4 Adult females (>130cm)

Explanatory variable R2 Pr(>F) N

circumference, neck 0.818 0.00000 24
circumference, breast 0.797 0.00000 24
circumference, abdomen 0.588 0.00000 26
circumference, hip 0.368 0.00101 26
fat, breast back 0.208 0.02876 23

fat, breast ventral 0.207 0.02534 24
fat, hip ventral 0.206 0.21924 9
fat, neck ventral 0.181 0.03816 24
fat, neck back 0.158 0.04949 25
fat, abdomen ventral 0.147 0.06456 24

fat, neck right 0.117 0.09444 25
fat, breast right 0.097 0.15914 22
fat, abdomen right 0.084 0.16045 25
fat, hip back 0.003 0.78916 23
fat, hip right 0.000 0.97277 24

fat, abdomen back 0.000 0.92869 25

(a) Log linear regression, , ordered by R2

Explanatory variable R2 Pr(>F) N ∆R2

fat, hip right 0.244 0.01424 24 0.244
fat, abdomen right 0.287 0.00578 25 0.203
fat, neck back 0.352 0.00176 25 0.194
fat, breast back 0.399 0.00123 23 0.191
fat, breast ventral 0.397 0.00096 24 0.190

fat, neck ventral 0.370 0.00162 24 0.189
fat, neck right 0.273 0.00735 25 0.156
fat, abdomen ventral 0.280 0.00782 24 0.133
fat, breast right 0.219 0.02825 22 0.122
fat, hip back 0.114 0.11456 23 0.111

fat, abdomen back 0.025 0.45023 25 0.025
fat, hip ventral 0.147 0.30882 9 -0.059
circumference, breast 0.710 0.00000 24 -0.087
circumference, hip 0.193 0.02486 26 -0.175
circumference, neck 0.640 0.00000 24 -0.178

circumference, abdomen 0.250 0.00926 26 -0.338

(b) Partial correlation, , ordered by ∆R2

Table 11: The results of the log linear regression and the partial correlation
for adult females (>100cm). The difference in R2 is measured as ∆R2 =
R2

log lin regression − R2
partial corr.
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In table 8 through 11 we see the results of the log linear regression and partial
correlation with circumference and blubber thickness as explanatory variables.

In the log linear regression, models with the circumference variables yielded
an R2 between 0.197 and 0.818 and were all highly significant. Models with the
four circumference variables gave the highest R2, except in the group “juveniles”,
where the model with circumference, hip not was among the four highest ranking
models. The models based on blubber thickness yielded an R2 between 0.000
(i.e. < 0.0005) and 0.305, the significance of these models varied greatly between
the different groups; in the group “juveniles” were all twelve models highly
significant, whereas in the other three groups only five out of 36 models were
significant at the 5% level.

Looking at the partial correlation we see that models based on variables
for circumference yielded an ∆R2 between -0.338 and 0.165 and, that for these
models ∆R2 < 0 for all groups, except for the group “Adult Males” where
three of the models based on circumference variables had an ∆R2 > 0. All
of the models with variables measuring girth were highly significant. Models
with blubber thickness as explanatory variable yielded a ∆R2 between -0.157
and 0.267, 10 of these models had a negative ∆R2 and 38 had a positive one.
The significance for the models based on variables for blubber thickness varied
greatly between the different groups; none of the models where significant in
the group “Adult males”, whereas in the other three groups 33 out of 36 models
were significant at the 5% level.

4 Discussion

4.1 Weight - length relationship

As of 2019 three subspecies of harbour porpoises are being recognized by So-
ciety for Marine Mammalogy’s Committee on Taxonomy; the Pacific Harbor
Porpoise (Phocoena phocoena vomerina), the Atlantic Harbor Porpoise (P. p.
phocoena) and the Black Sea Harbor Porpoise (P. p. relicta) (IUCN, 2020).
In several articles it have also been reported a difference in morphology be-
tween porpoise populations of different geographical locations. Kastelein and
Van Battum (Kastelein & Van Battum, 1990) reports that: “Animals of East
Canadian population are larger than animals of the same age from the North
Sea population (Gaskin et al., 1984), while animals of the Baltic population
are more slender, but have more body fat than those from the North Sea (van
Utrecht, 1960)”. In the inner Danish and adjacent Swedish and German wa-
ters it have been reported that females grow to lengths of 161 cm and males
to lengths of 148 cm (Galatius, 2005), whereas in the Black Sea males attain a
maximum lengths of 120 cm and females a maximum length of 130 cm (Tonay,
Dede & Öztürk, 2017). Furthermore, animals of the Sea of Azov are reported
to be longer than animals of the same age from the Black Sea (Gol’din, 2004).

As mentioned in the introduction, weight - length relationships are impor-
tant tools for marine biologist and fisheries managers and, due to differences in
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morphology between populations, it is important to have weight - length rela-
tions at hand for the population of interest. Furthermore, comparing weight -
length relationships may be useful to determine morphological differences be-
tween populations.
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Coefficients Sex/ Age class Region R2 Author Year N

α = −4.3473
β = 2.8011

Males Baltic Sea NA
Data: Møhl-Hansen
(1954). Formula:
Bryden (1986)

1954 208

α = −4.8814
β = 3.0395

Females Baltic Sea NA
Data: Møhl-Hansen
(1954). Formula:
Bryden (1986)

1954 164

α = −4.6445
β = 2.8902

Males North Sea NA Van Utrecht 1978 41

α = −4.6369
β = 2.8818

Females North Sea NA Van Utrecht 1978 58

α = −3.9743
β = 2.5707

Males North Sea 0.97

Data: Kastelein &
Van Battum (1990).
Formula: Bilgin et al.
(2019)

1990 7

α = −6.1758
β = 3.6630

Females North Sea 0.88

Data: Kastelein &
Van Battum (1990).
Formula: Bilgin et al.
(2019)

1990 18

α = −3.2198
β = 2.2109

Males Black Sea 0.83 Bilgin et al. 2019 31

α = −4.1719
β = 2.6807

Females (Pregnant
+ non-pregnant)

Black Sea 0.89 Bilgin et al. 2019 37

α = −0.8666
β = 1.1537

Males (> 130cm)
Swedish Wa-
ters

0.15 Present study 2023 102

α = −0.5088
β = 0.9884

Males (>
5 years old)

Swedish Wa-
ters

0.09 Present study 2023 35

α = −2.4781
β = 1.9100

Females (> 130cm)
Swedish Wa-
ters

0.42 Present study 2023 129

α = −0.1227
β = 0.8375

Females (>
5 years old)

Swedish Wa-
ters

0.06 Present study 2023 39

α = −3.0605
β = 2.1775

Both sexes, juveniles
and adults

Swedish Wa-
ters

0.71 Present study 2023 493

α = −4.3315
β = 2.7919

Juveniles
(100 − 130cm),
both sexes

Swedish Wa-
ters

0.55 Present study 2023 262

α = −2.2296
β = 3.1551

Juveniles
(1 − 5 years old),
both sexes

Swedish Wa-
ters

0.67 Present study 2023 232

Table 12: Weight - length relationship from various studies showing the coeffi-
cients for the formula log10 (Weight) = α + β · log10 (Length) (Bilgin, Kose &
Yesilcicek 2019).
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(a) Females

(b) Males

Figure 15: Comparing the length-weight relationships of the present study to
earlier studies

Table 12 show the coefficients for the weight - length relationship calculated with
linear regression from data gathered from five different years and from different
geographical locations (these weight - length relationships are retrieved from
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(Bilgin, Kose & Yesilcicek, 2019)). Figure 15 show lines of the different weight
- length relationships from table 12 (juveniles are not included). Comparing
the lines it seems that the slopes for males and females of the this study are
lower than those of earlier studies (I have, however, not tested hypothesis of β
to show differences). I, however, don’t only attribute these differences to differ-
ences between populations. Rather, I think the main reason for this is because
we have calculated weight-length relationships for adult animals, whereas the
other studies have used juveniles and adults together and, due to growth, it is
likely that juveniles have steeper weight-length curves. Looking at the curve for
juveniles and adults together from this study we see a higher slope, reinforcing
my belief that the main difference is due to difference in growth between adults
and juveniles. However, the slope for the group juveniles and adults in this
study is lower than the slope of all earlier studies, indicating that the weight-
length relationship curve for populations in Swedish waters may be flatter than
for other populations.

4.2 A residual measure of body condition

To construct residual body condition indices we tried using total length as a
linear regressor and GAM models to model the seasonal changes in weight and,
in addition, to account for differences in weight between animals of different
gender and in different stages of maturity, we used factor variables based on
length and gender or, on age and gender.

Of these variables it was evident that the variable total length contributed to
the biggest part of the coefficient of determination in our residual indices, our
baseline models (table 3) yielded an R2 between 0.671 and 0.701. Also, looking
at the models for our residual indices (tables 4 through 6), the models including
total length were more significant and had an increase in R2 of between 0.238
and 0.734 compared to models which only were based on seasonal variation and
an age class variable. Likewise, Lockyer (Lockyer, 1995) showed in her article
that the animals weight related strongly to the animals length, both for male
and female porpoises, whereas Spotte (Spotte, 1978) came to the conclusion
that length alone wasn’t enough to determine an animal’s weight and, Møhl-
Hansen (Møhl-Hansen, 1954) showed that the weight of adult animals of the
same length could differ as much as 25kg. Having that in mind a residual body
condition index used to determine if an individual is well nourished or not should
not solely rely on length as explanatory variable, nonetheless, my conclusion is
that such an index should benefit from including it.

As discussed above, total length is by it self not sufficient to explain weight
and should be complemented with other variables to construct a residual index.
In addition to the animals length, we have in this work also used the day of
the year to construct our residual indices. Looking at the ∆R2 in the tables
4, 5 and, 6, we see an increase in the adjusted R2 of between 0.033 and 0.062
indicating that the seasonal variation had a small influence on the coefficient
of determination. However, all smooth elements in the models including both
total length and day of the year showed a significant influence, leading me to
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believe that the seasonal variation do is useful in our residual indices.
In the interest of not over complicate the residual indices, we should ask

ourselves if there is any variable we can exclude from the models. My conclusion
is that for these residual indices to be useful we need total length and day (or,
perhaps, an another variable instead of day but that lies outside of the scope
of this work), which only leaves us with the factor variables for age classes to
exclude. Compared to the model log10 (weight) = log10 (total length) + s(day)
the variables for the age classes doesn’t contribute to a higher adjusted R2 and
only an increase of in R2 of 0.03, indicating that is not necessary to include
them in the model.

4.2.1 Testing the residual index

The testing of the models for the residual indices shows that the median for the
residuals increases as the level of nutritional status increases, which is what we
would expect of well constructed indices. However, since we have used zero as
our baseline ideally we would like to see positive residuals for the levels “Well
nourished” and “Averege nourished” and, negative ones for “Less than average
nourished” and “Emaciated”, but table 7 shows that all medians are negative
suggesting that the residuals are overall to low. One way to correct for this
could be to use a negative constant as a new baseline to compare the residuals
to or, equivalently, adjust the residual index with a constant c > 0 so that
the residuals would be calculated as e = y − ŷ + c. Judging by the box plots
(figure 5 through 6) a new baseline around the median for residuals for the
group “Average nourished”, i.e. around −2.5 or, equivalently c = 2.5, might
give a better indication of nutritional status. Adjusting the residual indices
with a constant, c ≈ 2.5, would mean, at least for the observations tested, that
residuals for the group “Average nourished” would be centered around zero,
the group “Well nourished” would have mostly positive residuals and, that the
groups “Less than average nourishment” and “Emaciated” would have negative
medians.

Comparing the models tested we see that the model without a variable for
age class (“All porpoises > 100cm”, table 7) had the best performance of the
three, i.e. most positive residuals for “Well nourished”, a median that was
closest to zero for “Average nourished” and, equally or more negative residuals
for the groups “Less than average nourishment” and “Emaciated”. This, once
again, indicates that it’s not necessary or even preferable to include a factor
variable for age class in the model.

It is, however, important to note that there are some limitations to how
accurate the testing of the models might be. Firstly, we had a small sample size
when we tested our models, only 47 of the observations in data had an observa-
tion for the variable Nourishment present and, secondly, we had no information
of how the the level of nourishment was estimated. It is not inconceivable that a
larger sample size or different methods to measure nourishment level would gen-
erate different distributions of residuals. Therefor further testing of the residual
indices could be of interest.
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4.3 Circumference and blubber thickness

In testing how well the variables for blubber thickness and circumference could
explain the animals weight we used two methods; log linear regression and
partial correlation.

4.3.1 Log linear regression

Circumference variables
As discussed in the introduction, girth measurements are important in assessing
the nutritional status of an individual (Kastelein & Van Battum, 1990). Our
findings in the log linear regression seems to support this statement and, in the
results we found that three of the four variables for girth, namely circumference,
breast, circumference, neck and circumference, abdomen were all very useful
to explain the variation i weight. They all produced models which all were
highly significant and with the highest R2 (between 0.362 and 0.818) of all
models in all groups. Further, of these three variables, circumference, neck and
circumference, breast, yielded the highest R2 in three of the groups of between
0.751 and 0.818.

Lockyer (Lockyer, 1995) found that weight and the girth around the center of
the animals related strongly to each other and, that weight and mid-girth were
more strongly related than that for length and weight. Likewise, comparing
our results with the table with weight - length relationships (figure 2, section
3.1) we see for that all comparable groups that, although we had more available
observations for total length, variables for girth can explain weight better than
total length. She (Lockyer, 1995), also made multiple regression models with
length and mid-girth against weight with logarithmaized variables for three
different groups of animals that all yielded an R2 over 0.97, she further notes
that there is a strong correlation of body weight with both length and mid-
girth indicating that body weight can be predicted by log-linear regression using
weight on both length and mid-girth. Mid-girth alone may also be useful to to
predict body weight in damaged carcasses where flukes or head are missing
(Lockyer, 1995).

Koopman (Koopman, 1998) hypothesized that blubber in the thoracic-abdominal
region acts primarily as an energy reserve and isolation, whereas posterior blub-
ber acts to maintain hydrodynamic shape om the peduncle, also an examination
of nine emaciated porpoises showed that they had used 20-40% of their blubber
layers in the thoracic-abdominal area but had not used any of the blubber pos-
terior to the anus. Since the posterior blubber layer not is affected by famine
circumference, hip may not be a good indicator whether an animal is well nour-
ished or not and, we also saw in that this variable yielded a lower R2 than the
other models with circumference variables.

Variables for blubber thickness
As discussed in the introduction, blubber thickness is commonly used in marine
mammals to asses nutritional status (Kauhala et al., 2019; Marón et al., 2021)
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although it shouldn’t be used as standalone metric (IJsseldijk et al., 2019) and,
Siebert et al. (Siebert et al., 2022) also note that while blubber thickness is
an important screening tool one cannot rely on these measurements to asses
the overall health in marine mammals. Our results showed that using blubber
thickness as a regressor yielded, with one exception, lower R2 and, except for
the group “juveniles”, less significant models than those that relied on variables
for circumference. All this coupled with what was discussed in the paragraph
above suggest that girth measurements anterior of the anus might be a better
tool to infer nutritional status.

There are findings from former studies suggesting that blubber thickness has
more to do with stage of maturity than nutritional status. Lockyer (Lockyer,
1995) found that blubber thickness varied greatly with development stage and
body size in harbour porpoises in British waters. As an animal grow into an
adult muscle becomes a more dominant tissue and, at the same time, blubber
appears to be of less importance (Lockyer, 1995). Small and juvenile animals are
both relatively and actually fatter than adults which may be explained by the
greater surface/volume of young and their need for insulation and thermoreg-
ulation (Lockyer, 1995). Although Lockyer (Lockyer, 1995) had limited data,
her findings among females indicated that pregnant females were heaviest and
fattest, lactating females had the thinnest blubber and, that anoestrous females
had blubber thickness in between the two other groups.

Heather N. Koopman (Koopman, 1998) who used linear regression on body
length against blubber thickness measured at various sites on the animals from
the Bay of Fundy, Canada, and Gulf of Maine and mid-Atlantic coast of the
United States, also found that blubber thickness varied considerably between
reproductive classes but that there was no apparent relation between blubber
thickness and length within the groups. She found that blubber thickness cor-
related negatively with body length at sites measured anterior of the anus and
draw the conclusion that harbour porpoises are the only marine mammal in
which the blubber thickness is enantiometric; meaning that in absolute terms
blubber thickness decrease with increasing length. This negative relationship
in harbour porpoises was first observed by Møhl-Hansen (Møhl-Hansen, 1954)
in harbour porpoises in Danish waters who found that blubber in calves was
thicker than that in pregnant and simultaneously lactating females. Similarly
to Lockyer, Koopman (Koopman, 1998) observed that calves had the thickest
blubber, lactating females the thinnest and, for both sexes, that juveniles tended
to have thicker blubber than older animals.

Other findings do suggest that nutritional status do affect blubber thickness.
Siebert et al. (Siebert et al., 2022) investigated the seasonal variation in blubber
thickness in harbour porpoises in the southern Baltic Sea using GAM and found
a strong seasonal effect in adult and juvenile individuals with thickest blubber
recorded in winter and spring and the lowest values in late summer and early
autumn, see figure 16. Looking at the predicted curves in section 3.2.2 we see
a similar pattern with the highest weights predicted in winter and spring and
lowest weights in late summer and early autumn indicating that starvation do
affect blubber thickness or, at the very least, that weight and blubber thickness
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co-variate due to other factors.

Figure 16: Seasonal variation of blubber thickness (Siebert et al., 2022)

Of the the groups of animals investigated in the log linear regression of
blubber thickness against weight in this work, the group “juveniles” stood out
with all models being highly significant and in general higher R2 compared to
the other groups. This, coupled with the findings discussed above, makes me
believe that nutritional level do have some effect on blubber thickness, maybe up
to a point, but most of the correlation with weight can be explained by the fact
that animals in different development phases have different blubber thickness
(i.e. younger animals have thicker blubber).

Between the groups “Adult males” and “Juveniles and adults” only one
model using blubber thickness where significant and only one model produced
an R2 > 0.1. The group “Adult females” showed a bit higher R2 and had four
significant models, which I attribute to the fact that pregnant females build
up a thicker layer of blubber and that lactating females are leaner. Looking
at scatter plots of blubber thickness against weight it’s evident that for these
three groups blubber thickness doesn’t vary much with weight, figure 17 shows
an example on how weight vary with blubber thickness measured at the ventral
side of the neck.
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Figure 17: Blubber thickness measured at the ventral side of the neck versus
weight (logaritmized).

Overall I find that blubber thickness not was very useful to explain weight
in the log linear regression and because of this blubber thickness might not be
good metric to infer nutritional status in individual animals. Starving porpoises
have been shown, possibly due to the need of insulation, to maintain what may
be a minimum level of blubber thickness of 1 cm, while at the same time having
consumed a portion of their swimming muscles (W.A. McLellan, pefs. comm., H.
N. Koopman, in litt.) (Koopman, 1998). I speculate that in starving porpoises
blubber thickness decrease within a fixed interval but as the blubber thickness is
down to 1 cm, the loss of mass is due to loss of muscle tissue. This phenomenon
may be the reason why the log linear regression wasn’t more successful, possibly
other methods would be more successful in inferring nutritional status from
blubber thickness.

Although blubber thickness might not be useful to infer nutritional status
in individual animals, there are still evidence that loss of blubber thickness may
cause harmful effects at group levels, such as failures to reproduce and declines
in survival rates (Spraker et al., 2020; IJsseldijk et al., 2021). Because of this
blubber thickness may still be a useful metric to determine health status at the
population level.

4.3.2 Partial correlation

Circumference variables
I found it to a bit surprisingly that in all groups, except the group “adult males”,
the models using the circumference variables produced a lower R2 compared to
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the log linear regression. I would’ve expected that when we account for the
influence of confounding variables that the partial correlation also would have
created models yielding higher R2:s. In our models we have tried to explain the
influence of the confounding variables for length, day of the year and, age class.
Let’s see if can find a explanation for the lower coefficient of determination by
investigating the influence on the circumference these variables may have.

In the model we presume that the relation between circumference and length
can be written as

circumference = α · total lengthβ

⇔

log10 (circumference) = log10 (α) + β · log10 (total length).

I suspected that log10 (circumference) and log10 (total length) may not have a
linear relationship and that that would be the cause of the decreased R2. How-
ever, looking at scatter plots of log10 (circumference) and log10 (total length) i
haven’t been able to find evidence that support this explanation. In these plots
it looks like these two variables have a linear relationship and, in fact, the group
“adult males” which showed an increase in R2 also seems to have the least linear
relation between log10 (circumference) and log10 (total length).

We tried in our model to account for the seasonal variation in circumference
by using GAM. One would expect that if circumference showed a considerable
seasonal variation, using partial correlation should also result in higher increase
in R2 and, by contrast, low seasonal variation should lead to a smaller increase
in R2 . We know from the log linear regression that circumference, maybe with
the exception of the circumference around the hip, and weight have a strong
correlation. Because of this I think it’s safe to say that the seasonal variation
in weight also reflect the seasonal variation in circumference, perhaps with the
exception of the circumference around the hip. In section 3.2.2 we have curves
predicting the seasonal variation in weight for porpoises, looking at this curves
may give an idea of the seasonal variation in circumference. Since we have used
the age class variable length sex class as a factor variable, the figures of interest
would be figure 8 and, figures 12 through 14.

The groups “juveniles and adults” (figure 8) and “juveniles” (figure 12 both
showed a somewhat small seasonal variation in weight (and, hence, in circum-
ference) with a maximum difference in variation of around 8-10kg. This week
seasonal variation might be an explanation to why we see decreased R2 in these
groups. The group “adult females” (figure 13) showed a higher seasonal varia-
tion than the other groups in weight, possibly due to lactation and pregnancy,
with this in mind we should have seen an increase in R2 too. The group “adult
males” were the only group where we saw increased R2:s. This group showed
a lower seasonal variation in weight (figure 14) than the other groups, again
I found it a bit confusing since lower seasonal variation should have produced
lower R2:s.

All in all I find that the way we have used partial correlation not was very
useful when using the variables for circumference. The only pattern I can infer
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is that it seems that in groups where we saw high R2 in the log linear regression
(“juveniles”, “juveniles and adults”, “adult females”) we also found a decreased
R2 in the partial correlation. By contrast the group “adult males” where we
saw a lower R2 compared to the other groups we found that these models did
produced an increased R2 in the partial correlation.

Variables for blubber thickness
As discussed in the discussion about log linear regression above porpoises show a
considerable variation in blubber thickness between different groups of animals
of different sexes and in different stages of maturity (Lockyer, 1995. Koopman,
1998). Because of this we would expect an increase in the coefficient of determi-
nation when we account for this confounding factors in the partial correlation.
In all groups except for adult males we do see increased R2 for nearly all of our
models using blubber thickness as explanatory variables this increase, however,
it is quite modest with an maximum ∆R2 of 0.256.

Since we in our models for the partial correlation have tried to account for
the confounding influences of the variables for length, day of the year and, age
class, we should look at these variables to see if we can find an explanation
to why we don’t see a higher increase in coefficient of determination in the
partial correlation. As mentioned above there is a considerable variation in
blubber thickness between the different groups of animals (Koopman, 1998) and,
similarly to what have been discussed in the section about the circumference
variables we have presumed in our model that log10 (blubber thickness) and
log10 (total length) have a linear relationship. We know from discussion about
log linear regression that Siebert et al. (Siebert et al., 2022) found strong
seasonal variation in blubber thickness which should contribute to an increase
in R2 in the partial correlation.

The group “Juveniles and adults” had the overall largest increase in R2

with four models having a ∆R2 higher or equal to 0.2. That this group had
the highest increase is what we would expect since this group included animals
of different sexes and in different stages of maturity and, accounting for these
confounding variables should also produce higher R2 compared to the log linear
regression.

The groups “Juveniles” and “Adult females” had about the same amount
of increase in R2 with one and two models with a ∆R2 higher or equal to 0.2,
respectively. As discussed above a juvenile porpoise that grow into an adult gets
a thinner layer of blubber (Koopman, 1998), because of this phenomena, I’m
a bit surprised that we don’t see bigger increase in R2 in the group juveniles.
For the adult females I speculate that they have stronger seasonal variation in
blubber thickness due to periods of suckling calves and pregnancy which may
contribute to higher coefficient of determination in the partial correlation.

In the group “adult males” most models using blubber thickness as a re-
gressor had a ∆R2 around zero or lower. Perhaps this reflect that the blubber
thickness of adult males may not vary much between animals of different lengths
nor between difference times of the year. This is, however, a speculation on my
part and I have no concrete evidence to support this hypothesis.
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Figure 18: Scatter plots of blubber thickness against total length for adult
females.

I have been looking at scatter plots of log10 (blubber thickness) against
log10 (total length) to see if I can determine if they share a linear relationship.
Looking at these plots for all groups I haven’t been able to see any clear sign of
a linear relationship and, this may be the reason why we haven’t seen a higher
increase in R2 in the partial correlation. However, to get a definitive proof of
the linear relationship between these two variables regression analysis should be
performed.

Although we do see an increase in R2 for most groups when using partial corre-
lation, the R2 yielded in this models were generally low and, with maximum R2

of 0.43. In our results we also see the same tendency as in the log linear regres-
sion; measurements for the circumference generally give an higher R2 than that
for the measurements of blubber thickness. This may reflect that our methods
and models when using the variables for blubber thickness not have been very
useful and that with different methods we could have obtained a better result.
It may also reflect, which I tend to believe, that blubber thickness not is a very
useful variable to predict the animals weight.
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5 Appendix

5.1 Correlation between the continuous variables

5.1.1 All propoises >100 cm and older than 0 years

Figure 19: The correlation between weight, blubber thickness and circumference
for all porpoises >100 cm
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5.1.2 Groups of animals based on length and gender

Figure 20: The correlation between weight, blubber thickness and circumference
for juveniles, 100-130 cm

Figure 21: The correlation between weight, blubber thickness and circumference
for males longer than 130cm
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Figure 22: The correlation between weight, blubber thickness and circumference
for females longer than 130cm

5.1.3 Groups of animals based on age and gender

Figure 23: The correlation between weight, blubber thickness and circumference
for juveniles, 1-5 years old
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Figure 24: The correlation between weight, blubber thickness and circumference
for males older than 5 years

Figure 25: The correlation between weight, blubber thickness and circumference
for females older than 5 years
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