
Kandidatuppsats i matematisk statistik
Bachelor Thesis in Mathematical Statistics

Initialization of the k-means algorithm
A comparison of three methods

Simon Jorstedt

Matematiska institutionen

Kandidatuppsats 2023:1

Matematisk statistik

Januari 2023

www.math.su.se

Matematisk statistik

Matematiska institutionen

Stockholms universitet

106 91 Stockholm

Mathematical Statistics
Stockholm University
Bachelor Thesis 2023:1

http://www.math.su.se

Initialization of the k-means algorithm

A comparison of three methods

Simon Jorstedt
∗

June 2023

Abstract

k-means is a simple and flexible clustering algorithm that has re-
mained in common use for 50+ years. In this thesis, we discuss the
algorithm in general, its advantages, weaknesses and how its ability to
locate clusters can be enhanced with a suitable initialization method.
We formulate appropriate requirements for the (batched) UnifRan-
dom, k-means++ and Kaufman initialization methods and compare
their performance on real and generated data through simulations.
We find that all three methods (followed by the k-means procedure)
are able to accurately locate at least up to nine well-separated clus-
ters, but the appropriately batched UnifRandom and the Kaufman
methods are both significantly more computationally expensive than
the k-means++ method already for K = 5 clusters in a dataset of
N = 1000 points.

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden.
E-mail: jorstedtsimon@gmail.com. Supervisor: Taras Bodnar, Lina Palmborg, Dongni
Zhang.

Acknowledgements

Thank you to my supervisors Taras Bodnar, Lina Palmborg and Dongni Zhang for providing very
useful feedback, advice, time-saving LATEX tricks and for gently nudging me to ”be efficient” and
”hurry up”. Thank you so much Max, for believing in me. Thank you Josefin for your advice, for
cheering me on, and for the coffee. Thank you Dad, for bearing with me through my complicated
parables. Thank you Erika for cheerfully proclaiming ”kill your darlings!” some Sunday a long time
ago. My sincere gratitude I extend to Naturvetarspexet, Monty Python and Python the programming
language for the silly and simple things in life. Thank you also to the 68 cups of coffee that perished
in the making of this project.

2

Contents

1 Introduction 4

2 The k-means algorithm 4

3 k-means Initialization 6
3.1 UnifRandom method . 7
3.2 Kaufman method . 8
3.3 k-means++ method . 9

4 Batching and Delegation 9

5 Datasets 12

6 Performance Measures 13

7 Discussion and Results 13

8 Conclusions 16

3

1 Introduction

A core problem in the field of Unsupervised Machine Learning is the clustering problem, concerning
classification of data into unnamed groups without records of the ”true” groups or often not even the
number of groups. Various types of data (binary, ordinal, quantitative etc) and other variations of
the problem have lead to ”a plethora of methods being proposed since the 1950s” according to Celebi,
Kingravi, and Vela 2013. One simple brute-force type approach is to attempt to generate all possible
partitions of the data, evaluate some objective function for each, and then select the partition which
optimises the objective function. According to Celebi, Kingravi, and Vela 2013, the number of possible
partitions of a dataset with N points and K groups is equal to the Stirling number of the second kind:

S(N,K) =
1

K!

K∑
k=0

(−1)K−k

(
K

k

)
kN

This makes it impractical to generate and compare all possible partitions unless for very small datasets.
This can however be circumvented using combinatorial algorithms and iterative greedy decent (as dis-
cussed briefly in Hastie et al. 2009, p. 507-509), to try to adjust the partitioning in a smart way. More
often, ”centroid seeking” clustering algorithm are used. They instead try to either find representative
instances in the available data, or to create such instances in the dataspace. Datapoints are then assigned
to the representative instances by some rule, typically based on a distance measure.

In this thesis, we will introduce the k-means algorithm, the concept of an initialization method and
the technique of batching. We will use these concepts to create and evaluate a new initialization method
which we will call the R-batched UnifRandom method. The following Sections are structured as follows.
Section 2 introduces the k-means algorithm and its limitations. In Section 3 the idea of an initialization
method is introduced, and three methods: UnifRandom, Kaufman and k-means++ are presented and
discussed. In Section 4 the technique of batching is discussed and the R-Batched UnifRandom method is
presented. In Section 5 we discuss the datasets and type of data we will analyse. In Section 6 we discuss
the simulations and the performance measures we will use in our analysis. In Section 7 we test, compare
and discuss the initialization methods. In Section 8 we summarise our conclusions and mention some
recent contributions to the topic of this thesis.

2 The k-means algorithm

The k-means algorithm is a partitioning cluster algorithm taking a dataset X = {x1, ..., xN} of N vectors
xi ∈ Rd, each with d variables and attempts to separate the vectors into K disjoint clusters, represented
by their respective cluster centres µk ∈ Rd, k = 1, ...,K. Points are assigned to the closest centre
(typically measured by Euclidean distance), forming so-called Voronoi cells1 (Hastie et al. 2009, p. 510)

The method starts with an initial guess (or ”seed”) µ(1) = (µ
(1)
1 , ..., µ

(1)
K) of the true cluster centres and

a specification of K, and then attempts to minimize an objective function: typically the sum of squared
Euclidean distances SSE between each point and its closest centre2. In any iteration j we define µ(x) as
the centre in µ(j) that is currently closest to a point x. We can then formulate the SSE as

SSE =

N∑
i=1

∥xi − µ(xi)∥2.

Many variations of the k-means algorithm exist, for example the Hartigan-Wong and Macqueen vari-
ations (Oti et al. 2020). The standard k-means algorithm or Lloyd’s algorithm (Lloyd 1982) (which we
will be using in this thesis) is adapted for quantitative/real-valued data, which is the usual application.
Lloyd’s algorithm attempts to achieve minimization of the SSE through an iterative procedure. After
producing some initial centres µ(1), the procedure assigns each point in the dataset to its nearest cen-
tre, and then recalculates new updated cluster centres µ(2) as the mean of the points in each cluster.

1Voronoi tesselation is the partitioning of points or space into Voronoi cells. One Voronoi cell contains all points that
are closer to that cells center-point (or centroid) than any other center-point.

2SSE is an abbreviation for ”Sum of Squared Errors”.

4

This iterative process is then repeated until either convergence is achieved, or some specified number of
iterations is reached. By denoting the set of points assigned to cluster k = 1, ...,K in the jth iteration

(j = 2, 3, ...) with X
(j)
k , and the number of points in X

(j)
k with N

(j)
k , we can formulate the recalculation

of each cluster center in the jth iteration as

µ
(j)
k =

1

N
(j)
k

∑
x∈X

(j)
k

x for k = 1, ...,K

The Pseudocode for the standard k-means algorithm is described in Figure 1, inspired by Arthur
and Vassilvitskii 2007. We will refer to the entire algorithm (steps 1-4) as the k-means algorithm, to
differentiate from the k-means procedure or refinement, which we will use to refer to steps 2-4. This
is because they are refining the initial seeding in order to produce a final clustering solution that has
converged to some optima. In Figure 2 we demonstrate a simple application of the k-means algorithm
on a small dataset divided into three somewhat overlapping clusters.

• Step 1: Initialization. The number of clusters K is selected. A seed µ(1) is selected.

• Step 2: Partition. All points x are assigned to the nearest cluster centre, forming K disjoint
sets.

• Step 3: Recalculation. For each cluster, the arithmetic mean of the associated points is
calculated, together becoming the updated cluster centres µ(j).

• Step 4: Repetition. Calculate the SSE, evaluate the convergence criteria and stop if it is
met or some maximum number of iterations is reached. Otherwise repeat steps 2 and 3.

Figure 1: Pseudocode for the standard k-means algorithm.

Figure 2: A simple application of the k-means algorithm on two types of measurements on three types
of seeds (yellow, purple and green dots indicating true cluster belonging). Initial seeding (red dots) and
final clustering solution (orange crosses) are included. See Bishop 2006, p. 426.

The k-means algorithm is guaranteed to converge (Hastie et al. 2009, p. 510). This is because both
the partition and recalculation steps decrease or maintain the SSE. In the partitioning step, each point

5

is either assigned to a closer centroid (decreasing the contribution to the SSE), or kept in its current
cluster (not changing the SSE contribution). In the Recalculation step, each cluster center is replaced
such that it minimizes the SSE within its cluster. This will either decrease or maintain the total SSE.
Unfortunately, this does not guarantee convergence to the global optima. This is in fact a well known
disadvantage of the k-means algorithm. According to Steinley and Brusco 2007, Steinley 2003 3 suggested
that the number of local optima for already a small dataset could be in the thousands.

The k-means algorithm has several compelling advantages. Firstly it is a very simple algorithm (Fränti
and Sieranoja 2019), making it understandable and easy to convey. In addition to this, it can be visualised
very easily in two dimensions. Secondly it is very flexible, since most aspects of it can be modified, for
example the distance measure, initialization and stopping condition (Celebi, Kingravi, and Vela 2013).
Thirdly, it is fast (Arthur and Vassilvitskii 2007). Celebi, Kingravi, and Vela 2013 stated that the k-
means algorithm has a time complexity that is linear in the parameters N , d and K. In practice however,
N is typically much larger than d and K, and therefore contributes most to the computational expense.
Fourthly, as indicated by this paragraph, the k-means algorithm has been extensively studied (Fränti
and Sieranoja 2019), and its properties are very well known. This makes it straightforward and reliable
to work with. According to Fränti and Sieranoja 2019, p. 96, k-means also has ”excellent fine-tuning
capabilities”, in that as long as an initial guess is locally close to the ”true” centre, k-means can produce
a good approximation. However, this is heavily reliant on the initialization methods ability to locate
clusters globally.

k-means also has disadvantages. According to Arthur and Vassilvitskii 2007 it ”offers no accuracy
guarantees”. The convergence, which again very easily falls into local optima is entirely up to the ini-
tialization, since the initialization is deterministic to the clustering solution (He et al. 2004). By that we
mean that the k-means procedure is deterministic given an initialization and some convergence criteria,
and therefore the goodness of the final clustering solution is dependent on the goodness of the initializa-
tion.

Due to the usage of the Euclidean distance, the standard k-means algorithm is best suited for ”spher-
ical” or ”ball-like” clusters of data (in any dimension), with similar within-cluster variances. An example
shown in Figure 3 shows the splitting of clusters which may occur when clusters have different within-
cluster variances. Some variations of the k-means algorithm attempt to deal with this, for example the
Fuzzy C-means (FCM). In some cases it is however more suited to use a different method entirely. K-
means is specifically favoured for problems of low to medium complexity (small database and/or low
dimension), because of its inability to describe more complex data structures.

According to Fränti and Sieranoja 2019, the k-means algorithm performs poorly on well-separated
clusters, because this limits the algorithms ability to move centroids around globally. Rather, centroids
may be bound to the clusters they were assigned to in the initialization. We are interested in this type of
well separated data, and which initialization methods that can be efficiently employed to identify these
well separated clusters. The definition of well-separated is a bit vague, but essentially means that the
distances between clusters is much larger than the distances between points within each cluster. In Sec-
tion 5 we go into more detail about how the datasets are simulated in order to get well-separated clusters.

3 k-means Initialization

As previously stated, the initialization is deterministic to the k-means refinement, making it crucial in
achieving a good clustering. This also motivates the need for an intelligent method, that can counter
the disadvantages of the k-means algorithm, specifically the numerous local optima. We will now briefly
discuss the concept of an initialization method, and then present the three methods, paying particular
attention to how they aim to locate clusters.

3Steinley 2003 was not available to the author of this thesis.

6

Figure 3: Two simulated clusters with different within-cluster variances placed closely with a lot of
overlap. This has caused the more denser cluster to claim some of the points of the less dense cluster.
The color of the points indicates cluster assignment by the k-means algorithm.

Broadly speaking, k-means initialization involves choosing a number of clusters K if not provided, and
a set of initial clusters µ(1). Concerning the choice of K, the heuristic Elbow method can be employed
(Hastie et al. 2009, p. 519)4. This involves running k-means for some plausible consecutive integer values,
say (I1, I2, · · · ,K,K +1, · · · , Ib) (b ∈ N), for the true number of clusters K, and then looking for a value
that greatly decreases the objective function, with subsequent values having a relatively small (yet still
decreasing) effect on the objective function, indicating that values larger than K causes overfitting. In
our simulation study we will consider K to be known, since in practice it will be available by the datasets
and from the simulations. This is so that we can focus on the centroid initialization.

Some important comparative studies of the initialization method have been conducted previously.
Peña, J. Lozano, and Larrañaga 1999 compared the empirical properties of four initialization methods,
among them UnifRandom and Kaufman. Celebi, Kingravi, and Vela 2013 presented a comparison of
some linear time methods, and provided a brief overview of many of the available methods, particularly
emphasising time complexities. Outside these comparative studies, methods are often presented by the
by while explaining some other aspect of the algorithm.

Although there are no standard requirements for what is and is not an initialization method, some
sensible suggestions do exist. Fränti and Sieranoja 2019, p. 99, required initialization methods to be
simple (easy to implement), have lower or equal time complexity (in terms of N) than k-means itself
(O(N)), and that they not introduce more parameters. The time-complexity requirement was motivated
by Celebi, Kingravi, and Vela 2013 because an initialization method should only complement the k-means
algorithm, and not run the risk of inflating the computational expense.

3.1 UnifRandom method

The method which we will call the UnifRandom method was suggested along with the k-means algorithm
by (Macqueen 1967) and remains widely used (Capó, Pérez, and J. A. Lozano 2022) (Khan and Ahmad
2004), likely because of its simplicity. It works by uniformly sampling K points from the dataset as
centres, as described in Pseudocode in Figure 4. The idea is that this causes the initial centres to tend
to be spread out across the clusters, particularly in regions with many points. However, this allows for

4Hastie et al. 2009 explains the elbow method, but does not name it.

7

some clearly bad initializations such as placing multiple centroids in the same cluster, and consequently
no centroids in other clusters (Capó, Pérez, and J. A. Lozano 2022) exemplified in Figure 7. One result
of this may be the ”splitting” of clusters as seen in Figure 3. These problems can however be somewhat
circumvented by the technique of batching which we will discuss in Section 4. The UnifRandom method
certainly fulfils the suggested requirements. It is very simple to implement and understand, has a time
complexity of O(N), and introduces no new parameters.

Step 1a: Select K points uniformly at random from the dataset.

Step 2-4: Proceed with k-means refinement.

Figure 4: Pseudocode for UnifRandom initialization.

3.2 Kaufman method

The Kaufman initialization method (Kaufman and Rousseeuw 1990) is deterministic, and essentially
attempts to select centres from the dataset by estimating density (He et al. 2004), or rather it selects
points that are surrounded by many other points that are not already ”claimed” by other centroids. The
point that is closest to the global mean is selected as the first center. After that, the method successively
selects a point from the dataset such that unselected points tend to lie closer to it than to the previously
selected centres, until K centres have been selected. The Pseudocode for this method is presented in
Figure 5. The idea is that centroids will not be placed close to each other and certainly not in the same
cluster in the case of well-separated clusters. This is exemplified in Figure 7.

The Kaufman method has been reviewed and found successful by Peña, J. Lozano, and Larrañaga
1999. It is certainly much more intelligent than the UnifRandom and k-means++ methods, but this
also makes it somewhat more difficult to implement. This design also comes at the great cost of a time
complexity (in terms of N) of O(N2) (Celebi, Kingravi, and Vela 2013). This is because it requires
calculation of pairwise distances between points and centres for the selection of each centroid. Although
no new parameters are introduced, the time complexity requirement and possibly the implementation
requirement by Fränti and Sieranoja 2019 disqualifies the Kaufman method as a general method for
practical applications.

Step 1a: Select the most central point as the first centre.

Step 1b: For every pair of unselected points xi and xj (i ̸= j), calculate Cij = max(Di − dij , 0)
with dij = ||xi − xj || being their Euclidean distance, and Di = mins(dsi) being the distance
between xi and its closest centre in S, the current set of centres.

Step 1c: For every point xi, calculate
∑

j Cij and select the point x that maximizes the sum as
the next center.

Step 1d: Repeat step 1b-1c until K instances have been selected.

Step 2-4: Proceed with k-means refinement.

Figure 5: Pseudocode for Kaufman initialization.

8

3.3 k-means++ method

The fairly recently suggested k-means++ method (Arthur and Vassilvitskii 2007) is a random procedure
similar to UnifRandom that relies on stepwise selection. Centres are selected from the dataset based
on probabilities proportional to the square of each points distance to its currently closest centre. The
result is that centres tend to be far away from each other, but this is not guaranteed, which allows for
a variation in the resulting seeds which similarly to UnifRandom can be utilized through the technique
of batching which we will discuss in Section 4. The Pseudocode for the k-means++ method is presented
in Figure 6. In Arthur and Vassilvitskii 2007 ”k-means++” refers to the entire algorithm (steps 1-4) in
Figure 6, but in this thesis we will let k-means++ refer to only the initialization method (step 1a-1c).

k-means++ is only slightly more complex than the UnifRandom method, has a time complexity of
O(N), and introduces no new parameters. It therefore also fulfils the requirements in Fränti and Sieranoja
2019. Additionally, it showed favourable results according to the authors. A successful application of the
k-means++ method is presented in Figure 7.

Step 1a: Select the first center µ
(1)
1 uniformly random from the dataset.

Step 1b: Out of the unselected points, select point x to be the next center with the following
probability, where D(x) is the distance between x and center that is closest to x. Note that
D(x) = 0 if x has already been selected.

D2(x)∑
x∈X D2(x)

Step 1c: Repeat step 1b until K centers have been selected.

Step 2-4: Proceed with k-means refinement.

Figure 6: Pseudocode for k-means++ initialization.

4 Batching and Delegation

Batching is a common and simple technique that can be used to improve the k-means algorithm (Fränti
and Sieranoja 2019). It consists of repeating the initialization and the k-means procedure R times5, and
selecting the best outcome, in terms of minimal SSE. Clearly batching is only relevant for methods that
rely on some form of randomness, which includes the UnifRandom and the k-means++ but excludes the
Kaufman method. This is because batching of deterministic methods simply produces multiple identical
cluster seedings.

The appropriate number of repetitions R in a given situation depends greatly on the dataset and to
some extent the initialization method (Fränti and Sieranoja 2019, p. 98). In the literature, suggestions
of constant values are made seemingly arbitrarily. Fränti and Sieranoja 2019 suggest using the expected
number of repetitions R = 1/P(Success) when viewing the k-means algorithm as a Bernoulli trial with
probability P(Success) of the k-means algorithm succeeding in finding the optimal clustering. However,
they instead use various constants (e.g. R = {10, 100, 5000}) since P(Success) is generally unknown. We
will advance this reasoning in two ways.

We will let delegation refer to the structure of the partitioning of centroids into clusters by an initial-
ization method. We will then say that good delegation is achieved when exactly one centre is placed in

5We consider R a parameter associated with the technique of Batching, rather than with any of the initialization methods.

9

Figure 7: Demonstration of clusterings by UnifRandom (red diamonds), k-means++ (orange stars) and
Kaufman (green crosses) on an artificial dataset with 10 clusters. All methods used only 1 start, and
each methods clustering was refined by the k-means procedure.

each cluster. We will attempt to estimate the probability p of achieving good delegation, and secondly
we will select the number of repetitions R such that the cumulative probability P of achieving good
delegation in at least one of the R repetitions (or trials) surpasses some specified value. In practice, P
may be chosen based on accuracy requirements in a given problem, but we will use a constant P = 0.95
for the purpose of demonstration.

Additionally, we note that if good delegation guarantees that the optimal clustering is obtained, then
we have that the total probability P(Success after R repetitions) of obtaining the optimal clustering
after R repetitions must be larger than P . This is because of the additional possibility that the optimal
clustering is obtained even if good delegation is not achieved in any of the R repetitions. We have thus
a possible lower bound for P(Success after R repetitions) which we formulate in Equation 1. Again we
must stress that this relies on the assumption that good delegation guarantees achieving the optimal
clustering. This is true for data with well-separated clusters, because the k-means algorithm isolates the
clusters and has no way of changing the delegation if good delegation is already achieved. This likely
makes the assumption less appropriate in the case of closely placed clusters.

P(Success after R repetitions) ≥ P. (1)

For the UnifRandom method, the problem of estimating p and thus finding a suitable R is quite
simple. Let us assume that we have a dataset X in which the N datapoints are evenly divided into the K
clusters, and that N is sufficiently large (compared to K) such that UnifRandom samples approximately
with replacement. In other words, the probability of drawing a point from a certain cluster remains
approximately unchanged through the sampling. Note: individual points can still not be chosen more
than once. Under these assumptions of evenly sized clusters and sampling with replacement, to achieve
good delegation essentially requires selecting one cluster out of K clusters, then one cluster out of K − 1
clusters etc. The probability of achieving good delegation in any one of the independent repetitions while
batching is therefore approximately

K

K
· K − 1

K
· K − 2

K
· · · 1

K
=

K!

KK
. (2)

Now let us consider a process in which we perform repetitions of the k-means algorithm until good
delegation is finally achieved. Under our assumptions, the number of repetitions R we perform in total

10

is then (approximately) geometrically distributed with parameter p equal to Equation (2). We have thus
in Equation (3) a method for estimating the cumulative probability P given a number of repetitions R,
which can be reversed into Equation (5). We can now use Equation (5) to produce recommendations on
the number of repetitions R to use for a given dataset. Formally we have that

R ∼ Geo(p)

P = P(R = r) = p

r−1∑
i=0

(1− p)i = 1− (1− p)r, r = 1, 2, ... (3)

where

p ≈ K!

KK
(4)

Now we can solve for r in (3), and we achieve the following result.

r =
log(1− P(R = r))

log(1− p)
, K ≥ 2 (5)

K ⌈r⌉

2 5
3 12
4 31
5 77
6 193
7 489
8 1246

Table 1: Evaluation of Equation (5) for increasing values of K, r is rounded up with the ceiling function.
The probability P(r) = 0.95 is constant in all calculations.

We will call the batched UnifRandom method with the number of repetitions R recommended by
Equation (5) the R-Batched UnifRandom method. Interestingly Equation (5) only requires specifying
K, P and that our two assumptions are true. This is reasonable given that UnifRandom selects points
randomly, so that distance between clusters, cluster variance, dimensionality and similar aspects of the
dataset should have no effect on the quality of the seed. In Table 1 we illustrate the quick diverging
growth of Equation (5). This indicates that under our assumptions, R-Batched UnifRandom quickly
becomes very computationally expensive as K increases. Already for K = 10 we are advised to use
R = 8254.

The two assumptions that the R-Batched UnifRandom method rely on are not always appropriate,
but in many common situations they are, including all datasets in this thesis. The assumption of equally
sized clusters is typically true when one is studying the properties of some distinct subgroups in a pop-
ulation of objects, rather than the relative sizes of the subgroups within the population, for example in
a political survey in which case cluster analysis itself may be inappropriate. In the right context these
even sizes are often by design. The same number of observations are often drawn from each subgroup
to avoid bias and allow a fair comparison. This is because uneven cluster sizes may lead to one cluster
having a larger impact on the objective function than the other clusters and thus skewing the results.

The second assumption that the probabilities of drawing from each cluster is approximately unchanged
during the UnifRandom sampling is not immediately obvious and not always appropriate. We consider
a database with N points evenly divided into K clusters. That is, each cluster is assumed to have N/K
points. The greatest difference in probabilities when selecting a point from one cluster or a point from
another cluster occurs in the unlikely event that one cluster (k) has been sampled from (K − 1) times.

11

The probability Pu for each of the unselected clusters to have one of its points be selected as the final
centroid is then

Pu =
N/K

N − (K − 1)
=

1

K
· N

N − (K − 1)
→ 1

K
as N → ∞ (6)

The probability Pk of the final centroid being chosen from cluster k is then

Pk =
N/K − (K − 1)

N − (K − 1)
=

1

K
· N −K(K − 1)

N − (K − 1)
→ 1

K
as N → ∞ (7)

In Equations (6) and (7) we also demonstrate how the expressions can be rewritten to show that for
a constant K, both Pu and Pk converge to 1/K as N → ∞. This is expected, since this is equal to the
original probability for each cluster to have one of its points be selected as the first centroid. In Section
7 we will calculate and present Pu and Pk when relevant. Additionally, it is worth reiterating that while
sampling the K centroids, the probability of selecting a point from a particular cluster is decreased if a
point has previously been selected from that cluster. This means that the true probability of achieving
good delegation in a particular situation is slightly higher than Formula (4). Therefore Formula (4)
provides a lower bound to the true probability of achieving good delegation in a particular situation.

Determining the probability of good delegation for the k-means++ method is much more difficult
than for the UnifRandom for multiple reasons. Due to the involved distance calculations it is highly
dependent on the dataset itself, not just on the values of N and K. This along with the fact that the
k-means++ method often produces a good seed with only one repetition due to its intelligent design
motivates running it with only one repetition in our comparative tests, the results of which are presented
in Section 7. Similarly, determining the probability of good delegation for the Kaufman method is also
difficult, partly because it requires a different problem formulation due to the dataset being deterministic
to the Kaufman seed. Additionally, even if acquired it could only at most serve as an advisory tool for a
particular type of data since batching provides no improvement to the Kaufman method.

5 Datasets

In this Section, we will discuss aspects of the real and generated datasets used in our study to test the
validity in our claims and to compare the initialization methods. Two real world datasets were selected,
both courtesy of the UCI Machine Learning Repository (Dua and Graff 2017). The datasets were se-
lected primarily on the criterion that true cluster belonging and the number of clusters is known, and
that the k-means algorithm is appropriate for the dataset. Two additional datasets measuring wine and
glass qualities respectively where eventually excluded. The first one for being too large (compromising
computation time in tests), and both for requiring modifications (e.g normalizing) before application of
the k-means algorithm would be appropriate.

The first dataset is the well known Iris dataset (N = 150, d = 4,K = 3) which measures petal and
sepal width and height of 50 each of the Iris Setosa, Iris Versicolour and Iris Virginica species of the Iris
family of plants. The Iris dataset can be somewhat suitably described by the k-means algorithm, but this
is not ideal due to dependence between variables. The second dataset (N = 210, d = 7,K = 3) describes
seven measurements of 70 each of three types of wheat seeds: Kama, Rosa and Canadian (Institute of
Agrophysics of the Polish Academy of Sciences in Lublin. 2012).

The generated datasets are created as follows. K random true centroids are independently generated
in a d-dimensional hypercube with some specified side length. Each point is then created by uniformly
selecting one centroid, and adding a standard normal variate to each of the d components of the centroid.
The random selection of centroid for each point is intended to simulate a slight variation in cluster sizes.
In order to generate very well-separated clusters, we will chose a hypercube with side length 1000 in our
tests. As long as this side length is much larger than the number of cluster K in a dataset, clusters will
very likely be located far apart, relative to the within-cluster variance.

12

6 Performance Measures

The performance of the initialization methods will be measured by three effectiveness, and two speed
measures. This is a similar setup as in Celebi, Kingravi, and Vela 2013.

Final SSE This is the final minimal SSE across all k-means repetitions in one batching of the algorithm
for a particular dataset and initialization method.

Seed SSE This is the SSE calculated on the seed µ(1) (called the final seed) that corresponds to the final
minimal SSE and thus the final clustering in one batching of the k-means algorithm. According to
Celebi, Kingravi, and Vela 2013, this indicates an initialization methods effectiveness on its own,
without k-means refinement.

Iterations This is the average number of required iterations until convergence is reached, averaged across
all repetitions of the algorithm in one batching. For the Kaufman method, this will just be the
number of iterations until convergence.

CPU time Total elapsed time for one batch. This includes all repetitions starts in one batch (1 for
the Kaufman) of both the initialization and k-means refinement. It is important to note that this
measure is highly dependent on the machine that was used. It should therefore only be considered
and interpreted as a relative measure.

Accuracy Using the true labels of each dataset, the percentage of points that have been correctly
clustered is calculated. Technically this is calculated on a clustering as the percentage of points
that have the same true label as the mode of the true labels in their respective assigned cluster, for
practical reasons.

By looking at the effectiveness criteria Final SSE and Accuracy of all methods for a single dataset,
we can potentially determine if a ”correct” clustering has been discovered. Because the initialization
methods are independent, if two or more achieve identical or very close Final SSE, it is very likely that
they have found the same optima. Two or more methods also achieving high accuracy would indicate
that their identical (or very similar) clustering is the optimal one. By considering both indicators we
hope to make a more robust statement about the nature of the found optima. The speed indicators give
comparative measures on how computationally costly the result of a method was.

7 Discussion and Results

We previously in Section 4 defined the R-Batched UnifRandom method, and in this Section we will discuss
how we can verify the quality of our arguments in Section 4 and then how we can compare its performance
and cost with the Kaufman and k-means++ methods. We will then perform multiple relevant tests and
discuss the results. All tests and simulations are built in Python 3.10.4. The scikit-learn package was
used for the k-means procedure, but all three initialization methods and the testing structure was built
specifically for this thesis by the author in order to extract all the desired outputs.

For the first task, we recall our discussion about the assumptions in Section 4. From Formula (4)
we are lead to believe that the probability of achieving good delegation (for UnifRandom) only depends
on K (given that the two assumptions are satisfied), and not N or d. In this case, and throughout this
thesis, we will however pay little attention to the dimensionality d, since it only affects distance calcula-
tions approximately linearly. In fact, Fränti and Sieranoja 2019 found that dimensionality has ”no direct
effect” on k-means. We therefore wish to investigate this plausible dependence on K and possibly N ,
and assess the quality of the approximation by Formula (4). For this purpose, we perform a simulation
study in which we evaluate the ability of UnifRandom to produce good delegation for datasets of varying
sizes (N) and number of clusters (K). For each combination of N and K, 10 datasets with d = 2 were
generated, and the UnifRandom method was run 1000 times on each dataset. See Section 5 for a detailed
explanation of the generation of the datasets. The results in Table 2 show the fraction of UnifRandom
runs that succeeded in obtaining good delegation for all 10 datasets in each combination of N and K.

13

The rightmost column shows the evaluation of Formula (4) for the respective number of clusters.

K \N 100 300 500 1000 K!
KK

1 1 1 1 1 1
2 0.5039 0.5003 0.5016 0.4988 0.5
3 0.2219 0.2146 0.2236 0.2234 0.2222
4 0.0895 0.0891 0.0941 0.0975 0.0938
5 0.0352 0.0397 0.0390 0.0365 0.0384
6 0.0157 0.0148 0.0170 0.0173 0.0154
7 0.0052 0.0055 0.0066 0.0070 0.0061
8 0.0026 0.0026 0.0026 0.0018 0.0024
9 0.0008 0.0011 0.0011 0.0010 0.0009
10 0.0004 0.0005 0.0003 0.0003 0.0004
11 0.0002 0.0002 0.0005 0.0001 0.0001

Table 2: Estimated and simulated probability of achieving good delegation for a variety of generated
datasets.

In Table 2 we first clearly find that the number of points N has no noticeable effect on the probability
of achieving good delegation. We can also very clearly see that Formula (4) is a good approximation of
the probability for UnifRandom to achieve good delegation, at least for small values of K. Indeed the
accuracy of the approximation deteriorates around K = 10. This problem was also mentioned in Fränti
and Sieranoja 2019, p. 104, who remarked that when p is very small, the required number of repeats can
be unreasonably high. Additionally, we can note that our statement in Section 4 regarding Formula (4)
providing a lower bound for p is not entirely supported by Table 2. Our statement would require that
Formula (4) underestimate the proportions on each respective row. This is true for a small majority (60
%) of the observed proportions. However, the proportions are random realizations, and no additional
effort has been made to quantify the variation in order to make a more robust statement. This warrants
further investigation that is beyond the scope of this thesis.

Next, we wish to investigate the improvement provided by the R-Batched UnifRandom method. For
this purpose we will simply run the full k-means algorithm on some real and simulated data, using the
UnifRandom and R-Batched UnifRandom methods respectively. From these tests we report the perfor-
mance measures in Table 3. The datasets are the two real world datasets: Iris and Seeds described in
Section 5 below, and some simulated datasets with increasing number of clusters.

Method Perf. Measures Iris Seeds (K=4) (K=5) (K=6) (K=7) (K=8)

UnifRandom Accuracy (%) 89.33 89.52 100.00 45.00 46.70 79.70 45.80
Final SSE 78.94 588.92 3042.0 63 · 106 29 · 106 2 · 106 32 · 106
Seed SSE 503.41 1269.02 156 · 106 182 · 106 58 · 106 65 · 106 38 · 106
Time (s) 0.09 0.09 0.12 0.12 0.13 0.16 0.15
Iterations 7.0 4.0 4.0 2.0 2.0 3.0 2.0

R-Batched Accuracy (%) 89.33 89.52 100.00 100.00 100.00 100.00 100.00
UnifRandom Final SSE 78.94 587.32 3042.00 3048.68 3002.41 2969.46 3146.43

Seed SSE 651.19 2154.64 322 · 106 101 · 106 35 · 106 34 · 106 17 · 106
Time (s) 0.20 0.25 2.01 5.88 17.22 49.31 136.26
Iterations 7.92 8.33 2.71 2.65 2.77 2.94 3.02
Rep. (R) 12 12 31 77 193 489 1246

Table 3: UnifRandom vs R-Batched UnifRandom for datasets with increasing number of close and well-
separated clusters. Note that the Iris and Seeds datasets are not well-separated.

14

In Table 3, we see clearly that the R-Batched UnifRandom method provides a much more reliable
Accuracy than the regular UnifRandom method, at the cost of an extreme growth in computation time.
This is further evidenced by the fact that the accuracies that the regular UnifRandom method achieved
for the simulated datasets varied greatly over multiple generations of Table 3. This was not the case for
the R-Batched UnifRandom method, which consistently achieved optimal accuracy. Although no exten-
sive studies of the performance on data with closely placed clusters was done, we note that the regular
UnifRandom method achieved generally higher accuracies on the Iris and Seeds datasets (with closely
placed clusters) than for the datasets with well-separated clusters. This is likely because when clusters
are closely placed and slightly overlapping, the k-means procedure is able to refine the clustering, which
compensates for the regular UnifRandoms bad initialization.

For the second task, we again wish to test out the R-Batched UnifRandom method, but this time
against other methods. In this case we will primarily dedicate our focus to simulated datasets with
well-separated clusters, but we will also test the methods on the Iris and Seeds datasets with closely
placed clusters. We test the three methods and report all performance measures described in Section
6 in Table 4 and in Figure 8 for the well-separated datasets, and in Table 5 for the Iris and Seeds datasets.

Method Perf. Measures (K=4) (K=5) (K=6) (K=7) (K=8) (K=9)

R-Batched Accuracy (%) 100.00 100.00 100.00 100.00 100.00 100.00
UnifRandom Final SSE 3114.84 3024.29 2918.19 3000.57 2877.56 2855.21

Seed SSE 6775.84 51 · 106 33 · 106 6 · 106 47 · 106 43 · 106
Time (s) 1.90 5.60 16.44 49.10 136.18 351.84
Iterations 2.58 2.88 2.73 2.69 2.90 2.94
Rep. (R) 31 77 193 489 1246 3197

k-means ++ Accuracy (%) 100.00 100.00 100.00 100.00 100.00 100.00
Final SSE 3114.84 3024.29 2918.19 3000.57 2877.56 2855.21
Seed SSE 9364.14 4807.11 7029.56 8123.27 6374.27 6313.33
Time (s) 0.12 0.16 0.16 0.18 0.21 0.23
Iterations 2.0 2.0 2.0 2.0 2.0 2.0

Kaufman Accuracy (%) 100.00 100.00 100.00 100.00 100.00 100.00
Final SSE 3114.84 3024.29 2918.19 3000.57 2877.56 2855.21
Seed SSE 6217.59 4448.96 5359.61 5625.68 5139.66 5465.50
Time (s) 19.81 31.48 51.30 62.59 88.58 98.01
Iterations 2.0 1.0 2.0 2.0 2.0 2.0

Table 4: Performance measures for all three initialization methods tested on simulated datasets with
well-separated clusters. The largest difference between Equations (6) and (7) occurs when K = 9 where
they evaluate to Pu ≈ 0.11201 and Pk ≈ 0.10394.

The results in Tables 4 and 5 and in Figure 8 give some insight into the considered methods. We
first note that for each simulated dataset, all three initialization methods acquired the same Final SSE,
and also 100 % accuracy, which indicates that all methods were able to correctly identify all clusters.
This strongly motivates their applicability on this type of data. However, the methods report very dif-
ferent Seed SSE. The Kaufman method consistently provides the best seed SSE for all considered real
world and simulated datasets. This is not surprising given that it attempts to place centres specifically
such that they are surrounded by many points. Both the regular and R-Batched UnifRandom methods
however produce enormous Seed Errors for the datasets with five or more clusters and consistently the
largest Seed SSE. Celebi, Kingravi, and Vela 2013, p. 208 similarly found that deterministic (e.g. the
Kaufman) methods produced the lowest Seed SSE, and that the UnifRandom produces high Seed SSE.
The k-means++ method appears to produce Seed SSE that are slightly larger than those of the Kaufman
method, but still not extreme. In fact, although k-means++ does not produce the best seeding, it is
dramatically cheaper in computational expense than the Kaufman method, while still initializing the
k-means algorithm appropriately. This brings up the fact that an initialization method does not need to
be perfect, it only needs to provide a good-enough setup for the next method in line.

15

Method Perf. Measures Iris Seeds

R-Batched Accuracy (%) 89.33 89.52
UnifRandom Final SSE 78.94 587.32

Seed SSE 555.28 2243.31
Time (s) 0.19 0.23
Iterations 6.17 9.17
Rep. (R) 12 12

k-means ++ Accuracy (%) 89.33 89.05
Final SSE 78.94 588.78
Seed SSE 196.76 960.57
Time (s) 0.07 0.08
Iterations 7.0 6.0

Kaufman Acc. (%) 88.67 89.05
Final SSE 78.95 588.78
Seed SSE 97.01 649.81
Time (s) 0.36 0.79
Iterations 10.0 3.0

Table 5: Performance measures for all three initialization methods tested on the Iris and Seeds datasets,
both having closely placed clusters. The largest difference between Equations (6) and (7) occurs for the
Iris dataset (N = 150,K = 3) where they evaluate to Pu ≈ 0.33784 and Pk ≈ 0.32432.

Seemingly, the k-means algorithm requires more iterations before convergence for the close cluster
data than for the data with well-separated clusters. This is particularly noticeable in Table 3, although
only two datasets with close clusters are included. This is also not surprising, since when clusters are far
apart, they are likely to be isolated by the k-means procedure. This means that convergence is reached
almost immediately. On the other hand, for data with closely placed clusters, the k-means algorithm is
able to (and will) move around the centroids until it converges, which requires more iterations. This is
why the reported number of iterations for the data with well-separated cluster tend to lie around 2, and
why the k-means algorithm required up to around 8 iterations for the data with close clusters. Even so,
the number of required iterations does not vary much.

For comparisons of the computational cost, we turn to computation time. In Figure 8 we present the
reported computation times from Table 4. We see that the computation time of the Kaufman method
grows approximately linearly with K, and for R-batched UnifRandom it grows approximately exponen-
tially with K. Conversely, the k-means++ method has a much slower time complexity and therefore its
computation time grows much slower than the other two methods. It is important to point out that we
are now discussing time complexity in terms of K, not N .

8 Conclusions

We have presented the k-means algorithm along with three initialization methods, and we have argued
for the R-Batched UnifRandom method as an improvement on the regular UnifRandom method in cer-
tain situations. What we have found is that the R-Batched UnifRandom method is indeed much more
reliable (consistently producing optimal accuracy) than the regular UnifRandom method, particularly for
simple data with well-separated clusters. However, the improvement comes with a dramatic growth in
computation time as seen in Figure 8. The same reliability was reported by the Kaufman and k-means++
methods, both at significantly lower computational expenses. The Kaufman method unfortunately fails
at least one of the requirements on initialization methods set out by Fränti and Sieranoja 2019, indicating
that caution is advised if it is to be used in practical applications. The k-means++ method is on the
other hand very suitable as an initialization method in many practical situations.

16

Figure 8: Computation time for all three initialization methods for the datasets with well-separated
clusters analysed in Table 4.

Many recent contributions have been made on the topic of this thesis. For massive datasets, even the k-
means++ method becomes computationally expensive. Bahmani et al. 2012 discussed this and presented
the improved k-means|| method with favourable results. Capó, Pérez, and J. A. Lozano 2022 recently
proposed the SMK-means algorithm which utilizes information from previous runs of the standard k-
means algorithm to avoid falling into the same local minimum multiple times. Oti et al. 2020 propose
the modified and enhanced k-means methods respectively.

References

[1] David Arthur and Sergei Vassilvitskii. “k-means++: The advantages of careful seeding.” In: Sym-
posium on Discrete Algorithms 18 (2007), pp. 1027–1035.

[2] Bahman Bahmani et al. “Scalable k-means++”. In: arXiv preprint arXiv:1203.6402 (2012).

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning. 2006.

[4] Marco Capó, Aritz Pérez, and Jose A. Lozano. “An efficient Split-Merge Re-Start for the K-means
algorithm.” In: IEEE Transactions on Knowledge and Data Engineering 34.4 (2022), pp. 1618–
1627.

[5] M. Emre Celebi, Hassan A. Kingravi, and Patricio A. Vela. “A comparative study of efficient
initialization methods for the k-means clustering algorithm”. In: Expert Systems with Applications
40.1 (2013), pp. 200–210. issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2012.07.021.
url: https://www.sciencedirect.com/science/article/pii/S0957417412008767.

[6] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url: http://archive.
ics.uci.edu/ml.

[7] Pasi Fränti and Sami Sieranoja. “How much can k-means be improved by using better initialization
and repeats?” In: Pattern Recognition 93 (2019), pp. 95–112. issn: 0031-3203. doi: https://doi.
org/10.1016/j.patcog.2019.04.014. url: https://www.sciencedirect.com/science/
article/pii/S0031320319301608.

[8] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and prediction.
Vol. 2. Springer, 2009.

17

[9] Ji He et al. “Initialization of cluster refinement algorithms: a review and comparative study”. In: 1
(2004), pp. 297–302. doi: 10.1109/IJCNN.2004.1379917.

[10] Institute of Agrophysics of the Polish Academy of Sciences in Lublin. 2012.

[11] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster anal-
ysis. John Wiley & Sons, 1990.

[12] Shehroz S. Khan and Amir Ahmad. “Cluster center initialization algorithm for K-means clustering”.
In: Pattern Recognition Letters 25.11 (2004), pp. 1293–1302. issn: 0167-8655. doi: https://doi.
org/10.1016/j.patrec.2004.04.007. url: https://www.sciencedirect.com/science/
article/pii/S0167865504000996.

[13] Stuart Lloyd. “Least Squares Quantization in PCM.” In: IEEE Transactions on Information Theory
2.28 (1982), pp. 129–137.

[14] James B. Macqueen. “Some methods for classification and analysis of multivariate observations.”
In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability 1.5?
(1967), pp. 281–297.

[15] Eric U. Oti et al. “New k-means clustering methods that minimizes the total intra-cluster variance.”
In: African Journal of Mathematics and Statistics Studies Vo:3.No:5 (2020), pp. 42–54.

[16] J.M. Peña, J.A. Lozano, and P. Larrañaga. “An empirical comparison of four initialization methods
for the K-Means algorithm”. In: Pattern Recognition Letters 20 (1999), pp. 1027–1040.

[17] Douglas Steinley. “Local optima in K-means clustering: what you don’t know may hurt you.” In:
Psychological methods 8.3 (2003), p. 294.

[18] Douglas Steinley and Michael J Brusco. “Initializing K-means batch clustering: A critical evaluation
of several techniques”. In: Journal of Classification 24.1 (2007), pp. 99–121.

18

